B.Sc. Chemistry

SYLLABUS

(Under Choice Based Credit System - CBCS)

For the students admitted in the academic year 2020 -2021

PG & RESEARCH DEPARTMENT OF CHEMISTRY (DST-FIST Sponsored & DBT-STAR Scheme) BISHOP HEBER COLLEGE (Autonomous) (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC (Recognized by UGC as "College of Excellence")

PG & Research Department of Chemistry

Bishop Heber College (Autonomous), Trichy -17

Vision:

The PG & Research Department of Chemistry envisions... To transform students into globally-competent graduates by providing a vibrant, Innovative and all-inclusive learning environment that fosters Values, Professional ethics and Social Consciousness.

Mission:

To reach its vision the Department would

- offer a Quality and Comprehensive Curriculum
- facilitate a Competent Learning Environment
- create an Integrated Research Culture
- foster Industry Academia Network for education
- inspire to Innovate

Programme Outcomes – B. Sc. Chemistry

On successful completion of B.Sc. Chemistry program, the Grandaunt will be able to **KNOWLEDGE**

- PO1: Comprehend knowledge of basic concepts, fundamental principles and the scientific theories related to various scientific phenomena and their relevance to day-to-day life.
- PO2: Exhibit a scientific acumen and outlook in all walks of life in order to provide creative solutions for a sustainable future.
- PO3: Critically analyze and interpret scientific data in a logical and systematic manner to arrive at objective conclusions.

ATTITUDES

PO4: Show inclination to lifelong learning and adaptability to challenging situations.

SKILLS

- PO5: Acquire the ability to synthesize, separate and characterize compounds using laboratory and instrumentation techniques.
- PO6: Handle scientific instruments and tools with ease and to choose the appropriate scientific methods and experiments to test and produce reliable results.
- PO7: Communicate effectively in oral, written and electronic formats and display personal and interpersonal skills.
- PO8: Exhibit analytical skills and problem-solving skills using the principles of chemistry and its allied fields.

ETHICAL & SOCIAL RESPONSIBILTY

PO9: Practice professional, ethical, moral and social values in personal and social life and would contribute to nation building.

Programme Specific Outcomes - B.Sc. Chemistry

On successful completion of B.Sc. Chemistry program, the Graduand will be able toIntellectual Skills:

PSO 1: Demonstrate knowledge and understanding of essential facts, concepts, principles andtheories related to the different areas of chemistry.

Practical Skills:

PSO 2: Perform documented laboratory procedures involved in synthetic and analytical work, inrelation to inorganic and organic systems by following standard laboratory safety protocols.

Transferable Skills:

- **PSO 3:** Apply numeracy, mathematical and digital skills to error analysis, orderof-magnitudeestimations, standard unit usage, modes of data presentation and scientific documentation.
- **PSO 4:** Use the evidence based comparative chemistry approach to explain the chemical theproperties and reactions of various types of elements and compounds

PROGRAM ARTICULATION MATRIX

B.Sc. CHEMISTRY

S.	Name of the Course	CORRELATION WITH PROGRAM OUTCOMES AND PROGRAM SPECIFIC Cours OUTCOMES								OMES	AND P	ROGRA	M SPEC	CIFIC	
No		Cours eCode		PO2	ES PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
		ecoue	1	102	105	104	105	100	10/	100	109	1501	1502	1505	1504
1.	General Chemistry-I	U19CH101	Н	Н	М	L	L	L	L	L	-	Н	L	М	Н
2.	Volumetric Analysis& Applied Experiments	U19CH1P1	Н	Н	Η	L	Н	Н	L	Н	-	Н	Н	М	Н
3.	General Chemistry-II	U19CH202	Н	Н	L	-	-	-	М	Н	-	Н	-	М	Н
4.	Applications of Computer in Chemistry	U19CH2:P	Н	М	М	М	-	М	L	М	-	Н	-	М	Н
5.	Textile Chemistry	U19CH2S1	Н	Η	-	М	-	-	L	-	-	Н	-	-	Н
6.	General Chemistry -III	U19CH303	Н	Н	Н	-	-	-	-	М	-	Н	-	-	Н
7.	Inorganic QualitativeAnalysis	U19CH3P2	Н	М	М	L	Н	Н	L	Н	L	Н	М	L	Н
8.	Inorganic Chemistry-I	U19CH404	Н	L	L	L	М	М	L	L	-	Н	L	L	Н
9.	Organic Analysis	U19CH4P3	Н	Н	Н	-	Н	Н	L	Н	-	Н	Н	L	Н
10.	Organic Chemistry-I	U19CH505	Н	Н	-	L	-	-	L	Н	-	Н	-	-	Н
11.	Physical Chemistry-I	U19CH506	Н	Η	Н	-	L	М	L	Н	-	Н	-	М	Н
12.	Gravimetry, Organic& Inorganic Preparations & Determination of Physical Constants	U19CH5P4	Н	Н	М	L	Н	Н	L	Η	-	Н	Н	L	Н
13.	Biochemistry	U19CH5:2	Н	Η	L	L	-	-	-	L	-	Н	-	-	Н
14.	Core Project	U19CH5PJ													
15.	PharmaceuticalChemistry	U19CH5S2	Н	Н	-	М	-	-	L	-	-	Н	-	-	Н
16.	Industrial Chemistry	U19CH5S3	Н	Н	-	L	-	-	L	-	-	Н	L	L	Н
17.	Inorganic Chemistry-II	U19CH607	Н	Н	Н	М	-	-	-	Н	-	Н	-	-	Н
18.	Organic Chemistry-II	U19CH608	Н	Н	-	-	М	-	L	Н	-	Н	-	-	Н
19.	Physical Chemistry-II	U19CH609	Н	Н	Н	-	М	М	L	Н	-	Н	М	М	Н
20.	Physical ChemistryPractical	U19CH6P5	Н	М	Н	L	-	Н	L	Н	-	Н	М	L	Н
21.	Analytical Chemistry	U19CH6:3	Н	Η	М	М	Н	Н	L	Н	Н	Н	Н	М	Н

Parts of the C	Parts of the Curriculum		No. of Courses	No. of Hours	Credits	Total Credits
Part – I : Language		4	24	12	12	
Part – II : En	ıglish		4	24	12	12
Part – III	-					
Major			9	54	51	66
Core (Theory)						
			5	20	12	
Core (Practical)					
Core (Project)			1	4	3	
Elective (Theo	ry)		2	10	9	
Elective (Pract	ical)		1	3	2	11
	Math	IS	3	13	12	
Allied (Mathematics	Zoo	Т	2	10	10	22
/Zoology)		Р	1	3	2	
Allied		Т	2	8	7	
(Physics)		Р	1	6	3	
Part – IV						
SBEC			3	6	6	
NMEC			2	4	4	14
VLO			1	2	2	
Env. Studies		1	2	2		
Part – V						
Extension		1	-	2	3	
Gender Studies	5		1	-	-	
Life Skills			1	-	1	
Total			42	180	140	140

Overall Consolidated Structure for B.Sc. Chemistry (2020 - 21)

Total Courses: 42 Total Credits: 140 \Total Hours : 180

	Structur	e of B.Sc.	Chemistry Curriculu	ım	
Se	emester- I		Sem	ester- II	
Course	Hours	Credit	Course	Hours	Credi
Tamil	6	3	Tamil	6	3
English	6	3	English	6	3
Core-I	6	6	Core-II	5	5
Core-PracI	3	2	Elective – I(Practical)	3	2
Allied-I Maths	5	4	Allied-II Maths	4	4
Allied-I Zoo *	5	5	Allied-III Maths	4	4
ES	2	2	Allied – II Zoo*	4	4
VLO	2	2	Allied Prac. – II Zoo*	4	3
			SBEC – I	2	2
7	30	22	7	30	23
		•			
Sei	mester- III			ester- IV	
Course	Hours	Credit	Course	Hours	Credi
Tamil	6	3	Tamil	5	3
English	6	3	English	5	3
Core-III	6	5	Core-IV	6	5
Core-PracII	3	2	Core-PracIII	3	2
Allied-IV Phy.	4	3	Allied-V Phy.	4	4
Allied Prac Phy.	3	-	Allied Prac Phy.	3	3
NMEC – I	2	2	NMEC-II	2	2
			Soft Skills	2	1
			Extension	-	1
6	30	18	9	30	24
	mester- V	_		ester- VI	
Course	Hours	Credit	Course	Hours	Credi
Core V	6	6	Core VII	6	6
Core VI	6	6	Core VIII	6	6
Core Practical – IV	6	3	Core IX	7	6
Elective – II	4	4	Core Practical – V	5	3
Core Project	4	3	Elective – III	6	5
SBEC – II	2	2	Gender		1
SBEC – III	2	2			
7	30	26	7	30	27

**INTERNSHIP:

EXTRA CREDITS - 2

CORE COURSE I:

GENERAL CHEMISTRY – I

SEMESTER: I

CREDITS:4

Total Hours: 90 Hours/week: 6

CODE: U19CH101

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Recollect the atomic structure & Concept of Quantization.	K2	Ι
2	Reason out the periodicity of elements with their properties.	K4	II
3	Predict the shape of molecules based on VBT and VSEPR theories.	K4	III
4	Comprehend the principles and methodology of a systematic and skillful volumetric analysis.	K2	IV
5	Apply the various concentration units for solutions.	K3	V
6	Balance chemical equations.	K3	V

2A. Syllabus

Unit I - Atomic Structure and Periodic Properties

18 Hours

1.1 - Atomic structure: Atomic Model of Bohr - Spectrum of hydrogen - drawbacks of Bohr's theory. Dual nature of electron-Concept of Quantization – Principles of quantum Theory – Black body Radiation - Planck's Quantum theory- *de* Broglie equation, Heisenberg uncertainty principle, Schrodinger equation (Derivation not required), significance of ψ and ψ^2 .)

1.2- Periodic Properties: Modern periodic Table – Full form with atomic Number - grouping of elements into different blocks, Variation of atomic volume, atomic and ionic radii, Effective nuclear charge - Slater's rule - ionization potential, comparison of IE of N and O; Mg and Al; Be and B, electron affinity and electronegativity along the periods and groups – Pauling's and Mulliken's scales of electronegativity - Factors affecting periodic properties – Aufbau's principle – Hund's rule.

Unit II - Main Block Elements

2.1 s - block elements : Comparative study of alkali and alkaline earth metal compounds – size of ions and atoms – Electronegativity - Ionization potential- Solubility of oxides, halides, hydroxides, carbonates and sulphates. Diagonal relationship between Li and Mg- Anomalous behavior of Be, H_2 and Li.

2.2 Zero group elements: General trends in Ionization Energy and Electron Affinity - Isolation of Noble gases from atmosphere and uses. Special properties of Helium - Compounds of Xenon – XeF₂, XeF₄, XeF₆, XeOF₂, XeO₂F₂, XeO₃, XeOF₄ - preparation, structure and uses. Clathrates - types and uses.

18 Hours

2.3 p – **block elements :** General trends in periodic properties – Electron affinity - Electronegativity – Ions and their properties – polarizability - polarizing power - Inert pair effect – Transition from non - metallic to metallic character – oxidation states – Fajan's rule in p - block- catenation.

Unit III - Theories of Chemical Bonding

3.1 Types of chemical bonds: Nature and properties – characteristics of ionic bonds -Lattice energy and Born-Haber Cycle - NaCl. Polarizing power and Polarizability of ions: Partial ionic character - Transition from ionic to covalent character and vice versa – Fajan's rule.

3.2 Hydrogen bonding: Nature, types and consequences. Intermolecular forces–London forces, van der Waals forces.

3.3 Theories of Bonding : VSEPR Theory - Shapes of simple inorganic molecules (BeCl₂, BF₃, SiCl₄, PCl₅, SF₆, IF₇, H₂O, ICl, ICl₃, BrF₃, IF₅, ICl₂⁻, NH₃, XeF₆) containing lone pair and bond pairs of electrons.

3.4 MO Theory : Qualitative MO energy level diagram and bond order calculation of homo nuclear diatomic (N_2 and O_2) and hetero nuclear diatomic (CO and NO) molecules.

Unit IV- Bonding in Organic Compounds

4.1 Bond Formation: The Octet rule–Lewis Structures–Multiple bonds and their characteristics -bond length, bond angle, bond energy, bond polarity of some important bonds (C-C, C-O, C-N, C=C, C-Cl, C=O, H-H, O-H, N-H and S-H) - Hybridization and geometry of molecules $(sp,sp^2,sp^3 - methane, ethane, ethylene and acetylene) - sigma and pi bonds. Rigidity of pi bonds – Rotation of single bonds - Electronegativity and Bond Polarity – Dipole moments of simple organic compounds.$

4.2 Electron displacement effects: Inductive, Electromeric, Resonance & Hyperconjugation (5examples each).

4.3 Cleavage of bonds: Homolytic and Heterolytic fission of carbon–carbon bonds. Reaction intermediates – Stabilities of free radicals, carbocations and carbanions (primary, secondary, tertiary).

Unit V- Theories of Acids and Bases & Principles of Volumetry

5.1 Acids and bases : Arrhenius theory, Bronsted–Lowry concept and Lewis concept, Factors that influence the strength of acids and bases. pH and pKa (Problems also). Buffers – Types - buffer action – Henderson–Hasselbalch equations (problems also) - Hydrolysis of salts – neutralization. Hydrolysis of salts of strong acid and weak base & salt of weak acid and strong base- derivation of K_a , K_b and K_w (Problems).

5.2 Redox Reactions : Oxidation and reduction reactions – Oxidation number concept of some important reagents (KMnO₄, $K_2Cr_2O_7$, CrO_3 , H_2SO_5 , $H_2S_2O_8$, Ferrous salts, CrO_5 , $H_2C_2O_4$, I_2 , SO_2^{-}) –

Balancing redox equations by oxidation number method and ion electron method.

5.3 Volumetric Analysis: Mole concept, Atomic Mass, Molecular Mass, Equivalent Mass of some common oxidizing and reducing agents, concentration terms - ppm, mole fraction, normality, molarity, molality. Principle of titrimetry - neutralization point & end point – standard solution – primary and secondary standards. Types – neutralization, redox, complexometric and precipitation titrations. Indicators - fluorescent indicators, redox indicator, internal indicator, universal indicators.

18 Hours

18 Hours

18 Hours

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Application of Schrodinger wave	http://home.iitk.ac.in/~madhavr/CHM102/Physical/Le
	equation to Particle in one	<u>c3.pdf</u>
	dimensional Box Model.	
2	Chemistry Borazine, phosphazine	https://www.youtube.com/watch?v=YRlZ8HDttDc
3	MOT of delocalized Pi	https://www.youtube.com/watch?v=1felJvwr5PU
	bonding(CO ₃ ²⁻)	https://www.youtube.com/watch?v=UjS_eT7tUYQ
4	Intermediate – Carbenes	https://www.youtube.com/watch?v=YJrzXHJ9I1M
5	Practical importance of solubility	https://www.youtube.com/watch?v=WjiXbemBXkE
	product	

2C. Text Books

- 1. B.R. Puri, L.R. Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2017 (Unit I, II, III)
- 2. Arun Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand & Co. Ltd., New Delhi, 2012 (Unit IV)

B.R. Puri, L.R. Sharma and Madan S. Pathania, Principles of Physical Chemistry Vishal Publishing Co., Jalandhar, 2017 (**Unit V**)

- 3. P.L.Soni, H.M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, 2004
- 4. R.L. Madan and G.D. Tuli, Inorganic Chemistry, S. Chand Co. Ltd., New Delhi,2010
- 5. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Meerut, 2016

2D. Reference Books

- 1. J.D. Lee, "Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- 2. Morrison and Boyd "Organic Chemistry" Pearson Eucation, 2016.
- 3. Peter Atkins and Julio de Paula, "Physical Chemistry" Oxford University Press, 2018.

3. Specific Learning Outcomes (Slo)

Unit/Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic levels of Transaction
Ι	Atomic Structur	e and Periodic Properties	
1.1	Bohr's Am Model & Spectrum of Hydrogen and Draw backs	Define the details of the Bohr's am model and its H ₂ spectra	K1
	Wave Particle Duality-Concept of quantization- Principles of quantum theory.	Apply the concept of Duality both microscopic & Macroscopic Particles	К3
	Black body radiation-de Broglie Equation-Heisenberg's Uncertainty principle	Identify the momentum and frequency of microscopic particles.	К2
	Schrodinger's Equation- Significance of φ and φ^2	Define the Physical Significance of the wave function	K2
	Orbital Concept	Relate stability of elements based on electronic arrangement.	K2
1.2	Periodic properties - Modern Periodic table	Justify the position of elements in the periodic table	K4
	Variation of periodic properties along period and group-	Apply periodicity with various chemical & physical properties of elements.	К3
	Principles of Orbital Occupancy-Hund's rule and Aufba Principle	Apply the Orbital fill- uprules complete electronic configurations of elements.	К3

II	Main Block Elements					
2.1	s- Block elements Comparative study -Size of ions & atoms- Electronegativity & IP	Arrange the atoms according the gradation in the atomic properties of the elements in the S- block	К3			
	Solubility of its compounds	Apply the role of atomic properties in solubility of compounds of the s- block compounds	K3			
	Diagonal relationship & anomalous behavior	Relate the properties of diagonal elements	K2			
2.2	Zero group element	Relate the Unique nesses of the Zero group elements	K2			
	General trends in ionization energy and electron affinity	Analyze across the groups & Periods the impact & gradation of Ionization Energy & Electron affinity	K4			
	Isolation from atmosphere and uses	Explain the methods of Isolation of noble gases from atmosphere	K2			
	Special properties of Helium	Compare the properties of Helium spectra	K2			
	Compounds of Xenon-Preparation, structure and uses	Explain the details of the preparation of xenon compounds	K2			
	Clathrates-Types and Uses	Explain the types & uses of Clathrates	K2			

2.3	p-Block elements - General Trends	Describe the gradation	
	in periodic properties	in the atomic properties of the elements in the p-	K2
		block	
	Electron affinity and	Compare the reactivity	
	Electronegativity - Ions and	and chemical behavior	K4
	Properties-Polarizability, polarizing	of compounds based on	
	power,	Polarizability principles	
	Inert pair effect	Identify the violation of	
		group principle in	K2
		selected elements due	
		Inert pair effect	
	Transition from non-metallic	Apply the atomic	WO.
	metallic character	properties identify the metallic nature	K3
	Fajan's Rule & p-block catenation	Analyze size selectivity	
	rajan s Rule & p-block catenation	of different cations and	K3
		anions	K5
III	Theories of	Chemical Bonding	
3.1	Types of chemical bonds-Nature and	Recall the characteristics	K2
	Properties	of Chemicals bonds	
	Ionic Bonds-Characteristics- Lattice energy and Born-Heber Cycle -NaCl	Identify Ionic bonds	K2
	Polarizability of Ions-Partial Ionic	Apply Fajan's rule in	К3
	character-Fajans' Rule	prediction of Ionicity.	
3.2	Hydrogen Bonding	Explain the features of hydrogen bonds	K2
	Nature-Type and Consequences	Classify stabilities of	
		compounds based on	K2
		hydrogen bonding	
	London Forces, Van der Waals	Explain the role of	
	forces	week interactions in	K2
		chemical systems	
3.3	Theories of Bonding	Compare the theories of bonding	K4

	VSEPR Theory - Shapes of simple inorganic molecules containing lone pair and bond pair of electrons	Predict the geometry of simple inorganic molecules	K4
3.4	Molecular Orbital Theory	Explain the principles of Molecular orbitals	K2
	Qualitative Energy level diagram	Construct the MO	
	and bond order calculation For homonuclear and heteronuclear diatomic molecules	energy diagrams of some important diatomic molecules	К3
IV	Bonding in	Organic Compounds	
4.1	Bond Formation –Octet rule and Lewis Structure	Draw the Lewis structure of compounds	K4
	Multiple bonds and their characteristics	Outline the Features of multiple bonds	K2
	Hybridization and geometry of molecules (sp, sp ² ,sp ³)	Explain the Hybridisation scheme of alkenes, alkynes and substituted alkanes	K2
	Sigma and Pi bonds	Explain the orbital overlapment in sigma & pi bonds of simple organic compounds	K2
	Electronegativity and bond polarity	Explain the role of bond polarity in the given compound	K2
4.2	Electron displacement effects	Analyze the impact of different electronic	
	Inductive, Electromeric, Resonance and hyperconjugation (Examples)	effects in a given organic compound	K4
4.3	Cleavage of bonds	Compare the characteristics of types of fission reactions	K3

	Homolytic and Heterolytic fission of C-C bonds		
	Reaction intermediates and their stability (Free Radicals, Carbocations and Carbanions)	Classify the stabilities of reactive intermediate based on the electronic facrs	K2
V	Theories of Acids and B	Bases & Principles of Volur	netry
5.1	Theories of Acids and Bases: Arrhenius, BL, And Lewis theories	Apply the features and importance of the theories of Acids& Bases	К3
	Factors influencing the strengths ofacids and bases	Examine the strengths of acids & bases based on electronic Factors	K2
	pH and pKa	Compare the pKa& PH values of the given acids	K4
	Buffers-Types and Henderson- Hasselbalch Equation	Explain the Henderson- Hasselbalch Equation	K2
	Hydrolysis of Salts	Illustrate the mechanism of Hydrolysis of salts	K2
	Derivations of Ka, Kb, and Kw	Explain the mathematical expressions of Ka, Kb, and Kw	K2
5.2	Redox Reactions:	Recall the features of Redox reactions	K2
	Oxidation and Reduction Reactions- Oxidation number concept of some important reagents(KMnO ₄ , K ₂ Cr ₂ O ₇ , CrO ₃ , H ₂ SO ₅ , H ₂ S ₂ O ₈ , ferrous salts, CrO ₅ , H ₂ C ₂ O ₄ , I ₂ , ²⁻ S ₂ O ₃ ,)	Apply the - Oxidation number of compounds	К3

5.3	Balancing redox equations by oxidation number and Ion-Electron Method. Volumetric Analysis:	Solve a Redox reaction	К3
5.5	Mole concept, Atomic mass, Molecular Mass, Equivalent mass of some common oxidizing and reducing agents.	Apply the mole concept different redox reagents	К3
	Concentration terms-ppm, mole fraction, Normality, Molarity, Molality.	Interconvert the concentration terms	K4
	Principle of Titrimetry: Neutralization point and end point. Standard solution- Primary and secondary standards.	Demonstrate the basic principles behind Titrimetry	K2
	Types of volumetric analysis: Neutralization, redox, Complexometry and Precipitation titrations.	Compare the significant features of the different types of volumetric Analysis	K2
	Indicars: Fluorescent, redox, Internal and Universal Indicars.	Describe the role of different types of Indicars	K2

4. Mapping (Co, Po, Pso)

Course Code: U19CH101 Course Title

G	GENERAL CHEMISTRY –I									CODE: U19CH101				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
CO1	H	М	Μ	L	-	-	L	L		Н	-	-	Н	
CO2	H	Н	Н	L	-	-	L	L		Н	-	-	Н	
CO3	Н	Н	Μ	L	-		L	Μ		Н	Ι	-	Н	
CO4	Η	Η	Μ	L	Η	L	L	Η		Η	Μ	Н	Н	
CO5	Η	Η	L	L	Μ	L	L	L		Η	Μ	Н	Н	
CO6	H	H	Н	-	-	-	L	L		Н	L	Μ	Н	

H- High

5. Course Assessment Methods

DIRECT:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

Core Practical - I:VOLUMETRIC ANALYSIS AND APPLIED EXPERIMENTSSemester: ICode: U19CH1P1Credits : 2Total Hours : 45Hours/ week: 3

1. Course Outcomes:

After the completion of this course the students will be able:

S.No.	Course Outcomes							
1	Apply knowledge of principles of volumetric Analysis estimate a given analyte.	K3						
2	Perform a systematic and skillful volumetric analysis	K4						
3	Prepare standard solutions with different concentration units	K4						
4	Choose appropriate titrimetric method for a given sample.	K5						
5	Produce accurate and precise results in a prescribed format	K5						
6	Determine the quality of water used for different purposes	K3						

2A Syllabus

Experiments

- I. Acidimetry Alkalimetry
- 1. Estimation of Hydrochloric acid
- 2. Estimation of Sodium hydroxide

II. Permanganometry

- 3. Estimation of ferrous ion in Mohr's salt
- 4. Estimation of oxalic acid

III. Iodometry and Iodimetry

- 5. Estimation of copper
- 6. Estimation of potassium permanganate

IV. Applied Experiments (Complexometry)

- 7. Estimation of total hardness of water
- 8. Determination of Calcium in commercial Milk Powder using EDTA

V. Demonstrative Experiment

9. Preparation of Distilled and Deionised water

2B. Reference Books

Vogel, Text Book of Quantitative Chemical Analysis, 6th edition, Pearson Education, 2009.

3.Short Learning Objectives

	Course Content	Learning Outcomes	BTM-Level
1	 Acidimetry – Alkalimetry 1. Estimation of Hydrochloric acid 2. Estimation of Sodium hydroxide 	Evaluate the strength of acids and bases.	K5
2	 Permanganometry 1. Estimation of ferrous ion in Mohr's salt 2. Estimation of oxalic acid 	Determine the concentrations of iron and oxalic acids by Permanganometry	K5
3	Iodometry and Iodimetry1. Estimation of copper2. Estimation of potassium permanganate	Dtermine the quantity of copper and KMnO ₄ using Iodine.	K5
4	AppliedExperiments(Complexometry)1.1.Estimation of tal hardness of water2.Determination of Calcium in commercial Milk Powder using EDTA	Estimate the extent of hardness in given water sample. Estimate the quantity of calcium present in commercial milk powder	K5
5	Demonstrative Experiment Preparation of Distilled and Deionized water	Describe the set up of a water distillation and a deionizer unit	K2

4. Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

VOLU	VOLUMETRIC ANALYSIS AND APPLIED EXPERIMENTSCode: U19CH1P1												[1P1
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	L		Н	Н		L		Н	Н		Н
CO2	Н	Н	Н		Н	Н		Н		Н	Н		Н
CO3	Н	Н	Н		н	Н		Н		Н	Н	Н	Н
CO4	Н	Н	Н		Н	Н		Н		Н	Н		Н
CO5	Н	Н	Н		Н	Н	Н	Н		Н	Н	Н	Н
CO6	Н	Н	Н	L	Н	Н		Н		Н	Н		Н

5. Course Assessment Methods Direct:

1. Continuous Internal Assessment

- 2. Model Exams I and II
- 3. End Semester Practical Examination

CORE COURSE II: GENERAL CHEMISTRY – II

SEMESTER : II

CREDITS:5

CODE: U19CH202

Total Hours : 75 Hours / week: 5

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Apply the IUPAC nomenclature name hydrocarbons	K3	Ι
2	Describe the chemistry of alkanes, cycloalkanes, alkenes, dienes and alkynes	K2	II
3	Describe the chemistry of Compounds of Boron, Nitrogen and Oxygen family	K2	III
4	Apply Gas laws to explain the behaviour of gaseous and liquid states in specific systems	K3	IV
5	Classify colloids their characteristics and applications	К3	V
6	Describe the principles concerning solid state structures	K3	V

2A. Syllabus

Unit I - Chemistry of Hydrocarbons

15 Hours

1.1 IUPAC nomenclature of cyclic & acyclic alkanes: General structure of IUPAC names- Parent name – Root name- locants- branched and unbranched alkanes, alkyl groups, alkenes, dienes and alkynes (upto 20 carbon system).

1.2 Alkanes - Physical properties of Alkanes – Structure and reactions of C-C bonds – Oxidation, Aromatization, Pyrolysis and free radical substitution. Petroleum and petrochemicals - cracking, synthetic petrol, refining of gasoline, reforming, knocking, diesel engine fuel, Octane number and Cetane number.

1.3 Cycloalkanes - Preparation using Wurtz reaction, Kolbe's Electroytic Synthesis, Dieckmann's ring closure and reduction of aromatic hydrocarbons – Substitution and ring opening reactions – Baeyer's strain theory.

Unit II - Chemistry of Unsaturated Hydrocarbons

2.1 Alkenes: Physical Properties of alkenes – electrophilic and free radical addition reactions (with mechanism) addition reactions of hydrogen, hydrogen halides, (Markownikoff's rule), hydrogen bromide (peroxide effect) and Water. Hydroboration, formation of diols using Bayer's reagent, peroxybenzoic acid and OsO₄, oxidation of alkenes (ozonolysis and acidic KMnO₄), allylic substitution by NBS.

15 Hours

2.2 Dienes: Classification – isolated, conjugated and cumulated dienes. 1,3-Butadiene – preparation, chemical reactions – 1,2- and 1,4 -additions, Thiel's theory - Diels-Alder reaction.

2.3 Alkynes: Preparation using-Ca C_2 , dehydrohalogenation of vicinal halides – Kolbe's electrolysis method, Properties – Addition of H₂O, HCN, Halogens and HX, reduction using Lindlar's catalyst, Na and liq. NH₃, Cyclisation of acetylene, Ozonolysis and oxidation with hot alk. KMnO₄ and chromic acid - Acidity of alkynes.

Unit III - Chemistry of Group III, V & VI Elements

3.1 Boron family: Comparative study of boron family, inert pair effect, preparation, properties, structure and uses of boric acid, borax, diborane and borazole. (Self study: compounds of Al, precious gems. alums)

3.2 Nitrogen family: Comparative study of halides and oxides of nitrogen group elements, preparation, properties of Oxy acids of nitrogen (HNO₂ and HNO₃) & Oxy acids of phosphorous(H₃PO₃, H₃PO₄, H₃P₂O₇) - preparation, properties and structure of hydrazine.

3.3 Oxygen family: Anomalous behavior of oxygen- preparation, properties, structure, Oxidation states and uses of sulphuric acid, Caro's acid, Marshall's acid and oleic acid. Classification of oxides based on chemical behaviour (acidic, basic, amphoteric and neutral oxides) and based on oxygen content (normal, peroxide, superoxide, suboxide and mixed oxide). Preparation, oxidizing and reducing character of H₂O₂.

Unit IV- States of Matter –I

4.1 Gaseous state: Laws of gases– Avagadro's law –Ideal gas equation–R in different units. Kinetic theory of gases. van der Waals equation of state - modification of the equation at high, low and moderate pressures and temperature -law of corresponding states - critical states (with derivation) determination of critical constants.

4.2 Liquid state: Vapour pressure- Trouton's rule. Liquid crystals - types, applications of liquid crystals.

UNIT V- States of matter -II

5.1 Colloidal state: Classifications of colloids – Methods of preparation of colloids -peptization, coagulation- Gold Number Rule - Bredict's Arc Method - Chemical Methods - Applications: Reverse osmosis – Desalination of sea water – Dialysis – Delta formation – Artificial rain – Purification of water (addition of polyvalent electrolytes), Sewage disposal- Cottrell's precipitator. Amphoteric nature of colloids, micelle formation of soaps & detergents. Cleansing action of soap.

5.2 Solid state: Elements of symmetry, space lattice and Unit cell, Bravais lattice-seven

crystal systems – lattice energy – law of rational indices – Miller indices – X-ray diffraction – Bragg's equation with derivation. Packing in Crystals, Determination of crystallite size using Sherrer Equation by powder XRD.

15 Hours

15 Hours

15 Hours

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Petrochemical Paradox	https://www.youtube.com/watch?v=VQlbiQj_49o
2	Preparation of Liquid crystal	https://www.youtube.com/watch?v=ul2_mYkrkiE
3	Colloids around as	https://www.youtube.com/watch?v=5ckvg2aeNbc&t=429s
4	Packing efficiency in HCP	https://www.youtube.com/watch?v=TvRkqL2xid0&t=382s
	structures	

2C. Text Books

- 1. Arun Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand Co Ltd., New Delhi, 2012. (Unit I, II, III)
- 2. B.R. Puri and L.R. Sharma and Madan S. Pathania, Principles of Physical Chemistry, Vishal Publishing Co., Jalandhar, 2017 (Unit IV, V)
- **3.** B.R. Puri, L.R. Sharma and K.C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, New Delhi, 2017 (**Unit V**)
- 4. P.L. Soni, H.M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, 2004.
- 5. R.L. Madan and G.D. Tuli, Inorganic Chemistry, S. Chand Co. Ltd., New Delhi, 2010.
- 6. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Meerut, 2016.
- 7. Vogel, Text Book of Qualitative Chemical Analysis, 6th edition., Pearson Education, 2009.

2D. Reference Books

1. J.D. Lee, "Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.

2. Morrison and Boyd "Organic Chemistry" Pearson Education, 2016.

3. Peter Atkins and Julio de Paula, "Physical Chemistry" Oxford University Press, 2018.

3. Specific Learning Outcomes (Slo)

Unit/ Sec.	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction		
Ι	Chemistry of Hydrocarbons				
1.1	IUPAC Nomenclaturecyclic & acyclic alkanes :General structure of IUPAC names- Parent name – Root name- locants-branched and unbranched alkanes, alkyl groups, alkenes, dienes and alkynes.(up 20 carbon system)	Apply the IUPAC nomenclature name hydrocarbons	K3		
1.2	Alkanes: Physical properties of AlkanesStructure and reactions of C-C bondsOxidation, Aromatization, Pyrolysis and free radical substitution.	Interpret the general trends in the physical properties of alkanes Describe the structure and reactions of C-C bonds Describe the reactions of alkanes	K3 K3 K2		
	Peroleum and petrochemicals- cracking, synthetic petrol, refining of gasoline, reforming, knocking, diesel engine fuel and cetane number	Outline the importance of alkanes as petrochemicals	K2		
1.3	Cycloalkanes : Preparation using Wurtz reaction, Dieckmann's ring closure and reduction of aromatic	Describe the methods of preparation of cycloalkanes	K2		
	hydrocarbons – Substitution and ring opening reactions	Write the methods of preparation of a given cycloalkanes	K3		

	Baeyer's strain theory	Predict the stability of the different cycloalkanes	K5			
II	Chemistry of	unsaturated hydrocarbons				
2.1	Alkenes: Physical Properties of alkenes Electrophilic and free radical	Compare the physical properties of alkenes. Describe the mechanistic details	K3			
	addition reactions (with mechanism)	of addition reactions in alkenes	K2			
	Addition reactions of hydrogen, hydrogen halides, (Markownikoff's rule),	Predict the product of addition reactions using Markownikoff's rule	K5			
	Hydrogen bromide (peroxide effect) and Water. Hydroboration, formation of diols using Bayer's reagent, peroxybenzoic acid and OsO ₄ , oxidation of alkenes (ozonolysis, and acidic KMnO ₄),	Utilize the different oxidation reagents for interconversion of functional groups.	К3			
	Allylic substitution by NBS	Write the conditions and mechanism of the given allylic substitution	К3			
2.2	Dienes : Classification – isolated, conjugated and cumulated dienes – butadiene	Classify the diene based on the conjugation.	K2			
	Preparation	Apply the general methods of preparation of dienes given cases.	<mark>К</mark> З			
	Chemical reactions – 1, 2 and 1,4 additions, Thiels theory - Diels- Alder reaction.	Predict addition products based on Thiels, Markovikoff and Diels- Alder reactions	K5			

2.3	Alkynes: Preparation – using CaC ₂ , dehydrohalogenation of vicinal dihalides – Kolbe's electrolysis method - Properties – Addition of H ₂ O, HCN, Halogens and HX, reduction using Lindlar's catalyst, Na and liq. NH- Cyclisation of acetylene, ozonolysis and oxidation with hot alk. KMnO ₄ and chromic acid – acidity of alkynes.	Describe the steps involved in the preparation of alkynes of different sizes Predict products of the reactions of alkynes	K2 K3
III		Group III ,V & VI Elements	
3.1	Boron family : Comparative study of boron family Inert pair effect	Illustrate the characteristic of the boron family Apply inert pair effect explain the electronic arrangement of theams	K3 K3
	Preparation, properties, structure and uses of boric acid, borax, diborane and borazole.	Describe the properties and uses of boron and its derivatives	K2
	Self study: compounds of Al, precious gems, alums	Identify compounds of Aluminium, precious gems and alums	K3
3.2	Nitrogen family : Comparative study of halides and oxides of nitrogen group elements,	Compare the chemistry of halides and oxides of nitrogen group elements	K2
	Preparation, properties of Oxy acids of nitrogen (HNO ₂ and HNO ₃) & Oxy acids of phosphorous(H ₃ PO ₃ , H ₃ PO ₄ , H ₃ P ₂ O ₇) -	Describe the preparation and properties of the oxy acids of nitrogen and phosphorous	K2
	Preparation, properties and structure of hydrazine.	Describe the preparation, properties and structure of hydrazine	K2

3.3	Oxygen family: Anomalous behaviour of oxygen	Explain the Anomalous behaviour of oxygen	K2			
	Preparation, properties, structure, Oxidation states and uses of sulphuric acid, Caro's acid, Marshall's acid and oleic acid.	Describe the preparation methodology, properties, structure and uses of mineral acids	K2			
	Classification of oxides based on chemical behaviour (acidic, basic, amphoteric and neutral oxides) and based on oxygen content (normal, peroxide, superoxide, suboxide and mixed oxide).	Categorize the oxides based on their chemical behaviour and oxygen content	K3			
	Preparation, oxidizing and reducing character of H ₂ O ₂ .	Utilize H ₂ O ₂ as reducing and oxidizing agent in specific reactions	К3			
IV	St	tates of Matter-I				
4.1	Gaseous state – laws of gases – Avagadro's law – Ideal gas equation – R in different units.	Justify by applying ideal gas equation how a gas responds changes in P, V, n, or T.	K5			
	Kinetic theory of gases. <i>van der</i> Waals' equation of state – modification of the equation at high, low and moderate pressures and temperature, -law of corresponding states -	Discuss the modifications of <i>van</i> <i>der</i> Waals' equation with respect pressure and temperature	K2			
	Critical states (with derivation) - determination of critical constants	Calculate the critical constant values	К3			
4.2	Liquid state – vapour pressure – Troun's rule.	Calculate the molar heat of vaporization of a liquid using Troun's rule	K3			
	Liquid crystals – types, applications of liquid crystals.	Summarize the properties of liquid crystals and their applications	K2			

V	Sta	ates of Matter- II	
5.1	Colloidal state –Classifications of colloids Methods of preparation of colloids -peptisation, coagulation	Classify different colloids used in day day life.	K4
	Applications – reverse osmosis – desalination of sea water – dialysis – delta formation – artificial rain – purification of water (addition of polyvalent electrolytes), Amphoteric nature and micelle formation of soap -detergent action of soap – sewage disposal- Cottrell's precipitar.	1 11	K2
5.2	Solid state – Elements of symmetry, space lattice and Unit cell, Bravais lattice – seven	Analyze specific crystal structures by applying Elements of symmetry	K4
	crystal systems – lattice energy –	Compute the parameters of a crystal lattice.	K4
	Law of rational indices – Miller indices – X-ray diffraction – Bragg's equation with derivation. Packing in Crystals, Determination of crystallite size using Sherrer's	equation	К4
	Eqationby powder XRD	Evaluate the packing of crystals and calculate crystal size.	К5

4. Mapping Scheme for the PO, PSOs and COs

L-Low

M-Moderate

H- High

GE	GENERAL CHEMISTRY – II								CODE: U19CH202				
	PO 1	PO 2	PO 3	PO 4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н					М	Н		Н			Н
CO2	Н	Н					М	Н		Н			Н
CO3	Н	Н					М	Η		Н			Н
CO4	Н	Н	Η				М	Η		Н		М	Н
CO5	Н	Н					М	Н		Η			Н
CO6	Н	Н					М	Η		Н		М	Н

5. Course Assessment Methods **DIRECT**:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

SBEC I: TEXTILE CHEMISTRY

Semester: II Credits: 2

Code: U19CH2S1 Total Hours: 30 Hours/ week: 2

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Describe the types and properties of Fibers	K2	Ι
2	Outline the manufacturing processes of the cotton and synthetic fibers	K2	II
3	Compare and classify Dyes based on their nature	K2	III
4	Elaborate the bonding interactions of dyes with Fibers	K2	III
5	Apply the principles of the dyeing process	K3	IV
6	Comprehend the entire process of manufacture of clothing	K2	V

2A. Syllabus

UNIT–I Structure of Fibres

1.1 Introduction - Classification of fibres: natural, synthetic and semi synthetic fibres.

1.2 Structure of textile fibres: Cotton, wool, silk, nylon, polyester, polyacrylamide.

1.3 Physical, chemical and biological properties and uses of cellulose fibre(cotton), protein fibre(silk and wool) and synthetic fibres (nylon and polyester).

UNIT–II Manufacture and Processing of Fibres 06 Hours

2.1 Synthetic fibres: Preparation, properties and Uses of Nylon 6, Nylon 66, Polyester and polyacrylamide.

2.2 Semi - Synthetic fibres: Rayon - manufacture of viscose rayon, cuprammonium rayon and Acetate rayon.

2.3 Mercerization- Mercerisation process and its applications.

UNIT-III

Dyes

06 Hours

06 Hours

3.1 Dyes – Requisites of a dye – Theories of colour - Witt Theory and Modern theory.

3.2 Classification of dyes with examples – according to application and structure. (**Preparation not required**)

3.3 Dye-Fibre interactions: Ionic, Covalent, van der Waals, H-bonding interactions.

3.4 Dyeing assisting agents: NaOH, Na₂CO₃, aluminium sulphate, chromic sulphate.

UNIT–IV Principles of Dyeing Processes

06 Hours

4.1 General concept of dyeing process: affinity of a dye, conditions for dyeing, selection of dye stuff.

4.2 Dyeing methods – Direct dyeing, Stock dyeing, Yarn dyeing, piece dyeing and garment dyeing.4.3 Silk dyeing.

UNIT–V Treatment Processes 06 Hours

5.1 After treatment processes - Stripping of dyes, low temperature dyeing.

5.2 Sizing and Bleaching: Sizing agents and applications, Reductive and oxidative bleaching agents.

5.3 Brightening agents: Optical brightening agents-Types and uses

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Structure of Fibres	http://www.materials.unsw.edu.au/tutorials/online-
		tutorials/2-glass-fibres
		https://www.youtube.com/watch?v=ZUroZZFx-B4
		https://www.youtube.com/watch?v=Ew22Lc3I9K8
		https://www.youtube.com/watch?v=sqKbgqFpwbo
2	Manufacture and	youtube.com/watch?v=fNdsOraykNI
	Processing of Fibres	https://www.youtube.com/watch?v=k2GKVG-2qeM
		https://www.youtube.com/watch?v=QHgNoSYlhYs
3	Dyes	https://www.youtube.com/watch?v=sLcT7P-ZS4E
		https://www.youtube.com/watch?v=2sHlLNzTpUU
		https://www.youtube.com/watch?v=ZKef9nyLA
4	Principles of Dyeing	https://www.youtube.com/watch?v=8R4lAladUj0
	Processes	https://www.youtube.com/watch?v=k-N_1TfNtFg
		https://www.youtube.com/watch?v=vc8e2wjmfbw
5	Treatment Processes	https://www.youtube.com/watch?v=BHiSlnq9Kaw
		https://www.youtube.com/watch?v=m1xU6ELQ5Mw
		https://www.youtube.com/watch?v=YEc4s31no94

2C. Text Books

- 1. B.K. Sharma, "Industrial Chemistry", Goel Publishing Co., 1997 (Unit- I, II, III).
- 2. Jain and Jain, "Engineering Chemistry", Dhanpat Rai & Sons, 1995 (Unit- IV, V).

2D. References

- 1. Bernard. P. Corbman, "Textile (Fibre to Fabric)", The Gregg / Mcgraw-Hill, Marketing series, 1983.
- 2. J N.Chakraborty, "Fundamentals and Practices in Colouration of Textiles," Woodhead Publishing India , 2010.
- 3. Arora, "Textile chemistry" Abishek Publications, 2011.
- 4. Rajbir Singh, "Synthetic dyes", Mittal Publications, 2002.

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction					
Ι	Structure of Fibres							
	1.1 Introduction - Classification of fibres: natural, synthetic and semi synthetic fibres.	Classify the fibers with examples	K2					
	1.2 Structure of textile fibres: Cotton, wool, silk, nylon, polyester, polyacrylamide.	Categorize the textile fibers based on the nature of fibers.	K2					
	1.3 Physical, chemical and biological properties and uses of cellulose fibre(cotton), protein fibre(silk and wool) and synthetic fibres (nylon and polyester).	Write the properties and uses of fibres	К2					
II	Manufacture and P	rocessing of Fibres						
	2.1 Synthetic fibres: Preparation, properties and Uses of Nylon 6, Nylon 66, Polyester and polyacrylamide.	Explain the chemistry of synthetic fibers	К2					
	2.2 Semi - synthetic fibres: Rayon - manufacture of viscose rayon, cuprammonium rayon and Acetate rayon.	Explain the manufacturing of rayon	К2					
	2.3 . Mercerization- Manufacture of mercerized cotton and its applications.	Describe the manufacturing process of mercerized cotton	K2					
III		Dyes						
	3.1 Dyes – Requisites of a dye –Theories of colour - Witt Theory and Modern theory.	Comprehend the theories of color	K2					
	3.2 Classification of dyes with examples – according application and structure. (Preparation not required)	Classify dyes based on the structure and application.	K2					

		1	
	3.3 Dye-Fibre interactions: Ionic,	1 51 5	
	Covalent, van der Waals, H-bonding interactions.	fiber interaction.	K2
	3.4 Dyeing assisting agents: NaOH,	Comprehend the role of dyeing	K2
	Na ₂ CO ₃ , aluminium sulphate, chromic sulphate.	assisting agents	
		Describe the role of dyeing assisting agents	K2
IV	Principles of Dy		
<u> </u>	4.1 General concept of dyeing process:	Explain the concept of dying	
	affinity of a dye, conditions for dyeing, selection of dye stuff.	process	K2
	4.2 Dyeing methods – Direct dyeing, p	Describe the dyeing methods with	
	dyeing, Stock dyeing, Yarn dyeing, piece dyeing and garment dyeing.	examples	K2
	4.3 Silk dyeing.	Apply the different dyeing methods explain the significance of silk dying process	K3
	Unit V Treat	ment Processes	
	5.1 After treatment processes - Stripping	Explain the After -treatment	
	of dyes, low temperature dyeing.	process.	K2
	5.2 Sizing and Bleaching: sizing agents and applications, Reductive bleaching, oxidative bleaching agents.	Distinguish the chemistry of various types of bleaching agents.	K2
	5.3 Brightening agents: - Optical brightening agents-Types and uses.	Identify the types of brightening agents.	K2
		Test the various types of brightening agents	K2

4. Mapping Scheme for COs, POs and PSOs

M-Moderate

H- High

TEXTILE CHEMISTRY								Code: U19CH2S1					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Н	Н	-	Н	М	L	Н	L	L	L
CO2	Н	Н	М	L	L	-	L	L	L	Н	М	М	М
CO3	Н	Н	Н	Н	Н	-	Н	М	М	Н	Н	Н	Н
CO4	Н	Н	М	Н	Н	-	М	М	М	Н	Н	Н	Н
CO5	Н	Н	М	Н	М	-	М	М	М	Н	Н	Н	Н
CO6	Н	Н	М	Н	М	-	Н	М	Н	Н	Н	Н	Н

5. Course Assessment MethodsDirect:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

ELECTIVE I- PRACTICAL APPLICATIONS OF COMPUTER IN CHEMISTRY

Semester : II Credits: 2

Code : U19CH2:P Total Hours : 45 Hours/ Week : 3

1. Course Outcomes

On completion of the course the student will be able to

S.No.	Course Outcomes			
	Draw Chemical structure, reaction pathways and apparatus set up			
1	using Chemistry drawing Tools	K3		
2	Perform basic quantum chemical calculations using ARGUS LAB	K3		
	Relate the structure with the properties of chemical compounds			
3	using Online and offline software	K3		
4	Retrieve Physical and Chemical properties using relevant software	K3		
5	Convert output & input files required digital formats	K2		
6	Visualize the different Molecular orbitals of chemical compounds	K2		

2A. Syllabus Experiments

- 1. Calculation of Heat of formation of conformers using ARGUS Lab Software.
- 2. Calculation of Strain energies of alicyclic rings using ARGUS Lab Software.
- 3. Visualization of Molecular orbitals and lone pairs in simple molecules using ARGUS Lab Software.
- 4. Calculation of bond energies, bond orders and bond lengths of delocalized and resonance stabilized bonds.
- 5. Introduction chemistry drawing ols *ISIS draw*, *Chemsketch*, *Chemdraw*, *Chemdoodle* Drawing chemical structure, writing chemical equation.
- 6. Drawing the structure of alkanes from methane n-dodecane. Calculation of their Properties and Comparing their Melting and Boiling Points.
- 7. Construction of Linear and Branched chain alkanes containing 5,6,7 & 8 carbons and Tabulating their properties like Melting and Boiling Points.
- 8. Drawing the cis- and trans- isomers of 1,2-dichloroethene, 1,2-dicarboxyethene and 1,2- diphenylethene. Calculation and Comparison of their dipolemoments.
- 9. Sketch the apparatus setup for a distillation process using Chemdraw.

- 10. Draw the molecular structure of the given Natural Product and get its physical Properties: (a) Caffein (b) Nicotine.
- 11. Depict the mechanism of a simple S_N1 reaction using Chemdraw. Indicate the mobility of electrons by arrows.
- 12. Using the template ol draw any 5 fused aromatic ring systems and find their IUPAC Names using 'structure name' option

S.No	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1	Calculation of Heat of formation of conformers using ARGUS Lab Software	Compute Heat of formation of given conformers using Argus software	К3
2	Calculation of Strain energies of alicyclic rings using ARGUS Lab Software	Use Argus Lab find out the strain energies of alicylic rings	К3
3	Visualization of Molecular orbitals and lone pairs in simple molecules using ARGUS Lab Software	obtain the molecularorbitals and lone pair ofelectrons in molecules using Argus software	K2
4	Calculation of bond energies, bond orders and bond lengths of delocalized and resonance stabilized bonds.	Compute the bond energies, bond orders and bond lengths of different types of bonds	К3
5	Introduction chemistry drawing ols - ISIS draw, Chemsketch, Chemdraw, Chemdoodle - Drawing chemical structure, writing chemical equation	Draw any chemical structureusing drawing ols like ISISdraw, Chemsketch, Chemdraw, Chemdoodle	K2
6	•	Construct the structure and compare the properties (melting and boiling points) of alkanes Relate the Chemical &	К3

	Points	Physical properties obtained	
		from calculations Chemical	
		structures.	
7	Construction of Linear	Retrieve the properties	
	and Branched chain	(melting and boiling point,	
	alkanes containing 5,6,7	dipolemoment etc) of	К3
	& 8 carbons and	branched alkanes from	
	Tabulating their	CHEMDRAW.	
	properties like Melting		
	and Boiling Points.		
8	Drawing the cis- and	Determine the dipole	
0	trans- isomers of 1,2-		
	dichloroethene, 1,2-		
		LAB.	
	dicarboxyethene and 1,2- diphenylethene.		К3
	Calculation and		
	Comparison of their		
	dipolemoments.	Dress the second sector set	
9	Sketch the apparatus	Draw the apparatus setup	
	setup for a distillation	fordistillation process	K2
	process using		
	Chemdraw		
10	Draw the molecular	Retrieve the physical	
	structure of the given	properties of natural	
	Natural Product and get		K3
	its physical Properties:	structure from the chemdraw	
	(a) Caffein (b)	software	
	Nicotine.		
11	Depict the mechanism	Depict the mechanistic	
	of a simple S _N 1 reaction	pathway of S _N 1 reaction	K2
	using Chemdraw.		
	Indicate the mobility of		
	electrons by arrows.		
12	Using the template draw	Draw the structure of fused	
	any 5 fused aromatic	aromatic rings along with its	
	ring systems and find	IUPAC names	К3
	their IUPAC Names		155
	using 'structure		
	name' option.		
<u> </u>	nume option.		

2C. Text Books

1. Course Handout on "Basics of Computation ols for Chemists" developed and published by PG & Research Dept. of Chemistry, Bishop Heber College,Trichy.2020.(for private Circulation Only)

- 2. User Manual of Chemdoodlehttps://www.ichemlabs.com/downloads/ChemDoodle3DUserGuide.pdf
- 3. User Manual of Chemdraw <u>https://www.perkinelmer.com/lab-products-and-services/resources/software-downloads.html</u>
- 4. User Manual of Argus Lab Software http://www.arguslab.com/arguslab.com/ArgusLab.html

2D. References

1. Guy H. Grant & W. Graham Richards, Computational Chemistry, Oxford University Press, 2005.

Code : U19CH2:P

2. Andrew R. Leach, "Molecular modeling Principles & Applications", Prentice Hall, 2nd edition, 2008.

4. Mapping Scheme for COs, POs and PSOs

ELECTIVE I - PRACTICAL Applications of Computer In Chemistry

	11				1			v					
Mappin	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Η	М		М	-	М	-			Н			Η
CO2	Η	М	Η	М	-	Н	-	Η		Н		Н	Η
CO3	Η	М	Η	М	-	Н	-	Η		Н		Н	Η
CO4	Η	М		М	-	Н	-			Н			Η
CO5		L		М	-		Н			Н			Η
CO6	Н	М	М	М	-	L	-	М		Н		М	Н

Core - III: GENERAL CHEMISTRY – III

SEMESTER : III CREDITS: 5

CODE: U19CH303 Total Hours : 90 Hours/Week: 6

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
	Summarize the chemistry of halogens, oxyacids of halogens, the trends in properties and reactivity of the f-block elements and d-block		
1	elements and their compounds, alcohols, phenols, aliphatic halogen compounds, benzene and its derivatives.	K4	I-IV
2	Describe the anomalous behavior of fluorine, differences between pseudo-halogens interhalogens and halogens, chemistry of cyanogens, thiocyanogen and Astatine, separation of lanthanides, extraction of actinides and chemistry of aromatic alcohols.	K4	I, II, IV
3	Compare the structural and chemical aspects of haloacids, oxyhalides, interhologens, ethers, epoxides and mono-, di, and trihydric alcohols.	К5	I, III
4	Explain the role of the concepts - solubility product, common ion effect in group separation.	K4	II
5	Comprehend the structure of benzene and the effect of substituent in benzene ring.	K5	IV
6	Explain the theories of reaction rate, types and Mechanism of adsorption, the concept of catalysis and the factors affecting catalysis.	K5	V

2A. Syllabus

Unit–I Chemistry of Halogens and d-block elements

18 Hours

1.1 Halogens & Interhalogens - Diatomic nature –oxidizing property – Electron affinity – Electronegativity - size effect. Comparison of halogens with O, N & C groups - Anamolous behavior of fluorine – Chemical properties of haloacids and oxyhalides. Interhalogens – Preparation, structure and bonding of AX, AX₃, AX₅ and AX₇ type interhalogens - uses. Pseudo-halogens - Comparison with halogens - Preparation, properties and uses of cyanogen and thio-cyanogen, Chemistry of Astatine, Oxyacids of halogens – HClO₄, HClO₃, HClO₂, HClO.

1.2 d-block elements – Introduction - General characteristics (metallic character, atomic and ionic radii, oxidation states, colour, complex formation and magnetic properties). Preparation, properties and uses of some Important compounds (Zeigler- Natta catalyst, Prussian blue, sodium nitroprusside, Turnbull's blue, Wilkinson's catalyst, KMnO₄, $K_2Cr_2O_7$).

Unit–IIf-Block Elements and Principles of Qualitative analysis18 Hours2.1 Lanthanides–general study of lanthanides involving electronic configuration, oxidation states, and
complexation behavior, Lanthanides – separation by Ion-exchange and solvent extraction methods –
lanthanide contraction.18 Hours

2.2 Actinides—occurrence—electronic configuration—oxidation states and complexation behaviour—extraction of thorium and uranium – and uses, Actinide contraction.

2.3. Principles of Qualitative Analysis - Reactions involved in the detection of anions and cations: F^- , Cl⁻, Br⁻, NO₃⁻, CO ²⁻, SO₄²⁻, PO ³⁻, C₂O₄²⁻, BO ³⁻, Pb²⁺, Cd²⁺, Bi³⁺, Cu²⁺, Fe²⁺, Al³⁺, Ni²⁺, Co²⁺, Zn²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Mg²⁺ and NH₄⁺ ions. Solubility product, Common ion effect, Interfering and Non-Interfering radicals, principle involved in group separation and in the preparation of Na₂CO₃ extract.

Unit-IIIChemistry of Alcohols, Ethers and Organohalogens18 Hours

3.1 Alcohols - Classification and nomenclature of monohydric alcohols - Preparation by reduction of aldehydes, ketones, carboxylic acids and hydrolysis of esters. Hydrogen bonding, Acidic nature. Reactions of alcohols - Etherification, Alkylation reaction of halogen acids, dehydrogenation, oxidation. Dihydric & Trihydric alcohols, Glycerol-preparation, chemical reactions, cleavage reactions of polyhydric alcohols with Pb(OAc)₄, HIO₄, OsO₄, uses of glycerol. Glyceryl trinitrate - Preparation, properties and uses.

3.2 Ethers - Nomenclature, preparation, chemical reactions –cleavage reactions and auto oxidation, Zeisel's method. Epoxides – preparation and Properties.

3.3 Organohalogens - Nomenclature – Aliphatic halogen compounds – preparation, properties and uses of CH₂Cl₂, CHCl₃, CCl₄ and vinyl chloride – Commercially important halogen compounds – Westorn, Freon, DDT and BHC - Synthesis and uses.

Unit-IV

Aromatic Compounds

4.1 Aromaticity - Nomenclature of benzene derivatives, structure of benzene – molecular formula and Kekule structure – Stability and C-C bond length of benzene, MO picture, MOT of aromaticity, Application of Huckel's rule to benzene, naphthalene and anthracene.

4.2 Effects of substituent in benzene ring–Reactivity and orientation–Theory of reactivity-Electrophilic substitution reactions – Mechanism of nitration, halogenation, sulphonation, Mercuration, Friedel-Crafts alkylation and acylation.

18 Hours

4.3 Phenols: Preparation, properties, and reactions of Phenol - Coupling reaction - Acidity of Phenols-Preparation, properties and reactions of Resorcinol, Catechol and Quinol.

Unit–V Kinetics & Catalysis

5.1 Definition– Determination of rate using Concentration versus Time curves – Rate laws and Rate constants for zero, I, II and III order reactions– unit of rate constants – Order and Molecularity – Derivation of expressions for rate constants for zero, I, II and III order reactions–half–life period (**Problems**) - Pseudo first order reaction, methods of determination of order of reactions - integration, graphical, half-life and Ostwald's isolation methods. Factors affecting rate of reaction.

5.2 Temperature dependence of reaction rate–Arrhenius parameters and calculations–Theories of reaction rate - Simple Collision Theory – limitations -ARRT – thermodynamic derivation of rate constant. Steady State Approximation - Lindemann's Hypothesis of unimolecular reactions.

5.3 Adsorption- Introduction - Types of adsorption and Mechanisms – Factors affecting Adsorption - adsorption isotherms - Freundlich, Gibb's and Langmuir isotherms (Derivation not required).

5.4 Catalysis - Introduction - Types of catalysis – Intermediate compound formation Theory and Adsorption theory- Factors affecting the catalysis – Positive and Negative Catalysts - Catalytic promoters and poisons – Auto catalysis - Enzyme catalysis – Derivation of Michaelis–Mentenequation.

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Charge Transfer Spectra	https://careerendeavour.in/wp-content/uploads/201
		8/09/coordination-chemistry.pdf
2	Magnetic properties of inner transition elements	https://unacademy.com/lesson/magnetic-properties -of-f-block-elements/DSZI4Z60
3	Macromolecules (Crown ethers) and its applications	https://ttu-ir.tdl.org/bitstream/handle/2346/18570/3 1295007060477.pdf?sequence=1
4	industrial applications of enzymes	https://www.sepmag.eu/blog/industrial-uses-of-en zymes
5	Craig's rule for Aromaticity	https://youtu.be/sUtqD9qv5S8

2C. Text Books:

- 1. B.R. Puri, L.R. Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milesne Publishers, NewDelhi, 2017 (Unit- I, II, V).
- 2. Arun Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand Co. Ltd., New Delhi, 2012 (Unit-III).
- **3.** B.R. Puri, L.R. Sharma and Madan S. Pathania, *Principles of Physical Chemistry*, Vishal Publishing Co., Jalandhar, 2017 (**Unit- IV**).

2D. Recommended Reference Books:

- 1. J.D. Lee, "Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- 2. Morrison and Boyd "Organic Chemistry" Pearson Education, 2016.
- 3. Peter Atkins and Julio de Paula, "Physical Chemistry" Oxford University Press, 2018.
- 4. R.L. Madan and G.D. Tuli, *Inorganic Chemistry*, S.Chand Co. Ltd., New Delhi, 2010.
- 5. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Merrut, 2016.
- 6. V.B. Patania, *Chemical Kinetics*, Campus Publications, New Delhi, 2004.

Unit/Section	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
Ι	Chemistry of Halogens a	nd d-block Elements	
1.1	Properties of Halogens and interhalogens: Diatomic nature, oxidizing property, electron affinity, electronegativity, size effect	and reactivity of halogens	K4
	Comparison of halogens with O, N & C groups Anamolous behavior of fluorine	Compare and contrast the properties of halogens with the O, N and C groups List out the anomalous	K4 K2
	Chemical properties of haloacids and oxyhalides	of haloacids and oxyhalides	К3
	Preparation, uses, structure and bonding of AX, AX ₃ , AX ₅ and AX ₇ type interhalogens	Summarize the chemistry of different types of interhalogens	К3

3. Specific Learning Outcomes (SLO)

	a	~	
	Comparing pseudo-halogens	Compare the properties of	K2
	with halogens	pseudo-halogens and	
		halogens	
	Preparation, properties and uses	Summarize the chemistry of	K2
	of cyanogen and thio-cyanogen	cyanogens and	
		thiocyanogen	
	Chemistry of Astatine	Outline the chemistry of	K2
		astatine	
	Chemistry of oxyacids of	Compare the chemistry of	K5
	halogens – HClO ₄ , HClO ₃ ,	different oxy acids of	
	HClO ₂ , HClO	halogens	
1.2	Introduction to d-block elements	Compare the general	K4
	and their general characteristics	characteristics of the	
	(metallic character, atomic and	different d-block elements	
	ionic radii, oxidation states,		
	colour, complex formation and		
	magnetic properties)		
	Preparation, properties and uses	Interpret the chemistry of	K4
	of Zeigler- Natta catalyst,	Zeigler- Natta catalyst,	111
	Prussian blue, sodium	Prussian blue, sodium	
	nitroprusside, Turnbull's blue,	nitroprusside, Turnbull's	
	Wilkinson's catalyst, KMnO ₄ ,	blue, Wilkinson's catalyst,	
	$K_2Cr_2O_7$	$KMnO_4$ and $K_2Cr_2O_7$	
II		ciples of Qualitative Analysis	
2.1	General study of lanthanides	Comprehend the general	K4
2.1	involving electronic	properties of lanthanides	127
	configuration, oxidation states,	properties of fantilandes	
	_		
	complexation behavior		
	Separation of lanthanides by	Outline the various	K2
	ion-exchange and solvent	processes involved in the	
	extraction methods	separation of lanthanide	
		ions	
		10115	

	configuration, oxidation states, actinideactinidecontractionandcomplexationbehaviourofactinidesExtractionofthoriumanduranium and their uses	properties of lanthanides Illustrate the extraction of thorium and uranium and their uses	K2
2.3	Reactions involved in the detection of anions and cations: F^{-} , Cl^{-} , Br^{-} , NO_{3}^{-} , $CO_{3}^{2^{-}}$, $SO_{4}^{2^{-}}$, $PO_{4}^{3^{-}}$, $C_{2}O_{4}$, BO_{3} , $Pb^{2^{+}}$, Cd , Bi^{3+} , $Cu^{2^{+}}$, $Fe^{2^{+}}$, $Al^{3^{+}}$, $Ni^{2^{+}}$, $Co^{2^{+}}$, $Zn^{2^{+}}$, $Ca^{2^{+}}$, $Ba^{2^{+}}$, $Sr^{2^{+}}$, $Mg^{2^{+}}$ and NH_{4}^{+} ions	Categorize the reactions involved in the detection of some cations and anions.	K4
	Interfering and Non-Interfering radicals	Identify the interfering and non-interfering radicals	К3
	The concept of solubility product and common-ion effect	Examine the concepts of solubility product and common-ion effect	K4
	Principle involved in group separation and in the preparation of Na ₂ CO ₃ extract	Describe the principle involved in group separation	K4
III	Chemistry of Alcohols, Eth	ers and Organo Halogens	
3.1	Classification and nomenclature of monohydric alcohols	Organize the various monohydric alcohols	K3
	Preparation of alcohols by reduction of aldehydes, ketones, carboxylic acids and hydrolysis of esters	Distinguish the preparation of alcohols	K4
	Hydrogen bonding and acidic nature of alcohols. Reactions of alcohols - Etherification, Alkylation reaction of halogen acids, dehydrogenation,	Summarize the properties of alcohols	K5

	oxidation		
	Chemistry of dihydric and trihydric alcohols	Apply the chemistry of dihydric and trihydric alcohols	К3
	Preparation, uses and properties of glycerol (cleavage reactions of polyhydric alcohols with Pb(OAc) ₄ , HIO ₄ , OsO ₄) - Preparation, uses and properties of Explain the chemistry of glycerol	Utilize the chemistry of glycerol and glyceryl trinitrate	К3
3.2	Nomenclature, preparation and chemical reactions of ethers (cleavage reactions and au oxidation by Zeisel's method) - Preparation and properties of epoxides	Describe the chemistry of ethers and epoxides	K3
	Nomenclature, preparation, properties and uses of aliphatic halogen compounds (CH ₂ Cl ₂ , CHCl ₃ , CCl ₄ and vinyl chloride)	Explain the chemistry of aliphatic halogen compounds	K4
IV	Aromatic Compour	nds	
4.1	Nomenclature of benzene derivatives	Name the benzene derivatives using IUPAC rules.	К3
	Structure of benzene - molecular formula and Kekule structure – stability and C-C bond length of benzene, MO picture	Explain the structure of benzene	K4
	MOT of aromaticity, application of Huckel's rule benzene, naphthalene and anthracene	Explain the MOT of aromaticity and Huckle's rule	K5
	Effects of substituent in benzene ring	Distinguish the effects of various substituents in	K4

		benzene ring	
	Electrophilic substitution reactions	Apply electrophilic substitution mechanism in formation of benzene derivatives	K4
4.2	Effects of substituent in benzene ring–Reactivity and orientation– Theory of reactivity	Predict products based on reactivity and orientation principles	K3
	Electrophilic substitution reactions – Mechanism of nitration, halogenation, sulphonation, Mercuration, Friedel-Crafts alkylation and acylation	Elucidate the mechanism of given electrophilic substitution reactions	K4
4.3	Preparation, properties, and reactions of Phenol - Coupling reaction - Acidity of Phenols	Apply the chemistry of phenols for interconversion of functional groups	K4
	Preparation, properties and reactions of Resorcinol, Catechol and Quinol	resorcinol, catechol and quinol	K2
V	Kinetics and Cata	lysis	
5.1	Definitions	Define terms commonly used in chemical kinetics	K1
	Determination of rate using Concentration versus Time curves – Rate laws and Rate constants for zero, I, II and III order reactions– unit of rate constants	Summarize the rate Laws.	K2
	Order and Molecularity	Find out the order and molecularity of a given reactions	K2
	Derivation of expressions for rate constants for zero, I, II and	Derive the expressions for rate constants of zero, I, II	K5

	III order reactions-half-life period (Problems)	and III order reactions	
	Pseudo first order reaction, methods of determination of order of reactions - integration, graphical, half-life and Ostwald's isolation methods	Elaborate the methods of determining the rate of reactions of different order and half-life of a reaction	К2
	Factors affecting rate of reaction	Outline the factors affecting the rate of a reaction	K2
5.2	Temperaturedependenceofreactionrate–Arrheniusparametersand calculations	Relate the temperature dependence of reaction rates	К3
	Theories of reaction rate - Simple Collision Theory - limitations -ARRT	Illustrate ARRT	К2
	Thermodynamic derivation of rate constant	Derive the thermodynamic basis of rate constant	K2
	Steady State Approximation - Lindemann's Hypothesis of unimolecular reactions	Apply steady state approximation in derivation of rate laws.	K3
5.3	Introduction to adsorption and types of adsorption	Classify the types of adsorption	K2
	Factors affecting Adsorption and the Mechanisms of adsorption	Relate the factors affecting adsorption and the mechanism involved	K2
	Adsorption isotherms - Freundlich, Gibb's and Langmuir isotherms (Derivation not required)	Interpret the different adsorption isotherms	К2
5.4	Introduction to catalysis and types of catalysis	Summarize the characteristics of the typesof catalysis	K2

Intermediate compound	Describe the theories of	K2
formation Theory and	adsorption	
Adsorption theory		
Factors affecting the catalysis –	List out the factors affecting	K3
Positive and Negative Catalysts	positive and negative	
- Catalytic promoters and	catalysts	
poisons		
Enzyme catalysis – Derivation	Derive the Michaelis	K2
of Michaelis–Menten equation	Menten equation.	

4. Mapping scheme for COs, POs and PSOs

L-Low

M-Moderate

H- High

GENERAL CHEMISTRY – III CODE: U19CH								U 19CH3	03				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Η	L	-	-	-	-	Μ	-	Н	-	-	Н
CO2	Н	Н	Η	-	-	-	-	Μ	-	Н	-	-	Н
CO3	Η	Н	Η	-	-	-	-	Μ	-	Н	-	-	Н
CO4	Н	Н	Η	-	-	-	-	Μ	-	Н	-	-	Н
CO5	Н	Н	Η	-	-	-	-	Μ	-	Н	-	-	Н
CO6	Η	Н	Η	-	-	-	-	Μ	-	Н	-	Μ	Н

5.Course Assessment Method Direct:

1. Continuous Assessment Test (Model Exams) I, II

2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)

3. End Semester Practical Examination

Indirect:

Core Practical - II: INORGANIC QUALITATIVE ANALYSIS

Semester: III Credits: 2

Code: U19CH3P2 Total Hours :45 Hours/Week : 3

1. Course outcomes:

After the completion of this course the students will be able to

S.No.	Course Outcomes	Level
1	Recall the basic Principles of Inorganic Qualitative Analysis.	K2
2	Apply the various principles identify the cations and anions systematically.	K3
3	Exhibit analytical skill in identifying a given inorganic mixture using Systematic semi micro method with green approach.	K4
4	Separate the cations in different groups	K3
5	Confirm the cations and anions by Confirmatory tests	K5
6	Present a Scientific report without violating protocols and procedures.	K4

2A. Syllabus

Experiments

I. Cations to be analysed:

Lead, Copper, Bismuth, Cadmium, Iron, Aluminium, Zinc, Manganese, Cobalt, Nickel, Barium, Calcium, Strontium, Magnesium and Ammonium.

II. Anions to be analysed:

Carbonate, Sulphide, Sulphate, Nitrate, Chloride, Bromide, Fluoride, Borate, Oxalate and Phosphate.

2C. Text Books

1. V. Venkateswaran , R. Veeraswamy, A.R. Kulandaivelu, Basic Principles of Practical Chemistry, S. Chand & Co., New Delhi,1997.

2D. References

1. Vogel, Text Book of Quantitative Chemical Analysis, 6th Edition, Pearson Education, 2009.

3. Specific Learning Outcomes:

Unit	Course content	Learning Outcomes	Blooms Taxonomic level of Transaction
1.	Cations to be analysed: Lead, Copper, Bismuth, Cadmium, Iron, Aluminium, Zinc, Manganese, Cobalt, Nickel, Barium, Calcium, Strontium, Magnesium and Ammonium	To identify the cations and anions in a mixture	K4
2.	Anions to be analysed: Carbonate, Sulphide, Sulphate, Nitrate, Chloride, Bromide, Fluoride, Borate, Oxalate and Phosphate	To analyse systematically the given unknown samples. To practice laboratory ethics and to adopt the ethical values in the semi-micro analysis	K5 K5

4. Po, Pso & Co Mapping

INORGANIC QUALITATIVE ANALYSIS Code: U19CH3P2 **PO1** PO2 PO3 **PO4** PO5 **PO6 PO7 PO8 PO9** PSO1 PSO2 PSO3 PSO4 Mapping **CO1** Η М Η L Η Η Η Η Μ Μ ---**CO2** Η Η М М L Η Η L Η Η Μ _ -CO3 Η Μ Η L Η Η Η Η L Η М _ -**CO4** Η М Μ L Η Η L Η Η Η Μ -_ **CO5** Μ Η Μ Μ L Η Η L Η Η Μ _ -Η Μ Μ L Η Η Η Η Η Η Μ **CO6** М Η

5. Course Assessment Methods Direct:

Continuous Internal Assessment

- 1. Model Exams I and II
- 2. End Semester Practical Examination

Core Course - IV

INORGANIC CHEMISTRY-I

Semester: IV Credits: 5 Code: U19CH404 Total Hours : 90 Hours/ Week : 6

1. Course Outcomes

After the successful completion of this course, students will be able to

S.No.	Course Outcomes	Level	Unit
1	Predict the hybridization of Coordination compounds and the stable and unstable metal complexes using EAN rule	K5	Ι
2	Discuss the different types of nucleophilic substitution reactions in Octahedral andSquare planar complexes	K4	Π
3	Apply different methods calculate dipole moment of molecules	K3	III
4	Explain the magnetic and electrical properties of molecules and complexes	K2	III
5	Summarize the importance of metal carbonyls, metal nitrosyls and metal olefins	K2	IV
6	Illustrate the principles of gravimetric analysis and the types of different binary compounds	K2	V

2A. Syllabus

Unit – ICoordination Chemistry – I18 Hours

- **1.1** Types of ligands, IUPAC nomenclature.Differencesbetween Double and Single Salts.
- **1.2** Werner theory Sidgwick theory EAN rule Valence bond theory Postulates. sp^3, dsp^2 , and $sp^3d^2hybridisations$ with examples and limitations.
- **1.3** Crystal Field Theory Postulates shapes of d-orbitals- splitting of t_2g and eg levels, CFSE, Octahedral and Tetrahedral splitting with examples and limitations.
- **1.4** Molecular orbital theory Postulates, application to octahedral complexes only.

Unit–II

Coordination Chemistry – II

18 Hours

- 2.1 Isomerism Stability of complexes factors affecting the stability of complexes.
- **2.2** Unimolecular and bimolecular nucleophilic substitution reactions in Octahedral and Squareplanar complexes Trans effect and its applications.
- **2.3** Biologically important co-ordination compounds–Chlorophyll, Haemoglobin and Vitamin- B_{12} structure and application (Elucidation is not required)

2.4 Application of coordination compounds–detection of potassium ions, separation of copperand cadmium ions.

Unit – IIIElectrical and Magnetic Properties18 Hours

3.1 Induced dipole moment–polarisability, polarization of a molecule in an electric field– Clausius–Mosotti equation and Debye equation (derivation not required) – measurement of dipole moment for molecules – vapour temperature method, dilute solution method. Bond moments-bond angle relationship, dipole moment and molecular structure (CO₂, NH₃, CCl₄ and *o*, *m* and *p*-dichlorobenzene)

3.2 Magnetic permeability, magnetic flux, density (B), magnetic field intensity (H), B and Hrelationships, magnetic susceptibility, magnetic moment(M), Diamagnetism, Paramagnetism, Ferromagnetism, anti-ferromagnetism, measurements of magnetic susceptibility – Gouy Method -number of unpaired electrons-spin only value for magnetic moment – application to structural Problemsof K₃[Fe(CN)₆], K₄[Fe(CN)₆] and [Ni(CO)₄].

Unit-IVOrganometallic Compounds18 Hours

4.1 Pi acceptor ligands - Introduction - Metal carbonyls–Mononuclear carbonyls -18 electron rule and polynuclear carbonyls of Ni, Fe, Cr, Co and Mn – synthesis, reactions, structure and uses.

4.2 Nitrosyl compounds–classification, preparation, properties and structure of nitrosyl chloride and sodium nitroprusside.

4.3 Metal olefins (Zeise's salt)- Cyclopentadienes (Ferrocene)- preparation, aromatic character, reactions of the aromatic rings, structure and bonding.

Unit-VBinary Compounds and Gravimetry18 Hours5.1Hydrides - Types-salt like, covalent, diamond like, interstitial hydrides and usesNitrides - Types-salt like, covalent, diamond like, interstitial, nitride complexes and uses

Carbides - Types-salt like, covalent, interstitial and applications.

Borides -Borides having isolated B atoms, Borides having chain of B atoms, Borideshaving extended 2-dimensional network, Borides having 3- dimensional network and uses

5.2 Gravimetric Analysis - Principles of gravimetry - characteristics of precipitating agents – choice of precipitants–types of precipitants - condition of precipitation - Use of sequestering agents -Precipitation from homogeneous solution. Digestion, washing and ignition of the precipitate. Co-precipitation and post precipitation.

2B. Topics for Self-Study:

	Topics	Web Links
S.No.	Topics	Web Links
1	Crystal theory of square planar	http://chemiris.labs.brocku.ca/~chemweb/courses/c
	complexes	hem232/CHEM2P32_Lecture_11.html
2	Molecular orbital theory of tetrahedral	https://www.dalalinstitute.com/wp-
	complexes	content/uploads/Books/A-Textbook-of-Inorganic-
		Chemistry-Volume-1/ATOICV1-7-2-Molecular-
		Orbital-Theory-Octahedral-Tetrahedral-or-Square-
		Planar-Complexes.pdf
3	Porphyrins and Hemoglobin	https://basicmedicalkey.com/porphyrins-and-
		hemoglobin/
4	application to structural Problems of	https://www.ebi.ac.uk/chebi/searchId.do?printerFri
	copper II sulphate	endlyView=true&locale=null&chebiId=31440&vie
		wTermLineage=null&structureView=&
5	Cross coupling reactions	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC68
		<u>60378/</u>
6	Binary compounds boranes	https://courses.lumenlearning.com/introchem/chapt
		er/boranes-boron-hydrogen-compounds/

2C. Text Books :

- 1. B.R. Puri, L.R. Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milesne publishers, New Delhi, 2017 (Unit- I-V)
- 2. R.D. Madan, Modern Inorganic Chemistry, S.Chand & Co., New Delhi, 2003. (UnitI-IV)
- 3. J.D. Lee, Concise Inorganic Chemistry, Oxford University Press, New Delhi, 2008.

2D. Recommended Reference Books:

- 1. Gurdeep Raj, Advanced Inorganic Chemistry, Goel publishing, Meerut, 2014.
- 2. Kamalesh Bansal, Coordination Chemistry, Campus Publications, New Delhi, 2003.
- 3. G.S. Sodhi, Inorganic Chemistry, Viva Books, New Delhi, 2006.
- 4. D. Banerjee, *Coordination Chemistry*, Asian Books, 2007.

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning outcomes	Blooms Taxonomic levels of Transaction	
	Unit – I : Coordinat	ion Chemistry – I		
1.1	Types of ligands	Explain different types of	K2	
		ligands		
	IUPAC - nomenclature	Make use of the various	K3	
		rules for nomenclature of		
		co-ordination compounds		
	Differences between Double and	Distinguish between	K4	

	Single Salts.	Double and Single Salts	
	Werner theory – Sidgwick theory – EAN rule	Discuss the postulates of Werner's theory	К3
1.2		Apply EAN rule.	K3
	Valence bond theory – Postulates. sp^3 , dsp^2 , and sp^3d^2 hybridizations	Discuss the merits and limitations of VBT	K2
	with examples and limitations	Explain valence bond theory with suitable examples for high spin and low spin complexes	K2
		Identify the high spin and low spin complexes	K3
		Predict the hybridization of Coordination compounds	K5
1.3	Crystal Field Theory – Postulates - shapes of d-orbitals - splitting of t2g	List out the postulates of CFT	K2
	and eg levels, CFSE, Octahedral and Tetrahedral splitting with examples and limitations	Discuss the splitting of d- orbitals in Octahedral and Tetrahedral field	K2
1.4	Molecular orbital theory – Postulates, application octahedral	Explain the postulates of MOT	K2
	complexes only.	Discuss the MOT of octahedral complexes	K2
	Unit–II Coordi	nation Chemistry – II	
2.1	Isomerism – Stability of complexes – facrs affecting the stability of	Define the types of Isomerism	K2
	complexes.	Explain the factors affecting the stability of complexes	K2
		Determine the stability of complexes	K2
2.2	Unimolecular and bimolecular nucleophilic substitution reactions in Octahedral and Square planar complexes – Trans	Discuss the different types of nucleophilic substitution reactions in Octahedral and Square planar complexes	K4
	effect and its applications.	Explain the Trans effect and its applications.	K2
		Discuss the Trans effect in Square planer complexes	K2

2.2			
2.3	Biologically important co-	Compare the structure and	
	ordination compounds–Chlorophyll,	application of different	
	Haemoglobin and	Biologically important co-	K4
	Vitamin- B_{12} - structure and	ordination compounds	
	application (Elucidation is not		
	required)		
2.4	Application of coordination	Separate copper and	
	compounds-detection of potassium	cadmium ions	K4
	ions, separation of		
	copper and cadmium ions.		
	Unit – III Electrical	and Magnetic Properties	
3.1	Induced dipole moment-	Apply different methods	
	polarisability, polarization of a	calculate the dipole	
	molecule in an electric field-	moment of different	
	Clausius-Mosotti equation and	molecules	
	Debye equation (derivation not		
	required) -measurement of dipole		170
	moment for molecules – vapour		K3
	temperature method, dilute		
	solutioNmethod. Bond moments-		
	bond angle relationship, dipole		
	moment and molecular structure		
	$(CO_2, NH_3, CCl_4 and o, m and p-$		
	dichlorobenzene)		
3.2	Magnetic permeability, magnetic	Explain the different terms	
	flux, density (B), magnetic field	in magnetic properties of	K2
	intensity (H), B and Hrelationships,	matter.	
	magnetic susceptibility, magnetic		
	moment(M), Diamagnetism,	Compare the characteristics	
	Paramagnetism, Ferromagnetism,	of diamagnetism and	
	anti-ferromagnetism,	paramagnetism	V)
3.3	maggingemente	Evaloin the mean-ti-	K2
3.3	measurements of magnetic	Explain the magnetic	K2
	susceptibility – Gouy Method -	susceptibility measurements	
	number of unpaired electrons-spin	solve structure of complex	
	only value for magnetic moment –	ions	
	application structural Problems of K $2 \left[F_{\alpha}(CN) \right] \leq 1 - K - 4 \left[F_{\alpha}(CN) \right] \leq 1$ and		1/2
	3 [Fe(CN) 6], K 4 [Fe(CN) 6] and $N_{1}^{1}(CO)$	Explain the gouy balance	K2
	[Ni(CO) 4	method for the measurement	
		of magnetic susceptibility	

Unit–IV	Organometallic C	Compounds	
4.1	Pi acceptor ligands - Introduction - Metal carbonyls–Mononuclear carbonyls – 18-electron rule and polynuclear carbonyls of Ni, Fe, Cr, Co and Mn – synthesis, reactions, structure and uses.	Summarize the synthesis, structure and uses of different metal carbonyl and poly nuclear carbonyls	K2
4.2	Nitrosyl compounds – classification, preparation, properties and structure of nitrosyl chloride and sodium nitroprusside.	Summarize the preparation, properties and structure of nitrosyl compounds	K2
4.3	Metal olefins (Zeise's salt)- Cyclopentadienes (Ferrocene)- preparation, aromatic character, reactions of the aromatic rings, structure and bonding.	Explain the salient features of the structure of the Zeise's salt and Ferrocene	K2
U	nit 5 Binary Comp	oounds and Gravimetry	
5.1	Hydrides - Types-salt like, covalent, diamond like, interstitial hydrides and uses	Classify the different types of Hydrides and its uses	K2
	Nitrides - Types-salt like, covalent, diamond like, interstitial, nitride complexes and uses.	Classify the different types of Nitrides and its uses	K2
5.2	Carbides - Types-salt like, covalent, interstitial and applications	Classify the different types of Carbides and its applications	K2
5.3	Borides - Borides having isolated B atoms, Borides having chain of B atoms, Borides having extended 2- dimensional network, Borides having 3- dimensional network and uses	Compare the 2-dimensional network Borides and 3- dimensional network Borides	K2
5.4	Gravimetric Analysis - Principles of gravimetry - characteristics of precipitating agents –choice of precipitants–types of precipitants - condition of precipitation - Use of sequestering agents -Precipitation from homogeneous solution. Digestion, washing and ignition of the precipitate. Co-precipitation and post precipitation.	Explain the different conditions involved in the Gravimetric analysis	K2

4. Mapping Scheme for the PO, PSOs and COs

L-Low M-Moderate					H-	High								
INORGANIC CHEMISTRY- I									Code: U19CH404					
	PO 1	PO 2	PO 3	PO 4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
CO1	Н	Н	М	-	L	-	L	-	-	Н	М	-	Н	
CO2	Н	М	L	L	L	-	L	L	-	Н	-	-	Н	
CO3	Н	-	L	-	М	М	-	L	-	Н	L	М	Н	
CO4	Н	-	L	-	М	М	-	L	-	Н	L	М	Н	
CO5	Н	L	-	-	L	-	-	-	-	Н	-	-	Н	
CO6	Н	-	Н	-	Н	М	_	М	-	Н	М	L	Н	

5. Course Assessment MethodsDirect:

- 3. Continuous Assessment Test (Model Exams) I, II
- 4. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 5. End Semester Practical Examination

Indirect:

1. Course-end survey

ORGANIC ANALYSIS

CORE PRACTICAL III: Semester: IV Credits : 2

Code : U19CH4P3 Total Hours : 45 Hours/Week : 3

CORE PRACTICAL III: ORGANIC ANALYSIS

1. Course Outcomes:

After the completion of this course the students will be able:

S.No.	Course Outcomes	Level
1	Apply the knowledge of chemistry behind the qualitative organic analysis	K3
2	Compare different chemical tests to identify organic functional groups	K3
3	Report the results Scientifically	K2
4	Deduce the functional group of different organic compounds based on the inference	K4
5	Confirm the different functional groups by derivatization	K2
6	Justify the results by providing suitable confirmatory tests	K3

2A. Syllabus

I. THEORY OF ORGANIC ANALYSIS (For Self- Study)

Principles of qualitative analysis- handling of apparatus and hazardous chemicals like bromine, sodium, NaNO₂, concentrated acids and bases, etc. – theory of the various chemical reactions / tests- techniques of derivatization- scientific reporting.

II. ORGANIC ANALYSIS

Analysis of simple organic compounds

Characterisation of organic compounds by their functional groups and confirmation of functional groups and preparation of derivatives.

Functional Groups: Carboxylic acid, Esters, Phenols, Carbonyl compounds, Carbohydrates, Amides (Aliphatic & Aromatic), Anilides, Amines and Nitro compounds.

III. DEMONSTRATION EXPERIMENTS

- a) Identification of alkaloids and flavonoids
- b) Limit test for chlorides and sulphates
- c) Identification of drugs in tablets.
- d) Qualitative analysis of various biomolecules (Glucose, Amino acids, Lipids).

2C. Text Books:

1. V. Venkateswaran, R.Veerasamy, A.R. Kulandaivelu, "Basic Principles of Practical Chemistry", Second Edition, Sultan Chand & Sons, New Delhi, 2006.

2D. Recommended Reference Books:

- 1. Vogel's Text Book of Quantitative Chemical Analysis, 6th Edition, Pearson Education, 2009.
- 2. *The Indian Pharmacopoea*, 3rd Edition, Volume-II, Quality Specifications World Health Organization, 1981.
- 3. A. V. Kasthuri, S. G.Wadodkar, S. B. Gokhale, "*Practical Pharmaceutical Chemistry-I*", 13th Edition, Nirali Publications, 2007.

3. Specific Learning Outcomes:

Unit	Course Content	Learning Outcomes	Blooms Taxonomic Levels of Transaction								
	Unit I Theory of Organic Analysis										
I	Principles of qualitative analysis	Apply the knowledge of chemical reaction to perform experiments in the laboratory.	К3								
		Identify chemical tests for functional groups.	К3								
	Handling of apparatus and hazardous chemicals like bromine, sodium, nano ₂ , concentrated acids and bases, etc. Theory of the various chemical reactions / tests	Write experimental report in a record note book systematically.	K2								
	Unit II O	rganic Analysis									
	Analysis of simple organic compounds - Characterization of organic compounds by their functional groups and	Identify different functional groups of organic compounds by systematic analysis.	K4								
	confirmation of functional groups and preparation of derivatives.	Perform chemical experiments, analysis procedures	K4								

Functional Groups: Carboxylic acid, Esters, Phenols, Carbonyl compounds, Carbohydrates, Amides (Aliphatic & Aromatic), Anilides, Amines and Nitro compounds	Follow SOPs for waste disposal in a safe and responsible manner.	K4		
1	onstration experiments			
Identification of alkaloids and flavonoids	Reproduce the tests and experiments	К2		
Limit test - for chlorides and sulphates Identification of drugs in tablets	Analyze drugs, natural products, and biomolecules Qualitatively.	K2		
Qualitative analysis of various biomolecules (Glucose, Aminoacids, Lipids)	Identify the biomolecules in a given sample	K2		

4. Mapping Of Cos With Pos And Psos

	ORGANIC ANALYSIS Code : U19CH4P3												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Η	L		L	L		L		Η	L		Н
CO2	Н	Η	Н		Н	Η		Η		Η	Η		Н
CO3		Η	Н		Н	Η	Н	Н			Η	Н	
CO4		Η	Н		Н	Η		Η			Η		
CO5	Η	Η	Н		Н	Η		Η		Η	Η		Н
CO6	Η	Η	Η		Н	Η		Η		Η	Η		Н

5. Course Assessment Methods Direct:

- 1. Continuous Internal Assessment
- 2. Model Exams I and II
- 3. End Semester Practical Examination

CORE COURSE V: ORGANIC CHEMISTRY – I

Semester: V Credits : 6 Code: U19CH505 Total Hours : 90 Hours/Week : 6

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Enumerate the dimensionality of molecules and their importance in determining the reactivity.	K4	Ι
2	Apply the basic concepts of stereochemistry solve the problems related stereochemistry of organic compound.	K3	II
3	Classify the organic compounds in different stereoisomers.	K4	II
4	Categorize different types of reactions of carbonyl compounds based on the reactive species and products.	K4	III
5	Convert mono and di carboxylic acids in other functional groups using relevant reagents.	K4	IV
6	Distinguish the chemistry of different types of nitrogen containing organic compounds	K4	V

2A. Syllabus

Unit–I

Stereochemistry – I

18 Hours

1.1 Stereoisomerism – Definition – Classification into Structural and Stereo isomerism.

1.2 Optical isomerism – Optical activity – Optical and specific rotations – conditions for optical activity– Asymmetric centre – Chirality – Achiral molecule – (+) and (-) and D and L notations – Elements of symmetry – Racemization –Resolution methods (Mechanical separation, seeding, biochemical and conversion into diastereo isomers) – Asymmetric synthesis (partial and absolute asymmetric synthesis) – Walden inversion – van't Hoff's rule – Freudenberg's rule of shift.

Unit–II

Stereochemistry – II

18 Hours

2.1 Projection Formula–Fischer, Flying Wedge, Sawhorse and Newmann - Notations for optical isomers – Cahn – Ingold – Prelog rules – R,S notations for optical isomers with one asymmetric carbon– Erythro and Threo representations.

2.2 Geometrical isomerism – cis-trans, syn-anti and E-Z notations, Geometrical isomerisms in Maleic, Fumaric acids and in unsymmetrical Ketoximes – Methods of distinguishing geometrical isomers (Dipolemoment, dehydration, heat of hydrogenation, cyclization, melting points) – Methods of determining the configuration of geometrical isomers.

Unit-IIICarbonyl Compounds - Aldehydes and Ketones18 Hours

3.1 Structure–Nomenclature- Methods of preparation, Physical and Chemical properties - Nucleophilic addition- Acid & base catalysed reactions – acidity of α -hydrogens.

3.2 Addition reactions – sodium bisulphate, hydrogen cyanide.

3.3 Reduction reaction–reduction to alcohol and alkane using Grignard reagent and LiAlH₄–NaBH₄-Organometallic reagents (Organo Zn- Organo lithium and Organo Copper compounds) – Orbital structure of C -metal bonds, Ionic character, preparation, structure and synthetic uses.

3.4 Oxidation reaction – Oxidation of aldehydes and ketones.

3.5 Naming reactions involving carbonyl compounds - Haloform, Reformatsky and Wittig Reaction.

Unit–IV Carboxylic Acids and Derivatives 18 Hours

4.1 Monocarboxylic acid–Nomenclature - methods of preparation by oxidation of primary alcohol, aldehydes, hydrolysis of nitriles, Hydrolysis of esters, Carboxylation of alkenes - Acidity of carboxylic acid- Ortho effect- – Acidity constant – chemical properties of mono carboxylic acids -salt formation –formation of acid halides- formation of amides- formation of esters.

4.2 Dicarboxylic acids–preparation and properties of oxalic, malonic, succinic, glutaric and adipic acids.

4.3 Malonic and acetoacetic esters–characteristics of reactive methylene group–synthetic uses of malonic and acetoacetic esters.

5.1 Nitrogen compounds - nomenclature - nitro alkanes - synthetic uses and reactions of nitroalkanes - alkyl nitrites – differences between nitroalkanes and alkyl nitrites

5.2 Aromatic nitro compounds - Physical and chemical properties of aromatic nitro, di and trinitro compounds - preparation and reduction of nitro benzene under different conditions. Chemistry of Picric acid

5.3 Amino compounds - Classification of Aliphatic and aromatic amines –Reactions of Aromatic and Aliphatic amines- effect of substitutents on basicity and comparison of aliphatic and aromatic amines - mechanism of carbylamine reaction and diazotization–preparation and synthetic importance of Amines and benzene diazonium chloride. Hinsberg Test.

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Conformations of open-chain compounds	https://chem.libretexts.org/Bookshelves/Organic_ Chemistry/Book%3A_Organic_Chemistry_with_a Biological Emphasis v2.0 (Soderberg)/03%3A Conformations_and_Stereochemistry/3.02%3A_C onformations_of_open-chain_organic_molecules
2	Conformations of cyclic organic compounds	https://chem.libretexts.org/Bookshelves/Organic_ Chemistry/Book%3A_Organic_Chemistry_with_a Biological Emphasis v2.0 (Soderberg)/03%3A Conformations_and_Stereochemistry/3.03%3A_C onformations_of_cyclic_organic_molecules
3	R and S sequence rules	https://chem.libretexts.org/Bookshelves/Organic_ Chemistry/Supplemental_Modules_(Organic_Che mistry)/Chirality/Absolute_Configuration_R- S_Sequence_Rules
4	E and Z notation	https://chem.libretexts.org/Bookshelves/Organic_ Chemistry/Book%3A_Basic_Principles_of_Organ ic_Chemistry (Roberts_and_Caserio)/19%3A_Mo re_on_Stereochemistry/19.07%3A_E%2CZ_Notat ion
5.	Naming reactions involving carbonyl compounds	https://nptel.ac.in/content/storage2/courses/104101 005/downloads/LectureNotes/chapter%2010.pdf
6.	Organomegnesium compounds	https://chem.libretexts.org/Bookshelves/Organic_ Chemistry/Book%3A_Basic_Principles_of_Organ

		ic_Chemistry_(Roberts_and_Caserio)/14%3A_Or ganohalogen_Organometallic_Compounds/14.12 %3A_Organomagnesium_Compounds
7.	Acetoacetic ester synthesis	https://www.organic- chemistry.org/namedreactions/acetoacetic-ester- synthesis.shtm
8.	Malonic ester synthesis	https://www.organic- chemistry.org/namedreactions/malonic-ester- synthesis.shtm
9.	Alkaloids – an overview	https://www.intechopen.com/books/alkaloids- their-importance-in-nature-and-human- life/introductory-chapter-alkaloids-their- importance-in-nature-and-for-human-life

2C. Text Books

- 1. Arun Bahl and B.S. Bahl, Advanced Organic Chemistry, S.Chand & Co., Ltd., New Delhi, 2012. (Unit- III, IV, V).
- 2. M.K. Jain and S.C. Sharma, Modern Organic Chemistry, Vishal Publishing &Co,2015 (Unit-III,IV, V)
- **3.** D. Nasipuri, Stereochemistry of Organic Compounds, New Age International, New Delhi, 2018. (Unit- I, II).
- 4. R.T. Morrison and R.N. Boyd, Organic Chemistry, Pearson Education, New Delhi, 2016.

2D. References

- 1. Bhupinder Mehta& Manju Mehta, Organic Chemistry, PHI Learning Pvt. Ltd., 2015
- 2. P.S. Kalsi, Stereochemistry, Conformation and Mechanism, Wiley Eastern Limited, New Delhi, 2017
- 3. Ernest L. Eliel, Stereochemistry of Carbon Compounds, Tata McGraw Hill, New Delhi, 2008
- 4. L.C. Wade, Organic Chemistry, Pearson Education, New Delhi, 2016.
- 5. Paula Yurkanis Bruice, Organic Chemistry, Pearson Education, New Delhi, 2013.
- 6. Raj K. Bansal, Text Book of Organic Chemistry, New Age International Ltd., New Delhi, 2016.

3. Specific Learning Outcomes (SLO)

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit -II	Stereochemistry – I	
1.1	Stereoisomerism – Definition – Classification in Structural and Stereo isomerisms.	Classify the compounds in constitutional and stereoisomers	К2
1.2	Optical isomerism – Optical activity – Optical and specific rotations – conditions for optical activity	Relate chiral and achiral center in organic compounds Summarize the conditions for optical activity	K2
	Asymmetric Centre – chirality – Achiral molecule	Identify chiral /achiral compounds	К3
	Meaning of (+) and (-) and D and L notations Elements of symmetry	Classify elements of symmetry in compounds , differentiate dl & + and - notations	К2
1.3	Racemization – methods of resolution (Mechanical separation, seeding, biochemical and conversion diastereo isomers)	Explain Racemization and Resolution methods. Explain advantages and disadvantages of these methods	K2
	Asymmetric synthesis (partial and absolute asymmetric synthesis	Utilize the knowledge of asymmetric synthesis solve theoretical problems of organic reaction.	К3
1.4	Walden inversion – van't Hoff's rule – Freudenberg's rule of shift.	Identify Stereochemistry of products obtained in SN1 and SN2 substitution reactions.	К3

		Verify the Freudenberg's rule of shift with examples know Two or more asymmetric carbons make independent contribution the tal molecular rotation	K4
	Unit II	Stereochemistry – II	
2.1	Projection Formula–Fischer, Flying Wedge, Sawhorse and Newmann- Notations for optical isomers	Illustrate various stereochemical projections for organic compounds	K2
	Cahn – Ingold – Prelog rules – R,S notations for optical isomers with one asymmetric carbon	Apply CIP rules to assign R S and EZ configurations molecules.	K3
	Erythro and Threo representations.	Identify Erythro and Threo representations.	K2
	Geometrical isomerisms in Maleic, Fumaric acids and in unsymmetrical Keximes	Classify maleic acid and fumaric acid & ketoximes using EZ notation.	K4
	Methods of distinguishing geo - metrical isomers (Dipolemoment, dehydration, heat of hydrogenation, cyclization, melting points) –	Choose various Methods of distinguishing geometrical isomers	К3
	Methods of determining the configuration of geometrical isomers.	Outline the methods of determining the configuration of geometrical isomers.	К2
	Unit III Carbonyl Compounds - Alde	ehydes and Ketones	
3.1	Structure–Nomenclature-	Assign names for aldehydes and kenes using IUPAC rule	K3
	Methods of preparation, Physical	Demonstarte the properties of	K2

	properties, chemical properties -	carbonyl compounds.	
	nucleophilic addition- acid- base	Explain the mechanism of	
	 catalysed reaction – acidity of α- hydrogens Addition reactions – sodium bisulphate, 	nucleophilic addition reactions of aldehyde and ketones at different condition.	K2
	hydrogen cyanide.		
3.3	Reduction reaction–reduction alcohol and alkane using Grignard reagent and LiAlH ₄ – NaBH ₄	Compare the reducing abilities of Grignard reagents, LiAlH ₄ & NaBH ₄	K4
	Introduction organometallic reagents like Organo Zn- Organo lithium and Organo Copper compounds	Explain the chemistry of different organometallic reagents like Organo Zinc, Organo lithium and Organo Copper compounds	K2
	orbital structure of C- metal bonds, ionic character, preparation ,structure and synthetic uses.	Summarize the synthetic applications of the listed organometallic reagents.	K2
3.4	Oxidation reaction – Oxidation of aldehydes and ketones.	Select suitable oxidizing agents oxidize aldehyde and ketone group.	K4
3.5	Naming reactions involving carbonyl compounds - Haloform, Reformatsky and Wittig Reaction.	Illustrate the mechanism of listed named reactions.	K2
	Unit IV Carboxylic A	cids and Derivatives	
4.1	Monocarboxylic acid–Nomenclature	Assign names for all carboxylic acids	K3
	methods of preparation by oxidation of primary alcohol, aldehydes, hydrolysis ofnitriles, Hydrolysis of esters, Carboxylation of alkenes	Examine different functional groups for the preparation of carboxylic acid.	K4
	Acidity of carboxylic acid- Ortho effect- – Acidity constant	Relate Acidity and pKa of carboxylic acids with resonance stabilization	K3
	chemical properties of mono carboxylic acids - salt formation –formation of acid	Distinguish different products obtained from carboxylic acid	

	halides- formation of amides- formation of esters.	using different reagents.	K4	
4.2	Dicarboxylic acids–preparation and properties of oxalic, malonic, succinic, glutaric and adipic acids	Compare the physical and chemical properties of different dicarboxylic acids	K4	
4.3	Malonic and acetoacetic esters– characteristics of reactive methylene group–synthetic uses of malonic and acetoacetic esters.	Apply reactivity of active methylene group in malonic and acetoacetic for synthesis.	К3	
V	Chemistry of Nitrogen Compounds			
5.1	Nitrogen compounds - nomenclature-nitro alkanes - synthetic uses andreactions of nitroalkanes - alkyl nitrites	Assign names for aliphatic and aromatic nitro & amino compounds	K2	
	– differences between nitroalkanes and alkyl nitrites	Compare the formation and reactions of alkyl nitrite and nitro alkanes	K4	
5.2	Aromatic nitro compounds - Physical and chemical properties of aromatic nitro, di and trinitro compounds -	Demonstrate the physical and chemical properties of aromatic nitrocompounds		
	preparation and reduction of nitro benzene under different conditions. Chemistry of Picric acid	Explain the method of preparation and reduction of aromatic nitro compounds.	K2	
5.3	Amino compounds - Classification of Aliphatic and aromatic amines –	Describe the Characteristics of the aliphatic and aromatic amines	K2	
	Effect of substituents on basicity and comparison of aliphatic and aromatic amines –	Compare the basicity of different substituted aliphatic and aromatic amines.	K4	
	Mechanism of carbylamine reaction and diazotization–	Apply diazotization route convert nitro - other functional groups	K3	
	Preparation and synthetic importance of Amines and benzene diazonium chloride.Hinsberg Test.	Explain the preparation and synthetic uses of Amines and benzene diazonium chloride.	K2	

4. Mapping (Co, Po, Pso) L-Low

M-Moderate

H- High

	ORGANIC CHEMISTRY – I									Code: U	(19CH5))5	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
C01	H	H	-	L	-	-	L	Н	-	H	-	-	H
CO2	Н	Н		М	-	-	L	Н		Н	-		Н
CO3	Н	Н		L	-	-	L	Н		Н	-	-	Н
CO4	Н	Н	-	L	-	-	L	Н		Н	-	-	Н
CO5	Н	Н	-	L	-	-	L	Н		Н	-	-	Н
CO6	Η	Н	-	L	-	-	L	Н		Н	-	-	Н

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Course - VI:

PHYSICAL CHEMISTRY – I

Semester: V Credits: 6 Course Code: U19CH506 Total Hours : 90 Hours/Week : 6

1. Course Outcomes:

After the completion of this course, the student will be able:

S.No.	Course Outcomes	Level	Unit
1.	Predict the feasibility and nature of reactions from the	K5	Ι
	thermodynamic properties like Δ H, Δ G& Δ S values		
2.	Utilize Joule-Thomson effect liquefy gases	K3	Ι
3.	Apply the principle of Carnot cycle all types of heat engines and working fluids	K3	II
4.	Compute the absolute entropies of pure substances at temperatures other than 0 K from their heat capacities and heats of transition.	К3	III
5.	Predict qualitatively the effect of changing temperature, pressure or concentration on heterogeneous system in equilibrium by means of phase diagram	K5	IV
6.	Apply the colligative properties for determining the molecular weight of solutions	K3	V

2A. Syllabus

Unit–I

First Law of Thermodynamics

18 Hours

1.1 Definition of thermodynamic terms - system and surrounding–isolated, closed and open systems - Intensive and Extensive properties. Thermodynamic processes – Reversible and Irreversible, Isothermal and Adiabatic processes– State and Path functions.

1.2 Laws of thermodynamics: Zeroth law and First law of thermodynamics - Internal energy (E), Enthalpy(H) and Heat capacities, Relation between C_p and C_v - Calculation of q, W, ΔE and ΔH for expansion of ideal gases under isothermal and adiabatic conditions for reversible and irreversible processes (Problems). Joule – Thomson effect as an isoenthalpic process. Relationship between $\mu_{J,T}$ for ideal and real gases – inversion temperature.

1.3 Thermochemistry – Enthalpy change in chemical reactions – relationship between ΔE and ΔH - Hess's law and its applications, Standard states – standard enthalpy of formation, enthalpy of combustion, enthalpy of neutralization, Bond energy and its calculation from thermochemical data. Temperature dependence of ΔH - Kirchoff's equation.

Unit–II Second Law of Thermodynamics 18 Hours

2.1 Need for the II law – Second law of thermodynamics (different statements) – Cyclic process – heat engine – Carnot's cycle and its efficiency (Problems).

2.2 Concept of entropy - Claussius Inequality - Entropy as a criterion of spontaneous and equilibrium process in isolated systems - Entropy as a function of P,V and T – Entropy change in phase changes, Entropy of mixing.

2.3 Gibbs and Helmholtz functions $-\Delta A$ and ΔG as function of P, V and T. Maxwell's relations – Gibbs – Helmholtz equation and its applications – Thermodynamic criteria for spontaneity and equilibrium.

Unit-III Third Law, Thermodynamic Applications and Partial Molar Properties 18 Hours

3.1 Third law of thermodynamics–statement–evaluation of absolute entropy from heat capacity data, Exception to third law (CO, N_2O) – Nernst Heat theorem and its expression.

3.2 Equilibrium constant and standard free energy change, *van't Hoff* isotherm (*van't Hoff* equation) –Thermodynamic derivation of law of mass action-van't Hoff's Isochore – thermodynamic interpretation of *Le Chatelier's* principle.

1.3 Partial molar properties–chemical potential and its significance – Gibbs – Duhem equation -variation of chemical potential with T, P and X (mole fraction)

Unit–IVPhase Rule and its Applications18 Hours

4.1 Meaning of the terms – phase, component and degree of freedom -derivation of Gibb's phase rule. Phase equilibria of one component systems – CO_2 , water and sulphur systems. Phase equilibria of two component systems – simple eutectic systems – (Pb - Ag), Compound formation with congruent melting point (Mg-Zn) and incongruent melting point (Na-K), Freezing mixtures. (NaCl – water) – Efflorescence and Deliquescence.

4.2 Partially miscible liquid pairs - Phenol-Water, Trimethylamine–Water and Nicotine-Water systems - Effect of impurities on miscibility temperature, Immiscible liquids – Principle and Application of Steam Distillation, Nernst distribution law (thermodynamic derivation) and its applications.

Unit–V Solutions 18 Hours

5.1 Dilute solutions - Colligative properties of solutions, Experimental determination of molecular weight by Relative lowering of vapour pressure, Berkely- Hartley and Cottrell's Method. Laws of osmotic pressure and its applications. thermodynamic derivation of Lowering

of Vapour Pressure, Elevation of boiling point, Depression of freezing point and Osmotic pressure.

5.2 Binary liquid mixtures - Henry's law, Raoult's law - Deviation from Raoult's law - Ideal liquid mixtures (benzene and toluene), Fractional distillation, Non-ideal systems, Azeotropes (HCl-water and ethanol-water systems).

2B. Topics for Self-Study:

S.No	Topics	Self-study links
1	First Law of Thermodynamics	https://www.grc.nasa.gov/www/k-12/airplane/thermo1.html
2	Second Law of Thermodynamics	https://amp.abc.net.au/article/12248914
3	Third Law, Thermodynamic Applications and Partial Molar Properties	https://www.youtube.com/watch?v=kswiDQ2aAKA http://www.icsm.fr/Local/icsm/files/286/JFD_Chemical- potential.pdf
4	Phase Rule and its applications	https://chem.libretexts.org/Bookshelves/Physical_and_Theo retical Chemistry Textbook Maps/DeVoes Thermodynam ics and Chemistry/13%3A The Phase Rule and Phase Diagrams/132 Phase Diagrams%3A Binary Systems
5	Solutions	https://www.chemistryworld.com/podcasts/ionic- liquids/4012785.article https://www.chemistryworld.com/news/cryogenic- properties-could-promote-silkworm-fibres-into-space- exploration/4010468.article

2C. Text Books

1. B.R. Puri, L.R. Sharma and Madan S. Pathania, Elements of Physical Chemistry, Vishal Publishing Co., Jalandhar, 2017 (**Unit I- V**)

2. K.K.Sharma and L.K. Sharma, A Text Book of Physical Chemistry, 4th Edn., Vikas Publishing House (P) Ltd., New Delhi, 2016 (Unit I - V)

- 3. K.L. Kapoor, A Text Book of Physical Chemistry, Macmillan, New Delhi, 2017
- 4. G.W. Castellan, Physical Chemistry, Narosa Publishing House, New Delhi, 2004.

2D. References

- 1. B.R. Puri, L.R. Sharma and Madan S Pathania, Principles of Physical Chemistry 42nd Ed., Vishal Publishing Co., Jalandhar, 2017
- 2. K. Kundu and S.K. Jain, Physical Chemistry, S.Chand Co. Ltd., New Delhi, 2003
- 3. B.S. Bhal, G.D. Tuli and Arun Bhal, Essentials of Physical Chemistry, S. Chand and Co. Ltd., New Delhi, 2010.
- 4. P. Atkins and J. Paula, Physical Chemistry, Oxford University Press, New Delhi, 2018.

3. Specific Learning Outcomes (SLO)

Unit/ Secti on	Course Content	Blooms Taxonomic levels of Transaction	
Ι	Fir		
1.1	Definition of thermodynamic terms	Define various thermodynamic terms	K2
	System and surrounding – isolated, closed and open systems - intensive and extensive variables.	Illustrate open closed and isolated systems. Distinguish Intensive and Extensive properties.	K2
	Thermodynamic processes – reversible and irreversible, isothermal and adiabatic State and path functions	Illustrate the state and path functions. Distinguish reversible and irreversible processes. Explain isothermal and adiabatic processes.	К3
1.2	Laws of thermodynamics	State the I law of thermodynamics	K2
	Thermodynamics statements (E, H, Cp, Cv, q, W, ΔE and	Derive thermodynamic expressions for I law, work done, heat capacity and Δ H.	К3
	Δ H) isothermal and adiabatic	Explain Joule-Thomson effect.	K2
	conditions for reversible and irreversible processes Joule – Thomson effect – isoenthalpic process Relationship between μ J.T for ideal and real gases Inversion temperature	Derive expression for Joule-Thomson co-efficient.	К3
1.3	Thermochemistry Enthalpy change in chemical reactions Relation between ΔE and ΔH of reactions	Evaluate enthalpy changes during various chemical processes.	K5

	Hess's law and its applications	Apply Hess's Law for calculating ΔH values.	K3
		values.	
	Standard enthalpy of formation, enthalpy of		
	· 12		
	combustion, enthalpy of neutralization		
	Bond energy calculation		
	from thermochemical data	Delete the terms are terms down a low of	V A
	Kirchoff's equation	Relate the temperature dependence of	K4
		internal energy and enthalpy of a	
тт		thermodynamic process.	
II		ond Law of Thermodynamics	170
2.1	Second law of	Explain the total entropy of an isolated	K2
	thermodynamics	system	
	Different statements of the		
	second law		17.0
	Cyclic process and heat	Build the Carnot theoretical device and	K3
	engine	relate the reversible heat engine process	
	Carnot's cycle and its		
2.2	efficiency		V.O
2.2	Concept of entropy-entropy	Outline the concept of entropy	K2
	definition		
	Claussius inequality	Derive the mathematical expression of	K4
	Entropy criterion of	Claussius in equality.	
	spontaneous and equilibrium		
	process in isolated systems		
	Entropy function of P,V and	Derive the mathematical expression for	K4
	Т	entropy of mixing.	
	Entropy change in phase		
	changes, entropy of mixing		
2.3	Gibbs and Helmholtz	Calculate the changes in the Gibbs	K2
	functions	energy of a system as a function of	
		temperature.	
		Derive Gibbs-Helmholtz equation.	K2
	AA and ACas function of D	Apply Cibbs Holmkeltz equation for	1/2
	ΔA and ΔG as function of P,	Apply Gibbs-Helmholtz equation for	K3
	V and T Maxwell's relations	reversible galvanic cells	
	Maxwell's relations		
	Gibbs – Helmholtz equation		
	and its applications		
	Thermodynamic criteria for	Predict the spontaneity of reactions from	K3

	spontaneity and equilibrium	entropy data.	
III	Third Law, Thermo	dynamic Applications and Partial Molar	Properties
3.1	Thirdlawofthermodynamicsandstatement	State the third law of thermodynamics.	K2
	Evaluation of absolute entropy from heat capacity data	Evaluate the absolute entropy from Heat capacity data.	K5
	Exception to third law	State the Exception of third law of thermodynamics	K2
	Nernst Heat theorem and its expression	Derive Nernst Heat theorem.	К3
3.2	Equilibrium constant and standard free energy change Thermodynamic derivation of law of mass action	Derive the mathematical expression for law of mass action.	К4
	Van't Hoff isotherm, van't	Derive the van't-Hoff isotherm.	K3
	Hoff's isochore and Le	Derive the van't Hoff isochore.	K3
	Chatelier's principle	Explain the Le chaterlier'sprinciple.	K2
3.3	Partial molar properties	Explain parital molar properties.	K2
	Chemical potential and its significance	Derive the thermodynamic expression for chemical potential.	K2
	Gibbs–Duhem equation variation of chemical potential with T,P and mole fraction	Derive Gibbs-Duhem equation.	К2
IV	Pha	ase Rule and its Applications	
4.1	Terms of phase, component and degree of freedom	Define components, phases and degrees of freedom present in a system	K2
	Derivation of Gibb's phase rule	Calculate degree of freedom of a system	K4
	Phase equilibria of one component systems (CO ₂ , H ₂ O and S)	Identify triple point and metastable equilibrium. Explain the phase diagram of one component systems (CO ₂ , H ₂ O and S).	К4
	Phase equilibria of two component systems Simple eutectic systems – (Pb – Ag)	Explain the phase diagram of simple systems with Eutectic Congruent melting point and Incongruent melting	K4

	Compound formation with congruent melting point (Mg- Zn) and incongruent melting point (Na-K)	point.				
	Freezing mixtures	Identify the methods to prepare freezing mixtures with desired temperature from phase diagrams.	K3			
	Efflorescence and deliquescence	Relate solid-liquid-gas equilibria with water of hydration using phase rule.	K3			
4.2	Partially miscible liquid pairs	Identify partially miscible solvent pairs.	K3			
	Phenol-water, trimethylamine–water and nicotine-water systems	Predict the temperature effect on two partially miscible liquids using phase diagram.	К3			
	Effect of impurities on miscibility temperature and immiscible liquids	Find out the effect of temperature on miscibility of liquids	К3			
	Principle and application to steam distillation	Elaborate the method of purification of organic compounds and solvents	K4			
	Nernst distribution law and its applications	Derive Nernst Distribution Law.	K4			
V		Solutions				
5.1	Dilute solutions and colligative properties of solutions	Explain colligative properties of solutions.	K4			
	Experimental determination of molecular weight by relative lowering of vapour pressure	Determine molecular weight of non- volatile organic solute based on the colligative properties.	K4			
	Berkely-Hartley and Cottrell's Method	Evaluate Osmotic pressure by Berkely- Hartley and Cottrell's Method.	K3			
	Laws of osmotic pressure and its applications	Apply the laws of osmotic pressure for seawater purification.	K4			
	Thermodynamic derivation of Lowering of Vapour Pressure, elevation of boiling	Explain the effect of temperature, pressure on boiling point, freezing point and vapour pressure	K4			

	point, depression of freezing point and osmotic pressure		
5.2	Binary liquid mixtures	Identify the composition of Binary Liquid mixtures.	K3
	Henry's law, Raoult's law deviation from Raoult's law	Explain the effect of pressure on miscibility of liquids and gas. Explain the significance of Raoult's law.	К3
	Ideal liquid mixtures(benzene and toluene) purified by fractional distillation	1	K5
	Non ideal systems, azeotropes (HCl- water and ethanol-water systems).	Determine boiling point of pure and mixture of solvents. Differentiate positive and negative azeotropes.	K5

4. Mapping (Co, Po, Pso)

L-Low

M-Moderate

H- High

PHYSICAL CHEMISTRY – I								Code: U19CH506					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	-	М	-	L	Н	-	Н	-	М	Н
CO2	Н	Н	Н	-	-	М	-	М	-	Н	-	М	Н
CO3	Н	Н	Н	-	-	М	-	М	-	Н	-	L	Н
CO4	Н	Н	Н	-	-	-	-	Н	_	Н	-	М	Н
CO5	Н	Н	Н	-	-	М	-	Н	-	Н	-	М	Н
CO6	Н	Н	-H	-	-	Н	-	Н	-	Н	-	L	Н

5. Course Assessment Methods Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product

Demonstration etc. (as applicable) 3. End Semester Practical Examination

INDIRECT

1. Course-end survey

Elective Course - II: BIOCHEMISTRY

SEMESTER: V CREDITS : 4

Code : U19CH5:2 Total Hours : 60 Hours/Week : 4

1. Course Outcomes:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain cell structure and functions of cell organelles, Peptides and Proteins	K2	Ι
2	Comprehend the dependence of body on carbohydrates and lipids for energy generation	K2	II
3	Elucidate the role of enzymes and Hormones in major metabolic pathways	K2	III
4	Discuss the Structure, functions and process of genetic transformation	K2	IV
5	Recognize nitrogen metabolism and the biological role of neurotransmitters	K2	V
6	Describe the cancer cell metabolism	K2	V

2A. Syllabus

UNIT I - Amino acids and Proteins

12 Hours

1.1 Living Systems - Cells, structure of cell (diagram)- Basic functions of the Cell components - nucleus, mitochondria, chloroplast, cytoplasm, ribosomes, golgi bodies, lysosomes.

1.2 Amino Acids - Preparation and reactions of Amino acids - Essential and non-essential aminoacids, isoelectric point, Zwitter ions, peptide bond, function of few peptides (Enkephalins, Bradykinin, Gratomicidin -S, aspartame, glutathionine), Synthesis of Peptides-Sangers - Merrifield.

1.3 Proteins - primary, secondary and tertiary structures and function – Ramachandran plot and significance of ψ and ϕ values.

UNIT II - Carbohydrates and Lipids

12 Hours

2.1 Carbohydrates - As a basic building block- role of mono and disaccharides in biological systems – glycolysis and glycogenesis – a detailed study of glycolysis – glycogen storage, deficiency diseases – hypoglycemia – Cori's disease – Andersen's disease.

2.2 Lipids and fatty acids - Classification of lipids- simple lipids(Fats), compound lipids (phospho, glyco, sulpho lipids and lipoproteins) and derived lipids (fatty acids and glycerol) – chemical composition (simple and triglycerides) and biological significance of fats. Fatty acids –types (saturated, unsaturated and cyclic) –Essential and non-essential fatty acids. Cholesterol – LDL, VLDL and HDL – Hypercholesterolemia.

Unit–III -Enzymes and Hormones

3.1 Major metabolic pathways of life - Importance of catabolism, anabolism, aerobic metabolism vs. anaerobic metabolism, TCA Cycle, Cancer cell Metabolism.

3.2 Enzymes and hormones - Simple, apoenzyme and holoenzymes, classification of enzymes –Enzyme regulation, competitive and non-competitive inhibitors - function of few enzymes in pancreatic juice. Hormones – importance, function and structure of few hormones: autocrine, paracrine and endocrine hormones (adrenalin, thyroxin, insulin, estrone and testosterone)

Unit–IV -Nucleic Acids

- 4.1 Nucleotides Nucleosides heterocyclic bases and sugars in nucleic acids –RNA & DNA
- 4.2 Structure of DNA Replication transcription translation (a detailed study)
- 4.3 m-RNA, r-RNA and t-RNA structure and functions.

Unit–V-Nitrogen Metabolism and Neurotransmitters

- 5.1 Nitrogen metabolism introduction urea cycle.
- 5.2 Neurotransmitters Importance–structure and function of acetylcholine GABA.

2B. Topics for Self-Study:

S. No.	Topics	Weblinks
1.	Biomolecules classification	https://youtu.be/YO244P1e9QM
2.	Nonpolar and Uncharged Polar Amino Acids	https://youtu.be/cL2_e83v3js
3.	The science of cooking-Fats and Oils	http://home.sandiego.edu/~josephprovost/BCB T100/BCBT100%20Lect%202%20class%20no tes.pdf
4.	Enzymes- a fun introduction	https://youtu.be/XTUm-75-PL4
5.	How to remember hormone and their functions with easy trick	https://youtu.be/VthJDIFweH4
6.	Nucleic acids-how to use computer coding to create shapes using DNA	https://bio.libretexts.org/Courses/Community_ College_of_Vermont/Human_Biology_(Gabor_ Gyurkovics)/02%3A_Chemistry_of_Life/2.08 %3A_Nucleic_Acids

7.	1	https://www.sciencenewsforstudents.org/article/ explainer-what-neurotransmission

12 Hours

12 Hours

12 Hours

2C. Text Book(s):

- 1. L. Veerakumari, Biochemistry, MJP Publishers, Chennai, 2004 (Unit I-V).
- **2.** B.D. Hames and N.N. Hooper, *Instant Notes on Biochemistry*, 2nd Edition, Viva Books Pvt. Ltd., 2011.
- 3. Donal Voet and Judith G. Voet, *Biochemistry*, John Wiley & Sons Inc., New York, 2008.

2D. Reference Books:

- 1. Patricia Trueman, Nutrient Biochemistry, MJP publishers, Chennai, 2006
- 2. Albert, L. Lehninger, Michael, M.Cox, David L. Nelson, *Principles of Biochemistry*, Prentice Hall, Second Edition, Worth Publishers, 2000
- 3. Eric E. Conn, Paul K. Stumpf, George Bruening and Roy H. Doi, *Outlines of Biochemistry*, Wiley Student Edition, Singapore, 2006.

Unit/ Section	Course Content	Learning outcomes	Blooms Taxonomy Level of Transaction
Ι	Amino aci		
1.1	Structure of cell (diagram)- Basic functions of the Cell components - nucleus, mitochondria, chloroplast, cytoplasm, ribosomes, golgi bodies, lysosomes	Explain the structure of a cell and basic functions of its components	K2
1.2	Preparation and reactions of Amino acids	Summarize the chemistry of amino acids	K2
	Essential and non-essential aminoacids	Classify the amino acids	
	Definitions: isoelectric point, Zwitter ions and peptide bond	Summarize the general characteristics of amino acids	K2
	Functions of few peptides (Enkephalins, Bradykinin, Gramicidin -S, aspartame, glutathionine)	outline the functions of some peptides	К2

3. Specific Learning Outcomes (SLO)

	Synthesis of PeptidesDescribe the synthesis of peptidesSangers-Merrifield									
1.3	Proteins - primary, secondary and tertiary structures and function Explain the structure and the									
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
II	Carbohydrat	es and lipids								
2.1	Carbohydrates - As a basic building block– role of mono and disaccharides in biological systems – glycolysis and glycogenesis		K2							
	A detailed study of glycolysis – glycogen srage	Describe the role enzymes in the glycolysis cycle	K2							
	Deficiency diseases – hypoglycemia – Cori's disease – Andersen's disease	Outline the effect of carbohydrate deficiency	K2							
2.2	Classification of lipids- simple lipids (Fats), compound lipids (phospho, glyco, sulpho lipids and lipoproteins) and derived lipids (fatty acids and glycerol)	Classify lipids based on their structure	K2							
	Chemical composition (simple and triglycerides) and biological significance of fats	Explain the chemical composition and biological role of fats	K2							
	Fatty acids –types (saturated, unsaturated and cyclic) –Essential and non-essential fatty acids		K2							
	Cholesterol – LDL, VLDL and HDL	Describe the effects of different types of cholesterol	K2							
	Hypercholesterolemia	Demonstrate the effects of high- levels of blood cholesterol	K2							
III	Enzymes and	d Hormones								
3.1	Major metabolic pathways of life - Importance of catabolism and anabolism	Explain the chemistry of metabolic pathways of life	K2							
	Aerobic metabolism vs. anaerobic metabolism,	Contrast aerobic and anaerobic metabolism	K2							
	TCA Cycle	Describe the TCA cycle	K2							

	Cancer cell Metabolism	Outline the cancer cell metabolism	K2
3.2	Enzymes and hormones - Simple, apoenzyme and holoenzymes	Differentiate the different forms of enzyme	K2
	Classification of enzymes – Enzyme regulation, competitive and non-competitive inhibitors	Identify enzyme inhibition mechanisms	K2
	Function of few enzymes in pancreatic juice	Outline the functions of a few enzymes in pancreatic juice	K2
	Hormones – importance, function and structure of few hormones: autocrine, paracrine and endocrine hormones (adrenalin, thyroxin, insulin, estrone and testosterone)	Infer the importance of hormonal balance in overall health	K2
III	Nucleic	Acids	
4.1	Nucleotides – Nucleosides – heterocyclic bases and sugars in nucleic acids –RNA and DNA	Illustrate the components of RNA and DNA	K2
4.2	Structure of DNA	Explain the structure of DNA	K2
	Replication – transcription – translation (a detailed study)	Compare the processes of replication, transcription and translation	K2
4.3	m-RNA, r-RNA and t-RNA – structure and functions	Explain the structure and functions of different types of RNA	K2
V	Nitrogen Metabolism a	nd Neurotransmitters	
5.1	Nitrogen metabolism – introduction – urea cycle	Outline the process of nitrogen metabolism	K2
5.2	Neurotransmitters – Importance – structure and function of acetylcholine – GABA	e	K2

4. Mapping Scheme For The PO, Psos And Cos

L-Low M-Moderate H- High

BIOCHEMISTRY								CODE : U19CH5:2					
	PO	PO	PO	PO	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
	1	2	3	4									
CO1	Н	Н	L	L	-	-	-	L	-	Η	-	-	Н
CO2	Н	Н		L	-	-	-		-	Η	-	-	Н
CO3	Н	Н		L	-	-	-		-	Η	-	-	Н
CO4	Н	Н		L	-	-	-		-	Η	-	-	Н
CO5	Н	Н		L	-	-	-		-	Η	-	-	Н
CO6	Н	Н		L	-		-		-	Η	-	-	Н

5. Course Assessment Methods Direct:

Continuous Assessment Test (Model Exams) I, II

- 1. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 2. End Semester Practical Examination

Indirect:

1. Course-end survey

SBEC II: PHARMACEUTICAL CHEMISTRY

Semester: V Credits : 2 Code: U19CH5S2 Total Hours: 30 Hours/Week: 2

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain the terminology used in pharmaceutical chemistry.	K2	Ι
2	Relate the structure of heterocyclic drugs derived from pyridine, pyrimidine and quinoline and their therapeutic properties.	K2	Ι
3	Describe the control mechanism for maintaining normal blood pressure, sugar and cholesterol	K2	II
4	Identify the medicinally important compounds of Al, Fe & As in the market.	K3	III
5	Recognize the various organic diagnostic agents, anti-neoplastic agents narcotic drugs from non-narcotic drugs used as drugs.	K3	IV & V
6	Correlate the structure mechanism and drug action of Antibiotics	K3	IV

2A. Syllabus

UNIT–I - Heterocyclic Drugs

1.1 Terminology used in pharmaceutical chemistry : Drug and its formulations, Pre-requisites of a drug, pharmacopia, chemotherapy, pharmaceutics, LD-50 values - Routes of administration of drugs.
1.2 Heterocylic Drugs : Structure and uses of drugs derived from the following derivatives - Pyridine derivatives - Tripleenamine and mepyramine, Quinoline derivatives - Chloroquine and primaquine, Pyrimidine derivatives - barbiturates.

UNIT-II -Blood & Its Composition

2.1 Composition of blood and blood plasma-function of Haemoglobin, Transport of Oxygen, R_h factor. Blood Pressure - Normal, high, low and its control mechanism.

2.2 Clinical estimation of Glucose, cholesterol and haemoglobin.

UNIT-III - Medicinally important compounds

6 hours

6 hours

6 hours

- **3.1** Compounds of Al, As and Fe preparation and application.
- **3.2** Chemistry of sulphonamides sulphadiazine and prontosil preparation and uses.

UNIT-IV- Organic diagnostic agents

4.1 X-ray contrast media (radio opaque) Iodipamide, Evan's blue, Histamine, Xylose, CT and MRI scan (Basics only) Structure and uses of i) Narcotic drugs–Morphine and SAR of morphine ii) Non-Narcotic drugs–ibuprofen.

4.2 Antibiotics – structure and mechanism of penicillin, structure of semi-synthetic penicillins – Ampicillin, structure and uses of Chloramphenical

UNIT-V- Anesthetics and Alkylating Agents

5.1 Anesthetics - Stages of anesthesia - Preparation and uses of general and local gaseous anesthetics – Ether, halogenated Hydrocarbons – chloroform and trichloroethylene, Local anesthetics – Cocaine and its any two derivatives, intravenous anesthetics – thiopentone sodium and propounded – Structure and uses only.

5.2 Anti-neoplastic agents – Alkylating agents (Busulfan)–Ethylene imines–Nitrogen mustards–Cyclophosphoamide. Antimetabolites – Purine analogues, Immunotherapy.

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Heterocyclic Chemistry	https://youtu.be/o_tHj2GsPSc
2	Lipid disorders	https://youtu.be/XXEry4ZRMFI
3	Iron studies	https://youtu.be/_CWMUt8Xi_Y
4	Inhalational anaesthetic agents	https://youtu.be/RKdHImM6eYA
5.	Anticancer agents	https://youtu.be/6k2lUKEABQs

2C. Text Books

- 1. S. Jayashree Ghosh, Text book of Pharmaceutical Chemistry, S.Chand, 2008(Unit I-V)
- 2. Bentley and Drivers, A Text book of Pharmaceutical Chemistry, 14th edition, Oxford university Press, 1996

2D. Reference Books

1. Indian Pharmacopoea, Govt. of India, Indian Pharmacopoean Commission, Vol.I,2010

6 hours

6 hours

- 2. N. Murugesan, A Text book of Pharmacology 6th edition, Sathya Publishers, 2004
- 3. S. Lakshmi, *Pharmaceutical Chemistry*-2nd edition, S. Chand, 1998.
- 4. Alfred Burger, *Medicinal Chemistry* 6th edition, Wiley Interscience Publication, 2003.

3. Specific Learning Outcomes (SLO)

Unit	Course Contents	Learning Outcomes	Highest Blooms Taxonomic levels of Transaction
	Unit	-1 Heterocyclic Drugs	
1.1	Terminology used in pharmaceutical chemistry. Definition and explanation:	Explains the various terminology used in pharmaceutical chemistry	K2
	Drug, pharmacopia, chemotherapy, pharmaceutics, LD50 values.	Illustrate the routes of administration of drug.	K2
	Routes of administration - oral, parenteral, Bacteria - positive and negative.	Contrast the gram positive and negative bacteria	K2
1.2	Structure and uses of drugs Tripelennamine and mepyramine derivatives - barbiturates.	Illustrate the structure and utilities of drugs derived from pyridine, pyrimidine, quinoline.	K2
	- Pyridine derivatives – , Quinoline derivatives – Chloroquine and primaquine, Pyrimidine .	Explain the structure and uses of chloroquine, primaquine, barbiturates.	K2
	Unit – 2	Blood & Its Composition	
2.1	Composition of blood and blood plasma-function of	Classify the blood groups and Rh factor.	K2
	Haemoglobin, Transport of Oxygen, Rh factor. Blood Pressure - Normal, high, low and its control mechanism.	Comprehend the role of Hemoglobin in oxygen transport mechanism.	K2
2.2	Clinical estimation of Glucose, cholesterol and haemoglobin.	Describe the standard clinical procedure to estimate the amount of Glucose, cholesterol and hemoglobin in serum.	K2

	Unit - 3 N	Iedicinally important compounds	
3.1	Medicinally important compounds. Compounds of Al, As and Fe – preparation and application.	Identify various compounds of Al, As and Fe in commercial applications.	K3
3.2	Chemistry of sulphonamides – sulphadiazine and prontosil – preparation and uses.	Explain the preparation and uses of sulpha Drugs	K2
	Unit - 4	Organic diagnostic agents	
4.1	Organic diagnostic agents X-ray contrast media (radio opaque) Iodipamide,	Outline the uses of organic diagnostic agents	K2
	Evan'sblue,Histamine, Xylose ,CT and MRI scan (Basics only)	Explain the uses of CT & MRI scans.	K2
4.2	Structure and uses of i) Narcotic drugs – Morphine and SAR of	Categorize the narcotic and non narcotic drugs.	К3
	morphine ii) Non-Narcotic drugs – ibuprofen Antibiotics – structure and	Outline the various medicinal applications of the drugs under study.	К2
	mechanism of penicillin, structure of semi-synthetic penicillin's-ampicillin,structure and uses of Chloramphenical.	Relate the structure and function of ampicillin with penicillin.	K2
	Unit – 5 Anesthetics and All	cylating Agents	

5.1	Anesthetics		
	Stages of Anesthesia - Preparation and uses of general and local gaseous anesthetics – Ether, halogenated Hydrocarbons	Outline the stages of anesthesia	K2
	-chloroform andtrichloroethylene - Local anesthetics -Cocaine and its any two derivatives	Categorize the type of gaseous anesthetics based on their uses along with	К3
	,intravenous anesthetics – thiopentone sodium and propounded –Structure and Uses	Summarize the structure and uses of different classes of anesthetic agents	К2
5.2	Anti-neoplastic agents – Alkylating agents (Busulfan)–	Outline the uses of anti neoplastics in the treatment of cancer cells.	K2
	Ethyleneimines – Nitrogenmustards– Cyclophosphoamide. Antimetabolites–Purine analogues, Immunotherapy.	Explain immunotherapy and its uses.	К2

4. Mapping (Co, Po, Pso)

L-Low

Г

M-Moderate

H- High

PHARMACEUTICAL CHEMISTRY									Code : U19CH5S2				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	-	М	-	-	L	-	-	Н	-	-	Н
CO2	Н	Н	-	М	-	-	L	-	-	Н	-	-	Н
CO3	Н	Н	-	М	-	-	L	-	-	Н	-	-	Н
CO4	Н	Н	-	М	-	-	L	-	_	Н	-	-	Н
CO5	Н	Н	-	М	-	-	L	-	-	Н	-	-	Н

CO6	Н	Η	-	М	-	-	L	-	-	Н	-	-	Н

5. Course Assessment Methods

Direct:

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect:

1. Course-end survey

SBEC - III INDUSTRIAL CHEMISTRY

Semester: V Credits : 2

Code : U19CH5S3 Total Hours. : 30 Hours/Week : 2

1. Course Outcomes

After the completion of this course the students will be able :

S.No.	Course Outcomes	Level	Unit
1	Describe the composition and applications of cosmetics	K2	Ι
2	Classify the polymers and calculate the molecular mass, average molecular mass and weight average molecular mass of polymers	K2	II
3	Discuss the production and general characteristics of industrial products - gaseous fuels, fertilizers, safety matches, fireworks and explosives	K2	III
4	Explain the types, composition, manufacture and uses of glass, cement and ceramics	K2	IV
5	Illustrate the constituents and applications of different protective coatings	K2	V
6	Correlate the basics of industrial processes learnt with the Industry environment and Prepare a Report with suitable data and graphics summarize the industrial processes	K4	V

2A. Syllabus

Unit–I

Cosmetic Chemistry

6 hours

1.1 Cosmetics - Introduction about raw materials in cosmetics (oil, waxes, colour, preservative and fragrance). Pre-requisites for different cosmetics and applications - skin and hair care products - skin lighteners, sun screen lotions- skin toners- anti-wrinkling creams.

1.2 Lip care - lip gloss – lipsticks - lip liners, moisturizers, crack creams. Hair-Shampoo, hair dye (raw materials and uses only).

Unit–II

Polymer Chemistry

6 hours

2.1 Classification of polymers based on microstructures, macrostructures and applications (thermosetting and thermoplastics). Determination of molecular mass of polymer: number average molecular mass (Mn) and weight average molecular mass (Mw) methods.

2.2 Zeigler - Natta polymers. Degree of polymerization - General preparation, properties and uses of Teflon, PAN, PVC.

Unit–III	Industrial Products	6 hours

3.1 Gaseous fuels - Non -petroleum fuels: Natural gas and CNG- composition and uses; - manufacture, composition and uses of Coal gas, Water gas, Producer gas and Power alcohol. Liquefied petroleum gases (LPG), Gobar gas, Benzol and semi-water gas –composition and uses

3.2 Fertilizers–Manufacture of N, P, K and mixed fertilizers, Micronutrients and their role in plant life.

3.3 General Characteristics of Safety matches, fireworks and manufacture of important explosives (TNT, Amatol, nitroglycerine NG or GTN and RDX).

Unit-IVGlass, Cement and Ceramics6 hours

Glass- Types of glass, composition, manufacture and uses. Cement- Manufacture wet and dry processes, composition of Portland cement, setting of cement, Concrete and RCC. Ceramics-Types - raw materials – white wares, manufacture and uses.

Unit–V Protective Coatings 6 hours

Organic coating- Paints- requisites- constituents -Formulation of paint-uses. Varnishes - typesconstituents of varnish and uses. Enamels - constituents and uses. Lacquers- constituents and uses, Emulsion paints - constituents and uses. Special paints-(luminous paint, heat resistant paint, fire resistant paint, cellulose paint, coal-tar paint, cement paint, anti-fouling paint, aluminium paint, water repellant paints and distemper.

Internal component: Inplant training: One day visit to an industry involving chemical technology in and around Tiruchirappalli, (Sugar, Cement, Textile, Paper Industries, etc) and submission of a mini report.

2B. Topics for Self -Study:

S. No	Topic	Web links
•		
1	Cosmetic	https://www.science.org.au/curious/people-medicine/chemistry-
	Chemistry	cosmetics
		https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map
		%3A Chemistry for Changing Times (Hill and McCreary)/21%3
		A_Household_Chemicals/21.06%3A_Cosmetics
		Personal_Care_Chemicals
		https://chemistscorner.com/how-to-become-a-cosmetic-chemist/

2.	Polymer Chemistry	https://www.acs.org/content/acs/en/careers/college-to-career/areas-of- chemistry/polymer-chemistry.html https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplem ental_Modules_(Organic_Chemistry)/Polymers
		https://www.polychemistry.com/
3.	Sugar and Paper	https://www.youtube.com/watch?v=R9J7pOU5FSg https://www.youtube.com/watch?v=SDyJVr1q9kg https://www.youtube.com/watch?v=oQgOwuKozMg
4.	Glass, Cement and Ceramics	https://theconstructor.org/building/types-glass-properties-applications- construction/14755/ https://www.explainthatstuff.com/glass.html https://www.cement.org/cement-concrete-applications/how-cement- is-made https://www.explainthatstuff.com/ceratomics.html
5.	Protective Coating	https://www.researchgate.net/publication/285963223_New_developm ents_in_paint_and_coatings_technology https://www.resene.co.nz/paint-testing.htm https://www.sigmatest.org/Paint-Coating-Testing.html

2C. Text Books

- 1. Sharma B.K., "Polymer Chemistry", Goel Publishing House, Meerut, 1989. (Unit- II)
- 2. B.K. Sharma, "Industrial Chemistry", Goel Publishing Co., 1997 (Unit- I, III, IV, V)

2D. Recommended Reference Books

- Jain and Jain, Engineering Chemistry, 15th Edition, Dhanapat Rai Publishigcompany, New Delhi, 2010.
- 2. Arora M.G M. and Yadav M.S., "Polymer Chemistry", 2nd revised edition, anmol Publications Private Ltd., New Delhi, 1989.

3. Specific Learning Outcomes (SLO)

Unit	Course content	urse content Learning Outcomes		
Unit–	-I (Cosmetic Chemistry		
1.1	Cosmetics - Introduction about raw materials in cosmetics - (oil, waxes, colour, Preservative, fragrance).	Outline the Constituents of different cosmetics and their chemistry.	K2	
	Application of cosmetics - skin and hair - skin lighteners, sun screen lotions- skin toners- anti wrinkling creams.	Describe the applications of cosmetics	K2	
	Lip care - lip gloss – lipsticks - lip liners, moisturizers - crack creams–Hair- Shampoo, hair dye (raw materials and uses only)	Identify the ingredients in lip care products.	K2	
Unit–	-II F	Polymer Chemistry		
2.1	Classificationofpolymersbasedonmicrostructures,macrostructuresandapplications(thermosettingandthermoplastics).itermosetticsitermosettics	Classify polymers based on their structures and their applications.	K2	
		Explain the methods of determination of molecular mass of polymers.	K2	

	Determination of molecular mass of polymer number- average molecular mass (Mn) and weight average molecular mass (Mw) of polymers.	1 1 2	K2
2.2	Zeigler - Natta polymers. Degree of polymerization General preparation, properties and uses of Teflon, PAN, PVC	Illustrate preparation, properties and uses of Teflon, PAN, PVC	K2
Unit-	-III I	ndustrial Products	
	Gaseous fuels - Non - petroleum fuels: Natural gas and CNG- composition anduses;	· ·	K2
3.1	Manufacture, composition and uses of Coal gas, Water gas, Producer gas and Power alcohol. Liquefied petroleum gases (LPG), Gobar gas, Benzol and semi- water gas – composition and uses	Describe the manufacturing process of various fuel gases	K2
3.2	Fertilizers– Manufacture of N, P, K and mixed fertilizers, Micronutrients and their role inplant life.	Outline the classification and manufacture of fertilizers.	K2

3.3	General Characteristics of Safety matches, fireworks and manufacture of important explosives (TNT, Amatol, nitroglycerine NG or GTN and RDX).	Describe the preparation composition and characteristics of the safety matches, fireworks and important explosives.	K2
Unit-	-IV (lass, Cement and Ceramics	
4.1	Glass- Types of glass, composition- Manufacture and uses.	Classify the types of glass and composition of glass. To explain the manufacture and uses of glass.	К2
4.2	Cement- Manufacture wet and dry processes, composition of portland cement, setting of cement, Concrete and RCC	Outline the manufacture, composition and setting of cement.	K2
4.3	Ceramics- Types- raw	Classify the types of ceramics.	K2
	materials – white wares, manufacture and uses.	Illustrate the manufacture and uses of ceramics.	К2
Unit-	-V P	rotective Coatings	
5.1	Organic coating- Paints- requisites- constituents - Formulation of paint- uses	Explain the requisites, constituents and formulation of paints.	K2
	Varnishes-types- constituents of varnish	Classify the types of varnishes	К2
	and uses.	Illustrate the constituents and uses of varnishes.	K2
	Enamels - constituents and uses.	Outline the constituents and uses of enamels.	K2
	Lacquers- constituents and uses	Explain about the constituents and uses of lacquers.	K2

Emulsion paints- constituents and uses	Illustrate the constituents and uses of emulsion.	K2
Special paints- (luminous paint, heat resistant paint, fire resistant paint, cellulose paint, coal- tar paint, cement paint,	Classify, explain and compare various special paints.	K3
antifouling paint, aluminium paint, water repellant paints and distemper)		
Inplant training: One day visit to be an industry involving chemical technology in and around	Correlate the basics of industrial processes learnt with the Industry environment.	K3
Tiruchirappalli, (Sugar,Cement,Textile ,Paper Industries,etc) and submission of a mini report.	Prepare a Report with suitable data and graphics to summarize the industrial processes.	K4

4. Mapping (Co, Po, Pso)

L-Low

M-Moderate

H- High

SB	SBEC - III INDUSTRIAL CHEMISTRY Code : U19CH5S3												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н		L	-	-	-		-	Н	-	-	Н
CO2	Н	Н		L	-	-	-		-	Н	-	-	Н
CO3	Н	Н		L	-	-	-		-	Н	-	-	Н
CO4	Н	Н		L	-	-	-		-	Н	-	-	Н
CO5	Н	Н		L	-	-	-		-	Н	-	-	Н
CO6	Н	Н		L	-		Н		-	Η	М	Н	Н

5. Course Assessment Methods

Direct 1. Continuous Assessment Test (Model Exams) I,II

- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Practical - IV: GRAVIMETRY, ORGANIC AND INORGANIC REPARATIONS AND DETERMINATION OF PHYSICAL CONSTANTS

Semester: V Credits: 3 Code: U19CH5P4 Total Hours: 90 Hours/Week: 6

1. Course outcomes:

After the completion of this course the students will be able to :

S.No.	Course Outcomes	Level
1	Apply the basic principles of Gravimetric Analysis	K3
2	Estimate the accurate quantity of the precipitate by avoiding post and co -precipitation errors	K4
3	Perform single stage organic transformations and Inorganic preparations using standard procedures	K4
4	Produce the maximum quantity of the organic compound as pure crystals	K3
5	Validate the purity of the given compounds by using physical constants	K4
6	Produce a valid and authentic scientific report of the findings in the prescribed format	K4

2A. Syllabus

Experiments:

I. Gravimetric Estimation

- 1. Estimation of lead as lead chromate
- 2. Estimation of barium as barium chromate
- 3. Estimation of calcium as calcium oxalate monohydrate
- 4. Estimation of sulphate as barium sulphate

II. Organic Preparation

Preparation of an organic compound by a single stage and recrystallization of the compound.

- 1. Preparation of salicylic acid from methyl salicylate
- 2. Preparation of acetophenone oxime from acetophenone
- **3.** Preparation of m-nitromethylbenzoate from methylbenzoate
- 4. Preparation of benzoic acid from benzaldehyde

III. Inorganic Preparation

- 1. Preparation of coordination complexes
 - 1. Preparation of Prussian blue
 - 2. Preparation of tetraaminecopper(II)sulphate
 - 3. Preparation of tristhioureacopper(I)chloride
- 2. Recording and interpreting the UV spectrum of the complex prepared (Demonstration only)

IV. Physical constant determination

1. Theory of measurement of physical parameters Principle of physical measurements – Checking the purity of samples, handling of chemicals and the apparatus.

2. Determination of Physical Constant Determination of melting and boiling points of simple organic compounds

2C. Text Books

- 1. V.Venkateswaran, R.Veerasamy, A.R. Kulandaivelu, Basic Principles of Practical Chemistry- Second Edition, Sultan Chand & Sons, New Delhi,2006
- 2. Vogel, Text Book of Quantitative Chemical Analysis, 6th Edition, Pearson Education, 2009.

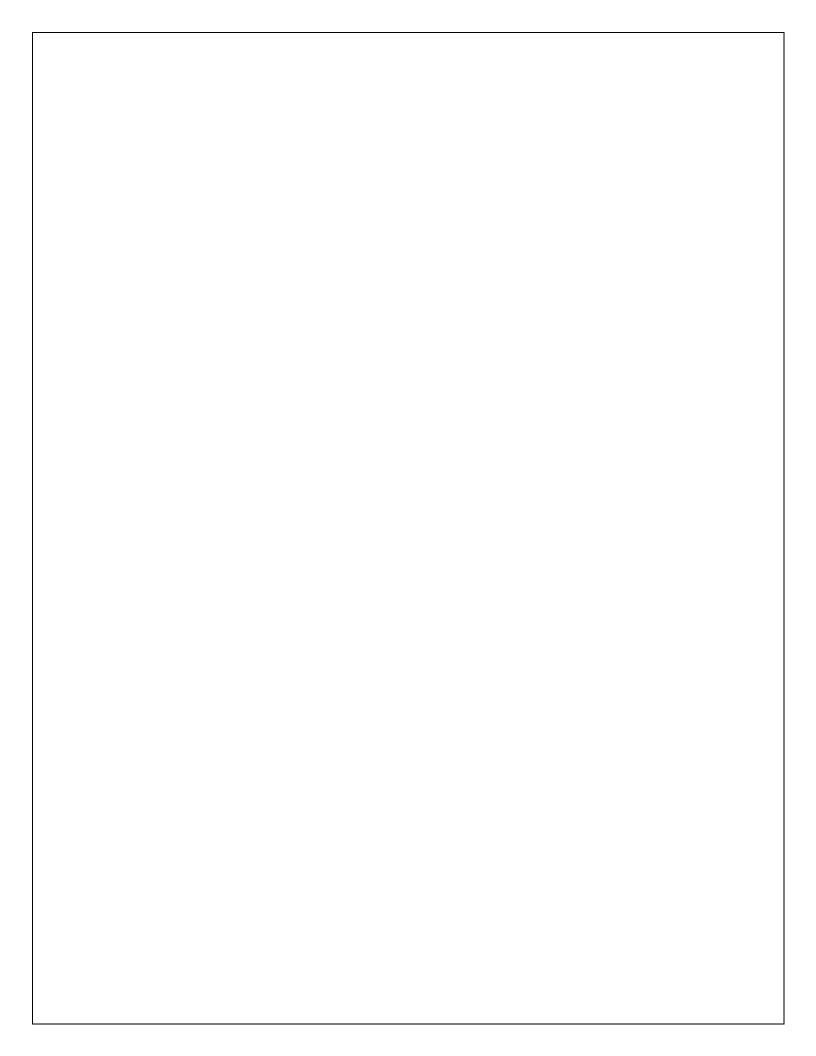
2D. Reference Books

- 1. The Indian Pharmacopoea, 3rd Edition, Volume-II, Quality Specifications World Health Organization , 1981.
- 2. A. V. Kasthuri, S. G.Wadodkar, S. B. Gokhale, Practical Pharmaceutical Chemistry-I, Nirali Publications, 13th Edition, 2007.

Units	Course content	Learning Outcomes	Highest Blooms Taxonomic level of Transaction
1.	 Gravimetric Estimation Estimation of lead as lead chromate Estimation of barium as barium chromate Estimation of calcium as calcium oxalate monohydrate Estimation of sulphate as barium 	estimate the amount of ions using the gravimetric method estimate the accurate quantity of the precipitate by avoiding post and co -precipitation errors	K4

	sulphate		
	Organic Preparation	Prepare the maximum quantity of	
2.	Organic (reparation)Preparation of an organic compoundby a single stage and recrystallizationof the compound.✓✓Preparation of salicylic acidfrom methyl salicylate✓✓Preparation of acetophenone✓Preparation of mnitromethylbenzoate✓Preparation of benzoic acid	the organic compound as pure crystals.	K4
	from benzaldehyde		
3.	Inorganic PreparationPreparation of coordinationcomplexesPreparation of Prussian bluePreparation of Prussian bluePreparation oftetraaminecopper(II)sulphatePreparation oftristhioureacopper(I)chlorideRecording and interpreting the UVspectrum of the complex prepared(Demonstration only)	Prepare the coordination complexes by adopting suitable methodology.	K4
4.	 Physical constant determination Theory of measurement of physical parameters Principle of physical measurements Checking the purity of samples, handling of chemicals and the apparatus. Determination of Physical Constant Determination of melting and boiling points of simple organic compounds 	Detect the purity of the prepared organic compounds by determining their physical constants.	K4

4. PO, PSO & CO Mapping


	HighM= MediumL=LowRAVIMETRY, ORGANIC AND INORGANICREPARATIONS AND CTERMINATION OF PHYSICAL CONSTANTSCode: U19CH5P4					ORGANIC AND INORGANICREPARATIONS AND							
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	-	-	М	М		Н	-	Н	М	-	Н
CO2	Н	Н	Н	L	Н	Н	-	Н	-	Н	Н	-	Н
CO3	Н	Н	-	L	Н	Н	-	Н	-	Н	Н	-	Н
CO4	Н	Н	-	L	Н	Н	-	Н	-	Н	Н	-	Н
CO5	Н	Н	Н	L	Н	Н	-	Н	-	Н	Н	-	Н
CO6	L	Н	-	L	-	-	Н	-	-	L	-	Н	L

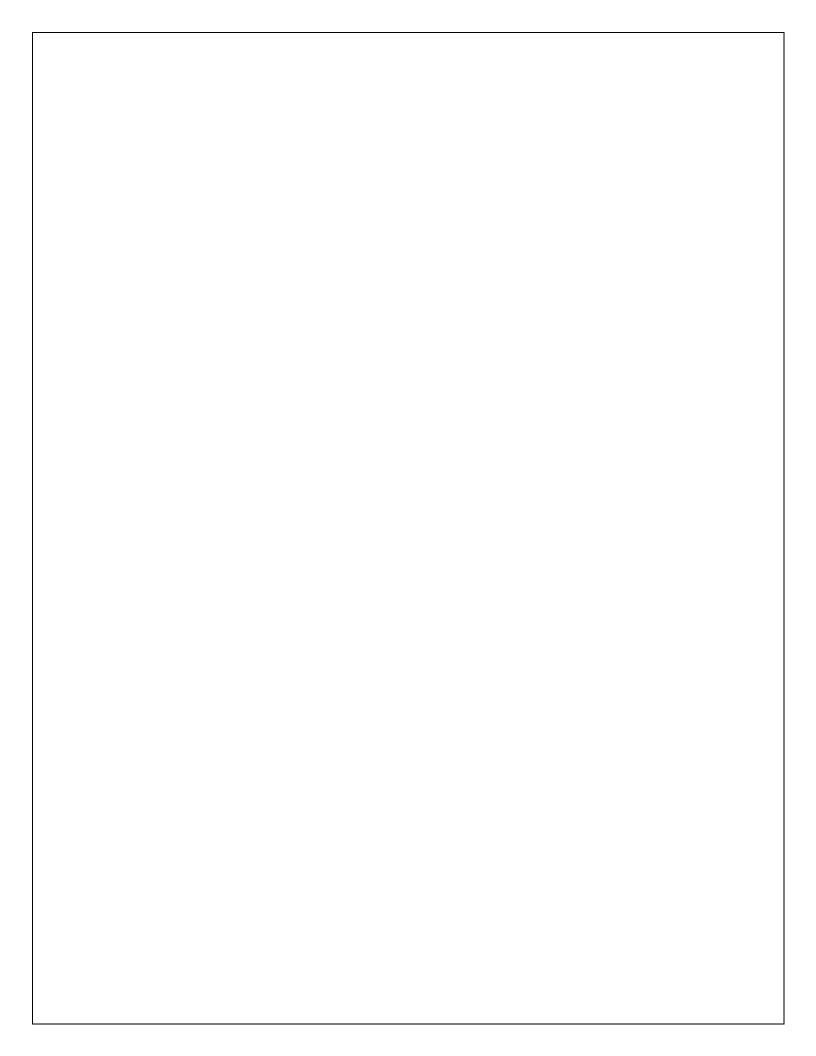
5. Course Assessment Methods Direct:

Continuous Internal Assessment

- 1. Model Exams I and II
- 2. End Semester Practical Examination

CORE : PROJECT

Semester: V Credits : 3


Code : U19CH5PJ Total Hours : 60 Hours/Week : 4

On completion of the Course the Student will be able

S.No.	Course Outcomes	Level
1	Identify Simple scientific problems in the real-life situation related Chemical science	K5
2	Search relevant background Literature ensure the credibility of the research problem	K5
3	Develop a smart and achievable strategy solve the problem	K5
4	Develop a feasible, fool-proof and accurate method analyze the problem	K5
5	Critically analyze, corroborate with previously available knowledge and arrive at scientific findings from the observed results	K6
6	Document, Publish and Present the findings scientifically in the relevant forums by taking Cognizance of the ethical & IPR related issues	K5

Group Projects - Components for Evaluation

Preparation of Report	– 25 Marks
Innovation in Choice of the problem and skills in systematic analysis and recording	– 20Marks
Regularity and involvement	- 20 Marks
Viva-Voce(External)	- 20 Marks
Internal	– 15 Marks

Core Course - VII:

INORGANIC CHEMISTRY-II

Semester: VI Credits : 6 Code : U19CH607 Total Hours : 90 Hours/Week : 6

1.Course Outcomes:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Predict nuclear stability based on basic concepts in nuclear chemistry	K5	Ι
2	Explain detection separation and application of radio Isotopes.	K5	II
3	Explain semiconducting properties based on theories of metallic bonding	K4	III
4	Describe crystal packing of atoms in metals and their defects	K2	III
5	Distinguish the characteristics of the different types of Silicates	K4	IV
6	Correlate the features of photo physical processes and their applications.	K4	V

2A. Syllabus

Unit– I

Nuclear Chemistry

18 Hours

1.1 Introduction–composition of nucleus, fundamental particles and nuclear forces – Meson field theory.

1.2 Nuclear stability -n/p ratio, mass defect, binding energy, packing fraction and magic numbers, Harkin's rule, shell and liquid drop models.

1.3 Isotopes, Isobars, isotones and isomers with examples. Detection of Isotopes – Aston and Dempster methods and separation of isotopes, whole number rule. Deviation of atomic weights from whole number.

Unit–IIRadioactivity and Nuclear Transformations18 Hours

2.1 Radioactivity–discovery, Types - detection and measurements (Wilson cloud chamber, G-M Counter and Cyclotron). Radioactive emanations – Theories of decay – Geiger Nuttal rule- Range of alpha particles-units of radioactivity-rate of radioactive disintegration - half life - average life.

2.2 Nuclear transmutations–Use of projectiles–Q-value of nuclear reactions – thermo nuclear reactions, Types of nuclear reactions – Nuclear reactors - Breeder reactors- trans-uranic elements - Stellar energy.

2.3 Radioactive disintegration series (U, Th, Ac, Np) - Applications of radio isotopes–Carbon dating – Radioactive waste disposal.

Unit-IIIMetallic Bonding and Crystal defects18 Hours

3.1 Theories of metallic bonding– Electron gas, Pauling and Band theories, Semi conductors– Extrinsic and intrinsic, n-type and p-type semiconductors and their applications - Packing of atoms in metal (bcp,ccp,hcp) – Crystal defects : Stoichiometric and Non-Stoichiometric defects - Metal Excess and Metal Deficiency defects- Frenkel and Schottky defects.

3.2 Structure of alloys–Substitutional and interstitial solid solutions–Hume Rothery rule.

3.3 Metallurgy: Occurrence of metals, Types of ores, Separation techniques based on gravity – Leaching, Froth Floatation, and Magnetic Separation- various metallurgical operations -concentration, calcinations, roasting, smelting and refining.

Unit-IVSilicon Polymers18 Hours

4.1 Silicones–manufacture, structure, properties and uses.

4.2 Silicates–Classification into discrete anions, one, two and three dimensional structures with typical examples, composition, properties and uses of beryl, asbestos, molecular sieves, talc, mica, zeolites and ultramarines.

Unit–V Photochemistry

18 Hours

- **5.1** Difference between thermal and photochemical reactions Laws of Photochemistry Quantum yield- Factors affecting Quantum Yield.
- **5.2** Photophysical and photochemical processes Jablonski Diagram, Phosphorescence Fluorescence Factors affecting Photophysical Processes. Chemiluminescence- Bio-Luminescence- Photosensitizers Photosynthesis, Quenching and its types.
- **5.3** Applications of Photochemistry, Chemical Actinometer (Uranyl oxalate and Ferric oxalate actinometers)

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	How is Nuclear Stability Related to the Band of Stability and the Neutron to Proton Ratio	https://youtu.be/zAjNHmlUzaM
2	Harmful effects of radioactivity	https://youtu.be/SmgBoOR61bo

3	Metallurgical Reactors and Transfer Operations	https://youtu.be/8xDPihsuK7Q
4	Sodium Silicate As Binder In Sand Moulding Step-by-step intraoral repair of silicate/glass ceratomics	https://youtu.be/icGgssNXWck https://youtu.be/IsgeFL2S0NI
5	chemiluminescence	https://youtu.be/RMMZ3rnzUHM

2C. Text Books

- 1. B.R. Puri, L.R.Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milesne Publishers, New Delhi, 2017 (Unit I- V)
- 2. R.D. Madan and G.D. Tuli, Inorganic Chemistry, S. Chand & Co., New Delhi, 2010 (Unit I-V)
- **3.** P.L. Soni and Mohan Katyal, *Text Book of Inorganic Chemistry*, Sultan Chand & Co., New Delhi, 2004.

2D. Recommended Reference Books

- 1. Gurdeep Raj, Advanced Inorganic Chemistry, Goel Publications, Meerut, 2014
- 2. J.D. Lee, Concise Inorganic Chemistry, Oxford University Press, New Delhi, 2008
- 3. K. K. Rohatgi-Mukherjee, *Fundamentals of Phochemistry*, New Age International, NewDelhi, 2017.

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1.1	Composition of nucleus, fundamental particles and nuclear forces – Meson field theory.	Classify the various fundamental particles and nuclear forces.	K2
1.2	Nuclear stability – n/p ratio, mass defect, binding energy, packing fraction and magic numbers	Predict nuclear stability based on basic concepts in nuclear chemistry	K5
	Harkin's rule, shell and liquid drop models	Compare shell and liquid drop models	K2
1.3	Isotopes, Isobars, Isotones and Isomers with examples.	Distinguish Isotopes, isobars, Isotones and isomers in a	K4

		given set of nuclei.	
	Detection and separation of Isotopes – Aston and Dempster methods	Explain the experimental methods used for the detection and separation of Isotopes.	К3
	whole number rule. Deviation of atomic weights from whole number.	Calculate atomic weight of Isotopes from whole number rule.	K2
2.1	Radioactivity discovery, Types- detection and measurements (Wilson cloud chamber, G-M Counter and Cyclotron).	Describe the various methods detect and measure Radioactivity.	K2
	Radioactive emanations – Theories of decay	Differentiate the properties of α , β and γ emissions.	K3
	Geiger Natta rule- Range of alpha particles-	Relate the decay constant and range of α particles.	K2
	Units of radioactivity-rate of radioactive disintegration - half life - average life.	Calculate the half life and average life of a radioactive nucleus.	K4
2.2	Nuclear transmutations–Use of projectiles–Q-value of nuclear reactions	Distinguish exothermic and endothermic nuclear reactions.	K4
	Types of nuclear reactions - thermo nuclear reactions	Explain the types of nuclear reaction.	K4
	Nuclear reactors - Breeder reactors- trans-uranic elements - Stellar energy.	Outline the working of nuclear reactors .	K2
2.3	Radioactive disintegration series (U, Th, Ac, Np)	Discuss the different types of disintegration series.	K2
	Applications of radio Isotopes–Carbon dating	Calculate the age of a specimen from the given data	K5
	Radioactive waste disposal.	Summarize the importance and methodology of Radioactive waste disposal.	K2
3.1	Theories of metallic bonding– Electron gas, Pauling and Band theories	Discuss the theories of metallic bonding	K2
	Semi conductors–Extrinsic and intrinsic, n-type and p-type Semi conductors and their applications	Distinguish n-type and p-type Semi conductors along with their applications	K4
	Packing of atoms in metal (bcp,ccp,hcp)	Explain the packing of atoms in metal	K2
	Crystal defects : Stoichiometric and Non-Stochiometric defects - Metal Excess	Classify the various crystal defects.	K4

d Schottky defects. ructure of alloy substitutional and terstitial solid solutions–Hume Rothery le. etallurgy: Occurrence of metals, Types ores paration techniques based on gravity – eaching, Froth Floatation and Magnetic eparation etallurgical operations -concentration,	Distinguish substitutional and interstitial solids.List out the various types of Ores.and their Occurrence.Explain the various methods of separation in metallurgy	K4 K1
ores eparation techniques based on gravity – eaching, Froth Floatation and Magnetic eparation	Ores.and their Occurrence. Explain the various methods	K1
eaching, Froth Floatation and Magnetic paration	-	
etallurgical operations -concentration		К2
lcination, roasting, smelting and fining.	Explain the chemical processes involved in metallurgy.	K4
licones–manufacture, structure, operties and uses.	Explain the manufacturing process of silicones along with their properties and uses.	K2
licates–Classification in discrete ions, one, two and three dimensional ructures with typical examples	Classify one, two and three dimensional structure of silicates with examples.	K4
mposition, properties and uses of ryl, asbestos, molecular sieves, talc, ica, zeolites and ultramarines.	Relate the composition, properties and uses of some important silicates.	K2
fference between thermal and photo emical reactions	Classify thermal and photo chemical reactions.	K2
ws of Photochemistry – Quantum eld- Factors affecting Quantum Yield.	Apply the laws of photochemistry calculate quantum yield	K4
oto physical and photo chemical ocesses — Jablonski Diagram, osphorescence - Fluorescence – octors affecting Photo physical	Describe photo physical and processes by applying Jablonski Diagram.	K4
ocesses.	List out the various factors affecting photo physical processes.	K1
		K4

		Explain the various types of Quenching.	K2
5.3	Applications of Photochemistry, Chemical Actinometer (Uranyl oxalate and Ferric oxalate actinometers)	Explain the applications of photo chemistry.	K4
		Describe the construction of actinometers.	K2

4. Mapping Scheme For Cos, Pos And Psos

L-Low

M-Moderate

H- High

	INORGANIC CHEMISTRY- II							Code : U19CH607					
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	Р 09	PSO1	PSO2	PSO3	PSO4
CO1	Н	Η	Н	-	-	-	-	Н	-	Н	-	-	Н
CO2	Н	Н	Н	L	-	-	-	Н	-	Н	-	-	Н
CO3	Н	Н	Н	М	-	-	-	Н	-	Н	-	-	Н
CO4	Н	Η	Н	М	-	-	-	Н	-	Н	-	-	Н
CO5	Η	Η	Н	М	-	-	-	М	-	Н	-	-	Н
CO6	Н	Н	Η	М	-		-	М	-	Н	-	-	Н

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core VIII: ORGANIC CHEMISTRY- II

SEMESTER: VI CREDITS: 6

Code : U19CH608 Total Hours : 90 Hours/Week : 6

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Correlate the different organic reactions with the corresponding types of mechanisms.	K4	Ι
2	Predict the reactivity and orientation of different aromatic substrates wards Electrophiles and Nucleophiles	K5	II
3	Give reason for the formation of intermediates and products in a rearrangement reaction.	K4	III
4	Comprehend the preparation, properties, and structural elucidation of carbohydrates	K3	IV
5	Explain the chemistry of natural products (terpenes and alkaloids	K2	V
6	Compare the properties and reactivities of five, six membered and fused heterocyclic compounds.	К2	V

2A. Syllabus

Unit-I - Substitution and Elimination Reactions

18 Hours

1.1 Aliphatic nucleophilic substitutions– stereochemical aspects and mechanism of $S_N 1$, $S_N 2$ and $S_N i$ reactions.

1.2 Elimination reactions–Hoffmann and Saytzeff's eliminations – Trans elimination: Mechanism of E_1 , E_1CB and E_2 reactions. Elimination vs. Substitution.

1.3 Aromatic Nucleophilic substitution reactions–Benzyne mechanism and intermediate complex formation mechanism.

1.4 Aromatic Electrophilc substitution reactions –Orientation and Reactivity –Mechanism of Nitration, Bromination, Sulphonation, Iodination, Riemer-Tiemann, Kolbe's and Friedel Craft's Reactions.

Unit-II - Molecular Rearrangements

2.1 Classification - anionotropic, cationotropic, intermolecular and intramolecular rearrangement.

2.2 Pinacol-pinacolone rearrangement (Mechanism, Evidence for carbocation intermediate

Formation, Migratory aptitude). Beckmann, Benzidine, Hoffmann, Curtius, Benzilic acid

18 Hours

rearrangements (Mechanism only), Claisen rearrangement (sigmatropic rearrangement), Cope rearrangement.

Unit–III - Natural Products

18 Hours

3.1 Natural products - Terpenes- classification – Isoprene rule – general reactions of terpenes – structural elucidation of citral, geraniol, nerol, menthol, α -terpeniol and α - pinene.

3.2 Alkaloids–General methods of isolation and structural elucidation of conine, piperine and nicotine.

Unit–IV

Carbohydrates

4.1 Classification of carbohydrates–Monosaccharides–preparation, properties and structural elucidation of glucose and fructose, epimerisation, interconversion of glucose and fructose, chain lengthening, chain shortening of aldoses, mutarotation and α , β – glycoside linkages, cyclic structure, pyranose and furanose forms of D–Glucose. Tests for Carbohydrates.

4.2 Disaccharides –Structure, Properties and general reactions- Maltose, Lactose & Sucrose. Sucrose – Manufacture, properties and structural elucidation.

4.3 Polysaccharides – structure and Properties of starch and cellulose (**Structural Elucidation not required**).

Unit-V - Heterocyclic Compounds

18 Hours

5.1 Aromatic characteristics and basicity of heterocyclic compounds.

5.2 Five membered heterocyclic systems - preparation, properties and uses of furan, pyrrole, thiophene and imidazole. Electrophillic Substitution reactions of furan, pyrrole, thiophene and imidazole.

5.3 Six membered heterocyclic systems-structure, synthesis and reactions of pyridine, piperidine, purine and pyrimidine - Comparative basic characters of pyrrole, pyridine, piperidinewith amines.

5.4 Fused rings- Synthesis of Quinoline, isoquinoline and indole by Skraup, Bischler Napieralski and Fischer Indole synthesis respectively and their reactions.

2B. Topics for Self-Study:

S.No.		
	Topics	Web links
1	Elimination from cyclohexanes	https://chem.libretexts.org/Bookshelves/Organic_Chemis try/Map%3A_Organic_Chemistry_(McMurry)/11%3A_ Reactions of Alkyl Halides- Nucleophilic_Substitutions_and_Eliminations/11.11%3 A_The_E2_Reaction_and_Cyclohexane_Conformation https://www.masterorganicchemistry.com/2012/10/18/th
		e-e2-reaction-and-cyclohexane-rings/

2	Favorskii rearrangement	http://www.chemvista.org/Favorskii%20rearrangement% 20and%20mechanism.html
3	Zingiberene	https://www.slideshare.net/abdelrahman_asar/zingiberen e
		<u>https://en.wikipedia.org/wiki/Zingiberene</u>
4	Lipids	https://www.britannica.com/science/lipid
5	Tetrazole synthesis	https://en.wikipedia.org/wiki/Tetrazole

2C. Text Books

- 1. Arun Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand & Co. Ltd., New Delhi, 2012 (Unit- I, II)
- 2. MK Jain and SC Sharma, Modern Organic Chemistry, Vishal Publishing &Co.,2017 Bhupinder (Unit- III, IV, V)
- **3.** R.T. Morrison & R.N.Boyd, Organic Chemistry, Pearson Education, New Delhi, 2016.
- 4. I.L. Finar, Organic Chemistry (Volume-2), Pearson Education, New Delhi, 2002

2D. Reference Books

- 1. Mehta& Manju Mehta, Organic Chemistry, PHI Learning Pvt. Ltd., 2015
- 2. L.G. Wade, Organic Chemistry, Pearson Education, New Delhi, 2016
- 3. Seyhan N.Ege Organic Chemistry: Structure and Reactivity, Houghton Mifflin Harcourt (HMH); 5th Edition 2003
- 4. Paula Yurkanis Bruice, Organic Chemistry, Pearson Education, New Delhi, 2013
- 5. Gurdeep Chatwal, Organic Chemistry of Natural Products, Himalaya Publications, Mumbai, 2014.

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Highest Blooms Taxonomic levels of Transaction	
Ι	Substitution and Eliminati	on Reactions		
	Nucleophilic Substitution reactions S_N1 , S_N2 and S_Ni reactions mechanism and stereochemical	Categorize Nucleophilic substitution reactions along with example.	К2	
1.1	aspects	Predict the stereochemistry for the products of substitution reactions.	K4	
1.2	Elimination reaction - Hoffmann and Saytzeff's eliminations, Mechanism of E_1 , E_1C Band E_2 reactions. Elimination vs. Substitution.	Propose the mechanism of the reaction based on elimination product.	K4	
		Compare and contrast Substitution and Elimination reactions	K2	
1.3	Aromatic nucleophilic substitution reaction (SN) Benzyne mechanism and intermediate complex formation mechanism.	Predict the products of SN reactions in Aromatic compounds	K4	
	-	Identify the type of intermediate and its stability.	K2	
1.4	Aromatic Electrophilc substitution reactions- Orientation and Reactivity -Nitration, Bromination, Sulphonation, Iodination, Riemer- Tiemann, Kolbe's and Friedel Craft's Reactions.	Predict the reactivity and orientation of different aromatic system wards Electrophiles.	К5	
II		r Rearrangements		
2.1	Classification–anionotropic, cationotropic, intermolecular and intramolecular rearrangement.	Classify the type of rearrangement based on the nature of migrating group	К3	

2.2	Mechanism, Evidence for carbocation intermediate formation and Migratory Aptitude of Pinacol-Pinacolone rearrangement	Propose the mechanism of pinacol-pinacolone rearrangement.	K4				
		Apply the mechanism in different substrate.	К3				
		Justify the formation of different intermediates and products in the rearrangement.	K4				
	Mechanism of Beckmann rearrangement, Benzidine, Hoffmann, Curtius, Benzilic acid rearrangement, Claisen rearrangement (Sigmatropic rearrangement),Cope rearrangement.	Apply the mechanism of different rearrangements for interconversion of functional groups.	К3				
III	Natural Products						
3.1	Natural products – Terpenes – Isoprene rule – General reactions of Terpenes	Apply isoprene rule predict structure of Terpenes.	К3				
		Write the reactions of Terpenes.	K2				
	Structural elucidation of citral, geraniol, nerol, menthol, α -terpeniol and α - pinene	Apply reactions elucidate the structures of Terpenes	K3				
3.2	Alkaloids – General methods of isolation and general methods of structural determination	Describe the methods of isolation of alkaloids determine the structure	K2				
	Structural elucidation of conine, piperine and nicotine.	Apply reactions elucidate the structure of conine, piperine and nicotine	K3				
IV	Car	bohydrates					
4.1	Classification of carbohydrates– Monosaccharides–preparation,	Classify carbohydrates	K3				
	properties	Write the preparatory methods and reactions of monosaccharides	K2				

	Structural elucidation of glucose and fructose	Discuss the structural elucidation of Glucose and Fructose	K2
	Epimerization, interconversion of glucose and fructose, chain lengthening, chain shortening of aldoses,	Interconvert carbohydrates.	K3
	mutarotation and α , β – glycoside linkages	Explain the optical properties and nature of linkage in carbohydrates	K2
	Cyclic structure, pyranose and furanose forms of D –Glucose. Tests for Carbohydrates.	Compare the structure of different forms of D-glucose	K2
4.2	Disaccharides –Structure, Properties	Explain the structure and properties of Dissacharides	K2
	general reactions- Maltose, Lactose & Sucrose	K2	
	Sucrose – Manufacture, properties and structural elucidation	Explain the steps involved in the manufacture of Sucrose	K2
		Apply reactions elucidate the structure of Sucrose	K3
	Polysaccharides – structure and Properties of starch and cellulose	Describe the structure and properties of polysaccharides	K2
V	Heterocy	yclic Compounds	
5.1	Aromatic characteristics and basicity of heterocyclic compounds	Predict the basicity of heterocyclic compounds based on aromatic character	K3
5.2	Five membered heterocyclic systems - preparation, properties and uses of furan, pyrrole, thiophene and imidazole	Compare the reactivity of five membered heterocyclic system.	К2
	Electrophilic Substitution reactions of furan, pyrrole, thiophene and imidazole.	Predict the products of Electrophilic substitution reactions of five membered Heterocyclic compounds	K5

5.3	Six membered heterocyclic systems- structure, synthesis and reactions of pyridine, piperidine, purine and pyrimidines	Explain the Synthesize of six membered heterocyclic compounds	K2
	pyrinnames	Explain the reactions of six membered heterocyclic compounds with one and two heteroatoms	K2
	Comparative basic characters of pyrrole, pyridine, piperidine with amines.	Predict the basicities of five and six membered heterocyclic compounds with amines	К3
5.4	Fused rings- Synthesis of Quinoline, isoquinoline and indole by Skraup, Bischler Napieralski and Fischer Indole synthesis respectively and their reactions	Write the Synthesis and the reactions of bicyclic heterocyclic compounds	К2

4. Mapping of COs with POs and PSOs)

L-I	Jow		M-Moderate						H- High				
ORGANIC CHEMISTRY- II Code : U19CH608													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н			М		L	Н	-	Н			Н
CO2	Н	Н			М		L	Н	-	Н			Н
CO3	Н	Н			М		L	Н	-	Н			Н
CO4	Н	Н			М		L	Н	_	Н			Η
CO5	Н	Н			-		L	Н	-	Н			Н
CO6	Н	Н		-	М		L	Н	-	Н			Η

5. Course Assessment Methods

DIRECT

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT

1. Course-end survey

Core IX: PHYSICAL CHEMISTRY - II

Semester: V Credits: 6

Code: U19CH609 Total Hours : 90 Hours/Week : 7

1. Course Outcome:

After the completion of this course, the student will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain the concepts of Electrochemistry and its applications	K4	Ι
2	Describe the construction of different kinds of electrochemical cells	K2	II
3	Predict the thermodynamic quantities of cell reactions identify the feasibility of reactions	K3	II
4	Illustrate the principle of Molecular Spectroscopy (UV-Vis, IR, Raman, NMR and ESR) and the spectra of selected molecules	K3	III
5	Identify the functional groups and structure of simple molecules using IR spectroscopy	K2	IV
6	Interpret the NMR & ESR spectral data arrive at the structure of molecules	К3	V

2A. Syllabus

UNIT I - Electrical Conductance

18 Hours

18 Hours

1.1 Conduction in metals and in electrolyte solution, specific conductance, molar conductance and equivalent conductance, Measurement of equivalent conductance, variation of equivalent conductance with concentration.

1.2 Migration of ions –Kohlrausch's law and its applications to determine λ^0 of weak electrolyte - Arrhenius theory of electrolytic dissociation – weak and strong electrolytes according to Arrhenius theory – Ostwald's dilution law – its uses to determine K_a of weak acids and K_{sp} of sparingly soluble salts and limitations.

1.3 The elementary treatment of Debye – Huckel Onsagar equation for strong electrolytes. Conductometric titrations: acid-base, precipitation with examples. Transport number and Hittorf's rule-determination of transport number by Hittorf's method and moving boundarymethod.

UNIT II - Equilibria in Electrochemical Cells

2.1 Electrolytic and galvanic cells–Reversible and irreversible cells. Conventional representation of electrochemical cells. Electromotive force of a cell and its measurements – Computation of cell e.m.f.- Calculation of thermodynamic quantities of cell reactions (ΔG , ΔH , ΔS and K)- **Problems.**

2.2 Derivation of Nernst equation, single electrode potential and Applications of Nernst equation Standard electrode potentials- Electrochemical series and its significance. Types of reversible

electrodes – Cell construction- cell reaction with Nernst equation - Reference electrodes: Standard hydrogen electrode and Calomel electrode - Western Cadmium cell.

2.3 Concentration cells – Types, emf of concentration cells with and without transference and its derivation – liquid junction potential and its derivation – applications of concentration cells – Applications of emf measurements: determination of valancy, transport number and solubility product, Potentiometric titrations – Redox and Acid-Base Titrations.

UNIT III - Molecular Spectroscopy – I

18 Hours

3.1. Definition of spectrum. Electromagnetic radiation, quantization of different forms of energies in molecules (translational, rotational vibrational and electronic), Born Oppenheimer approximation, factors affecting line width and intensity.

3.2 UV-Visible spectroscopy–types of electronic transitions–Franck Condon principle – predissociation spectra and dissociation energy. Applications – Beer Lambert's law - OD, chromophore, auxochrome, bathochromic and hypsochromic shifts and effect of substituents.

UNIT IV - Molecular Spectroscopy – II

4.1 Infrared spectroscopy–modes of vibration of diatomic, linear tri-atomic (CO_2) and non-linear tri-atomic (H_2O) molecules. Stretching and bending vibrations - selection rules, expression for vibrational frequency (derivation not required). Calculation of force constant - Applications of IR spectra (group frequencies, finger print and hydrogen bonding only).

4.2 Raman spectroscopy - conditions - Rayleigh and Raman scattering, selection rules Classical and quantum theory - Stokes and Anti-Stokes lines. Differences between Raman and IR spectroscopy - Rotational Raman spectra of non-centro symmetric molecule (HCl only). Mutual exclusion principle (CO₂ and N₂O).

UNIT V - Molecular Spectroscopy – III

5.1 NMR Spectroscopy - magnetic and non - magnetic nuclei- selection rules - principle of nuclear magnetic resonance - ring current - shielding mechanism-chemical shift - factors affecting chemical shift - number of signals - spin-spin coupling - splitting of signals - NMR spectra of methyl halides, ethylene, acetylene and benzene - Chemical exchange - NMR spectrum of ethyl alcohol in detail.

5.2 ESR spectroscopy - selection rules - theory of ESR spectra - hyperfine splitting - ESR spectra of simple radicals- [•]CH₃, [•]CD₃, naphthalene radical ions only.

18 Hours

18 Hours

2B. Topics for Self-Study:

S.No.	Topics	Web Links
1	Conductometric Sensors	https://youtu.be/mulkGSJai3A
2	Ion Selective Electrodes	https://www.youtube.com/watch?v=LVocg2RjDM
		<u>M</u>
3	Chemical Reagents in UV Visible	https://www.youtube.com/watch?v=UTRiVd-
	Spectroscopy	V3Cw
4	Challenges in application of Raman	https://pubs.rsc.org/en/content/articlepdf/2018/ra/c
	spectroscopy to biology and materials	8ra04491k
5	2D NMR Spectroscopy for structural	https://nptel.ac.in/courses/104/108/104108097/
	studies of biomolecules	

2C. Text Books

- 1. B.R.Puri, L.R.Sharma and Madan. S. Pathania, *Principles of Physical Chemistry*, 42ndEdition, Vishal Publishing Co., Jalandhar, 2017 (Unit I-V)
- 2. B.S. Bhal G.D. Tuli and ArunBhal, *Essentials of Physical Chemistry*, S. Chand & Co., New Delhi, 2010(Unit- I, II)
- 3. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Meerut, 2016.

2D. Recommended Reference Books

- 1. P.Atkins and J.Paula, Physical Chemistry, Oxford University Press, New Delhi, 2018
- 2. G.W.Castellan, *Physical Chemistry*, 3rdEdition, Narosa Publishing House, New Delhi, 2004
- 3. K. Kundu and S.K. Jain, *Physical Chemistry*, S. Chand & Co., Ltd., New Delhi, 2003
- 4. K.L. Kapoor, Text Book of Physical Chemistry, Macmillan, New Delhi, 2017
- 5. G.Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall of India, New Delhi, 2007.

4. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit–I	Electrical Conductance	
1.1	Specific Conductance and equivalent conductance - Measurement of equivalent conductance, variation of equivalent conductance with concentration.	equivalent conductance of the given electrolyte.	K4
1.2	Migration of ions –Kohlrausch's law and its applications to determine $\lambda 0$ of weak electrolyte	Evaluate the λ_0 value of Weak electrolyte using Kohlrausch's law	K4
	Arrhenius theory of electrolytic	Compare the weak and strong	K2

	dissociation – weak and strong electrolytes	electrolytes by Arrhenius theory	
	Ostwald's dilution law – its uses to determine Ka of weak acids andKsp of sparingly soluble salts and limitations	Determine the dissociation constant and solubility product by Ostwald's dilution law	K4
1.3	The elementary treatment of Debye – Huckel Onsagar equation for strong electrolytes.	Verify the Debye – Huckel Onsagar equation for strong electrolytes	K3
	Conductometric titrations – acid – base, precipitation with examples	Apply Conductometric method for estimation of acids, bases and salts	K3
	Transport number and Hittorf's rule-determination by Hittorf's method and moving boundary method	Calculate the Transport number by Hittorf's and boundary method	К3
	UNIT– II Equilibr	ia in Electrochemical Cells	
2.1	Electrolytic and galvanic cells– Reversible and irreversible cells. Conventional representation of electrochemical cells.	Distinguish between the cell reactions taking place in Electrolytic cells and Galvanic cells	K2
	Electromotive force of a cell and its measurements – Computation ofcell e.m.f Calculation of thermodynamic quantities of cell	Calculate the thermodynamic quantities of cell reactions to identify the feasibility of reactions.	K2
	reactions (ΔG , ΔH , ΔS and K)- Problems.	Predict the thermodynamic quantities of a given system using emf data	K3
2.2	Derivation of Nernst equation -	Derive Nernst equation.	K2
	Single electrode potential and Applications of Nernst equation	Explain the Standard electrode potential and its application	K2
	Standard electrode potentials- Electrochemical series and its significance.	Describe the significance of the electrochemical series	K2
		Apply electrochemical series and find the redox reactions taking place in electrochemical	V2
			K3
	Types of reversible electrodes – Cell construction- cell reaction with Nernst equation- Reference	Classify the reversible electrodes	K2
	with Nernst equation- Reference electrodes:Standard hydrogen electrode and Calomel electrode -	Explain the working principle of SHE and calomel electrode	K2

	Western Cadmium cell.	Construct the electrochemical cells set up	K3
2.3	Concentration cells– Types, emf of concentration cells with andwithout transference and itsderivation. Liquid junction potential and its derivation - Applications of	Derive the cell EMF expression for concentration cells with and without transference.	K2
	concentration cells	List out the applications of concentration cells	K2
	Applications of emf measurements: determination of valency, transport number and solubility product, Potentiometric titrations - Redox	Calculate the valency, transport number and solubility product using emf data	K2
		Applytheprinciplesofpotentiometricredoxandpotentiometric acid -base titrations	К3
Unit– I	II Molecula	ar Spectroscopy – I	
3.1	Definitionofspectrum.Electromagneticradiation,quantization of different forms ofenergiesinmolecules(translational, rotational vibrationaland electronic)	Explain the quantization of different forms of energies in molecules	K2
	Born Oppenheimer approximation, factors affecting line width and intensity.	Explain Born Oppenheimer approximation.	K2
		Summarize the factors affecting line width and intensity.	K2
3.2	UV-Visible spectroscopy - Typesof electronic transitions - Franck	Outline the various types of electronic transitions.	K2
	Condon principle- predissociation spectra and dissociation energy.	Explain the basics of electronic spectra and Franck-Condon principle.	K2
		Summaraize the factors influencing predissociation of molecules.	K2

		Calculate the dissociation energy of molecules	К3
	Applications – Beer Lambert's law - OD, chromophore, auxochrome, bathochromic and hypsochromic shifts and effect of substituents	Apply Beer Lambert's law for the Quantitative analysis of given samples.	К3
		Explain the effect of substituent's on absorption	K2
Unit– IV	7 Molecular Spec	troscopy - II	
4.1	Infrared spectroscopy- modes of vibration of diatomic, linear tri- atomic (CO2) and non- linear tri- atomic (H2O) molecules. Stretching and bending vibrations	Identify the different modes of IR vibration in linear and nonlinear molecules.	К2
	Selection rules, expression for vibrational frequency (derivation not required).	Explain the Selection rules and expression for vibrational frequency	K2
	Calculation of force constant - Applications of IR spectra (group frequencies, finger print and hydrogen bonding only).	Calculate force constant for different types of bond	К3
4.2	Raman spectroscopy -conditions - Rayleigh and Raman scattering, selection rules Classical and quantum theory - Stokes and Anti- Stokes lines.	Explain different spectral lines observed in Raman spectra	K2
	Differences between Raman and IR spectroscopy	Compare Raman and IR spectroscopy	K2
	Rotational Raman spectra of non- centrosymmetric molecule (HCl	Explain Mutual exclusion principle	K2
	only). Mutual exclusion principle (CO2 and N2O).	Explain IR & Raman spectra of HCl.	K2
Unit– V	Molecular Spec	troscopy - III	
5.1	NMR Spectroscopy - magnetic and non - magnetic nuclei- selection rules -	Explain the importance of magnetic and non magnetic nuclei	K2

	principle of nuclear magnetic resonance - ring current - shielding	Describe chemical shift and factors affecting chemical shift.	K2
	mechanism- chemical shift- factors affecting chemical shift - number of signals - spin-spin coupling -	Illustrate spin-spin coupling.	
	splitting of signals	Dial and the marker of NMD signals	K2
		Find out the number of NMR signals given by various compounds.	K3
	NMR spectra of methyl halides, ethylene, acetylene and benzene- Chemical exchange - NMR spectrum of ethyl alcohol in detail	Interpret the NMR spectra of methyl halides, ethylene, acetylene and benzene.	К3
		Explain the NMR spectra of ethyl alcohol.	К2
5.2	ESR spectroscopy - selection rules- Theory of ESR spectra - hyperfine splitting	Explain hyperfine splitting in ESR spectroscopy.	K2
	ESR spectra of simple radicals- 'CH3, 'CD3, naphthalene radical ions only.	Interpret the ESR spectra of CH3, CD3 and naphthalene radial.	K3

4. Mapping Scheme for the PO, PSOs and Cos

L-l	Low		M-N	Iodera	te		H-	High					
]	PHYSICAL CHEMISTRY – II					Co	de: U19	9CH60	9				
	PO 1	PO 2	PO 3	PO 4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н		М	М	L	Н	-	Н	М	М	Н
CO2	Н	Н	Н		М	М	L	М	-	Н	М	М	Н
CO3	Н	Н	Н		М	М	L	М	-	Н	-	L	Н
CO4	Н	Н	Н		М	-	L	Η	_	Н	-	М	Н
CO5	Н	Н	Η		М	М	L	Η	-	Η	М	М	Н
CO6	Н	Н	Н	-	М	Η	L	Η	-	Η	М	L	Н

5. Course Assessment MethodsDIRECT:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT: 1. Course-end survey

Elective Course - III:

ANALYTICAL CHEMISTRY

Semester: VI Credits: 5

1. Course Outcomes:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Adhere first aid procedures and safety measures in Laboratory	K3	Ι
2	Choose the suitable methodology for purification of compounds.	K3	II
3	Analyze the given set of data statistically identify errors.		II
4	Apply the principles and methods estimate selected organic compounds in a given sample	K3	III
5	Apply the principles and applications of electro analytical and colorimetric methods		IV
6	Apply a suitable chromatographic technique separate various substances present in a mixture. (K3)	K3	V

2A. Syllabus

Unit-I **Good Laboratory Practices (GLP)**

Hours 18 1.1 Safety measures - Storage and handling of corrosive, flammable, explosive, toxic, carcinogenic and poisonous chemicals. Simple first aid procedure for accidents - acid in eye, alkali in eye, acid burns, alkali burns, bromine burns, poisoning, inhalation of gases and heat burns - Calibration of Glassware -Requisites for making standard Measuring flask, Pipette and Burette.

1.2 Green Chemistry - Introduction and basic principles of green chemistry - green solvents - green reactions - microwave induced green synthesis.

Unit–II **Analytical Methods**

2.1 Organic estimations - Principles and methods to estimate glucose, phenol, aniline, ketone, Estimation of oils and fats, Iodine value, Saponification value.

2.2 Methods of purification-steam distillation, vacuum distillation, fractional distillation, solvent extraction. crystallization and sublimation.

2.3 Data Analysis - Errors in chemical analysis, classification of errors, Precision, accuracy and rejection of data questioned. Significant Figures in Scientific measurements, Mean, Mode, Median -

Hours 18

Code: U19CH6:3 Total Hours : 90 Hours/Week: 6

Mean deviation and standard deviation – t-test and Q-test – Significance of Correlation and Regression coefficients - Curve Fitting by Least Square method.

UNIT-III **Analytical Techniques-I 3.1. Thermo-analytical Methods**

Principles involved in Thermo Gravimetric Analysis and Differential Thermal Analysis instrumentation. Characteristics of TGA (CaC₂O₄. H₂O, CuSO₄.5H₂O) and DTA curves (CaC₂O₄. H₂O) - Factors affecting TGA and DTA curves.

3.2. Analytical electrochemistry

Potentiometry (redox titration), conductometry (acid -base titration), electro – gravimetry (estimation of copper and silver).

Unit- IV **Analytical Techniques-II**

4.1 Colorimetric analysis - Laws of colorimetry, principle, instrumentation, construction of standard graph and applications of colorimetry. Estimation of nickel using DMG and aluminium using oxine. 4.2 Complexometric titrations-principle and applications, sequestering agents, Structure of EDTA and its complexes.

4.3 Techniques for kinetics study

Principles and techniques used to follow the kinetics of ordinary, fast and photo chemical Reactions (Volumetry, Polarimetry, Actinometry - one example for each method) and flash photolysis.

Unit-V **Chromatography** Hours 18 **5.1 Column chromatography** – Principle, types of adsorbents, preparation of column, elution, $R_{\rm f}$

value and its significance, factors affecting R_f value, Application: separation of 2,4–dinitrophenyl hydrazones of butanone and acetophenone. 5.2 Paper chromatography – principle, selection of solvents, development of chromatogram,

application – Application: separation of amino acids only.

5.3 Thin layer chromatography – principle, choice of adsorbent, preparation of plates, development and application – Application: separation of 2,4-dinitrophenylhydrazones of butanone and acetophenone only.

Hours 18

Hours 18

5.4 Ion exchange chromatography – principle, types of resins, Application: separation of lanthanides.

2B. Topics for Self-Study:

S.No	Topics	Links
1.	Green Chemistry	https://www.acs.org/content/acs/en/gree nchemistry/principles/12-principles-of- green-chemistry.html https://cen.acs.org/articles/95/i26/Five- green-chemistry-success-stories.html
2.	Analytical Methods Protein Purification	https://www.youtube.com/watch?v=PVv pEKeOzEM https://www.youtube.com/watch?v=_C XlmtfxuzQ
3.	Analytical Techniques-I TGA DSC	https://www.youtube.com/watch?v=qaU AJ1RJqMU https://www.youtube.com/watch?v=2C U3uvjKXlk https://www.youtube.com/watch?v=aT WVCfRIMX8 https://www.youtube.com/watch?v=0Q CpwgV1nfw
4.	UV Photolysis	https://www.hindawi.com/journals/ijp/2 012/140605/
5.	Analytical Techniques-II Advances In Fast Ion Chromatography	https://www.europeanpharmaceuticalrev iew.com/article/2835/advances-in-fast- ion-

	chromatography/#:~:text=Ion%20chrom
	atography%20(IC)%20allows%20the,po
	ssessing%20fixed%20ion%20exchange
	%20sites.&text=To%20identify%20and
	%20quantify%20counter,the%20determi
	nation%20of%20inorganic%20cations
1 1	Ũ

2C. Text Books

- 1. R. Gopalan, P.S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sons, New Delhi, 1997 (Unit I-V)
- 2. B.K. Sharma, Instrumental Methods of Chemical Analysis, Goel Publishing House, Meerut, 1999 (Unit- II, III).

2D. Reference Books

- 1. Douglas A Skoog, Donald M. West, F. James Holler, Stanely R. Crouch, Fundamentals of Analytical Chemistry, Thompson Books, Bangalore, 2014
- 2. H.H: Willard, D. Merrit and John A Dean, Instrumental methods of Analysis D. Van Nostrand Company, New York, 1998

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit–I G	ood Laboratory Practices (GLI	P)
1.1.	Safety measures: Storage and handling of corrosive, flammable, explosive, toxic, carcinogenic and poisonous chemicals	be taken store and handle	K2
	Simple first aid procedure for accidents - acid in eye, alkali in eye, acid burns, alkali burns, bromine burns, poisoning, inhalation of gases and heat burns		К3

	Calibration of Glassware - Requisites for making standard Measuring flask, Pipette and Burette	Apply glassware calibration procedures.	К3
1.2.	Green Chemistry : Introduction and basic principles of green chemistry - green solvents - green reactions - microwave induced green synthesis.		K2
	Unit– II	Analytical Methods	
2.1.	Organic estimations : Principles and methods to estimate glucose, phenol, aniline, ketone, Estimation of oils and fats, Iodine value, Saponification value.	Apply the principles and methods to estimate selected organic compounds in a given sample	К3
2.2.	Methods of purification: Steam distillation, vacuum distillation, fractional distillation, solvent extraction. crystallization and sublimation	Identify an appropriate purification technique.	К3
2.3.	Data Analysis: Errors in chemical analysis, classification of errors, Precision, accuracy and rejection of data questioned. SignificantFigures in Scientific measurements, Mean, Mode, Median – Mean deviation and standard deviation – t-test and Q– test – Significance of Correlation and Regression coefficients – Curve Fitting by Least Square method	Analyze the given set of data statistically to identify errors.	K4
	UNIT– III	Analytical Techniques-I	
3.1.	Thermo-analytical Methods Principles involved in Thermo Gravimetric Analysis and Differential Thermal Analysis instrumentation. Characteristics of TGA (CaC ₂ O ₄ . H ₂ O, CuSO ₄ .5H ₂ O) and DTA curves (CaC ₂ O ₄ . H ₂ O) - Factors affecting TGA and DTA	Describe the thermal stability of a particular sample by using TGA and DTA process	К2

	curves		
3.2.	AnalyticalelectrochemistryPotentiometry(redox titration),condutometry (acid –base titration),electro – gravimetry (estimation ofcopper and silver)	Explain the method of determining the amount of ions present in the sample using suitable basic electro-analytical technique.	K2
	Unit- IV	Analytical Techniques-II	
4.1.	Colorimetric analysis : Laws of colorimetry, principle, instrumentation, construction of standard graph and applications of colorimetry. Estimation of nickel using DMG and aluminium using oxine	Apply the Laws of Colorimetry in estimation of Ions.	K3
4.2.	Complexometrictitrations:Principleandapplications,sequesteringagents,StructureEDTAand its complexes	Apply the Principle and applications of sequestering agents	K3
4.3.	Techniques for kinetics study:Principles and techniques used to follow the kinetics of ordinary, fast and pho chemical Reactions (Volumetry, Polarimetry, Actinometry - one example for each method) and flash photolysis	Outline the Principles and techniques used to follow the kinetics of Reactions	K2
	Unit– V	Chromatography	
5.1.	Columnchromatography:Principle, types of adsorbents,preparation of column, elution, R_f value and its significance, factorsaffecting R_f value, Application:separation of 2,4-dinitrophenylhydrazones of butanone andacetophenone	Explain column chromatographic technique to separate and identify the compounds in amixture	K2

5.2.	Paper chromatography : Principle, selection of solvents, development of chromatogram, application – Application: separation of amino acids only	chromatographic technique to separate organic compounds in a	K2
5.3.	Thin layer chromatography: Principle, choice of adsorbent, preparation of plates, development and application – Application: separation of 2,4- dinitrophenylhydrazones of butanone and acetophenone only	chromatographic technique to	K2
5.4.	Ion exchange chromatography: Principle, types of resins, Application: separation of lanthanides	Exchange chromatography to	К3

4. Mapping Scheme for the COs, POs and PSOs

L-Low								H- High					
A	NALY	TICA	L CHE	MIST	RY		Code: U19CH6:3						
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н		Н	Н					Н	Н		Н
CO2	Н	Н			Н	Н	L	Н	Н	Н	Н		Н
CO3	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
CO4	Η	Н			Η	Н	L	Н	Н	Н	Н		Н
CO5	Н	Н	Н		Н	Н	L	Н	Н	Н	Н	Н	Н
CO6	Η	Н	Н		Н	Н	L	Н	Н	Н	Н	Н	Н

5 . Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Practical - V

PHYSICAL CHEMISTRY PRACTICAL

Semester: VI Credits : 3 Code:U19CH6P5 Total Hours : 75 Hours/Week : 5

1. Course Outcomes:

After completing the course, the students will be able to

S.No.	Course Outcomes	Level
1	Determine the rate constant and order of chemical reactions	K4
2	Determine the molecular weight and transition temperature of unknown compounds using colligative properties	K4
3	Evaluate the critical solution temperature of the given partially miscible liquid systems and the effect of impurities on their critical solution temperature	K5
4	Operate the conductometer, potentiometer and photo colorimeter estimate the strength of unknown solution	K2
5	Evaluate the efficiency of a buffer in resisting changes pH	K5
6	Apply the principles of Chromatography identify the components of the given sample	K3

2A. Syllabus

Experiments

- 1. Kinetics study of Acid catalysed hydrolysis of an ester.
- 2. Determination of Molecular Weight by Rast method.
- 3. Determination of Critical Solution Temperature of Phenol-water system.
- 4. Determination of Effect of impurity on CST.
- 5. Construction of Phase diagram of a Simple eutectic system.
- 6. Determination of transition temperature of a salt hydrate.
- 7. Conductometric determination of cell constant and limiting molar conductance of a strong electrolyte.
- 8. Conductometry acid base titration.
- 9. Potentiometry Redox titration.
- 10. Verification of Beer Lamberts' law using photo colorimeter.
- 11. Determination of pH by potentiometry.
- 12. Determination of water of crystallization and the formula of salt hydrates.

Group experiments

- 1. Preparation of Buffer solutions and Determination of buffer capacity by pH meter.
- 2. Determination of distribution coefficient of metals by paper chromatography.
- 3. Monitoring a reaction progress using Thin Layer chromatographic technique.

2C. Text Books

- 1. V. Venkateswaran , R. Veeraswamy, A.R. Kulandaivelu, Basic Principles of Practical Chemistry, S. Chand & Co., New Delhi, 1997.
- 2. R. Gopalan, P.S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sons, New Delhi, 1997.
- 3. B.K. Sharma, Instrumental Methods of Chemical Analysis, Goel Publishing House, Meerut, 1999.

2D. Reference Books

- 1. Douglas A Skoog, Donald M. West, F. James Holler, Stanely R. Crouch, Fundamentals of Analytical Chemistry, Thompson Books, Bangalore, 2014
- 2. H.H: Willard, D. Merrit and John A Dean, Instrumental methods of Analysis D. Van Nostrand Company, New York, 1998

S.No.	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1.	Kinetic study of Acid catalysed hydrolysis of an ester	Determine the rate, order and molecularity of the given reaction	K4
2.	Determination of Molecular Weight by Rast method - Determination of transition temperature of a salt hydrate	Determine the molal depression constant (K _f) of given solvent	K4
		Determine the transition temperature of given salt hydrate	K 4
		Evaluate the molecularweight of unknown compounds	К5
3.	Determination of Critical Solution Temperature of Phenol-water system. Determination of Effect of	Determine the critical solution temperature (CST) of partially miscible liquid system	K4

4.	impurity on CST. Construction of Phase diagram of a Simple eutectic system	Evaluate the effect of impurities on CST	K5
5	Conductometric determination of cell constant and limiting molar conductance of a strong electrolyte.	Determine cell constant and molar conductance of a strong electrolyte	K4
		Perform various types of conductometric titrations	K2
6	Conductometry – acid base titration.	Estimate the strength of given acid or base by conductometry	K4
7	Potentiometry – Redox titration.	Construct on electro chemical cell.	K5
8	Determination of pH by	Determine EMF of a given cell	K4
	potentiometry	Perform various types of potentiometric titrations	K2
		Determine the pH of givensolution potentiometrically	K4
9.	Verification of Beer - Lamberts' law using pho colorimeter.	Verify Beer - Lamberts' law	K4
		Estimate the unknown sample	K4
10.	Determination of water of crystallization and the formula of salt hydrates.		K4
11.	Preparation of Buffer solutions and Determination of buffer capacity by pH meter	Evaluate the efficiency of a buffer in resisting changes in ph.	K4

		Decide the combination of acid or base and their salts prepare buffer solutions	K4
12.	Determination of distribution coefficient of metals by paper chromatography- Monitoring a reaction progress using ThinLayer chromatographic technique.	principles for the determination of distribution	К3
		Interpret the reaction progress using thin layer chromatographic technique	К5

4. Mapping Scheme for the PO, PSOs and COs

PHYS	PHYSICAL CHEMISTRY PRACTICALCode:U19CH6P5												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	L	-	-	Н	L	Н	-	Н	Н	М	Н
CO2	Н	L	Μ	-	-	Н	-	Н	-	Н	М	-	Н
CO3	Н	Μ	Н	-	-	Μ	-	Н	-	Н	М	L	Н
CO4	Н	Μ	Н	-	-	Н	-	Н	_	Н	М	L	Н
CO5	Н	М	Н	L	-	М	-	Н	-	Н	М	L	Н
CO6	Н	Н	Н	М	-	Н	-	Н	-	Н	М	L	Н

5. Course Assessment Methods Direct:

- 1. Continuous Internal Assessment
- 2. Model Exams I and II
- 3. End Semester Practical Examination

UNDER GRADUATE PROGRAMME

Allied Chemistry Syllabus

For

Botany / Zoology / Bio-Technology / Env.Science / Physics

For the students admitted in the academic year 2020 -2021

PG & RESEARCH DEPARTMENT OF CHEMISTRY (DST-FIST Sponsored & DBT-STAR Scheme) BISHOP HEBER COLLEGE (Autonomous) (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAACRecognized by UGC as "College of Excellence" TIRUCHIRAPPALLI – 620 017

					Hrs/		Marks		KS
Sem	Part	Course	Code	Title	Week	Credit	CIA	ESA	Total
III	III	Allied-IV	U19CHY34	Allied Chemistry-I	4	3	25	75	100
IV	III	Allied-IV	U19CHY45	Chemistry for Physicists	4	4	25	75	100
IV		Allied Practical-I		Volumetric and Organic Analysis	3+3	3	40	60	100

B.Sc.Physics (For the candidates admitted from the year 2019 onwards)

Allied Chemistry Courses – B.Sc. Botany /Zoology

						Urc/		1
(For the ca	indidates	admitted	from	the y	ear 2	019 onw	ards)	
		•				•	0.	

					Hrs/		l	Mark	KS
Sem	Part	Course	Code	Title	Week	Credit	CIA	ESA	Total
III	III	Allied-III	U19CHY33	Allied Chemistry-I	4	4	25	75	100
IV	III	Allied-IV	U19CHY44	Chemistry for Life Sciences	4	4	25	75	100
IV		Allied Practical-II	U19CHYP2	Volumetric and Organic Analysis	3+3	3	40	60	100

Allied Chemistry Courses –Bio-Technology

(For the candidates a	admitted from	the year 2019	onwards)
-----------------------	---------------	---------------	----------

					Hrs/]	Marl	KS
Sem	Part	Course	Code	Title	Week	Credit	CIA	ESA	Total
III	III	Allied-III	U19BTC33	Allied Chemistry-I	4	4	25	75	100
IV	III	Allied-IV	U19BTC44	Chemistry for Life Sciences	4	4	25	75	100
IV		Allied Practical-II	U19BTCP2	Volumetric and Organic Analysis	3+3	3	40	60	100

Allied Chemistry Courses – B.Sc.Env. Science

(For the candidates admitted from the year 2019 onwards)

					Hrs/]	Mark	KS
Sem	Part	Course	Code	Title	Week	Credit	CIA	ESA	Total
III	III	Allied-III	U19ESCY33	Allied Chemistry-I	4	4	25	75	100
IV	III	Allied-IV	U19ESCY4	Chemistry for Environmentalists	4	4	25	75	100
IV		Allied Practical-III		Allied Chemistry Practicals	3	3	40	60	100

PG Bio-Informatics (Integrated)

SBEC-Chemistry Course

								Mark	s
Sem	Part	Course	Code	Title	Hrs/ Week	Credit	CIA	ESA	Total
IV	SBEC	I16BI2S1	General Chemistry – I	2	1	100	-		100

For B. Sc. Physics, Botany, Zoology, Env.Sciences and Biotechnology

Allied :IV/III Semester: III

1. Course Outcomes:

ALLIED CHEMISTRY-I Code : U19CHY34 /U19CHY33 / U19CHY33 /U19ESCY3 /U19BTC33

Credits : 3

Total Hours : 60 Hours/Week :4

After the completion of this course the students will be able to:

S.No.	Course Outcomes	Level	Unit
1	Distinguish the geometry and shape of molecules using VSEPR theory	K4	Ι
2	Illustrate the mechanism for different basic organic reactions	K3	II
3	Compare the different concepts of acids and bases	K2	III
4	Explain the kinetics of chemical reactions	K3	IV
5	Summarize the applications of catalytic reactions	K2	IV
6	Identify different applications of colloids in day-to-day life	K2	V

2A. Syllabus

Unit – I

Chemical Bonding

12 Hours

1.1 Ionic bond- Nature of Ionic bond-structure of NaCl, KCl & CsCl- Factors influencing the formation of ionic bond.
1.2. Covalent bond- nature of covalent bond-VSEPR theory - shapes of BeCl₂, BF₃, CH₄, PCl₅, IF₇,NH₃& H₂O.
1.3 Coordinate Bond Nature of coordinate bond. Warner's theory and structure of some complexes. Ni(CO)

1.3 Coordinate Bond–Nature of coordinate bond, Werner's theory and structure of some complexes - Ni(CO)₄, [Co(NH₃)₆]Cl₃, K₄[Fe(CN)₆].

1.4. Hydrogen bonding-Theory of Hydrogen bonding - Inter and Intra molecularhydrogen bonding- consequences of hydrogen bonding, van der Waals and London Dispersive forces in simple molecules.

Unit- II

Types of Reactions

2.1- Types of chemical reactions, Types of intermediates- Electrophiles – nucleophiles – free radicals.

2.2 – Substitution Reactions: Nucleophilic and electrophilic substitution with mechanism (one example for each), Addition Reactions (Addition of HBr on alkenes) – Elimination Reactions (Dehalogenation of alkyl halides) – Condensation Reactions (formation of ester).

2.3 – Polymerization Reactions (Formation of Poly vinyl Chloride) – Reduction reactions (Hydrogenation of oil)-Oxidation Reactions (Conversion of benzaldehyde to benzoic acid).

UNIT-III

Solutions

3.1 Types of Solutions – Homogeneous and Heterogeneous, saturated and unsaturated, Mole Concept, Normality, Molarity, Molality and Parts per Million–**Problems.**

3.2Primary and secondary standards and preparation of standard solutions -Problems.

3.3 Acids and bases: Arrhenius, Lowry- Bronsted, Lewis concepts- strong and weak acids and Bases-pH, pK_a, pK_b, buffer solutions, Derivation of Henderson – Hasselbalch equation.

Unit- IV Chemical Kinetics and Catalysis

4.1 Chemical kinetics: rate of reaction, order, molecularity, first order rate law, half life period and derivation of the first order rate equation.

4.2 Catalysis–homogeneous and heterogeneous catalysis, intermediate complex formation theory and adsorption theory, Positive and Negative Catalysis, Promoters and poisons, Auto catalysis, applications.

4.3 Enzyme catalysis Mechanism and Michaelis-Menton Equation (No derivation)- Factors affecting enzyme

12 Hours

12Hours

12 Hours

catalysis.

Unit- V Colloids

12 Hours

5.1 Colloids – Types with examples – classification based on affinity (Lyophilic & Lyophobic).

- 5.2 Optical, Kinetic and Electrical properties of colloids- Electrophoresis, Electro-osmosis, Peptization, Coagulation.
- **5.3** Applications of colloids- Dialysis, Desalination of water, Artificial Rain.

2B. Self Study Topics:

- 1. <u>https://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc-introduction-to-solid-state-chemistry-fall-2010/syllabus/MIT3_091SCF09_aln02.pdf</u>
- 2. <u>https://profiles.uonbi.ac.ke/sderese/files/h-sch 102 -</u> <u>types of organic reactions and mechanisms.pdf</u>
- 3. https://www.askiitians.com/revision-notes/chemistry/solutions/
- 4. https://www.britannica.com/science/catalysis
- 5. https://nios.ac.in/media/documents/313courseE/L10.pdf

2C. Text Books

- 1. B.R. Puri, L.R. Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2017 (Unit I, II, III)
- 2. Arun Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand & Co. Ltd., New Delhi, 2012 (Unit IV)
- **3.** B.R. Puri, L.R. Sharma and Madan S. Pathania, Principles of Physical Chemistry Vishal Publishing Co., Jalandhar, 2017 (**Unit V**)
- 4. P.L.Soni, H.M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, 2004
- 5. R.L. Madan and G.D. Tuli, Inorganic Chemistry, S. Chand Co. Ltd., New Delhi, 2010
- 6. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Meerut, 2016.

2D. Recommended Reference Books

- 1. J.D. Lee, "Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- 2. Morrison and Boyd "Organic Chemistry" Pearson Education, 2016.
- 3. Peter Atkins and Julio de Paula, "Physical Chemistry" Oxford University Press, 2018.

2E.Web Links:

- 1. <u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Wade)/04%</u> <u>3A_The_Study_of_Chemical_Reactions/5.01%3A_Introduction</u>
- 2. <u>https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Principles_of_Modern_Chemistry (Oxtoby_et_al.)/Unit_5%3A_Rates_of_Chemical_and_Physical_Processes/18%3A_Chemical_Kinetics/1 8.7%3A_Kinetics_of_Catalysis</u>

3. Specific Learning Outcomes:

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Un	it-1 :Chemical Bonding	
1.1	Ionic bond - Nature of ionic	Recall the concepts of formation	K1
	bond; Factors influencing the formation of ionic bond	Explain the factors influencing the formation of ionic bond.	K2
1.1	Structure of NaCl, KCl and CsCl	Compare the structure of NaCl, KCl and CsCl	K2
1.2	Covalent bond; Nature of Covalent bond	Explain the concept of Covalent bond with examples	K2
1.2	VSEPR theory	Predict the shape of a given molecule based on VSEPR theory	K4
1.3	Coordinate bond; Nature of Coordinate bond	Explain the concept of Coordinate bond	K2
1.3	Werner's theory and structure of some complexes	Infer the structure of some complexes with the aid of Werner's theory	K2
1.4	Hydrogen bonding; Theory and types of hydrogen bonding; Consequence of hydrogen bonding	Compare the types of hydrogen bonding in compounds	K4
1.5	Van der Walls forces and London Dispersive forces	Identify the various forces of attraction in molecules	K3

	Un	it 2: Types of Reactions	
2.1	Types of intermediates – Electrophiles, Nucleophiles and Free radicals	Compare the different types of radical intermediates	К2
2.2	Substitution reactions – Electrophilic, Nucleophilic with mechanism	Explain the electrophilic and nucleophilic substitutions along with mechanism	K3
2.2	Addition reaction – Addition of HBr on alkenes	Apply the mechanistic pathway for addition reaction to alkenes	K3
2.2	Elimination reactions – Dehalogenation of alkyl halides	Apply the mechanistic pathway for Dehalogenation of alkyl halides	K3
2.2	Condensation reactions – formation of ester	Explain the condensation reaction with an example	K2
2.3	Polymerization reactions – formation of poly vinyl chloride	Describe the preparation method of PVC	K2
2.3	Reductionreactions-hydrogenation of oil	Explain the reaction of hydrogenation of oil	K2
2.3	Oxidation reactions – conversion of benzaldehyde to benzoic acid	Write the mechanism for conversion of benzaldehyde to benzoic acid	К3
		Unit 3: Solutions	
3.1	Homogeneous and Heterogeneous solutions, Saturated and Unsaturated solutions	Identify the different types of solutions	K2
3.1	Mole concept – Normality, Molarity, Molality and Parts per Million – problems	Calculate strength of given solution based on mole concept	K2
3.2	Primary and secondary standard solutions and preparation	Identify the primary and secondary standard solutions	K2
3.3	Arrhenius theory	Outline the Arrhenius theory concept of acids and bases.	K2
3.3	Lowry-Bronsted theory	Explain the Lowry-Bronsted theory concept of acids and bases.	K2
3.3	Lewis acid base theory (strong and weak)	Classify strong and weak acids and bases with the aid of Lewis acid base theory	K2
3.3	Buffer solutions Henderson-Hasselbalch equation	Predict the pH of the buffer solution based on Henderson-Hasselbalch equation	K2
	Unit 4 Ch	emical Kinetics and Catalysis	
4.1	Rate law	Explain the rate of chemical reaction	K2
4.1	Order and Molecularity of a chemical reaction	Compare the order and molecularity of chemical reaction	K2
4.1	Half life period	Illustrate the half life period of particular reactions	K2
4.1	First order rate constant equation	Develop the rate constant equation for first order reaction	K3
4.2	Homogeneous and Heterogeneous catalysis	Compare the homogeneous and heterogeneous catalysis	K2
4.2	Intermediate complex formation theory	Explain the formation of intermediate complex theory	K2
4.2	Adsorption theories of catalysis	To explain the theories of adsorption of catalysis	K2

4.2	Positive catalyst, Negative catalyst, Auto catalyst, promoters and poisons	Classify the catalyst based on their function	К2
4.2	Application of catalysis	Summarize the application of catalysis	K2
4.3	Enzyme catalysis – mechanism Michaelis – Menton Equation (no derivation)	Explain the mechanism of enzyme catalysis based on Michaelis-Menton Equation .	K2
4.3	Factors affecting the enzyme catalysis	Explain the factors which affect the enzyme catalysis	K2
	· ·	Unit 5: Colloids	
5.1	Colloids and its types with examples; Lyophilic and Lyophobic colloids	Classify the types of colloids with examples	K2
5.2	Optical and Kinetic properties of colloids(electrophoresis, electro osmosis)	Compare the optical and kinetic properties of colloids	K2
5.3	Peptization and Coagulation	Differentiate the properties of peptization and coagulation	K2
5.4	Applications of colloids – Dialysis, Desalination of water and Artificial Rain	Identify different applications of colloids in day-to-day life	K2

4. Mapping of COs with POs and PSOs for B.Sc. Zoology

ALLIED CHEMISTRY-I

U19CHY33

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	-	-	-	-	-	-	-	-	-	-	-
CO2	Н	L	L	-	-	-	-	-	L	-	L	Н	L
CO3	Н	-	-	Н	Μ	Н	Μ	-	-	-	-	Н	-
CO4	Н	Μ	Μ	Μ	Μ	-	-	-	Н	L	L	Н	L
CO5	Н	Н	L	-	-	-	-	L	М	-	L	М	М
CO6	Н	Н	H-	L	-	-	Н	Н	М	L	-	Н	L

	ALLIED CHEMISTRY-I										U19ESCY3					
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4			
CO1	Н	-	-	-	-	-	-	-	-	-	-	-	-			
CO2	Н	-	L	L	М	-	-	-		М	L	L	-			
CO3	Н	Μ	-	-	Н	-	Μ	Н	Μ	L	-	-	-			

CO4	Н	L	Μ	М	-	-	Μ	-	Н	L	L	L	-
CO5	Н	-	-	-	L	-	-	-	М	М	L	L	М
CO6	Η	Н	М	М	Н	-	-	Н	Н	М	-	-	М

	Mapping of COs with POs and PSOs for B.Sc.Bio-Technology													
		ALLIF	ED CH	EMIST		U19BTC33								
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
CO1	L	Н	L	-	-	-	L	-	L					
CO2	Н	Н	L	-	-	-	L	-	L					
CO3	М	Н	М	-	L	-	L	-	L					
CO4	L	Н	L	-	-	-	L	-	L					
CO5	L	Н	L	-	-	-	L	-	L					
CO6	М	Н	Н	-	L	-	L	-	L					

Г

Allied-V Semester: IV Credits: 4

CHEMISTRY FOR PHYSICISTS

Course Code : U19CHY45 Total Hours : 60 Hours/Week: 4

1. Course outcomes:

After the completion of this course the students will be able to:

S.No.	Course Outcomes	Level	Unit
1	Explain the concepts of electrochemistry and its applications	K4	Ι
2	Apply the principles of solid-state chemistry	K3	II
3	Categorize crystal structures and crystal defects	K4	III
4	Explain the principles of volumetric analysis and types of errors in experimental data	K3	IV
5	Analyze the composition of alloys and mixture based on phase rule	K4	V
6	Identify the significance of chemistry in day-to-day life	K2	V

2A. Syllabus

Unit – I

Electrochemistry

1.1 Introduction- specific conductance, equivalent conductance, cell constant, Arrhenius theory, Ostwald's dilution law, Determination of equivalent conductance by Kohlrausch law, conductometric titrations (strong acid vs. strong base, strong acid vs. weak base, weak acid vs. strong base, precipitation titration) - Advantages of conductometric titrations.

1.2 EMF- Standard reduction potential-electrochemical series- reference electrodes-primary(SHE) & secondary electrodes (Calomel) -Nernst equation.

1.3 Theory of Corrosion and its prevention.

Unit–II

Solid State

2.1 Crystalline vs. amorphous Solids-Elements of Symmetry-Unit cell-Bravais lattice-Seven Crystal systems-Miller Indices -Problems.

2.2 Lattice energy–Born–Haber Cycle–factors affecting lattice energy-**Problems.**

2.3 Defects in crystals- stoichiometric and non- stoichiometric defects.

2.4 Properties, Importance and uses of materials-Spinels-Inverse Spinels -Pervoskites.

Unit-III

Analytical Chemistry 3.1 Error analysis: accuracy, precision, Types of errors - determinate and indeterminate errors, relative error, absolute error.

3.2. Titrimetry - principle, acid-base titrations and redox titrations with examples-End point and equivalence points. Types of indicators, Theory of Indicators - Quinonoid theory.

3.3 Photochemistry: Laws of Photochemistry, components of a colorimeter (Block diagram), application (estimation of iron).

3.4. Chromatography-introduction-principle, sampling and applications of paper, column and thin layer chromatography.

3.5. Purification methods – Steam distillation, Vacuum Distillation, Fractional Distillation, Solvent extraction, Crystallization and Sublimation.

12 Hours

12 Hours

Unit - IV

Phase Equilibria

12 Hours

1.1 Phase–Components–Degrees of Freedom–Gibbs Phase Rule & Reduced Gibbs rule (No Derivation)

1.2 Phase equilibria of one component system (water), Two component system- Simple Eutectic (Pb- Ag), Freezing mixture (NaCl $-H_2O$)

1.3 Mesomorphic State–Liquid Crystals–Types- applications.

Unit- V

- V Industrial Chemistry

5.1- Synthetic Polymers: Preparation, Properties and uses of Teflon, Polyester, Nylon-66, PVC, Polyethylene. **5.2** – Halogen containing compounds: Preparation and uses of Freons, CH₂Cl₂, CHCl₃, CCl₄, Pesticides- DDT, BHC-Preparation and uses.

5.3- Fuel gases: Water gas, Producer gas, LPG, Gobar gas, Natural Gas- Manufacture and uses.

5.4- Cosmetics: Basic ingredients, Additives and fragrances used in Soaps, Toothpaste, Lipstick, Perfumes, Deodorants and Antiperspirants. Basic tests for identification of good and bad cosmetics - pH test.

2B. Self Study Topics:

- 1. Chromatography:<u>https://www.britannica.com/science/chromatography/Subsequent-developments</u>
- 2. Error Analysis: http://web.iyte.edu.tr/~serifeyalcin/lectures/chem201/cn_5.pdf
- 3. Solid State: <u>https://courses.edx.org/asset-</u> v1:MITx+3.091x_5+3T2015+type@asset+block/handouts_Witt_LectureNotes_6.pdf
- 4. https://www.lucideon.com/testing-characterization/analytical-techniques-chemical-analysis
- 5. Polymer Chemistry: <u>https://www.ch.ntu.edu.tw/~sfcheng/HTML/material94/Polymer-1.pdf</u>
- 6. Analytical Techniques: <u>https://www.lucideon.com/testing-characterization/analytical-techniques-chemical-analysis</u>

2C. Text Books

1. Tiwari K.S., Melhotra S.N., Vishnoi N.K, *A Text book of Organic Chemistry*, Vikas Publishing House Pvt. Ltd., New Delhi, 2006 (Unit-I, V).

2. R. Gopalan, P. S. Subramanian and K. Rengarajan, *Elements of Analytical Chemistry*, Sultan Chand and Sons, New Delhi, 1997(Unit- IV).

3. Puri B.R., Sharma L. R., Kalia K.K, *Principles of Inorganic Chemistry*-23 rd edition, NewDelhi, Shoban Lal Nagin Chand & Co, 1993(Unit- I, III).

4.Puri B.R., Sharma L. R., Kalia K.K, *Principles of physical Chemistry*, 23 rd edition, New Delhi, Shoban Lal Nagin Chand & Co, 1993(Unit-II).

2D. Recommended Reference Books

1.R.T. Morrison & R.N.Boyd, *Study Guide to Organic Chemistry*, Prentice Hall, New Delhi, 2000. 2.R.L. Madan and G.D.Tuli, *Inorganic Chemistry*, S. Chand Co., Ltd., New Delhi, 2003 7.

3.Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Meerut, 2000.

2E. Web Links:

- 1. Electrochemistry: https://ncert.nic.in/textbook/pdf/lech103.pdf
- 2. Solid State :<u>https://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc-introduction-to-solid-state-chemistry-fall-2010/syllabus/MIT3_091SCF09_aln04.pdf</u>
- 3. Polymer Chemistry: <u>https://www.ch.ntu.edu.tw/~sfcheng/HTML/material94/Polymer-1.pdf</u>
- 4. Analytical Chemistry: <u>http://www.uvm.edu/~gpetrucc/courses/chem196/Textbooks/Manahan%20-%20Fundamentals%20of%20Environmental%20Chemistry/1491Ch25.pdf</u>

3. Specific Learning Outcomes:

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit I	Electrochemistry	
1.1	Specific and Equivalent conductance	Calculate specific and equivalent conductance of the given electrolyte.	К2
1.1	Ostwald's dilution law	Explain the principle of Ostwald's dilution law	K2
1.1	Determination of equivalent conductance by Kohlrausch law.	Apply the principle of Kohlrausch law to detect equivalent conductance	К3
1.1	Conductometric titrations and its advantages	Apply the conductometric titrationprinciplesfordetectingconcentration of given electrolyte.	K3
1.2	Standard reduction potential (EMF)	Find out the potential difference of redox reaction	K2
1.2	Reference electrode; primary and secondary electrodes	List out the types of electrodes with an example	K2
1.2	Nernst equation	Explain the Nernst equation for determining cell potential of a reaction.	K4
1.3	Corrosion and its prevention	Describe corrosion and its prevention techniques.	K2
	Uni	t – 2: Solid State	
2.1	Crystalline vs Amorphous solids	Differentiate crystalline and amorphous solids	K2
2.1	Elements of Symmetry, Unit	Define unit cell.	K2
	Cell, Bravais Lattice	Recollect elements of symmetry in crystal system.	K2
2.2	Lattice Energy; Born-Haber Cycle; Factors affecting lattice	Calculate lattice energy for NaCl from Born Haber cycle.	К3
	energy	Recall the factors affecting lattice energy.	K1
2.3	Defects in crystals – stoichiometric and non- stoichiometric defects	Classify the crystals based on stoichiometric and non- stoichiometric defects	K4
2.4	Properties, Importance and uses of materials – Spinels- Inverse Spinels - Pervoskites	Distinguish Spinels and inverse spinels with examples.	К2
		Analytical chemistry	
3.1	Error analysis – accuracy, precision	Explain the differences between accuracy and precision	К3

3.2	Determinate and indeterminate	Illustrate determinate & indeterminate errors, relative &	K3
	errors, relative error, absolute error	absolute errors with suitable examples.	
3.2	Titrimetry - principle	Illustrate the principles behind the	K2
	Acid – Base titrations and	various kind of titrations.	
	Redox titrations with examples-		K2
	End point and Equivalence	Differentiate the end point and	κ <i>z</i>
	point	equivalence point.	
3.2	Theory and types of indicators	Select suitable indicators for various	K2
		kind of titrations.	IX2
3.2	Beer-Lambert's law	Define Beer-Lambert's law	K1
	Colorimeter, components and	Apply the principle of colorimetric	
3.3	applications (estimation of	techniques for estimation of iron	K3
	iron)		
_	Chromatography – principle	Recall the principle of	K 1
3.4		chromatography techniques	N1
	Applications of thin layer,	Summarize the applications of TLC,	
3.4	column and paper	column and paper chromatography	K3
	chromatography	techniques	
3.5	Purification methods – steam	Explain the principles behind	
	distillation, Vacuum	various purification technique	K3
	distillation and Fractional		K5
	distillation		
3.5	Solvent extraction	Explain Solvent extraction method	
		for separating the desired	K3
		compound from the mixture	
3.5	Crystallization and sublimation	Explain the crystallization and	
		sublimation process for purifying	K3
		the substance in solid phase	
		4 Phase Equilibria	
4.1	Phase – Components, Degrees	Analyze the components and find	
	of Freedom	out degrees of freedom using phase	K4
		rule.	
4.1	Gibbs & Reduced Gibbs rule	Compare Gibbs & Reduced Gibbs	K2
	(No Derivation)	rule in phase component system	
4.1	Phase equilibria of one	Explain one component and two	
	component system (water) and	component systems in phase	
	two component system Simple	equilibria with examples.	K3
	Eutectic (Pb-Ag), Freezing		
	mixture (NaCl-H ₂ O)		
4.2	mesomorphic state	Explain the role of mesomorphic	K2
		state	
		Industrial Chemistry	
5.1	Synthetic polymers –		
	preparation, properties and	Explain the preparations, properties	
	uses of Teflon, Polyester,	and uses of various polymers.	K2
	Nylon-66, PVC &		
	Polyethylene		

5.2	Preparation and uses of Freons (CH ₂ Cl ₂ , CHCl ₃ , CCl ₄)	Explain the preparation and uses of alkyl derivatives of chlorine.	K2
5.2	Pesticides (DDT, BHC) – preparation and uses	Compare the properties and uses of pesticides	K2
5.3	Manufacture of Water gas, producer gas, LPG gas, Natural gas and Gobar gas	Describe the manufacturing process of various fuel gases and its usage.	K2
5.4	Cosmetics: Ingredients, Additives and fragrance used in Soaps, Toothpastes, Lipsticks, Perfumes, Deodorants and Antiperspirants	Identify the ingredients and Additives in various cosmetics available in the market.	K2
5.4	Basic tests for identification of good and bad cosmetics – pH test	Identify good and bad cosmetics using pH	K2

4. Mapping of COs with POs and PSOs of B.Sc. Physics

	CHEMISTRY FOR PHYSICISTS Course Code : U19CHY45														
PO/PSØ CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4		
CO1	Η	H	Μ	L	Н	Μ	Н	-	L	Η	Н	Η	Н		
CO2	Η	H	Μ	L	Η	Μ	Н	-	-	Η	Н	-	Н		
CO3	Н	Η	Н	L	Н	Μ	Н	-	-	Н	Н	-	Н		
CO4	Η	M	Μ	Η	Η	Μ	Н	-		-	-	-	Н		
CO5	Н	H	Н	L	Н	Μ	Н	-	-	Н	Н	-	Н		
CO6	Н	M	Μ	L	Н	Μ	Н	-	-	-	Μ	-	Н		

CHEMISTRY FOR LIFE SCIENCES (For B.Sc. Bot. / Zoo. / Bio-Tech.)

Allied IV

Semester: IV Credits: 4

Code: U19CHY44 / U19CHY44 / U19BTC44 **Total Hours : 60** Hours/Week: 4

1. Course Outcomes:

On Completion of this course, the students will be able to:

S.No.	Course Outcomes	Level	Unit
1	Explain the structure and properties of biomolecules	K4	Ι
2	Identify the types of water, quality parameters and treatment processes	K3	II
3	Distinguish various kinds of errors in data collection	K2	III
4	Explain the fundamentals of separation and purification techniques	K2	IV
5	Identify the significance of Chemistry in day-to-day life	K2	V
6	Outline the properties and applications of various polymers	K2	V

2A. Syllabus

Unit–I **Chemistry of Biomolecules**

1.1 Classification of carbohydrates, glucose & fructose – preparation, properties–muta-rotation, Inter-conversion of glucose and fructose, manufacture of sucrose, test for sugars.

1.2 Amino acids – preparation and properties of glycine and alanine, peptides (elementary treatment) - proteinsclassification based on physical properties and biological functions- structure of proteins – primary and secondary – Test for proteins.

1.1 Coordination compounds: biological role of hemoglobin and chlorophyll.

Unit-II **Chemistry of Water**

2.1 Water as a universal solvent-hardness of water- permanent and temporary hardness, disadvantages of hard water-DO, BOD and COD -definition, Methods of determination (any one method).

2.2 Water Softening methods - Zeolite process, Reverse Osmosis.

2.3 Preparation of De-ionized water-Distilled water-Double Distilled water-Packaged drinking water.

Unit-III **Basics of Quantitative Analysis**

3.1. Error analysis: accuracy, precision, determinate and indeterminate errors, relative error, absolute error. **3.2.** Quantitative analysis: Titrimetry- principle, acid-base titrations and redox titrations with examples -End point and equivalence point.

3.3. Theory of Indicators- Types of indicators - Quinonoid theory.

Unit-IV **Analytical Techniques**

4.1 Chromatography-introduction-principle, sampling and applications of paper, thin layer and column chromatography.

12Hours

12 Hours

12Hours

4.2 Photochemistry: Laws of Photochemistry, components of a colorimeter (Block diagram), application(estimation of iron).

4.3Purification methods – Steam distillation, Vacuum Distillation, Fractional Distillation, Solvent extraction, Crystallization and Sublimation.

Unit- V Industrial Chemistry

12 Hours

5.1-Synthetic Polymers: Preparation, Properties and uses of Teflon, Polyester, Nylon-66 PVC, Polyethylene.

5.2 – Halogen containing compounds: Preparation and uses of Freons, CH₂Cl₂, CHCl₃, CCl₄, Pesticides- DDT, BHC-Preparation and uses.

5.3- Fuel gases: Water gas, Producer gas, LPG, Gobar gas, Natural Gas- Manufacture and uses.

5.4- Cosmetics: Basic ingredients, Additives and fragrances used in Soaps, Toothpaste, Lipstick, Perfumes, Deodorants and Antiperspirants. Basic tests for identification of good and bad cosmetics-pH test.

2B. Self Study Topics:

- 1. Water Chemistry: https://www.cusd80.com/cms/lib/AZ01001175/Centricity/Domain/586/Lecture_Water.pdf
- 2. Polymer Chemistry: https://www.ch.ntu.edu.tw/~sfcheng/HTML/material94/Polymer-1.pdf
- 3. Analytical Techniques: <u>https://www.lucideon.com/testing-characterization/analytical-techniques-chemical-analysis</u>

2C. Text Books

- 1. Tiwari K.S., Melhotra S.N., Vishnoi N.K, *A Text book of Organic Chemistry*, Vikas Publishing House Pvt. Ltd., New Delhi, 2017. (Unit-I, V).
- 2. R. Gopalan, P. S. Subramanian and K. Rengarajan, *Elements of Analytical Chemistry*, Sultan Chand and Sons, New Delhi, 1997. (Unit- IV).
- **3.** Puri B.R., Sharma L. R., Kalia K.K, *Principles of Inorganic Chemistry*, 23rd Edition, New Delhi, Shoban Lal Nagin Chand & Co, 2107. (**Unit- I, III**)
- **4.** Puri B.R., Sharma L. R., Kalia K.K, *Principles of physical Chemistry*, 23rd Edition, New Delhi, Shoban Lal Nagin Chand & Co, 2017. (**Unit-II**).
- 5. B.K. Sharma, *Industrial Chemistry*, Goel Publishing Co., 1997.

2D. Recommended Reference Books

- 1. R.T. Morrison & R.N.Boyd, Study Guide to Organic Chemistry, Pearson Education, New Delhi, 2016.
- 2. R.L. Madan and G.D.Tuli, Inorganic Chemistry, S. Chand Co., Ltd., New Delhi, 2010
- 3. Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing House, Meerut, 2016.

2E .Web Links :

- 1. Biomolecules: <u>http://med.fau.edu/students/md_m1_orientation/Overview.pdf</u>
- 2. Water Chemistry: https://dnr.mo.gov/env/wpp/vmqmp/docs/chpt-07-intro-water-chemistry-1-09.pdf
- 3. Analytical Chemistry: <u>http://www.uvm.edu/~gpetrucc/courses/chem196/Textbooks/Manahan%20-%20Fundamentals%20of%20Environmental%20Chemistry/1491Ch25.pdf</u>

3. Specific Learning Outcomes:

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit I: Chen	nistry of Biomolecules	
1.1	Classification of carbohydrates- glucose & fructose. preparation, properties.	Classify carbohydrates and explain thepreparations and properties	K2
1.1	Muta-rotation, Inter-conversion of glucose and fructose,	Explain the dependence of optical rotation with the structure of carbohydrates under study.	K2
1.1	manufacture of sucrose	Describe the manufacturing processes of of sucrose.	K2
1.1	Test for sugars.	Identify the sugar using the standard chemical test	K2
1.2	Amino acids–preparation and properties of glycine and alanine, peptides (elementary treatment)	Recite the preparation and properties of glycine.	K1
1.2	proteins-classification based on physical properties and biological functions	Categorize proteins in to different types based on the biological functions	K4
1.2	Structure of proteins – primary and secondary.	Explain primary and secondary structures of proteins	K2
1.2	Test for proteins	Identify the protein using the standard chemical test	К3
1.3	Coordination compounds- biological role hemoglobin and chlorophyll.	Explain the importance of metallophorphyrine on oxygen transfer and photosynthesis	K2
	Unit II: Chemistry	of Water	
2.1	Water as a universal solvent.	Describe the important role of water in everyday life	K2
2.1	Hardness of water- permanent and temporary hardness, disadvantages of	Discuss the impact of hardness in water.	K2
	hard water	Classify hardness of water as permanent and Temporary	K2
2.1	DO, BOD and COD - definition, Methods of determination (any one method).	Apply the BOD and COD concepts to determine the quality of water.	K3
2.2	Water Softening methods - Zeolite process, Reverse Osmosis.	Describe the Zeolite and Reverse Osmosis processes of water softening.	K2
2.3	Preparation of De-ionized water- Distilled water-Double Distilled water-Packaged drinking water	Explain the processes of water purification.	K2
	Unit III :Basics	of Quantitative Analysis	
3.1	Error analysis: accuracy, precision, determinate and indeterminate errors,	Identify the types of errors in the given set of data	K2

	rela	ative erro	or, absol	ute erro	r.										
3.2	Qua	antitativ	e anal acid-ba	•	Titrimet ations a	.1 y -	llustrate arious ki	-	-	ehind th	e	K2			
	red	ox titrat	tions wi quivalen	th exar	nples -E	End I	dentify the dentify the dentify the dentify the dentified of the dentified of the dentify				e	K2			
3.3	Ine	-	Indicator Quinon				elect suit			or variou	IS	K2			
				I	Unit IV	':An	alytical	technie	ques						
4.1	prir pap	nciple, sa	raphy-in ampling in lay caphy.	and app	lications	s of C	Dutline th Chromato	-	•			K2			
4.2	Pho cole	orimeter	istry, c	lock	ents of diagrai	a to	Describe to find the olution.			K2					
4.3	dist Fra extr	ification tillation, ctional raction, olimation	Vacu Distillat Crys	ium l	Distillati lvent		Dutline various pu	the p rificatio	d	K2					
	•				Unit V	: Ind	Industrial chemistry								
5.1	Pro Pol	perties a	Polymers and uses Nylon-66 ne	of Tefle			Explain th nd uses o		s	K2					
5.2	Hal Pre	logen co paration	ontaining and use HCl ₃ , CC	s of Fre			Explain th lkyl deriv		f	K2					
5.2		ticides- l uses	DDT, B	HC- Pre	eparatior		Compare (esticides		erties an	d uses of	2	K2			
5.3	LPO	G, Goba	Water g ar gas, Na re and us	atural G			Describe t of various					K2			
5.4	Cos Add Soa Per	smetics: ditives a aps, Too	Basic in and fragr thpaste, Deodora	igredien ances us Lipstick	sed in	A	dentify th Additives vailable i	in vario		K2					
5.4	Bas	sic tests	for iden smetics -		•		dentify g sing pH		l bad co	smetics		K2			
4.		0	with PO STRY 1				•		Cod	le: U190	CHY44				
Jonning	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	DOU	PSO1	PSO2	PSO3	PSO4		
Mapping CO1	- POI	M M	H H	r04	-	- FU0	- FU/	РО8 М	PO9 M	-	-	-	-		
	-	H	H	-	- H	- H	-	H	M	-	-	-	-		
CO_2			M	-	-	-	-	M	M	-	-	-	-		
CO2 CO3	-	H	IVI				1	1 .	1	1	1	1	1		
CO2 CO3 CO4	-	H M	H	-	-	-	-	Н	Μ	-	-	-	-		
CO3	- - 			-	- H	- H	-	H H	M M	-	-	-	-		

Mapping of COs with POs and PSOs of B.Sc. Bio-TechnologyCHEMISTRY FOR LIFE SCIENCESCode: U19BTC44

			r										
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Η	Η	Н	Μ	L	L	М	М				
CO2	Η	Η	Η	Н	Μ	L	L	М	М				
CO3	Η	Η	Η	Н	Η	L	L	М	М				
CO4	Η	Η	Η	Н	М	L	L	М	М				
CO5	Η	Η	Η	Н	М	L	L	М	М				
CO6	Η	Η	Η	Н	М	L	L	М	М				

Mapping COs with POs and PSOs of B.Sc.Zoology

CHEMISTRY FOR LIFE SCIENCES

Code: U19CHY44

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	-	М	Н	-	-	-	-	М	М	-	-	-	-
CO2	-	Н	Н	-	Н	Н	-	Н	М	-	-	-	-
CO3	-	Н	М	-	-	-	-	М	М	-	-	-	-
CO4	-	Μ	Н	-	-	-	-	Н	М	-	-	-	-
CO5		Н	Н	-	Н	Н	-	Η	Μ	-	-	-	-
CO6	-	Н	Н	-	Н	Н	-	Н	М	-	-	-	-

Allied – IV Semester: IV Credits: 3

CHEMISTRY FOR ENVIRONMENTALISTS

Code: U19ESCY4 **Total Hours : 60** Hours/Week: 4

1. Course outcomes:

On completion of the course the student will be able to:

S.No.	Course Outcomes	Level	Unit
1	Analyze the constituents of atmosphere and chemistry of various atmospheric reactions	K4	Ι
2	Apply the concepts of water quality parameters and treatment processes	K3	Π
3	Identify the types of errors in experimental data	K2	III
4	Apply the principles of volumetric estimation	K3	IV
5	Explain principles of chromatographic and colorimetric techniques	K2	IV
6	Illustrate the mechanism of organic reactions	K3	V

2A. Syllabus

Unit–I **Chemistry of Atmosphere**

2.1-Chemical constituents of the atmosphere; oxygen in the atmosphere-atomic oxygen, molecular oxygen and ozone and their chemical reactions in atmosphere, Ozone-oxygen cycle in stratosphere-photochemical reactions in ozone laver.

2.2-Nitrogen and its compound in atmosphere - their sources and reactions, Photochemical reaction, O3 in troposphere, Inorganic carbon compounds- CO, CO₂ and their sources and reactions, Hydrocarbons in Atmosphere, Water vapor – hydroxyl radical formation and their reactions.

Unit–II **Chemistry of Water**

2.1 Water as a universal solvent-hardness of water- permanent and temporary hardness, disadvantages of hard water-DO, BOD and COD -definition, Methods of determination (any one method).

2.2 Water Softening methods - Zeolite process, Reverse Osmosis.

2.3 Preparation of De-ionized water-Distilled water-Double Distilled water-Packaged drinking water.

Unit-III **Basics of Quantitative Analysis**

3.1. Error analysis: accuracy, precision, determinate and indeterminate errors, relative error, absolute error. **3.2.** Quantitative analysis: Titrimetry- principle, acid-base titrations and redox titrations with examples -End point and equivalence point.

3.3. Theory of Indicators- Types of indicators - Quinonoid theory.

Unit-IV **Analytical Techniques**

4.1 Chromatography-introduction-principle, sampling and applications of paper, thin layer and column chromatography.

4.2 Photochemistry: Laws of Photochemistry, components of a colorimeter (Block diagram), application(estimation of iron).

4.3Purification methods – Steam distillation, Vacuum Distillation, Fractional Distillation, Solvent extraction,

12Hours

12Hours

12Hours

Crystallization and Sublimation.

Unit- V Industrial Chemistry

12Hours

5.1-Synthetic Polymers: Preparation, Properties and uses of Teflon, Polyester, Nylon-66 PVC, Polyethylene. **5.2** – Halogen containing compounds: Preparation and uses of Freons, CH₂Cl₂, CHCl₃, CCl₄, Pesticides- DDT, BHC-Preparation and uses.

5.3- Fuel gases: Water gas, Producer gas, LPG, Gobar gas, Natural Gas- Manufacture and uses.

5.4- Cosmetics: Basic ingredients, Additives and fragrances used in Soaps, Toothpaste, Lipstick, Perfumes, Deodorants and Antiperspirants. Basic tests for identification of good and bad cosmetics-pH test.

2B. Self StudyToipcs:

- 1. Atmosphere: http://www.uvm.edu/~gpetrucc/courses/chem196/lectures/Chemistry%20of%20the%20Atmosphere.pdf
- 2. Water Chemistry: https://www.cusd80.com/cms/lib/AZ01001175/Centricity/Domain/586/Lecture_Water.pdf
- 3. Polymer Chemistry: https://www.ch.ntu.edu.tw/~sfcheng/HTML/material94/Polymer-1.pdf
- 4. Analytical Techniques: <u>https://www.lucideon.com/testing-characterization/analytical-techniques-chemical-analysis</u>

2C. Text Books :

- 1. Tiwari K.S., Melhotra S.N., Vishnoi N.K, *A Text book of Organic Chemistry*, Vikas Publishing House Pvt. Ltd., New Delhi, 2006 (Unit-I, V).
- 2. R. Gopalan, P. S. Subramanian and K. Rengarajan, *Elements of Analytical Chemistry*, Sultan Chand and Sons, New Delhi, 1997(Unit- IV).
- 3. Puri B.R., Sharma L. R., Kalia K.K, *Principles of Inorganic Chemistry*-23 rd edition, New Delhi, Shoban Lal Nagin Chand & Co, 1993(Unit- I, III).
- 4. Puri B.R., Sharma L. R., Kalia K.K, *Principles of physical Chemistry*, 23 rd edition, New Delhi, Shoban Lal Nagin Chand & Co, 1993(Unit-II).

2D. Recommended Reference Books:

1.R.T. Morrison & R.N.Boyd, *Study Guide to Organic Chemistry*, Prentice Hall, New Delhi, 2000.

2.R.L. Madan and G.D.Tuli, *Inorganic Chemistry*, S. Chand Co., Ltd., New Delhi, 2003 7. 3.Gurdeep Raj, *Advanced Physical Chemistry*, Goel Publishing House, Meerut, 2000.

2E. Web Links:

- 1. Atmosphere: <u>https://www2.acom.ucar.edu/sites/default/files/ua/lecture1.pdf</u>
- 2. Water Chemistry: https://dnr.mo.gov/env/wpp/vmqmp/docs/chpt-07-intro-water-chemistry-1-09.pdf
- 3. Analytical Chemistry: <u>http://www.uvm.edu/~gpetrucc/courses/chem196/Textbooks/Manahan%20-%20Fundamentals%20of%20Environmental%20Chemistry/1491Ch25.pdf</u>

3. Specific Learning Outcomes:

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit I -	- Chemistry of Atmosphere	
1.1	Chemical constituents of atmosphere.	Discuss the chemical constituents of atmosphere	K2
1.1	Oxygen in the atmosphere Atomic oxygen, molecular oxygen & ozone and their reactions in atmosphere Ozone- oxygen cycle in the stratosphere Photochemical reactions in ozone layer	Explain the oxygen content and its reactions in atmosphere, ozone layer cycle and its photochemical reactions	K4
1.2	Nitrogen and its compound in atmosphere-Sources & reactions of N and its compound in atmosphere. Photochemical reactions Ozone in troposphere	Summarize the nitrogenous compounds in atmosphere, and its Photochemical reaction in troposphere.	K2
1.3	Inorganic compounds – CO & CO ₂ sources and their reactions Hydrocarbons in atmosphere Water vapour – Hydroxy radical formations and their reactions	Discuss about the inorganic compounds, hydrocarbons, formation and reaction of water vapourand hydroxy radical, in atmosphere.	K2
		II - Chemistry of Water	
2.1	Water as a universal solvent.	Describe the importance of water in everyday life	K2
2.1	Hardness of water – permanent & temporary Disadvantage of hard water Definition & determination of DO, BOD and COD	Explain the hardness, DO, BOD and COD in water.	K3
2.2	Water softening method – zeolite process and reverse osmosis	Explain the various water softening methods.	K3
2.3	Preparation of De-ionized water, Distilled water, Double distilled water and Packaged drinking water .	Describe the methods preparation of de- ionized, distilled and double distilled water.	K2
	Unit–III -	Basics of Quantitative Analysis	
3.1	Accuracy and precision of error analysis, Determinate and indeterminate errors, Relative and absolute error	Interpret the various types of errors with reasons in an experimental data.	K2

3.2	Quantitative analysis using titrimetry and its principle Acid base titration, Redox titrations – example End points and equivalent points	Illustrate the principles behind the various kind of titrations.	К3
3.3	Theory of indicators Types of indicators Quinanoid theory	Select indicators based on Quinonoid theory	К2
	Unit - IV	7 - Analytical Techniques	
4.1	Chromatography – principle, procedure, sampling	Outline the principles involved in chromatographic separations.	K2
4.1	Thin Layer, paper and column Chromatography – principle, procedure & applications	Explain the methodology of TLC, PC and Colum chromatography	K2
4.2	Colorimeter – Principle – Beer Lambert's law Components of colorimeter Applications of colorimeter – Iron estimation	Describe the colorimetric procedure to find the strength of iron in a given solution.	K2
	Unit- V	- Industrial Chemistry	
5.1	Types of chemical reactions Substitution reaction – Nucleophilic & Electrophilic	Explain the electrophilic and nucleophilic substitutions along with mechanism	К3
5.1	Addition of HBr on Alkenes	Apply the mechanistic pathway for addition reaction to alkenes	К3
5.1	Elimination reaction – Dehalogenation of Alkyl Halides	Apply the mechanistic pathway for Dehalogenation of alkyl halides	К3
5.1	Condensation – Formation of Ester	Explain the condensation reaction with an example	K2
5.1	Polymerization – Formation of poly vinyl chloride	Describe the preparation method of PVC	K2
5.1	Reduction – Hydrogenation of oil Oxidation- KMnO ₄ for conversion of benzaldehyde to benzoic acid	Write the mechanism of oxidation and reduction reactions.	K2
5.2	Types of intermediates – Electrophiles, Nucleophiles and Free radicals	Classify the reaction intermediates and their role in reaction mechanisms.	K2

4.Mapping of COs with POs and PSOs of B.Sc. Env.Sciences

		CHEM	IISTRY	FOR	ENVIR	ONME	ENTAL	ISTS	Code: U19ESCY4					
PO/PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO	PSO	PSO	PSO	
O CO										1	2	3	4	
CO1	Н	Μ	Н	L	Μ	L	Μ	-	Η	Η	Н	-	-	
CO2	Н	Μ	Н	Μ	Н	Μ	Μ	Μ	Μ	Н	Н	Н	Н	
005	L	L	L	IVI	L	IVI	-	-	-	-	-	-	-	

CO4	Μ	Μ	Н	H	Н	H	Μ	-	-	Μ	Н	Μ	-
CO5	Μ	-	Μ	Μ	L	L	-	-	L	Μ	Μ	-	-
CO6	L	L	-	-	-	-	-	-	-	-	-	-	-

Allied Chemistry Practical-I /II

VOLUMETRIC AND ORGANIC ANALYSIS

(For B.Sc. Physics / Botany /Zoology / Bio-Tech)

Semester: IV Credits: 3 Code: U19CHYP1, U19CHYP2,U19BTCP2 Total Hours : 90 Hours/Week : 6

1. Course Outcomes:

After the completion of the course the students will be able to:

S.No.	Course Outcomes	Level
CO1	Relate the basic principles and types of volumetric analysis.	K2
CO2	Infer the redox reaction concept.	K3
CO3	Estimate the strength of the given solution.	K3
CO4	Apply complexationconcept to check water quality	K3
CO5	Identify organic compounds and quantifying.	K5
CO6	Classify the primary standard solutions and to prepare standard solutions in different concentration units.	К3

2A. Syllabus

I. Preparation of standard solution (Molar, ppm & Normal) & basic principles of organic analysis

II. Volumetric Analysis

- 1. Estimation of hydrochloric acid (Acidimetry and Alkalimetry)
- 2. Estimation of sodium hydroxide (Acidimetry and Alkalimetry)
- 3. Estimation of oxalic acid using KMnO₄ (Permanganometry)
- 4. Estimation of ferrous sulphate KMnO₄ (Permanganometry)

III. Organic Analysis: Analysis of organic compounds (Carbohydrate, Diamide, Aldehyde, Ketone and Carboxylic Acid) with the following tests for,

- a. Aromatic/ Aliphatic nature,
- b. Saturation / unsaturation
- c. Solubility in common solvents and
- d. Presence of nitrogen

2B. Text Book

Venkateswaran, R. Veerasamy, A.R. Kulandaivelu, Basic Principles of Practical, Chemistry, Sultan Chand & Sons, New Delhi, 1997

2C. Self Study Topics:

- 1. https://www.aplustopper.com/prepare-standard-solution/
- 2. http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html

2D. Web link:

- 1. http://www.ecs.umass.edu/cee/reckhow/courses/572/572bk16/572BK16.html
- 2. https://www.csub.edu/chemistry/organic/manual/Lab14_QualitativeAnalysis.pdf

3.

5. 3. Specific Learning Outcomes:

S.No.	Course Content	Learning Out Comes	Blooms Taxonomic levels of Transaction
	Voh	umetric Analysis	
1	Preparation of standard solution (Molar, ppm& Normal)	To relate the basic principles and types of volumetric analysis. To classify primary standard substances	K2 K3
		To prepare standard solutions in different concentration units.	К3
2.	Estimation of Hydrochloric acid	To estimate the acid base neutralization reaction. To select indicators for acid base titration with different pH value.	К3
3	Estimation of Sodium Hydroxide	To estimate the acid base neutralization reaction. To select indicators for acid base titration with different pH value.	К3
4	Estimation of oxalic acid using KMnO ₄	To infer the redox reaction concept.	К3
5	Estimation of ferrous sulphate using KMnO ₄	To estimate the strength of the given $Oxalic acid/FeSO_4$ solution.	К3
	0	rganic Analysis	
6	Analysis of organic compounds(Carbohydrate ,	To infer aromatic substitution reaction To relate addition reaction to saturation	К3
	Diamide, Aldehyde, Ketone and Carboxylic Acid)with the	test. To analyse unknown samples	K3
	following tests for (i)Aromatic/ Aliphatic nature, (ii)Saturation/ unsaturation (iii)Solubility in common solvents (iv)Presence of nitrogen	systematically and report the same	К5

4. Mapping of COs with POs and PSOs

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PS	PSO2	PSO	PS
										01		3	04
CO1	Н		М		М	М	L	М		Н	Н	Н	Η
CO2	М		М		М	М	L	М		Н	М	М	Μ
CO3	М		М		М	М	L	М		Н	Н	Н	М
CO4	Н	М	М	L	М	L	L	М		Н	Н	Н	
CO5	М		М		Η	М	L			Н	Н		Н
CO6	М		Μ			L	L	М		Н	Н	Н	М

5. COURSE ASSESSMENT

METHODS DIRECT:

- 1. Continuous Internal Assessment
- 2. Model Exams I and II
- 3. End Semester Practical Examination

Allied Chemistry Practical (For Env. Sciences)

Semester: IV Credits: 3 Course Code : U19ESCY4 Total Hours : 90 Hours/Weeks : 4

1. Course Outcomes:

After the completion of the course the students will be able to:

S.No.	Course Outcomes	Level
CO1	Relate the basic principles and types of volumetric analysis.	K2
CO2	Infer the redox reaction concept.	K3
CO3	Estimate the strength of the given solution.	K3
CO4	Apply complexationconcept to check water quality	K3
CO5	Identify organic compounds and quantifying.	K5
CO6	Classify the primary standard solutions and to prepare standard solutions in different concentration units.	K3

2A. Syllabus

IV. Preparation of standard solution (Molar, ppm & Normal) & basic principles of organic analysisV. Volumetric Analysis

- 5. Estimation of hydrochloric acid (Acidimetry and Alkalimetry)
- 6. Estimation of sodium hydroxide (Acidimetry and Alkalimetry)
- 7. Estimation of oxalic acid using KMnO₄ (Permanganometry)
- 8. Estimation of ferrous sulphate KMnO₄ (Permanganometry)

VI. Organic Analysis: Analysis of organic compounds (Carbohydrate, Diamide, Aldehyde, Ketone and Carboxylic Acid) with the following tests for,

- a. Aromatic/ Aliphatic nature,
- b. Saturation / unsaturation
- c. Solubility in common solvents and
- d. Presence of nitrogen

2B. Text Book

Venkateswaran, R. Veerasamy, A.R. Kulandaivelu, Basic Principles of Practical, Chemistry, Sultan Chand & Sons, New Delhi, 1997

2C. Self Study Topics:

- 3. https://www.aplustopper.com/prepare-standard-solution/
- 4. http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html

2D. Web link:

- 1. http://www.ecs.umass.edu/cee/reckhow/courses/572/572bk16/572BK16.html
- 2. https://www.csub.edu/chemistry/organic/manual/Lab14 QualitativeAnalysis.pdf

3. Specific Learning Outcomes:

S.No.	Course Content	Learning Out Comes	Blooms Taxonomic levels of Transaction
	Volu	umetric Analysis	
1	Preparation of standard solution (Molar, ppm & Normal)	To relate the basic principles and types of volumetric analysis.	K2
		To classify primary standard substances To prepare standard solutions in different	K3
		concentration units.	K3
2.	Estimation of Hydrochloric acid	To estimate the acid base neutralization reaction. To select indicators for acid base titration with different pH value.	К3
3	Estimation of Sodium Hydroxide	To estimate the acid base neutralization reaction. To select indicators for acid base titration with different pH value.	К3
4	Estimation of oxalic acid using KMnO ₄	To infer the redox reaction concept.	К3
5	Estimation of ferrous sulphate using KMnO ₄	To estimate the strength of the given Oxalic acid/FeSO ₄ solution.	К3
	0	rganic Analysis	
6	Analysis of organic compounds(Carbohydrate ,	To infer aromatic substitution reaction To relate addition reaction to saturation	К3
	Diamide, Aldehyde, Ketone and Carboxylic Acid)with the following tests for	test. To analyse unknown samples systematically and report the same	К3
	 (i)Aromatic/ Aliphatic nature, (ii)Saturation/ unsaturation (iii)Solubility in common solvents (iv)Presence of nitrogen 	systematically and report the sume	К5

4. Mapping of COs with POs and PSOs

Allied Chemistry Practical (For Env. Sciences) Course Code : U19ESCY4													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PS O1	PSO2	PSO 3	PS 04
C01	Н		М		М	М	L	М		Н	Н	Н	Н
CO2	М		М		М	М	L	М		Η	М	М	М
CO3	М		М		М	М	L	М		Н	Н	Н	М
CO4	Н	М	М	L	М	L	L	Μ		Н	Н	Н	
CO5	М		М		Н	М	L			Н	Н		Н
	IVI		M			L	L	IVI		Н	Н	Н	M

5. COURSE

ASSESSMENT

METHODS

DIRECT:

- 1. Continuous Internal Assessment
- 2. Model Exams I and II
- 3. End Semester Practical Examination

UG - Non Major Elective Courses (NMEC) (Offered to Students of other Disciplines) (For the students admitted in the Academic year 2020 -21)

Sem	Course	Code	Title	Hrs/	Credit	Marks		
				Week		CIA	ESA	Total
III	NMEC I	U16CH3E1	Food and Nutrition	2	2	25	75	100
IV	NMEC II	U16CH3E2	Principles of Medicinal Chemistry	2	2	25	75	100

NMEC I: FOOD AND NUTRITION

Semester: III Credits : 2

1.General Objectives

- 1. To know the basic techniques of food processing.
- 2. To gain basic knowledge about minerals in diet.
- 3. To appreciate the importance of vitamins in diet
- 4 To identify adultrants in food

2.Syllabus

Unit-I Food

Introduction, classification, sources of food - (animal and plant sources), functions and uses of food. Food metabolism: anabolism and catabolism. Basic food groups-proteins- amino acids -peptides, functions of proteins in the body and deficiency diseases. Carbohydrates - classification, functions and deficiency diseases. Lipids classification, rancidity of fats - function, storage of fats and deficiency diseases.

Unit-II Vitamins

Introduction, classification of vitamins -Fat soluble vitamins: Vitamin A, D,E &K. Occurrence, functions, requirement, effects of deficiency. Water soluble vitamins: Vitamin B complex (Vit B 1,B2,B6,&B12) & Vitamin C. occurrence, functions, requirement, effects of deficiency.

Unit- III Minerals

Classification of minerals, sources, functions, bio-availability and deficiency of the following mineral: Calcium, magnesium, sodium, potassium, iron, fluorine, iodine, chlorine, sulphur, phosphorous, vanadium, cobalt and manganese.

Unit-IV Food Preservation and Processing

Types of food spoilage and deterioration. Methods of food preservation and processing (heating, sterilization, Deep freezing and pasteurization). Objectives of cooking and different modes of cooking fruits and vegetables. Food additives-Artificial sweeteners-saccharin, cyclamate, aspartame. Food flavours-esters, aldehydes and heterocyclic compounds. Taste enhancers - MSG, vinegar.

Unit-V Food Poisoning and Adulteration

Food Poisoning - Reasons, Diagonsis and Treatment. Diseases due to contaminated food stuffs (Acidity, Gastric ulcer, Diarrhoea, Constipation) Adulterants- Common adulterants in different foods-milk and milk products, vegetable oils and fat, spices, cereals, pulses, sweetening agents, and beverages. Contamination with toxic chemicals pesticides and insecticides. Detection of common food adulterants.

Course Code : U16CH3E1 Total Hrs. : 30 Hours / week:2

6 Hours

6 Hours

6 Hours

6 Hours

3.Reference Books

- 1. Seema Yadav, Food Chemistry, Anmol Publishing (P) Ltd., New Delhi, 1997(Unit I-III, V)
- 2. Sri lakshmi B.,Food Processing and Preservation,New age international Pvt.Ltd.Publishers,III ed, 2003 (Unit- IV)
- 3. Carl H, Synder, The Extraordinary chemistry for ordinary things, John Wiley & Sons Inc., NewYork, 1992
- 4. Alex .V.Ramani, Food chemistry, MJP Publishers, Chennai.2009
- 5. Swaminathan M,Text book on Food chemistry, Printing and Publishing Co.,Ltd., Bangalore,1993

NMEC II : PRINCIPLES OF MEDICINAL CHEMISTRY

Semester : IV Credits :2 Course Code: U16CH3E2 Total Hrs: 30 Hours / week:2

1.General Objectives

- 1 To know about the basics of drugs.
- 2. To learn the various modes of actions of drugs.
- To understand the common diseases and their remedies. 3

2A.Syllabus

Unit –I Introduction

Common diseases - infective diseases - insect-borne, air-borne and water-borne-hereditary diseases (3 examples for each) –Definition – drug, pharmacology, antimetabolites, and therapeutic index. Receptor and drug action - Receptor concept, Receptor proteins and drug receptor interactions. Mechanism of drug action: agonism and antagonism (Basic concepts only).

Unit -II Drugs

Various sources of drugs, pharmacologically active constituents in plants, Indian medicinal plants - tulsi, neem, keezhanelli, aloe vera – their importance. Manufacture of drugs (e.g. quinine, reserpine, atopsine and d – tubocurarine) from Indian medicinal plants. Drug metabolism - Oxidative reactions, Reductive reactions and conjugation reactions. Factors affecting metabolism of drugs (Basic Concepts only).

Unit –**III** Chemotherapy

Drugs based on physiological action, definition and two examples for Anesthetics - General and local - Analgesics (2 examples) - Narcotic analgesics (only morphine compounds) - Antipyretic analgesics (acetyl salicyclic acid, p-aminophenol derivatives). Muscle relaxants. i. Acting at neuromuscular junction (d-tubocurarine chloride). ii. Acting at spinal cord alone (glyceryl guaiacolate, diazepam) and Antibiotics

- Penicillin, streptomycin, Antivirals (2 examples). AIDS, Cancer - symptoms, prevention and treatment (structure not required).

Unit – IV Common Body Ailments

Diabetes - Causes, hyper and hypoglycemic drugs - Blood pressure - Systolic & Diastolic Hypertensive drugs -Cardiovascular drugs -nitrates, beta blockers (propanalol and atinelol) and calcium channel blockers. Depressants (special reference to sedatives and hypnotics) - Lipid profile - HDL, LDL, Cholesterol, lipid lowering drugs (structure not required)

Unit –V Health Promoting Drugs

Medicinally important inorganic compounds of Al, P, As, Hg and Fe - examples and applications. Agents for kidney function (Aminohippuric acid) Agents for liver function (Sulfo bromophthalein), antioxidants, treatment of ulcer and skin diseases: Eczema, psoriasis and Acne (structure not required).

6 Hours

6 Hours

6 Hours

6 Hours

3.Reference Books

- 1. S. Lakshmi, Pharmaceutical Chemistry, S.Chand & Sons, New Delhi,2004 (Unit I-V)
- 2. V.K. Ahluwalia and Madhu Chopra, Medicinal Chemistry, Ane Books, New Delhi, 2008 (Unit II-V)
- 3. P. Parimoo, A Text Book of Medicinal Chemistry, CBS Publishers, New Delhi, 2006
- 4. Satoshkar, Medicinal Chemistry, Wiley Eastern Ltd., New Delhi, 1993
- 5. Romas Nogrady, Medicinal Chemistry, Oxford University Press, 1988

UG – Skill Based Courses (SBC)

(For the students Admitted in the Academic year 2020 - 21)

Sem.	Course	Code	Title	Hrs.	Credits	Marks		
						CIA	ESA	TOTAL
IV	SBC-I	U16LFS41	Life Skills	2	1	100	-	100

LIFE SKILLS

Semester IV Total Hrs. : 30

1.General Objectives

- 1. To acquire skills and abilities for adaptive and positive behavior that helps to deal effectively with the demands and challenges of everyday life.
- 2. To develop creative, communicative and critical thinking skills necessary for employability

2.Syllabus

Unit I Basics of Communication skills & Effective Communication 6 Hours

Features of Communication – Process of Communication Verbal, nonverbal, Body Language – Postures & Etiquette –Listening& speaking Skills- Communication Barriers – Listening & speaking Skills.

Unit II Personal Effectiveness

Maslow's theory – Self-esteem- Role Conflict – Intra & Inter personal Skills – Efficiency Vs effectiveness – Team Building – Emotional Intelligence & Quotient

Unit III Interview Skills

Types of Interviews – Resume Formats & preparation - Cover letters – Simple rules to face interviews – Dos &Don'ts in a an Interview – Telephonic Interview and Etiquette - Group Discussions – Types – Methods – Ingredients and Tips for a Successful Group Discussion.

Unit IV Test of Reasoning & Numerical Ability

- A. Numerical Ability: Problems related to Average Percentage Profit /Loss Simple & CompoundInterest-Time & Work – Boats & Streams etc.
- B. Logical reasoning: Logical Detection Nonverbal reasoning Problems related to seatingarrangements Relationship model Assertion & Reasoning etc.
- C. Online Tests: Aptitude Logical Reasoning Problem Solving –Time management in Onlinetests-Online tests on Language skills- Aptitude and technical rounds

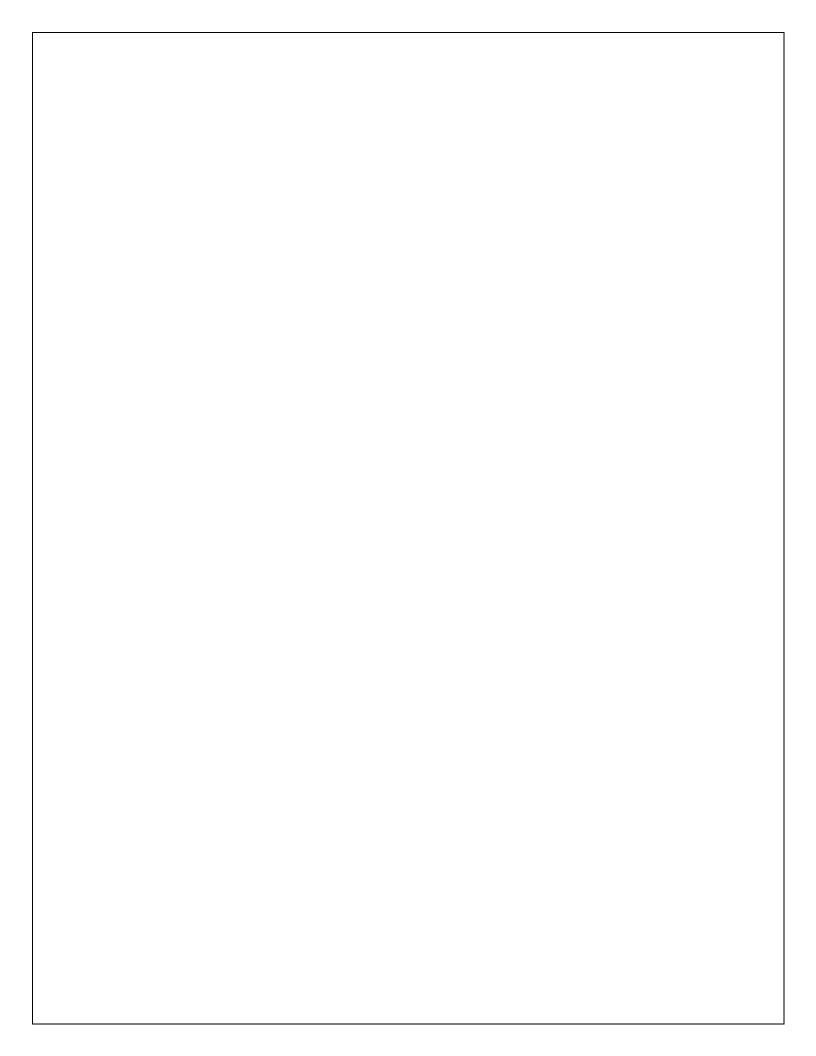
Unit V Outbound Learning

Physical, Mental, and emotional exercises

3.Texts for Reference:

- 1. Barun.K.Mitra, Personality Development and Soft Skills, 6th edition, Oxford University pressNoida 2012.
- 2. M.Sarada, The complete Guide to Resume Writing, Sterling Publishers Pvt Ltd, New Delhi2012.
- 3. Gloria J.Galances& Katherine Adams,Effective Group Disscussions,Theory & practice,12th Edition, Tata McGrawHillpvt Ltd 2012.
- 4. Francis Soundararaj, Basics of Communication in English, SoftSkills for Listening Speaking, Reading& Writing, Macmillan Publishers India Ltd. 2013.

Course code: U16LFS41 Credit : 1 Hours / week: 2


6 Hours

6 Hours

6 Hours

4.Scheme of Evaluation

1.	EQ test	10 Ma	arks
2.	Resume	10 Ma	arks
3.	Numerical Ability Test	10 Ma	arks
4.	Online test 1(aptitude)	10 Ma	arks
5.	Group Discussion	10 Ma	arks
6.	Team Work	10 Ma	arks
7.	OBL Observation / Work book	40 Ma	arks
		Total	100 Marks

