






# **STRUCTURE OF THE SYLLABUS**

| PROGRAM<br>NAME     | COURSE         | COURSE CODE | COURSE NAME                                              |
|---------------------|----------------|-------------|----------------------------------------------------------|
| <b>B</b> Sc Physics | Core I         | U21PH101    | Properties of Matter                                     |
| <b>B</b> Sc Physics | Core Prac. I   | U21PH1P1    | Major Practicals - I                                     |
| <b>B</b> Sc Physics | Core II        | U21PH202    | Mechanics                                                |
| <b>B</b> Sc Physics | Core Prac. II  | U21PH2P2    | Major Practicals - II                                    |
| <b>B</b> Sc Physics | SBEC I         | U21PH2S1    | SBEC - 1 - Bio Phyics and Bio Medical<br>Instrumentation |
| <b>B</b> Sc Physics | Core III       | U21PH303    | Thermal Physics                                          |
| <b>B</b> Sc Physics | Core Prac. III | U21PH3P3    | Major Practicals - III                                   |
| <b>B</b> Sc Physics | Core IV        | U21PH404    | Optics                                                   |
| <b>B</b> Sc Physics | Core Prac. IV  | U21PH4P4    | Major Practicals - IV                                    |
| <b>B</b> Sc Physics | Core V         | U21PH505    | Electricity Magnetism and Electro<br>Magnetism           |
| <b>B</b> Sc Physics | Core VI        | U21PH506    | Electronic Devices                                       |
| <b>B</b> Sc Physics | Core Prac. V   | U21PH5P5    | Major Practicals - V                                     |
| <b>B</b> Sc Physics | Core Project   | U21PH5PJ    | Core Project                                             |
| <b>B</b> Sc Physics | Elective I     | U16PH5:1    | Atomic Physics                                           |
| <b>B</b> Sc Physics | Elective I     | U16PH5:2    | Communication System                                     |
| <b>B</b> Sc Physics | Elective I     | U16PH5:B    | Astronomy and Astrophysics                               |
| <b>B</b> Sc Physics | Elective I     | U16PH5:C    | Python                                                   |
| <b>B</b> Sc Physics | SBEC II        | U16PHPS2    | Physics content development (Theory and Practicals)      |
| <b>B</b> Sc Physics | SBEC III       | U16PHPS3    | Web Designing (Theory and Practicals)                    |
| <b>B</b> Sc Physics | Core VII       | U16PH607    | Nuclear Physics, Wave Mechanics and Relativity           |
| <b>B</b> Sc Physics | Core VIII      | U16PH608    | Solid State Physics                                      |
| <b>B</b> Sc Physics | Elective II    | U16PH6:1    | Digital Electronics                                      |
| <b>B</b> Sc Physics | Elective II    | U16PH6:2    | Crystal Growth and Thin Film Physics                     |
| <b>B</b> Sc Physics | Elective II    | U16PH6:B    | Energy Physics                                           |
| <b>B</b> Sc Physics | Elective II    | U16PH6:C    | Mathematical Methods and Physicists                      |
| <b>B</b> Sc Physics | Elective III   | U21PH6:3    | Programming in C                                         |
| <b>B</b> Sc Physics | Elective III   | U21PH6:4    | Spectroscopy and Lasers                                  |
| <b>B</b> Sc Physics | Elective III   | U21PH6:E    | Non - Destructive Testing and<br>Evaluation              |
| <b>B</b> Sc Physics | Elective III   | U21PH6:F    | Statistical Methods                                      |
| <b>B</b> Sc Physics | Core Prac. VI  | U21PH6P6    | Major Practicals - VI                                    |



# CORE-I: PROPERTIES OF MATTER AND ACOUSTICSSEMESTER: ICOURSE CODE: U21PH101CREDITS: 5TOTAL HOURS/WEEK: 6

#### At the end of this course, the students will be able to

| CO. NO. | Course Outcomes                                                            | Level | Unit Covered |
|---------|----------------------------------------------------------------------------|-------|--------------|
| CO1     | Measure different kinds of moduli of elasticity.                           | K5    | Ι            |
| CO2     | Interpret the concept and consequences of gravitation and its applications | К5    | II           |
| CO3     | Classify the liquids based on viscous property.                            | K4    | III          |
| CO4     | Estimate surface tension of liquids subjected to boundary conditions       | К5    | IV           |
| CO5     | Correlate the wave nature and analyze the laws of transverse vibrations    | K4    | V            |
| CO6     | Investigate the factors affecting the acoustics of buildings               | K3    | V            |

| CORE - II: MECHANICS  |
|-----------------------|
| <b>CODE: U21PH202</b> |
| NO OF HOURS/WEEK: 5   |
|                       |

| CO.NO. | Course Outcomes                                                                                                                   | Level | Unit Covered |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| C01    | Explain the concept of Centre of gravity, friction<br>and Equilibrium of a body in the presence and<br>absence of external force. | K2    | Ι            |
| CO2    | Estimate the physical parameters involved in projectile motion using Newton's equation of motion.                                 | К5    | П            |
| CO3    | Calculate moment of inertia of regular geometric structures using parallel and perpendicular axes theorem.                        | К5    | Ш            |
| CO4    | Determine the value of 'g' using different<br>pendulums (Compound, Kater's) and explain the<br>theory of oscillation.             | К5    | IV           |
| CO5    | Explain certain static and dynamic properties of fluids.                                                                          | K2    | V            |
| CO6    | Outline the applications of Bernoulli's and Torricelli's theorem.                                                                 | K2    | v            |



|               | CORE - III: THERMAL PHYSICS |
|---------------|-----------------------------|
| SEMESTER: III | <b>CODE: U21PH303</b>       |
| CREDITS: 5    | NO. OF HOURS/WEEK: 6        |

| CO.NO. | Course Outcomes                                                                                                                                                                        | Level | Unit<br>Covered |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Recall the fundamental laws of thermodynamics,<br>radiation and statistical mechanics and their<br>importance                                                                          | К2    | I, III, V       |
| CO2    | Summarize the theories related to low temperature, radiation and specific heat of solid, liquid and gas.                                                                               | K2    | II, III, IV     |
| CO3    | Model internal combustion engine, different<br>experimental methods for production of low<br>temperature, measurement of high temperature and<br>specific heats of solid, liquid, gas. | К3    | I, II, III, IV  |
| CO4    | Analyze the distribution of energy in black body<br>spectrum, system of boson and fermions, variation of<br>specific heat of solids and gases with respect to<br>temperature.          | K4    | III, IV, V      |
| CO5    | Evaluate specific heat capacity of solid, liquid and gas theoretically.                                                                                                                | K5    | III, IV, V      |
| CO6    | Estimate the energy distribution in black body radiation, system of bosons and fermions.                                                                                               | K6    | III, V          |

|             | CORE - IV: OPTICS     |
|-------------|-----------------------|
| SEMESTER IV | <b>CODE: U21PH404</b> |
| CREDITS: 5  | NO. OF HOURS/WEEK: 6  |

| CO.NO.     | Course Outcomes                                                                           | Level | Unit Covered |
|------------|-------------------------------------------------------------------------------------------|-------|--------------|
| CO1        | Develop the theory of interference for various optical waves                              | К3    | Ι            |
| CO2        | Determine the wavelength and thickness of transparent film using different interferometer | К5    | Ι            |
| CO3        | Apply the phenomenon of diffraction of light in analyzing pulse dynamics in optical media | К3    | П            |
| CO4        | Analyze the polarization evolution in optical systems                                     | К4    | III          |
| <b>CO4</b> | Classify the types of aberrations in lens                                                 | K2 IV |              |
| <b>CO6</b> | Determine the resolving and dispersive power of various optical instruments.              | К5    | V            |



### CORE-V: ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM SEMESTER: V CODE: U21PH505 CREDITS: 5 NO OFHOURS/WEEK: 5

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                                                                                  | Level | Unit<br>Covered   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| CO1    | Explain the fundamental laws of Electrostatics,<br>Magnetostatics and electromagnetism.                                                          | K2    | I, II, III<br>& V |
| CO2    | Explain the principles behind the electric and magnetic instruments.                                                                             | K2    | I, II & III       |
| CO3    | Organize experiments to determine the absolute values of inductance, Figure of merit of Galvanometer, Q factor and power factor of LCR circuits. | K3    | II, III &<br>IV   |
| CO4    | Analyse the behavior of circuits containing Inductance,<br>Capacitance and Resistance connected in different<br>combinations.                    | K4    | IV                |
| CO5    | Evaluate the electric, magnetic and electromagnetic fields due to different electric structures and current circuits.                            | K5    | I, II & III       |
| CO6    | Estimate the energy involved in sharing of charges,<br>Magnetization and in electromagnetic waves.                                               | K6    | I, III & V        |

# CORE – VI: ELECTRONIC DEVICESSEMESTER: VCODE: U21PH506CREDITS: 5NO. OF HOURS/WEEK: 5

| CO.NO. | Course Outcomes                                                                                                      | Level | Unit<br>Covered |
|--------|----------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Analyze the physical operation and applications of semiconductor devices like diodes, rectifiers and filters         | K4    | Ι               |
| CO2    | Explain the basic operations of BJT and FET in various configuration                                                 | K2    | II              |
| CO3    | Categorize the different power amplifier circuits, their design<br>and use in electronics and communication circuits | K4    | III             |
| CO4    | Infer the characteristics of feedback amplifier circuits                                                             | K4    | IV              |
| CO5    | Analyze different oscillator circuits for various range of frequencies                                               | K4    | IV              |
| CO6    | Construct circuits for various mathematical operations using operational amplifier                                   | K6    | V               |



# CORE - VII: NUCLEAR PHYSICS, WAVE MECHANICS AND RELATIVITY SEMESTER: VI CREDITS: 5 NO. OF HOURS/ WEEK: 6

| CO.<br>NO. | Course Outcomes                                                                                                                                                                                         | Level | Unit Covered |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1        | Explain the basic properties of nuclei, postulates of wave mechanics and relativity.                                                                                                                    | K2    | I, IV, V     |
| CO2        | Explain the limitations of Newton's law of motion<br>and black body radiation from Planck's hypothesis                                                                                                  | K2    | III, V       |
| CO3        | Identify the elementary particles based on the<br>quantum numbers, select suitable method of<br>detection for various nuclear radiations and model<br>nuclear reactors, atom bomb, Electron microscope. | К3    | Ι, Π         |
| CO4        | Analyze various experiments that reveal the dual nature of matter and theories related to nuclear reactions.                                                                                            | K4    | П, Ш         |
| CO5        | Assess relativistic variation in mass, velocity, time<br>and position, binding energy of nucleus and the<br>energy released in nuclear reactions.                                                       | K5    | I, II, V     |
| CO6        | Formulate Schrödinger equation for simple<br>quantum mechanical systems and solve it to find the<br>wave function and energy.                                                                           | K6    | IV           |

|              | CORE - VIII: SOLID STATE PHYSICS |         |
|--------------|----------------------------------|---------|
| SEMESTER: VI | <b>CODE : U16PH608</b>           |         |
| CREDITS: 5   | NO. OF HOUR\$/                   | WEEK: 6 |

| CO.NO.     | Course Outcomes                                                           | Level | Unit Covered |
|------------|---------------------------------------------------------------------------|-------|--------------|
| CO1        | Explain the basics of crystal structure                                   | K2    | Ι            |
| CO2        | Compare the types of bonding in solids                                    | K4    | II           |
| CO3        | Analyze electrical and thermal properties of metals                       | K4    | III          |
| <b>CO4</b> | Interpret electrical conductivity of semiconductors                       | K5    | IV           |
| CO5        | Explain the theories and properties of semiconductors and superconductors | К5    | IV, V        |
| CO6        | Categorize the superconductors based on their properties                  | K4    | V            |



|             | ELECTIVE - I: ATOMIC PHYSICS |
|-------------|------------------------------|
| SEMESTER: V | <b>CODE: U16PH5:1</b>        |
| CREDITS: 5  | NO. OF HOURS / WEEK: 5       |

| CO.NO.     | Course Outcomes                                                                                                                                                              | Level | Unit<br>Covered   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| CO1        | Explain the basic properties of positive rays, models of atoms, atomic spectra, photo-electricity, X-rays and classify elements.                                             | К2    | I - V             |
| CO2        | Make use of atom models to explain the spectral behavior of<br>atoms when they are free and under the influence of external<br>magnetic fields and model photovoltaic cells. | К3    | II & V            |
| CO3        | Organize experiments to determine e/m of positive rays,<br>critical potential, Planck's constant and structure of crystals<br>and to prove Vector atom model.                | К3    | I, II, III &<br>V |
| CO4        | Analyze the interactions of electromagnetic waves with matter                                                                                                                | K4    | IV & V            |
| CO5        | Evaluate Zeeman shift, Lande's g-factor, magnetic dipole moment of electron, structure of crystals.                                                                          | K5    | II, III & V       |
| <b>CO6</b> | Construct a basic photovoltaic cell.                                                                                                                                         | K6    | IV                |

|                    | ELECTIVE - I: COMMUNICATION SYSTEM |  |  |
|--------------------|------------------------------------|--|--|
| <b>SEMESTER: V</b> | CODE: U16PH5: A                    |  |  |
| CREDITS: 5         | NO. OF HOURS/WEEK: 5               |  |  |

| CO. NO.    | Course Outcomes                                                                  | Level | Unit Covered |
|------------|----------------------------------------------------------------------------------|-------|--------------|
| <b>CO1</b> | Outline the basics of noise in communication                                     | K2    | Ι            |
| CO2        | Classify the modulations on the basis of frequency                               | K3    | II           |
| CO3        | Apply the concept of different type of pulse modulation in communication         | К3    | III          |
| CO4        | Analyze the network and controls in data communication                           | K4    | IV           |
| CO5        | Utilize the analog and digital modulation schemes in fiber optical communication | К3    | V            |
| CO6        | Explain the emitter design and detector design in fiber optical communication    | K4    | V            |



#### ELECTIVE - I: ASTRONOMY AND ASTROPHYSICS SEMESTER: V CREDITS: 5 CODE: U16PH5:B NO OF HOURS/WEEK: 5

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                                                                                                     | Level | Unit Covered |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Explain the concept of naked eye astronomy for<br>identification of stars or group of stars in the night sky,<br>earth rotation and other moving body in the space. | K2    | I            |
| CO2    | Estimate the accurate position of the objects in the space<br>by Co-ordinate system and find sunset, sunrise, sidereal<br>time and season.                          | K5    | II           |
| CO3    | Explain the concept of basic structure of sun with other planets and comets, meteors, asteroids.                                                                    | K5    | III          |
| CO4    | Discuss Kepler law, law of motion, Newton gravitation theory, Hubble's law and Einstein Gravitation theory.                                                         | K5    | IV           |
| CO5    | Explain milky way and galaxies, origin and evolution.                                                                                                               | K2    |              |
| CO6    | Explain importance of expanding universe and its stability, life in the universe.                                                                                   | K2    | V            |

# SEMESTER: VI CREDITS: 5

#### ELECTIVE - I: PYTHON CODE: U16PH5:C NO OF HOURS/WEEK: 5

| CO. NO. | Course outcomes                                                                                               | Level | <b>Unit Covered</b> |
|---------|---------------------------------------------------------------------------------------------------------------|-------|---------------------|
| CO1     | Recall the basic structure of python program using constants, variables, datatypes and list.                  | K1    | Ι                   |
| CO2     | Demonstrate the conditional and looping statements to<br>understand the concept of programming language       | К2    | п                   |
| CO3     | Apply the different categories of user defined function and classes in python                                 | К3    | III                 |
| CO4     | Analyze the appropriate functions and libraries for drawing<br>the plots and data analysis                    | K4    | IV                  |
| CO5     | Evaluate the fundamental data structures and associated algorithms for solving substantial problems in python | K5    | III, IV, V          |
| CO6     | Design and develop programs to solve real time problems numerically                                           | K6    | V                   |



**SEMESTER: VI** 

CREDITS: 5

#### ELECTIVE - II: DIGITAL ELECTRONICS CODE: U21PH6:1 NO. OF HOURS/WEEK: 6

### At the end of this course, the students will be able to

| CO. NO. | Course outcomes                                                                               | Level | Unit Covered |
|---------|-----------------------------------------------------------------------------------------------|-------|--------------|
| CO1     | Classify and convert the different types of number systems used<br>in digital communication   | K2    | Ι            |
| CO2     | Apply Boolean laws and Karnaugh map to construct most simplified digital circuits             | K3    | I, II        |
| CO3     | Analyze different types of digital circuits using logical tools                               | K4    | III          |
| CO4     | Asses the various sequential logical circuits for particular operation                        | К5    | IV           |
| CO5     | Explain the architecture, organization and operation of the 8085 microprocessor.              | K5    | V            |
| CO6     | Develop assembly language programme to perform mathematical operations in 8085 microprocessor | K6    | V            |

# ELECTIVE -II: CRYSTAL GROWTH AND THIN FILM PHYSICSSEMESTER: IVCODE: U16PH6: ACREDITS: 5NO. OF HOURS/WEEK: 6

| CO.No. | Course Outcomes                                                                                                             | Level | Unit Covered |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Summarize the theory of nucleation and crystal growth.                                                                      | K2    | Ι            |
| CO2    | Discuss the significance of single crystals and list their applications                                                     | K4    | Ι            |
| CO3    | Classify the different crystal growth techniques<br>outline their principles and infer the advantages and<br>disadvantages. | K4    | II, III      |
| CO4    | Contrast different thin film coating techniques.                                                                            | K4    | IV           |
| CO5    | Explain thermodynamics and kinetics of thin film deposition process                                                         | K2    | V            |
| CO6    | List the various applications of Thin films in different areas of physics.                                                  | K4    | V            |



### ELECTIVE -II: CRYSTAL GROWTH AND THIN FILM PHYSICS SEMESTER: IV CODE: U16PH6: A CREDITS: 5 NO. OF HOURS/WEEK: 6

### At the end of this course, the students will be able to

| CO.No. | Course Outcomes                                                                                                             | Level | Unit Covered |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Summarize the theory of nucleation and crystal growth.                                                                      | К2    | Ι            |
| CO2    | Discuss the significance of single crystals and list their applications                                                     | K4    | Ι            |
| CO3    | Classify the different crystal growth techniques<br>outline their principles and infer the advantages and<br>disadvantages. | K4    | II, III      |
| CO4    | Contrast different thin film coating techniques.                                                                            | K4    | IV           |
| CO5    | Explain thermodynamics and kinetics of thin film deposition process                                                         | К2    | V            |
| CO6    | List the various applications of Thin films in different areas of physics.                                                  | K4    | V            |

# ELECTIVE – II: MATHEMATICAL METHODS FOR PHYSICISTSSEMESTER : VICODE: U16PH6:OCREDITS: 5NO. OF HOURS/WEEK: 6.

| CO. NO. | Course Outcomes                                                                                                                                                                                     | Level | Unit<br>Covered |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1     | Evaluate the integral of complex numbers using de<br>Moivre's theorem, integration of vectors, first order<br>ordinary differential equations and definite integrals using<br>gamma, beta functions | К5    | I, II, IV,<br>V |
| CO2     | Apply Cauchy-Riemann conditions to test analyticity of complex function, row reduction to find rank of a matrix                                                                                     | К3    | I, III          |
| CO3     | Outline the complex numbers, types and role of matrices in Physics, Gamma and beta functions.                                                                                                       | К2    | I, III,V        |
| CO4     | Extend the separable method for the solution of first order<br>ordinary differential equations and Gauss divergence<br>theorem for volume integrals                                                 | K2    | II, IV          |
| CO5     | Analyze initial value problem of ordinary differential equations with boundary conditions in physical problems                                                                                      | K4    | IV              |
| CO6     | Construct characteristic equation from system of linear equations and Recursion relation of gamma function                                                                                          | К3    | III, V          |



|                     | ELECTIVE - III: PROGRAMMING IN C |  |
|---------------------|----------------------------------|--|
| <b>SEMESTER: VI</b> | <b>CODE: U21PH6:3</b>            |  |
| CREDITS: 5          | NO. OF HOURS/WEEK: 6             |  |

| CO.NO. | Course outcomes                                                                                      | Level | Unit<br>Covered |
|--------|------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Recall the basic structure of C program using constants, variables, datatypes and operators          | K1    | Ι               |
| CO2    | Demonstrate the conditional and looping statements to understand the concept of programming language | K2    | II              |
| CO3    | Apply the concept of arrays, structures and union in solving problems                                | K3    | III             |
| CO4    | Analyze and classify the different categories of user defined function<br>in C                       | K4    | IV              |
| CO5    | Explain the importance of pointer variables and various file operations                              | K5    | V               |
| CO6    | Design and develop programs by applying all learned concepts to solve real time problems             | K6    | V               |

#### ELECTIVE - III: SPECTROSCOPY AND LASERS SEMESTER: VI CREDITS: 5 CODE: U21PH6:D NO. OF HOURS / WEEK: 6

| CO.NO.     | Course Outcomes                                                                                                                                                                                            | Level | Unit<br>Covered    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|
| CO1        | Explain the basic concept of spectroscopy and its types which includes Microwave, IR and Raman.                                                                                                            | K2    | I - III            |
| CO2        | Explain the fundamentals of lasers and its types.                                                                                                                                                          | K2    | IV & V             |
| CO3        | Identify the characteristics of EM radiation and its application in the spectroscopic studies                                                                                                              | К3    | I, II & III        |
| <b>CO4</b> | Identify the applications and levels of laser                                                                                                                                                              | K3    | IV & V             |
| CO5        | Analyze the models of SHM and Rigid Rotor to study the<br>rotation and vibration of molecules using IR and Raman<br>spectroscopy and the energy levels for laser action in some<br>selected types          | K4    | II, III, IV<br>& V |
| CO6        | Evaluate the energy of the vibrating and rotating<br>molecules using IR and Raman spectroscopy and Einstein<br>Coefficients for laser action and wavelength of the laser<br>emitted in some selected types | К5    | I to V             |



|              | ELECTIVE – III: NON-DESTRUCTIVE TESTING AND EVALUATION |
|--------------|--------------------------------------------------------|
| SEMESTER: VI | CODE: U21PH6:E                                         |
| CREDITS: 5   | NO. OF HOURS / WEEK: 6                                 |

| CO.NO. | Course Outcomes                                                                                                                                   | Level | Unit Covered |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO 1   | Discuss Non-destructive testing methods for the detection of manufacturing defects of materials.                                                  | K6    | Ι            |
| CO 2   | Infer Liquid penetrant Testing, Magnetic particle testing, testing procedures and results.                                                        | K2    | II           |
| CO 3   | Explain Thermography, Eddy current -Principles,<br>Techniques of liquid crystals, Eddy current testing,<br>sensing elements and instrumentation.  | K5    | III          |
| CO 4   | Discuss Ultrasound testing's, Acoustic emission techniques principle and applications.                                                            | K6    | IV           |
| CO 5   | Explain interaction of X-ray with matter and imaging.                                                                                             | K2    |              |
| CO6    | Explain Fluoroscopy, Xero-Radiography,<br>Computed Radiography, Computed Tomography<br>characteristics curves, penetrameters, Exposure<br>charts. | K2    | V            |

#### ELECTIVE - III: STATISTICAL METHODS SEMESTER: VI CREDIT:5 CODE: U21PH6:F No of HOURS/WEEK: 6

| CO.NO. | Course Outcomes                                                                                                                                                      | Level | Units<br>covered |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|
| CO1    | Analyse a representative subset of data points to identify patterns and trends in the larger data set being examined                                                 | K4    | Ι                |
| CO2    | Utilize charts and graphs to display and interpret numerical data,<br>functions, and other qualitative structures.                                                   | К3    | II               |
| CO3    | Estimate the central tendency of the statistical data and how it is distributed.                                                                                     | K5    | II               |
| CO4    | Facilitate comparative study of two or more frequency distribution regarding their shape and pattern.                                                                | K5    | III              |
| CO5    | Examine the strength and direction of the linear relationship between<br>a pair of observations.                                                                     | K4    | IV               |
| CO6    | Construct a curve or a mathematical function that has the best fit to a series of data points.<br>Make predictions of underlying mechanisms which produced the data. | K3    | V                |



# SBEC - I: BIOPHYSICS AND BIOMEDICAL INSTRUMENTATIONSEMESTER: IICODE: U21PH2S1CREDITS: 2NO. OF HOURS/WEEK: 2

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                                        | Level | Unit Covered |
|--------|--------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Infer the structure of amino acids, proteins, DNA and their types.                                     | K4    | Ι            |
| CO2    | Apply the concepts of electrical and electronics to design electrodes and transducers.                 | К3    | II           |
| CO3    | Categorize various pre-amplifiers and different types of electrodes to analyze bio-signals.            | K4    | III          |
| CO4    | Analyze the working of various Bio-potential recorders.                                                | K4    | IV           |
| CO5    | Analyze the origin and acquisition of bio potentials<br>and bioelectric signals such as ECG, EEG etc., | K4    | V            |
| CO6    | Discuss the operation principles of pacemaker, defibrillator, nerve stimulators, kidney machines.      | K4    | V            |

# SBEC-II: Concepts through animations (THEORY AND PRACTICAL) SEMESTER: V CODE: U21PHPS2 CREDITS: 2 NO. OF HOURS/WEEK: 2

| CO. NO. | Course Outcomes                                                                                                             | Level | Unit<br>Covered      |
|---------|-----------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| CO1     | Apply the basic tools of Flash, Photoshop and Adobe Premier software.                                                       | К3    | I, III, V            |
| CO2     | Develop action scripts and record audio for the E-<br>content                                                               | К5    | II, V                |
| CO3     | Organize a new Photoshop and video files with<br>multiple layer adjustments such as exploring,<br>deleting and merging etc. | K3    | III, V               |
| CO4     | Synchronize audio and video files as per the desired timeline.                                                              | К5    | I, II, V             |
| CO5     | Edit audio and video files using appropriate tools                                                                          | К5    | I, II, III,<br>IV, V |
| CO6     | Create scientific content with essential animations using appropriate tools                                                 | K6    | I, II, V             |



|              | SBEC - III: WEB DESIGNING |
|--------------|---------------------------|
|              | (THEORY AND PRACTICAL)    |
| SEMESTER: VI | CODE: U21PHPS3            |
| CREDITS: 2   | NO. OF HOURS/WEEK: 2      |

| CO.NO. | Course Outcomes                                                         | Level | Unit Covered |
|--------|-------------------------------------------------------------------------|-------|--------------|
| CO 1   | Develop HTML coding for webpage                                         | K2    | Ι            |
| CO 2   | Demonstrate and display HTML web site folders.                          | K3    | II           |
| CO 3   | Design graphics and hyperlinks in web pages                             | K3    | III          |
| CO 4   | Implement other software within the webpage using various methods.      | K6    | IV           |
| CO 5   | Create HTML functions to link different web pages                       | K6    | V            |
| CO 6   | Create, edit, delete and manage different forms and fields in a website | K6    | V            |

|                      | NMEC-I: ELECTRICAL APPLIANCES |  |  |
|----------------------|-------------------------------|--|--|
| <b>SEMESTER: III</b> | CODE: U21PH3E1                |  |  |
| <b>CREDITS: 2</b>    | NO. OF HOURS/WEEK: 2          |  |  |

| CO.NO. | Course Outcomes                                                           | Level | Unit<br>Covered |
|--------|---------------------------------------------------------------------------|-------|-----------------|
| CO1    | Recall the basics of electricity                                          | K1    | Ι               |
| CO2    | Outline the risk factors and precautionary steps to avoid electric shock. | K2    | Ι               |
| CO3    | Explain the types of electrical wiring & various heating appliances       | K2    | П               |
| CO4    | Outline the principles & working of moving coil instruments               | K2    | III             |
| CO5    | Explain the functioning of several home appliances                        | K4    | IV              |
| CO6    | Apply electromagnetic theory to day to day electrical appliances.         | К3    | V               |



|                   | NMEC - II: AUDIO AND VIDEO SYSTEMS |  |
|-------------------|------------------------------------|--|
| SEMESTER: IV      | CODE: U21PH4E2                     |  |
| <b>CREDITS: 2</b> | NO.OF HOURS/WEEK: 2                |  |

| CO.NO. | Course Outcomes                                                                       | Level | Unit<br>Covered |
|--------|---------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Outline the nature and production of sound waves                                      | K2    | Ι               |
| CO2    | Classify the different types of microphones and loudspeakers                          | K2    | II              |
| CO3    | Compare the functioning of monochrome and colour television                           | K4    | III             |
| CO4    | Explain the transmission and reception of digital signals in the communication system | К3    | IV              |
| CO5    | Explain the operating principles of electronic display devices (LCD & LED)            | K2    | V               |
| CO6    | Outline the principle, instrumentation, working of audio and video system             | K4    | II - V          |

#### ALLIED PHYSICS - I (FOR I B.Sc. MATHS) MECHANICS, SOUND, THERMAL PHYSICS AND OPTICS SEMESTER: I CODE: U21PHY01 CREDITS: 4 NO. OF HOURS/WEEK: 4

| CO.NO.     | Course Outcomes                                                                                 | Level | Unit Covered |
|------------|-------------------------------------------------------------------------------------------------|-------|--------------|
| CO1        | Deduce Centre of Gravity for different geometrical structures                                   | K4    | Ι            |
| CO2        | Measure the metacentric height of a ship with the knowledge of stability of floating bodies     | K5    | Ι            |
| CO3        | Investigate the acoustics of buildings and Simple<br>Harmonic Motion (SHM)                      | K4    | II           |
| <b>CO4</b> | Determine the various elastic modulii of materials                                              | K5    | III          |
| CO5        | Estimate the thermal properties of solids and fluids.                                           | K5    | IV           |
| CO6        | Explain the principles of spectroscopy and the importance of fibre optic communication systems. | K5    | V            |



## ALLIED PHYSICS I (FOR II B.Sc. CHEMISTRY) MECHANICS, SOUND,THERMAL PHYSICS AND OPTICS

CODE: U21PHY33 NO. OF HOURS/WEEK: 4

### At the end of this course, the students will be able to

**SEMESTER: III** 

**CREDITS** : 3

| CO.NO. | Course Outcomes                                                                                 | Level | Unit Covered |
|--------|-------------------------------------------------------------------------------------------------|-------|--------------|
| C01    | Deduce Centre of Gravity for different geometrical structures                                   | K4    | Ι            |
| CO2    | Measure the metacentric height of a ship with the knowledge of stability of floating bodies     | K5    | Ι            |
| CO3    | Investigate the acoustics of buildings and Simple<br>Harmonic Motion (SHM)                      | K4    | II           |
| CO4    | Determine the various elastic modulii of materials                                              | K5    | III          |
| CO5    | Estimate the thermal properties of solids and fluids.                                           | K5    | IV           |
| CO6    | Explain the principles of spectroscopy and the importance of fibre optic communication systems. | K5    | V            |

#### ALLIED PHYSICS – II (FOR II B.Sc. MATHS) ELECTRICITY, ATOMIC,NUCLEAR PHYSICS AND ELECTRONICS SEMESTER: IV CREDITS: 4 CODE: U21PHY02 NO. OF HOURS /WEEK: 4

| CO. NO.    | Course Outcomes                                                                                                                                                            | Level | Unit<br>Covered |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| <b>CO1</b> | Explain Coloumb's theorem and the principle of capacitors.                                                                                                                 | K2    | Ι               |
| CO2        | Assess effective current and voltage in electrical circuits using kirchoff's law and self and mutual inductance of the coils using principle of electromagnetic induction. | К5    | п               |
| CO3        | Utilize X-ray diffraction technique to characterize the samples<br>and identify the Quantum numbers based on vector atom model.                                            | К3    | III             |
| CO4        | Explain various nuclear models and the principle of particle detectors.                                                                                                    | К2    | IV              |
| CO5        | Classify solids based on band theory and categorize the semiconductors.                                                                                                    | K4    | V               |
| CO6        | Evaluate numerical equivalence between different number systems and simplified Boolean expression.                                                                         | K5    | 5               |



#### ALLIED PHYSICS - II (FOR II B.Sc. CHEMISTRY) ELECTRICITY, ATOMIC, NUCLEAR PHYSICS AND ELECTRONICS SEMESTER: IV CREDITS: 4 CODE: U21PHY44 NO. OF HOURS/WEEK: 4

#### At the end of this course, the students will be able to

| CO. NO.    | Course Outcomes                                                                                                                                                            | Level | Unit<br>Covered |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| <b>CO1</b> | Explain Coloumb's theorem and the principle of capacitors.                                                                                                                 | K2    | Ι               |
| CO2        | Assess effective current and voltage in electrical circuits using kirchoff's law and self and mutual inductance of the coils using principle of electromagnetic induction. | К5    | II              |
| CO3        | Utilize X-ray diffraction technique to characterize the samples<br>and identify the Quantum numbers based on vector atom model.                                            | К3    | III             |
| CO4        | Explain various nuclear models and the principle of particle detectors.                                                                                                    | К2    | IV              |
| CO5        | Classify solids based on band theory and categorize the semiconductors.                                                                                                    | K4    | V               |
| CO6        | Evaluate numerical equivalence between different number systems and simplified Boolean expression.                                                                         | K5    | V               |

#### APPLIED PHYSICS I (FOR II B.Sc. COMPUTER SCIENCE) ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM SEMESTER: III CREDITS: 3 No. OF HOURS/ WEEK: 4

| CO.NO. | Course Outcomes                                                                                            | Level | Unit Covered |
|--------|------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Explain the principle of Electrostatics                                                                    | K2    | Ι            |
| CO2    | Estimate the capacity of Spherical and cylindrical capacitors                                              | K5    | Ι            |
| CO3    | Classify materials based on its magnetic properties                                                        | K3    | II           |
| CO4    | Measure current and resistance in electrical circuits using<br>Kirchhoff's laws and Wheatstone's principle | K5    | III          |
| CO5    | Analyze self-inductance and Mutual inductance using<br>Faraday's laws of Electromagnetic induction         | K4    | IV           |
| CO6    | Examine current and impedance in Single, double and tri component                                          | K4    | V            |



#### APPLIED PHYSICS II (FOR II B.Sc. COMPUTER SCIENCE) SOLID STATE DEVICES AND MICROPROCESSOR SEMESTER: IV CODE: U21PHZ45

**NO. OF HOURS/WEEK: 4** 

#### At the end of this course, the students will be able to

**CREDITS: 4** 

| CO.NO. | Course Outcomes                                                                        | Level | Unit<br>Covered |
|--------|----------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Explain semiconductors, characteristics of diodes & their applications                 | K2    | 1               |
| CO2    | Analyse the Characteristics of Transistors & FET                                       | K4    | 1               |
| CO3    | Utilize Operational Amplifier to perform several mathematical operations               | К3    | 2               |
| CO4    | Outline the evolution and Architecture of Microprocessor<br>Intel 8085.                | K2    | 3               |
| CO5    | Explain the addressing modes and functioning of various Instruction set of Intel 8085. | K2    | 4               |
| CO6    | Develop simple assembly language programs.                                             | K3    | 5               |

#### MAJOR PRACTICALS - I SEMESTER: I CREDITS: 3 CODE: U21PH1P1 NO. OF HOURS/WEEK:3

| CO.NO. | Course outcomes                                                                                                                                    | Level | Experiment<br>Covered |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| CO1    | Determine surface tension and interfacial tension by weight drop method                                                                            | K5    | 3                     |
| CO2    | Analyze the basic operations and the characteristics of Zener diode<br>in various configuration                                                    | K6    | 6                     |
| CO3    | Demonstrate and apply the concept of optical theory of lenses to<br>find the focal Length, radius of curvature of long focus convex lens           | K2    | 5                     |
| CO4    | Determine the frequency of AC mains using Sonometer and find<br>wavelength, period, amplitude using Meldes method                                  | K5    | 4,13                  |
| CO5    | Estimate the moduli of elasticity, rigidity modulus for different<br>materials using non uniform bending pin and microscope and<br>torsion method. | K6    | 1,14                  |
| CO6    | Determine refractive index of given prism by spectrometer and measure g and K using compound pendulum.                                             | K5    | 2,8,14                |



#### CODE: U21PH2P2 NO. OF HOURS/WEEK: 3

#### At the end of this course, the students will be able to

**SEMESTER: II** 

**CREDITS: 3** 

| CO.NO. | Course outcomes                                                                                                                                       | Level | Experiment<br>Covered |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| CO1    | Measure the coefficient of viscosity of low and highly<br>viscous liquids using graduated burette, Ostwald's<br>viscometer and Stoke's method         | K5    | 2,5,14                |
| CO2    | Analyze the basic operations and the characteristics of<br>Zener diode in various configuration                                                       | K4    | 7                     |
| CO3    | Apply the concept of optical theory of lenses to find the<br>focal Length, radius of curvature and the refractive index of<br>long focus concave lens | К3    | 6                     |
| CO4    | Determine the frequency of AC mains using Sonometer.                                                                                                  | K5    | 3                     |
| CO5    | Estimate the moduli of elasticity for different materials using optic lever and torsional pendulum.                                                   | K5    | 1,4                   |
| CO6    | Make use of CRO, AFO and multimeter to study the frequency resonant circuit, Lissajous figures, different waveforms and basic electrical measurements | К3    | 10,12,13              |

|               | MAJOR PRACTICALS - III |
|---------------|------------------------|
| SEMESTER: III | CODE: U21PH3P3         |
| CREDITS: 3    | No. OF HOURS.WEEK: 3   |

| CO.NO. | Course Outcomes                                                                  | Level | Experiment<br>covered |
|--------|----------------------------------------------------------------------------------|-------|-----------------------|
| C01    | Determine thermal constants (specific heat, thermal conductivity) of substances. | K1    | 1,2,3                 |
| CO2    | Analyze the properties of light (interference, refraction and polarization).     | K5    | 4,5                   |
| CO3    | Design rectifier circuits using diodes.                                          | K6    | 6                     |
| CO4    | Analyze transistor characteristics in CE mode                                    | K4    | 11                    |
| CO5    | Analyze the solar spectrum                                                       | K2    | 9                     |
| CO6    | Estimate the sensitivity of a galvanometer (B.G).                                | K3    | 8                     |



### MAJOR PRACTICALS - IV

CODE: U21PH4P4 NO. OF HOURS/WEEK: 3

### At the end of this course, the students will be able to

SEMESTER: IV

**CREDITS: 3** 

| CO.NO. | Course Outcomes                                                                                                                       | Level | Experiment<br>Covered |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| CO1    | Measure the temperature co- efficient of materials using potentiometer and P.O. Box.                                                  | K5    | 3,6,12,13             |
| CO2    | Determine emissivity of blackened surface of the Spherical calorimeter.                                                               | К5    | 1                     |
| CO3    | Construct circuit diagram to find specific resistance<br>and calibrate low range voltmeter.                                           | К3    | 4,5                   |
| CO4    | Determine thickness of wire, films and wave length<br>of visible light (direct and oblique method) by using<br>spectrometer- Grating. | K5    | 2,7,10,11             |
| CO5    | Make use of optical microscope to identify the microstructure of samples.                                                             | К3    | 9                     |
| CO6    | Verify the function of logic gates using discrete components.                                                                         | K2    | 8                     |

#### MAJOR PRACTICALS - V SEMESTER: V CREDITS:3 CODE: U21PH5P5 No. OF HOURS/WEEK: 6

| CO.NO. | Course outcomes                                                                                                    | Level | Experiments covered     |
|--------|--------------------------------------------------------------------------------------------------------------------|-------|-------------------------|
| CO 1   | Recall the laws in specific area and apply it to estimate the physical properties of materials                     | K1    | 1,3,4,14                |
| CO2    | Illustrate the functions of important circuits that<br>are used to measure electrical properties of<br>components. | K2    | 12                      |
| CO3    | Conduct experiments to measure the physical observables.                                                           | K3    | 7,8,9,13,16,17,18,19,20 |
| CO4    | Analyze the quality of equipment's based on the observations                                                       | K4    | 2,5,610,11,15           |
| CO5    | Conduct experiments to demonstrate the relation between different properties of materials                          | K5    | 21                      |
| CO6    | They have acquiring computational skills in C language                                                             | K6    | 22,23,24,25,26          |



| MAJ         | OR PRACTICALS - VI    |
|-------------|-----------------------|
| SEMESTER:VI | COURSE CODE: U21PH6P6 |
| CREDITS: 3  | NO. OF HOURS/WEEK: 6  |

| CO. NO. | Course Outcomes                                                                            | Level | Experiments<br>Covered |
|---------|--------------------------------------------------------------------------------------------|-------|------------------------|
| CO1     | Explain the characteristics of FET and its working as an amplifier.                        | K4    | 1,2                    |
| CO2     | Recall basic logic gates, Boolean algebra and modify digital circuits using K-map.         | K6    | 3,4,5,6                |
| CO3     | Design amplifier and oscillator circuits using bipolar transistors.                        | K6    | 7,8,9,10               |
| CO4     | Analyze low pass and high pass filter circuits using operational amplifier.                | K6    | 11,12,13               |
| CO5     | Develop assembly language program to perform various operations using 8085 microprocessors | K6    | 14,15                  |
| CO6     | Explain voltage regulation using Zener diode.                                              | K4    | 16                     |

#### ALLIED PHYSICS PRACTICAL (FOR I B.Sc.1 MATHS AND II B.Sc. CHEMISTRY) SEMESTER: I & II / III & IV CREDITS: 4 CODE: U21PHYP1 NO. OF HOURS/WEEK:3

| CO.NO. | Course Outcomes                                                                                                                                                         | Level | Experiment<br>Covered |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| CO1    | Measure the coefficient of viscosity of liquids using graduated burette<br>method and find surface tension using drop weight method                                     | K5    | 2,15                  |
| CO2    | Determine the Horizontal intensity of earth magnetic field and magnetic moment using Tangent galvanometer.                                                              | K5    | 5,6                   |
| CO3    | Measure series and parallel resistance, specific resistance, using potentiometer, Carey fosters bridge.                                                                 | K3    | 11,12                 |
| CO4    | Examine specific heat capacity of two different liquids using Newton's law of cooling method and thermal conductivity of a bad conductor using Lee's disc method.       | K4    | 3,4                   |
| CO5    | Apply optical theory find the radius of curvature of a given convex lens<br>using Newton rings method and the refractive index of prism using<br>spectrometer.          | K3    | 7,9                   |
| CO6    | Test Laws of transverse vibrations and find AC frequency of a given<br>string and young's modulus of a non-uniform bending of a bar using<br>pin and Microscope method. | K4    | 1,8,10                |



**CREDITS: 3** 

#### **APPLIED PHYSICS PRACTICAL** (FOR II B.S COMPUTER SCIENCE) **SEMESTER: III & IV CODE: U21PHZP1 NO. OF HOURS/WEEK: 3**

#### At the end of this course, the students will be able to

| CO. NO. | Course Outcomes                                                                                                                                                        |    | Experiments<br>Covered |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------|
| CO1     | Analyze the basic operation and the characteristics of Junction and<br>Zener diode in various configuration and construct regulated power<br>supply using Zener diode. | K4 | 6,12                   |
| CO2     | Explain the characteristics features of FET and CE -Transistor.                                                                                                        | K4 | 5,13                   |
| CO3     | Estimate the Q-factor from frequency response of series and parallel resonance circuits.                                                                               | K5 | 4,14                   |
| CO4     | Construct and study the adder, Subtractor circuits using OPAMP IC 741, and verify the function of logic gates using discrete components.                               | К3 | 7,8,15                 |
| CO5     | Determine the horizontal component of intensity of earth magnetic field and magnetic moment using Tangent galvanometer.                                                | К5 | 2,10                   |
| CO6     | Measure resistance, specific resistance, current, using potentiometer,<br>Carey fosters bridge and PO box.                                                             | K4 | 1,3,11,16              |

#### DIGITAL ELECTRONICS AND MICROPROCESSOR LAB FOR III B.Sc. COMPUTER SCIENCE SEMESTER : V & VI CODE: U21CS6P6 CREDITS: 3 **NO. OF HOURS/WEEK:2**

| CO. NO.    | Course Outcomes                                                                                                                                        | Level | Experiments<br>Covered |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|
| <b>CO1</b> | Recall basics of logic gates by a universal NAND and NOR gates.                                                                                        | K4    | 3,11                   |
| CO2        | Construct and study the Half Adder and Full Adder. Half Subtractor and Full Subtractor circuits.                                                       | K4    | 4,12                   |
| CO3        | Verify the Conversion of Decimal to Hexadecimal and Hexa decimal to decimal and Block Transfer by8085 microprocessors.                                 | K5    | 8,10                   |
| CO4        | Develop assembly language program to perform various operations using 8085 microprocessors. $\mu$ P: Multibyte $\mu$ P:8-bit: addition and subtractor. | К3    | 7,15,16                |
| CO5        | Construct the circuit and verify the Karnaugh map reduction technique,<br>Shift register, Up and down counter.                                         | K5    | 5,6,13                 |
| CO6        | Verify the Analog to Digital converter Binary weight method.                                                                                           | K4    | 14                     |



# STRUCTURE OF THE SYLLABUS

| PROGRAM NAME | COURSE         | COURSE<br>CODE | COURSE NAME                                |
|--------------|----------------|----------------|--------------------------------------------|
| M Sc Physics | Core I         | P21PH101       | Mathematical Physics - I                   |
| M Sc Physics | Core II        | P21PH102       | Classical Dynamics                         |
| M Sc Physics | Core III       | P21PH103       | Statistical Mechanics                      |
| M Sc Physics | Elective I     | P21PH1:1       | Analog and Digital Electronics             |
| M Sc Physics | Elective I     | P21PH1:A       | Modern Communication System                |
| M Sc Physics | Core Prac. I   | P21PH1P1       | Major Practicals - I                       |
| M Sc Physics | Core IV        | P21PH204       | Mathematical Physics - II                  |
| M Sc Physics | Core V         | P21PH205       | Electromagnetic Theory                     |
| M Sc Physics | Elective II    | P21PH2:2       | Atomic and Molecular Physics               |
| M Sc Physics | Elective II    | P21PH2:A       | Solar PV Technology and its Application    |
| M Sc Physics | Elective III   | P21PH2:P       | Virtual Labs - Physics Experiments         |
| M Sc Physics | Core Prac. II  | P21PH2P2       | Major Practicals - II                      |
| M Sc Physics | Core VI        | P21PH306       | Quantum Mechanics - I                      |
| M Sc Physics | Core VII       | P21PH307       | Solid State Physics - I                    |
| M Sc Physics | Core VIII      | P21PH308       | Microprocessor and Microcontroller         |
| M Sc Physics | Elective IV    | P21PH3:4       | Nuclear Physics                            |
| M Sc Physics | Elective IV    | P21PH3:A       | Radiation Physics                          |
| M Sc Physics | Core Prac. III | P21PH3P3       | Major Practical - III                      |
| M Sc Physics | Core IX        | P21PH309       | Quantum Mechanics - II                     |
| M Sc Physics | Core X         | P21PH410       | Solid State Physics - II                   |
| M Sc Physics | Elective V     | P21PH4:5       | Crystal Growth, Thin Film and Nano Science |
| M Sc Physics | Elective V     | P21PH4:A       | Astrophysics                               |
| M Sc Physics | Core Prac. IV  | P21PH4P4       | Major Practical - IV                       |
| M Sc Physics | Core Project   | P21PH4PJ       | Project                                    |



#### CORE - I: MATHEMATICAL PHYSICS I SEMESTER: I CREDITS: 5 CODE: P21PH101 NO. OF HOURS/WEEK: 6

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                                                                                                                 | Level | <b>Unit Covered</b>  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| CO1    | Explain the basic concepts of vectors, vector differential calculus, vector integral calculus, vector space, matrices, differential equations and numerical techniques.         | К2    | I, II, III, IV,<br>V |
| CO2    | Apply Gauss, Stoke's and Green's Theorems for solving vector field<br>related problems and principle of least squares for curve fitting.                                        | К3    | I, V                 |
| CO3    | Determine the eigenvalues, eigenvectors, rank, inverse, power and<br>exponential of matrices and roots of algebraic and transcendental<br>equations using numerical techniques. | К5    | II, V                |
| CO4    | Solve linear ordinary differential equations using elementary methods<br>and partial differential equations using method of separation of variables                             | К3    | III                  |
| CO5    | Analyze the properties of Bessel, Legendre, Hermite, Laguerre, beta and gamma functions.                                                                                        | K4    | IV                   |
| CO6    | Choose the optimal numerical technique for solving integral and differential equations.                                                                                         | K5    | V                    |

#### CORE – II: CLASSICAL DYNAMICS SEMESTER: I CREDITS: 5 NO. OF HOURS / WEEK: 6

| CO.NO. | Course Outcomes                                                                                                                                                                                    | Level | Unit Covered |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Explain the symmetries and conservation laws of system of particles<br>and kinematics of rigid body                                                                                                | K2    | I,II         |
| CO2    | Solve small oscillation problem and construct canonical transformation as well as to evaluate Poisson bracket structure                                                                            | К3    | II,III       |
| CO3    | Analyse the planetary motion and scattering in the central force field.                                                                                                                            | K4    | Ι            |
| CO4    | Develop Lagrangian, Hamiltonian, Hamilton-Jacobi, action-angle<br>formulations and analyse various physical systems like simple<br>pendulum, Atwood's machine, Kepler problem, symmetric top, etc. | K5    | I, II&III    |
| CO5    | Describe the chaotic behaviour in dynamical systems and develop<br>the methods of soliton theory.                                                                                                  | K6    | IV           |
| CO6    | Outline the special theory of relativity and examine the invariance of relativistic systems (Ex.: Maxwell's equations) under the Lorentz Transformation                                            | K4    | V            |



| CORE -III - STATISTICAL MECHANICS |                      |  |  |  |
|-----------------------------------|----------------------|--|--|--|
| <b>SEMESTER: I</b>                | CODE:P21PH103        |  |  |  |
| CREDITS: 5                        | NO. OF HOURS/WEEK: 6 |  |  |  |

| CO.NO. | Course Outcomes                                                                                                                                                               | Level | Unit<br>Covered |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Analyze the consequences of the laws of thermodynamics<br>under varied external conditions                                                                                    | K4    | Ι               |
| CO2    | Enumerate the role of statistics applied to the microscopic<br>world and establish the link between thermodynamics and<br>statistical mechanics                               | K4    | II, III         |
| CO3    | Construct different ensembles and deduce Maxwell<br>Boltzmann (Classical particles), Bose Einstein and Fermi<br>Dirac (Quantum particles) statistical distribution functions. | К5    | II, III         |
| CO4    | Interpret thermodynamical quantities in terms of partition<br>function and derive the specific heat capacities of solids                                                      | K5    | II, III         |
| CO5    | Assess the behavior of ideal gas, black body, liquid helium<br>and electron gas systems in the light of classical and<br>quantum statistical mechanics                        | К5    | IV              |
| CO6    | Interpret phase transitions and phase diagrams under thermodynamical equilibrium for binary systems.                                                                          | K5    | V               |

|                  | <b>ELECTIVE-I:</b> | VE- I: ANALOG AND DIGITAL ELECTRONICS |         |  |
|------------------|--------------------|---------------------------------------|---------|--|
| <b>SEMESTER:</b> | Ι                  | CODE: P21PH1:                         | 1       |  |
| CREDITS: 5       |                    | NO. OF HOURS                          | WEEK: 6 |  |

| CO. NO. | Course Outcomes                                                                                                          | Level | Unit<br>Covered |
|---------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1     | Summarize the characteristics and applications of thyristor family and MOSFET                                            | K4    | Ι               |
| CO2     | Examine the working of optoelectronics devices and special diodes.                                                       | K4    | II              |
| CO3     | Examine the function of OPAMP as an active filter, log amplifier, clipper, clamper and 555 timer as Astablemultivibrator | K4    | III             |
| CO4     | Analyse the function of different mode of shift register.                                                                | K4    | IV              |
| CO5     | Develop synchronous sequential circuits.                                                                                 | K3    | IV              |
| CO6     | Analyze the factors affecting Fiber optic communication and functioning of Microwave Devices                             | K5    | V               |



# ELECTIVE-I: MODERN COMMUNICATION SYSTEMSEMESTER: ICODE: P21PH1:ACREDITS:5NO. OF HOURS/WEEK :6

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                  | Level | Unit<br>Covered |
|--------|----------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Outline the basics of noise in communication                                     | K2    | Ι               |
| CO2    | Classify the modulations on the basis of frequency                               | K3    | II              |
| CO3    | Apply the concept of different type of pulse modulation in communication         | K3    | III             |
| CO4    | Analyze the network and controls in data communication                           | K4    | IV              |
| CO5    | Utilize the analog and digital modulation schemes in fiber optical communication | K3    | V               |
| CO6    | Explain the emitter design and detector design in fiber optical communication    | K4    | V               |

#### CORE IV: MATHEMATICAL PHYSICS – II SEMESTER : II CREDITS: 5 NO. OFHOURS/WEEK: 6

| CO. NO. | Course Outcomes                                                                                                                                                                                                | Level | Unit<br>Covered |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1     | Apply Cauchy-Riemann conditions to test analyticity of complex function                                                                                                                                        | K3    | Ι               |
| CO2     | Evaluate the integral of complex function using Cauchy's<br>integral theorem, Cauchy's integral formula, Cauchy's residue<br>theorem and the solution of wave and diffusion equations using<br>Greens function | К5    | I, III          |
| CO3     | Extend the complex function using Taylor, Laurent's series and periodic function using the Fourier series and Fourier integral.                                                                                | K3    | I, II           |
| CO4     | Outline the types, algebra and role of tensors in physics.                                                                                                                                                     | K2    | IV              |
| CO5     | Analyze point groups and space groups in molecular structure.                                                                                                                                                  | K4    | V               |
| CO6     | Construct a function of a complex variable (frequency) from a function of a real variable (time) using Fourier, Laplace transforms and character tables.                                                       | К3    | II, III, V      |



# CORE-V: ELECTROMAGNETIC THEORYSEMESTER : IICODE: P21PH205CREDITS: 5NO. OF HOURS/WEEK: 6

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                                                                                       | Level | Unit Covered |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Explain the fundamental laws of Electrostatics, Magnetostatics and electromagnetism and rephrase them in vectoral form.                               | K2    | I, II, III   |
| CO2    | Classify magnetic materials based on their susceptibility and<br>organize experiments to determine the magnetic properties of<br>magnetic materials.  | К3    | п            |
| CO3    | Apply various mathematical techniques to solve equations related<br>electrostatic, magnetostatic and electromagnetic scalar and vector<br>potentials. | К3    | I,II, III    |
| CO4    | Analyze the propagation of electromagnetic waves in various<br>medium and examine its behavior at the interface between two<br>different media.       | K4    | IV,V         |
| CO5    | Design basic structures of waveguides and antennas as per the requirements.                                                                           | K6    | V            |
| CO6    | Evaluate the electric, magnetic and electromagnetic fields due to simple and complex structures and the energy stored in these fields.                | K5    | I-V          |

#### ELECTIVE- II: ATOMIC AND MOLECULAR PHYSICS SEMESTER: II CREDITS: 4 CODE: P21PH2:2 NO. OF HOURS/WEEK: 6

| CO.NO | Course Outcomes                                                                                                             | Level | Unit Covered |
|-------|-----------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| CO1   | Analyze the electronic states in many electron systems and atomic spectra due to electric and magnetic field.               | K4    | Ι            |
| CO2   | Apply LCAO, Born Oppenheimer and Huckel's approximations to molecular systems.                                              | K3    | II           |
| CO3   | Examine the rotational and vibrational spectra of molecules by Microwave and Infrared spectroscopy.                         | K5    | III          |
| CO4   | Analyze the Raman spectra of molecules using polarizability theory<br>and Electronic spectra using Franck Condon principle. | К5    | IV           |
| CO5   | Examine the nuclear interactions and relaxation effects due to<br>Nuclear Magnetic Resonance and Electron Spin Resonance.   | K4    | V            |
| CO6   | Explain the principle and instrumentation of Microwave, Infrared, Raman, NMR and ESR spectroscopy.                          | K2    | III,IV,V     |



# ELECTIVE-II: SOLAR PV TECHNOLOGY AND ITS APPLICATIONSEMESTER: IICODE: P21PH2:ACREDITS: 4NO. OF HOURS / WEEK: 6

#### At the end of this course, the students will be able to

| CO. NO. | Course Outcomes                                                                                                                 | Level | Unit<br>Covered |
|---------|---------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1     | Discuss the importance of renewable energy resources                                                                            | K2    | Ι               |
| CO2     | Explain the importance of Solar energy and Solar Photovoltaic system                                                            | K2    | Ι               |
| CO3     | Apply the principles of electricity in design of solar cells                                                                    | K3    | Π               |
| CO4     | Outline the different types of Solar Photovoltaic<br>system, power generation, distribution and storage in<br>solar PV systems. | K2    | III             |
| CO5     | Design a solar Photovoltaic system                                                                                              | K5    | IV              |
| CO6     | Analyse the applications and installation of a solar<br>Photovoltaic system                                                     | K4    | V               |

#### ELECTIVE - III: VIRTUAL LABS – PHYSICS EXPERIMENTS SEMESTER: II CREDITS: 4 COURSE CODE: P21PH2:P NO. OF HOURS/WEEK: 6

| CO. NO. | Course Outcomes                                                                                          | Level | Unit Covered      |
|---------|----------------------------------------------------------------------------------------------------------|-------|-------------------|
| CO1     | Select remote-access to labs in various areas related to Physics                                         | K1    | I, II, III, IV, V |
| CO2     | Perform practical in the virtual mode                                                                    | K3    | I, II, III, IV, V |
| CO3     | Construct virtually, electrical and electronic circuits and validate the corresponding theorems and laws | K6    | I, IV, V          |
| CO4     | Evaluate the physical parameters from tabulated data and graph                                           | К5    | IV, V             |
| CO5     | Interpret the results obtained from virtual experiment                                                   | K5    | I, II, III, IV, V |
| CO6     | Illustrate the output data in graphical mode using relevant software                                     | К3    | I, II, III        |



#### CORE VI: QUANTUM MECHANICS – I SEMESTER: III CREDITS:5 CODE: P21PH306 NO. OF HOURS /WEEK: 6

#### At the end of this course, the students will be able to

| <b>CO. NO.</b> | Course Outcomes                                                                                                                                     | Level | <b>Unit Covered</b> |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|
| CO1            | Recall the in adequacy of classical mechanics in the microscopic domain.                                                                            | K1    | Ι                   |
| CO2            | Explain concepts of wave mechanics, use particle duality as a basis to formulate quantum mechanics.                                                 | K2    | Ι                   |
| CO3            | Construct the Schrodinger equation of microscopic physical<br>systems on the basis of quantum mechanical interpretations<br>and solve it.           | К3    | I & II              |
| CO4            | Analyze the dynamics of simple quantum mechanical systems<br>by setting up the Schrodinger equations and solve them.                                | K4    | I & II              |
| CO5            | Formulate appropriate perturbation techniques to study the<br>behavior of simple quantum mechanical systems under<br>perturbation of various types. | К5    | III & IV            |
| CO6            | Assess the effects due to various perturbations.                                                                                                    | K6    | III,IV&V            |

#### CORE VII: SOLID STATE PHYSICS – I SEMESTER : III CREDITS: 5 NO. OF HOURS/WEEK: 6

| CO. NO. | Course Outcome                                                             | Level | Unit Covered |
|---------|----------------------------------------------------------------------------|-------|--------------|
| CO1     | Infer the ideas of crystals structure and diffraction phenomenon           | K2    | I            |
| CO2     | Compare lattice planes, crystals vibration and structure factors           | K2    | I,II         |
| CO3     | Distinguish the thermal and electrical properties of semiconductor crystal | K4    | П            |
| CO4     | Identifies energy levels of free electron gas                              | K3    | III          |
| CO5     | Classify the binding and periodic potential                                | K4    | IV           |
| CO6     | Detect imperfections in solids and effect of impurities and defects        | K5    | V            |



# CORE-VIII: MICROPROCESSOR AND MICROCONTROLLERSEMESTER : IIICODE: P21PH308CREDITS: 5NO. OF HOURS/WEEK: 6

At the end of this course, the students will be able to

| CO.NO. | COURSE OUTCOMES                                                            | LEVEL | UNIT COVERED |
|--------|----------------------------------------------------------------------------|-------|--------------|
| CO1    | Study and recall architecture of Microprocessor INTEL 8085                 | K1    | Ι            |
| CO2    | Identify a detailed s/w & h/w structure of the Microprocessor.             | K2    | П            |
| CO3    | Apply how the different peripherals are interfaced with Microprocessor     | К3    | III          |
| CO4    | Distinguish and analyze the properties of Microprocessors &Microcontroller | K4    | IV           |
| CO5    | Establish the data transfer information among different peripherals        | K5    | V            |
| CO6    | Evaluate their knowledge through some programs using 8085 and 8051         | K6    | I-IV         |

#### ELECTIVE-IV: NUCLEAR PHYSICS SEMESTER: III CREDITS: 5 CODE: P21PH3:4 NO. OF HOURS/WEEK: 6

| CO.NO. | Course Outcomes                                                                                                          | Level | Unit<br>Covered |
|--------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Explain the constituents and stability of nucleus, nuclear models and nuclear forces.                                    | K2    | 1               |
| CO2    | Evaluate the energy released during nuclear fission and fusion reactions and study the construction of nuclear reactors. | К5    | 2               |
| CO3    | Explain the theory and applications of various radioactive decays.                                                       | K5    | 3               |
| CO4    | Categorize various principle of particle detector.                                                                       | K4    | 3               |
| CO5    | Classify the nuclear reaction and account for its energetics.                                                            | K4    | 4               |
| CO6    | Analyze the elementary constituents of a nucleon based on several theories and laws of conservation.                     | K4    | 5               |



|           | ELECTIVE-IV: RADIATION PHYSICS |  |  |
|-----------|--------------------------------|--|--|
|           | CODE:P21PH3:A                  |  |  |
| CREDITS:5 | NO. OFHOURS/WEEK:6             |  |  |

| CO.<br>NO. | Course Outcomes                                                                                                 | Level | Unit<br>Covered |
|------------|-----------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1        | Explain the fundamental concepts of atomic physics and nuclear transformation.                                  | K2    | Ι               |
| CO2        | Explain the different interaction mechanism of radiation with matter.                                           | K3    | Π               |
| CO3        | Understand the various dosimetric quantities and concepts.                                                      | K1    | III             |
| CO4        | Analyze the interaction of charged particles and radiation with matter.                                         | K4    | II & IV         |
| CO5        | Evaluate the radiation interaction with matter using radiation monitoring instruments.                          | К5    | II,III&<br>V    |
| CO6        | Estimate the exposure of radiation &dosimetric quantities using various radiation detecting devices/dosimeters. | K6    | III & IV        |

#### CORE- IX: QUANTUM MECHANICS – II SEMESTER: IV CREDITS: 5 CODE: P21PH409 NO. OF HOURS / WEEK: 6

| CO. NO. | Course Outcomes                                                                                                       | Level | Unit<br>Covered |
|---------|-----------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1     | Outline the notion, Dirac, ket-bra vectors, Hilbert space and representation of operators                             | K2    | Ι               |
| CO2     | Interpret the three pictures of quantum mechanics and analyze to Linear harmonic oscillator using Heisenberg pictures | K5    | Ι               |
| CO3     | Deduce the eigenvalue spectrum for total angular<br>momentum to determine the Clebsch Gordon (CG) Co–<br>efficient    | К5    | II              |
| CO4     | Formulate the quantum theory of identical particles                                                                   | K5    | III             |
| CO5     | Justify the need for relativistic quantum theory and apply it to Klein-Gordan and Dirac equations.                    | К5    | IV              |
| CO6     | Develop the second quantization procedure for quantum fields                                                          | K6    | V               |



|              | CORE-X: SOLID STATE PHYSICS – II |  |  |
|--------------|----------------------------------|--|--|
| SEMESTER: IV | <b>CODE: P21PH410</b>            |  |  |
| CREDITS: 5   | NO. OF HOURS/WEEK: 6             |  |  |

| CO.NO. | Course Outcomes                                                                                                                                 | Level | Unit        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| C01    | Explain the fundamental theories to explain the behavior of dielectric and ferroelectric materials                                              | K2    | Ι           |
| CO2    | Explain the properties, theories and applications of superconductors                                                                            | K2    | IV          |
| CO3    | Apply the band structure theory to study the optical behavior of conductors, semiconductors and insulators                                      | K3    | V           |
| CO4    | Interpret the phase changes and related properties in magnetic, ferroelectric and superconducting materials                                     | K5    | I,II&I<br>V |
| CO5    | Assess the temperature dependent spontaneous magnetization and dispersion relations of magnons in ferromagnetic and antiferromagnetic materials | К5    | III         |
| CO6    | Analyze the origin for non-linear optical properties of materials based on crystal symmetry                                                     | K4    | V           |

# ELECTIVE-V: CRYSTAL GROWTH, THINFILMS AND NANOSCIENCESEMESTER: VCODE: P21PH4:5CREDITS: 4NO. OF HOURS/WEEK: 6

| CO.NO. | Course Outcomes                                                                           | Level | Unit Covered |
|--------|-------------------------------------------------------------------------------------------|-------|--------------|
| CO1    | Summarize the theory of nucleation and crystal growth.                                    | K2    | Ι            |
| CO2    | Explain thermodynamics and kinetics of thin film deposition process                       | K2    | Ι            |
| CO3    | Classify the different crystal growth techniques and outline their principles.            | K4    | п            |
| CO4    | Contrast different thin film coating techniques.                                          | K4    | III          |
| CO5    | Infer the advantages and disadvantages of various synthesis techniques for nanomaterials. | K4    | IV           |
| CO6    | Evaluate the physical parameters from various characterization techniques.                | K5    | V            |



| $\left( \right)$ | ELECTIVE V: ASTROPHYSICS |
|------------------|--------------------------|
| SEMESTER: IV     | CODE: P21PH4:A           |
| CREDITS: 4       | NO. OF HOURS/WEEK: 6     |

#### At the end of this course, the students will be able to

| CO.NO. | Course Outcomes                                                                                                     | Level | Unit<br>Covered |
|--------|---------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| CO1    | Analyse the Positions of stars, Proper motions of stars and planets,<br>All-Sky Surveys and Virtual Observatories   | K4    | Ι               |
| CO2    | Explain the Physical Processes in the solar system, Formation of Planetary Systems, Search for Extra solar Planets. | K2    | п               |
| CO3    | Categorize the Spectral classification, Stellar rotation, Stellar magnetic fields, Stars with peculiar spectra.     | K4    | III             |
| CO4    | Infer the characteristics of Interstellar extinction and reddening.                                                 | K4    | IV              |
| CO5    | Analyse the galactic magnetic field and cosmic rays.                                                                | K4    | IV              |
| CO6    | Estimate the kinematics, expansion of the Universe, active galaxies, clusters of galaxies.                          | K6    | V               |

# **MAJOR PRACTICALS - I**

SEMESTER: I CREDITS: 3

#### CODE: P21PH1P1 NO. OF HOURS/WEEK: 6

| CO.NO. | Course Outcomes                                                                                                                                              | Level  | Experiments<br>Covered |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|
| CO1    | Observe and study the mechanical, optical, thermal, magnetic, dielectric, electrical and electronic properties of various materials.                         | K2 &K3 | 1224586                |
| CO2    | Understand and explain various properties of materials and the modern equipment's used for investigation of the same.                                        | K2&K3  | 1,2,3,4,5 & 6          |
| CO3    | Determine and describe certain constants and coefficients and other properties of the various materials.                                                     | K3 &K4 | 7,8 &9                 |
| CO4    | Analyze, Discuss, Calculate and Compare some properties at large<br>and other related properties of the materials using various means<br>and methods.        | K3 &K4 | 10                     |
| CO5    | Operate and optimize various mechanical, electrical, electronic and<br>other modern equipment's used for characteristic analysis of<br>materials.            | K4&K5  | 11, 12, 13 &<br>14     |
| CO6    | Apply the various concepts learned to Design modern equipment's to perform characteristic analysis of materials and to support the Research and Development. | K6     | 15, 16, 17 &<br>18     |



|              | MAJOR PRACTICAL – II  |
|--------------|-----------------------|
| SEMESTER: II | CODE: P21PH2P2        |
| CREDITS: 3   | NO. OF HOURS/ WEEK: 6 |

| CO.NO. | Course Outcomes                                                                                            | Level | Experiment covered          |
|--------|------------------------------------------------------------------------------------------------------------|-------|-----------------------------|
| CO1    | Test the charge and mass ratio using various experimental methods.                                         | К2    | 1,2,5,6                     |
| CO2    | Construct the circuits and verify characteristics of given electronic components.                          | К3    | 1-16                        |
| CO3    | Examine the function of semiconductor switching devices (Thyristors).                                      | K4    | 15,16,17                    |
| CO4    | Measure Young's modulus, Numerical aperture, Thermal conductivity and energy loss of various materials.    | К5    | 1-7, 14                     |
| CO5    | Determine physical constants such as specific charge of electron, Stefan's constant and Planck's constant. | К5    | 3, 5, 6,7                   |
| CO6    | Construct amplifier, oscillator circuits and analyze their frequency responses.                            | K6    | 8, 9, 10, 11,<br>12, 13, 18 |

#### MAJOR PRACTICAL- III SEMESTER: III CREDITS: 3 NO. OF HOURS /WEEK:6

| CO. NO. | Course Outcomes                                                                                                                   | Level | Experiment<br>Covered |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| CO1     | Construct the OPAMP circuits and study characteristics and responses of circuits.                                                 | К3    | 1,2,3,4,5.            |
| CO2     | Apply the concepts of operational amplifier to solve differential and simultaneous equations.                                     | K2    | 6                     |
| CO3     | Construct the circuits and verify the characteristics of non-<br>linearity and modulation -demodulation.                          | K4    | 7,8,9,10              |
| CO4     | Make use of light to determine the physical properties of materials, Measure dielectric properties of solid and liquid materials. | K5    | 11,12,13,14.          |
| CO5     | Develop thin film and study the physical properties of prepared materials.                                                        | K5    | 15,16,17              |
| CO6     | Determine magnetic properties of materials.                                                                                       | K5    | 18,19                 |



| (            | MAJOR PRACTICAL-IV |                      |
|--------------|--------------------|----------------------|
| SEMESTER: IV |                    | CODE: P16PH4P4       |
| CREDITS: 3   |                    | NO OF HOURS /WEEK: 6 |

| CO. NO. | Course Outcomes                                                                                                                                   | Level | Experiments<br>covered |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|
| C01     | Examine the functionalities of basic combinational circuits.                                                                                      | K4    | 1,2,3,4                |
| CO2     | Make use of basic sequential circuits using Flip-flop.                                                                                            | K3    | 5,6,7                  |
| CO3     | Construct logic circuits and simplify the Boolean expression.                                                                                     | K5    | 8,9,10                 |
| CO4     | Test and debug ALP using microprocessor (8085) and microcontroller (MCS51) systems                                                                | K4    | 11,12                  |
| CO5     | Interface various A/D, D/A convertor, Traffic light controller and Stepper motor controller.                                                      | К5    | 13,14,15,<br>16,17     |
| CO6     | Make use of numerical methods to the application of<br>physics (RK2, RK4, Newton-Rapson) and C<br>Programming and plotting the data using Origin. | К5    | 18,19,20               |