

DEPARTMENT OF BOTANY

SYLLABUS FOR B.Sc BOTANY
UNDER CHOICE BASED CREDIT SYSTEM (CBCS)
FOR CANDIDATES ADMITTED IN THE ACADEMIC
YEAR: 2021-2022

Bishop Heber College (Autonomous)

(Nationally Reaccredited at the A Grade by NAAC with CGPA 3.58/4)
(Recognized by UGC as "College of Excellence")
(Affiliated to Bharathidasan University, Tiruchirappalli)
Tiruchirappalli- 620 017.

VISION

Inculcate fundamental knowledge of the plant sciences that will transform the understanding about the planet earth, providing holistic approach on innovative teaching, entrepreneurship skills and research with social ethics that reaches the society with a focus on plants and their role in balancing and protecting the Environment.

MISSION

- Our mission is to foster an ambience of distinction by attracting and supporting the outstanding students, faculty and staff needed to sustain our vision.
- Provision of knowledge that bestows academic environment that contribute towards creating socially responsible citizens who have adequate skills in reflective thinking, leadership, team play, scientific temper with lifelong learning affinity.
- Create a stimulating environment that facilitates intellectual growth of students; provide students with the time and freedom to experience 'powerful pedagogies' such as research, service-learning and internships; encourage students with scientific approach to learning.
- To foster an environment of excellence by providing a comprehensive set of courses in Botany that enhances the understanding, fundamental and in-depth knowledge and technical competency.
- To inculcate the students with an environment that fosters nature conscious stewardship responsibility and Entrepreneurial skill development, multidisciplinary research competency through interdisciplinary learning and teaching positions in biological science.

Program Outcomes –B.Sc- BOTANY

On Successful completion of the Program the under grandaunt of Botany will be able to,

Knowledge

- **PO1-** Comprehend Knowledge on Basic concepts, development and application aspects of Plant Science.
- **PO2-** Interpret the scientific classifications for better understanding, conservation and identifying plants around us.
- **PO3** Discuss the importance of plants in the modern life science, aero science and energy needs of humans. Graduate will reiterate the plants as core essentials to maintain the life on earth.

Skills

- **PO4** Make use of the hands-on experience acquired in fundamental botany, advanced biotechnological methods and *in vitro* studies to promote new variants in crop plants and for environmental development.
- **PO5** Analyse the plant-microbial-animal and environmental interactions for sustainable development.
- **PO6-** Evaluate the potentialities of green wealth by incorporating other branches of science to utilize it for the society.

Attitudes

PO7- Develop technical skills in expression, team work, Informatics, and report

botanical values of plants through lifelong investigation and dissemination of learning.

Ethical and social values

- **PO8-** Formulate phytochemicals, evaluate the plant resources for the welfare of human life, report on the genetic engineering, bio-war, bioethics in designing experiments and maintain the proper functioning of the natural ecosystem.
- **PO9-** Defend ethical and socio-ecological values of nature and appraise the significance of plants in the wellbeing of environment.

Program Specific Outcomes

Knowledge & Skills

- **PSO1 -** Analyse the theories in Plant science, development of plants, their adaptations and strategy for conservation and interaction of plants to the abiotic components and nutrient cycling in the environment.
- **PSO2-** Classify the plants scientifically, attain knowledge on the systematics, evolution of plants from lower to higher forms and their interrelationships and the economic importance of various plants and plant- based traditional drugs.
- **PSO3-** Interpret the scope of plant biodiversity Algae, Fungi, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms, their Physiological process (photosynthesis, respiration, multiplication, environmental responses), ecological, biochemical, cytological and molecular interactions on plants.
- **PSO4-**Evaluate the phytochemicals and develop skills on nursery management,

herbarium development, handling microscopes, sketching the anatomical structures of plants. Execute the facts of plant growth, their physiological- hormonal and enzymatic actions in the growth and development of plant.

B.Sc- BOTANY ARTICULATION MATRIX

Course name	Course	Correlation with programme outcomes and programme specific outcomes												
	code	PO	РО	PO	PSO	PSO	PSO	PSO						
		1	2	3	4	5	6	7	8	9	1	2	3	4
PHYCOLOGY, ARCHEGONIATE AND PALEOBOTANY	U20BY101	Н	M	M	M	Н	Н	Н	L	M	Н	Н	Н	M
CORE PRACTICAL-I	U20BY1P1	Н	M	L	L	L	M	M	L	M	Н	M	Н	M
MICROBIOLOGY AND PLANT PATHOLOGY	U20BY202	Н	M	Н	M	Н	Н	M	M	Н	Н	Н	Н	Н
CORE PRACTICAL-II	U20BY2P2	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	M	Н
ALLIED -1	U20 ESBY1	Н	Н	Н	L	M	M	Н	M	Н	Н	Н	Н	Н
ALLIED PRACTICAL-I	U20BYYP1	-	Н	M	Н	M	-	M	Н	Н	Н	L	Н	Н
ALLIED-II	U20BYY11	Н	Н	M	M	-	M	M	-	M	Н	M	Н	Н
PLANT SYSTEMATICS AND ECONOMIC BOTANY	U20BY303	Н	Н	M	L	-	L	L	-	M	M	Н	Н	Н
CORE PRACTICAL-III	U20BY3P3	M	Н	M	L	L	Н	Н	Н	L	M	Н	Н	Н
NMEC- I – NURSERY TECHNOLOGY	U20BYPE1	Н	L	L	Н	M	M	M	L	Н	M	Н	Н	L
PLANT ANATOMY AND DEVELOPMENTAL BOTANY	U20BY404	Н	Н	Н	L	M	Н	Н	M	M	Н	Н	Н	Н
CORE PRACTICAL-IV	U20BY4P4	L	L	-	L	L	L	Н	L	M	M	M	Н	Н
NMEC-II- MUSHROOM CULTIVATION	U20BYPE2	M	L	Н	L	M	L	L	Н	M	M	L	Н	L
SBEC I – MUSHROOM AND NURSERY TECHNOLOGY	U20BYPS1	L	-	Н	M	M	Н	Н	Н	M	L	M	Н	Н
PLANT PHYSIOLOGY AND PLANT METABOLISM	U20BY505	Н	Н	L	-	Н	M	-	L	-	Н	-	Н	Н
GENETICS,, EVOLUTION AND PLANT BREEDING	U20BY506	Н	Н	L	L	Н	Н	M	Н	Н	Н	M	Н	Н
CORE PRACTICAL-V	U20BY5P5	Н	L	-	L	Н	L	Н	L	L	M	M	Н	Н
BIOSTATISTICS, COMPUTER APPLICATIONS	U20BY5:1	Н	L	L	M	M	L	Н	M	L	Н	L	M	M
BIOINSTRUMENT ATION.	U20BY5:2	Н	M	Н	Н	Н	M	Н	M	L	M	Н	L	Н
COMPETITIVE BIOLOGY	U20CAC5:1	Н	M	M	L	L	M	M	L	M	M	M	Н	Н
ECOLOGY AND PHYTOGEOGRAP HY	U20BY607	Н	M	M	-	Н	M	Н	M	Н	Н	L	-	Н
CYTOLOGY AND MOLECULAR BIOLOGY	U20BY608	Н	M	M	Н	M	Н	Н	Н	M	M	M	Н	Н
ETHNOBOTANY	U20BY6:3	Н	Н	Н	M	M	Н	M	M	Н	Н	Н	Н	M

HORTICULTURE AND ORGANIC FARMING	U20BY6:4	Н	L	L	-	L	L	Н	Н	-	Н	-	-	M
BIOTECHNOLOGY	U20BY6:5	Н	M	M	M	Н	Н	L	Н	Н	Н	Н	M	Н
NANOTECHNOLO GY	U20BY6:6	Н	L	M	L	M	Н	M	L	M	M	M	M	L
SBEC II – MOLECULAR AND PLANT TISSUE CULTURE TECHNIQUES	U16BYPS2	Н	M	M	Н	-	L	Н	M	Н	M	M	L	Н
SBEC III – PLANTS AND HUMAN WELFARE	U20BYPS3	Н	Н	M	-	L	Н	M	M	M	-	Н	L	L

B.Sc BOTANY – COURSE STRUCTURE- 2021-2022

Sem.	Part	Course	Course Title	Course	Hours	Credits		Mark	s
	1 441 0	Course		Code	week	Oreans	CIA	ESE	Total
	I	Tamil I /*	செய்யுள், இலக்கிய வரலாறு, உரைநடை, மொழிப்பயிற்சியும் படைப்பாக்கமும்	U18TM1L	6	3	25	75	100
	II	English I	Language through Literature: Prose and Short Stories	U21EGNL1	6	3	40	60	100
I		Core I	Phycology, Archegoniate and Paelobotany (Algae, Bryophytes, Pteridophytes, Gymnosperm)	U20BY101	6	6	25	75	100
1	III	Core Prac. I	Major Practical – I	U21BY1P1	3	2	40	60	100
		Allied I	Biology of Invertebrates and Chordates	U19ZYY11	4	3	25	75	100
		Allied Prac. I	Biology of Invertebrates, Chordates Human Physiology and Economic Zoology	U19ZYYP1	3				
	IV	Val. Edu.	Value Education (RI/MI)	U15VL1:1/ U15VL1:2	2	2	25	75	100
	I	Tamil II /*	செய்யுள், இலக்கிய வரலாறு, சிறுகதைத் திரட்டு, மொழிப்பயிற்சி மற்றும் படைப்பாக்கமும்	U18TM2L2	6	3	25	75	100
	II	English II	Language through Literature: Poetry and Shakespeare	U21EGNL2	6	3	40	60	100
II		Core II	Microbiology and Plant Pathology	U20BY202	6	6	25	75	100
	111	Core Prac. II	Major Practical – II	U21BY2P2	3	2	40	60	100
	III	Allied II	Human Physiology and Economic Zoology	U20ZYY22	4	4	25	75	100
		Allied Prac. I	Biology of Invertebrates, Chordates, Human Physiology and Economic Zoology	U19ZYYP2	3	3	40	60	100
	IV	Env. Studies	Environmental Studies	U16EST21	2	2	25	75	100
	I	Tamil III /*	செய்யுள்-காப்பியம், புராணம், சிற்றிலக்கியம், இலக்கிய வரலாறு, நாவல், மொழிப்பயிற்சி	U18TM3L3	6	3	25	75	100
	II	English III	English for Competitive Examinations	U21EGNL3	6	3	40	60	100
		Core III	Plant systematics and Economic Botany	U20BY303	6	6	25	75	100
III	III	Core Prac. III	Major Practical – III	U20BY3P3	3	2	40	60	100
	111	Allied III	Allied Chemistry – I	U19CHY33	4	4	25	75	100
		Allied Prac. II	Volumetric and Organic Analysis	U19CHYP2	3				
	IV	NMEC I	Nursery Technology	U20BYPE1	2	2	40	60	100
	I	Tamil IV /*	செய்யுள்(மேற்கணக்கு,கீழ்கணக்கு), இலக்கிய வரலாறு , நாடகம், மொழிப்பயிற்சி	U18TM4L4	6	3	25	75	100
IV	II	English IV	Language through Literature	U21EGNL4	6	3	40	60	100
	III	Core IV	Plant Anatomy and Developmental Botany	U20BY404	6	5	25	75	100

	Core Prac. IV	Major Practical – IV	U20BY4P4	3	2	40	60	100
	Allied IV	Chemistry for Life Sciences	U19CHY44	4	4	25	75	100
	Allied Prac. II	Volumetric and Organic Analysis	U19CHYP2	3	3	40	60	100
137	NMEC II	Mushroom Cultivation	U20BYPE2	2	2	40	60	100
IV	Soft Skills	Life Skills	U16LFS41	2	1	-	-	100
V	Extensions Activities	NSS, NCC, Rotaract, Leo Club, etc.	U16ETA41	-	1	-	-	-

		Core V	Plant Physiology and Plant metabolism	U20BY505	7	6	25	75	100
		Core VI	Genetics, Evolution and Plant Breeding	U20BY506	7	6	25	75	100
		Core Prac. V	Major Practical – V	U20BY5P5	3	2	40	60	100
v	III	Core Project	Project	U20BY5PJ	5	5	25	75	100
·		Elective I	Biostatistics, Computer Application and Bioinformatics (Optional)	U20BY5:1	6	5	25	75	100
		Elective I	Bioinstrumentation (Optional)	U20BY5:2	6	5	25	75	100
	IV	SBEC I	Mushroom and Nursery Technology	U20BYPS1	2	2	40	60	100
		Core VII	Ecology and Phytogeography	U20BY607	6	6	25	75	100
		Core VIII	Cytology and Molecular Biology	U20BY608	6	5	25	75	100
		Core Prac. VI	Major Practical – VI	U20BY6P6	3	2	40	60	100
X 7 T		Elective II	Ethnobotany (Optional)	U20BY6:2	5	5	25	75	100
VI	Ш	Elective II	Horticulture and organic farming (Optional)	U20BY6:3	5	5	25	75	100
	111	Elective III	Biotechnology	U20BY6:4	5	5	25	75	100
		Elective III	Nanotechnology	U20BY6:5	5	5	25	75	100
		SBEC II	Molecular and Plant Tissue Culture Techniques	U20BYPS2	2	2	40	60	100
		SBEC III	Plant Wealth for and Human Life/ Organic Farming	U20BYPS3	2	2	40	60	100
		Gender Studies	Gender Studies	U16GST61	-	1	-	-	100

SBEC:	Skill Based l	Elective Cou	rses NMEC : N	Ion Major Elective Courses	Total Credits:	142
* Other	Languages:	Hindi	Sanskrit	French		

ĺ	Semester I	: U14HD1	L1 U14SK1	L1 U14FR1L	1			
	Semester II	: U14HD2	L2 U14SK2	L2 U14FR2L	2			
	Semester III	: U14HD3	3L3 U14SK3	L3 U14FR3L3	3			
	Semester IV	: U14HD4	4L4 U14SK4	L4 U14FR4L	4			
- 1	Part I · A Core The	ory · 8 Co	ra Project · 1	Allied Theory . 5	NMEC · 2	Env. Studios · 1	Value Education : 1	

Part I	: 4 Core Theory : 8	Core Project : 1	Allied Theory: 5	NMEC: 2 Env. Stud	dies: 1 Value	Education: 1	Total , 41
Part II	: 4 Core Prac. : 6	Allied Prac.: 1	Elective: 3 SBEC	: 3 Exten. Act. : 1	Gender Studie	es:1	Total: 41

^{1.} Nursery Technology - U20BYPE1
2. Mushroom Cultivation - U20BYPE2
3. Career Advancement course - U20 CAC5

PHYCOLOGY, ARCHEGONIATE AND PALEOBOTANY

Course code: U20BY101 Semester: I
Credits: 6 Hours/Week: 6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Classify the algae, explain their characteristics,	K5	I
	interpret the cell structure and its development.		
CO 2	Identify characters, classify Bryophytes and conclude	K4	II
	the developments in Plant from lower to higher plants		
CO 3	Analyze anatomical structure and evolutionary	K4	III
	modification occurred in Pteridophytes.		
CO 4	Assess the living Gymnosperms and their morpho-	K5	IV
	anatomical adaptations for development.		
CO 5	Interpret plant remains, connections in plant evolution	K2	V
	and conserve the linking plant forms from extinction.		
CO 6	Appraise the adaptations of plants in various habitat	K5	I - V
	and their ecological and economic importance		

SYLLABUS:

Unit 1- PHYCOLOGY

(18 hours)

1.1 General characteristics of Algae: 1.1.1- Ecological distribution, 1.1.2- range of thallus organization {motile and non-motile, coenobium, palmelloid, dendroid,

- filamentous, heterotrichous, siphonous, parenchymatous, pseudo-parenchymatous}, 1.1.3- Cell structure and components- cell wall, pigment system, reserve food, flagella, reproduction (vegetative-asexual-sexual).
- 1.2 1.2.1-Outline on the Classification of algae (F.E. Fritsch, 1935), 1.2.2- salient features of the selected classes- Cyanophyta, Chlorophyta, Pheophyta, Bacillariophyta, Rhodophyta. 1.2.3- Lifecycle patterns in algae using examples
- 1.3 Study on the- habit, habitat, External and Internal Structure, Reproductive and life cycle of: (Development not required);
 - (a) Oscillatoria (b) Chlamydomonas (c) Chara (d) Vaucheria (e) Sargassum (f) Polysiphonia
- 1.4 1.4.1- Algal biotechnology, 1.4.2- *In-vitro* algal culture in various Culture medium (BG, MN) for fresh water and marine Algae. 1.4.3-Economic Importance of Algae.

Unit II- BRYOPHYTES

(18 Hours)

- 2.1 General Characteristics: 2.1.1- Adaptation to land habit, Sporophytic evolution of Bryophytes, 2.1.2- range of thallus organization, 2.1.3-ecological adaptations of Bryophytes, 2.1.4- life cycle pattern in Bryophytes
- 2.2 Outline of Rothmaler's classification of Bryophytes
- 2.3 Study on the habit, habitat, external and internal structure, reproduction (development

not required) of; (a) Marchantia (b) Anthoceros (c) Funaria

2.4 Ecological and economic importance of Bryophytes,

Unit III – PTERIDOPHYTES

(18 Hours)

- 3.1 3.1.1- General characteristics- Habit, Habitat, Sporophyte- external and internal characters, alternation of generation, 3.1.2- Sporangium types- (i. Based on development-Leptosporangium/Eusporangium, ii. Based on structure-Homosporous/ Heterosporous)-{Development not required}, 3.1.3-Life cycle pattern in Pteridophytes.
- 3.2 3.2.1- Telome theory, 3.2.2-Stelar evolution in Pteridophytes, 3.2.3- Apogamy and Apospory, 3.2.4- Heterospory and seed habit in Pteridophytes.
- 3.3. Outline on Classification of Pteridophytes Sporne's classification, 1975 (Six classes)-

Morphology, Anatomy and Reproduction (Division and Development not required) of; (a) *Psilotum*, (b) *Lycopodium* (c) *Selaginella* (d) *Equisetum*

3.4 Ecological and Economic Importance of Pteridophytes.

Unit- IV- GYMNOSPERMS

(18 Hours)

- 4.1 General characteristics of Gymnosperms
- 4.2 Outline on Classification of Gymnosperms, Sporne, 1975
- 4.3 Morphology, anatomy, reproduction of:
 - (a) Cycas, (b) Pinus (c) Gnetum- Development details not required.
- 4.4 Ecological and economic importance of Gymnosperms.

Unit- V: PALEOBOTANY

(18 Hours)

- 5.1 Fossilization, Methods of fossilization- Petrification, Compressions, Impressions.
- 5.2 Contribution of Birbal Sahni

- 5.3 Geological time scale, Radio carbon dating,
- 5.4 Study on fossil forms; (a) Rhynia (b) Lepidodendron (c) Lepidocarpon(d)Williamsonia (e)Calamites

Topics for Self-Study:

Topics	References/Web links
Extremophili	https://www.sciencedirect.com/science/article/abs/pii/S096085241401642
c algae	<u>3</u>
	Barsanti, L., and Gualtieri, P. 2014. Algae - Anatomy, Biochemistry, and
	Biotechnology, second edition, CRC press, Taylor and Francis group,
	eBook – PDF.
Biofuel from	https://www.power-technology.com/features/algal-biofuels-challenges-
Algae	opportunities/
	https://farm-energy.extension.org/algae-for-biofuel-production/
Contribution	https://plantlet.org/takhtajans-system-of-classification/
of Takthajan	http://ebotany.blogspot.com/2014/02/the-takhtajan-system-of-
	<u>classification.html</u>
living fossils	https://palaeobotany.org/index.php/living-fossils/
-Gingko	https://motherearthworks.com/healthy-living-learning-center/healthy-
biloba	living-center-articles/gingko-biloba-a-living-fossil/
Bio	http://www.iffco.in/index.php/ourproducts/index/bio-fertiliser
fertilizers	https://www.sciencedirect.com/topics/agricultural-and-biological-
	sciences/biofertilizers
Nitrogen	https://www.nature.com/scitable/knowledge/library/biological-nitrogen-
fixation	<u>fixation-23570419/</u>
	https://www.sciencedirect.com/topics/earth-and-planetary-
	sciences/nitrogen-fixation

TEXT BOOKS:

Algae:

- 1. Fritsch, F.E. 1965. *The Structure and Reproduction of Algae*, Cambridge University press, Cambridge, London.
- 2. Kumar, H.D. and Sing, H. N.A. 1976. *Text book of Algae*. Affiliated East West press Pvt. Ltd., New Delhi, India.
- 3. Kumaresan, V. 1997. Algae and Bryophytes. Saras Publications, Nagercoil, India.
- 4. Pandey, B.P. 2002. A Text book of Botany Algae. S. Chand and Co., (P) Ltd., New Delhi.
- 5. Sharma, O.P. 1990. *Text book of Algae*. Tata McGraw Hill Publishing Co., Ltd., New Delhi.
- 6. Singh, V. 1992. A Text book of Botany. S. Chand and Co., (P) Ltd., New Delhi.
- 7. Vashishta, B.R. 2008. *Botany for Degree Students Algae*. Chand and Co. Ltd., New Delhi, India.

Bryophytes:

- 1. Chopra, G.L. 1968. A Class Book of Bryophyta. Hari singh and Bros Publications.
- 2. Kumar, P.K. 1988. Biology of Bryophytes. Wiley Easter Ltd., New Delhi.
- 3. Parihar, N.S. 1965. *An introduction to Embryophyta –Vol. II. Bryophyta*. Central Book Depot, Allahabad, India.
- 4. Srivastava, N.N. 1996. *Bryophyta*. Pradeep Prakashan, Meerut, India.
- 5. Vashista, B.R.2000. Botany for Degree Students Bryophytes. S. Chand and Co., New

Delhi, India.

Pteridophytes

- 1. Parihar, N.S. 1965. *An introduction to Embryophyta Vol. 1 Pteridophyta*. Central Book Depot. Allahabad, India.
- 2. Smith, G.M. 1956. *Cryptogamic Botany Vol. II.* (*Bryophytes & Pteridophytes*). McGraw Hill Book Co., N.Y.
- 3. Sporne, K. R. 1970. *The Morphology of Pteridophytes.* (*The structure of Ferns and Allied Plants*). Hutchinson University Library, London.
- 4. Sharma, O. P. 1990. Text Book of Pteridophyta. Macmillan India Ltd., Delhi.
- 5. Sundararajan, S. 2007. *Introduction to Pteridophyta*. New Age International Publishers, New Delhi, India.
- 6. Vashista, P.C. 2008. *Botany for Degree Students Pteridophyta*. S. Chand and Co., New Delhi, India.

Gymnosperms

- 1. Coulter, J. M. and C. J. Chamberlain. 1964. *Morphology of Gymnosperms*. Central Book Depot, Allahabad, India.
- 2. Sporne, K. R. 1971. The Morphology of Gymnosperms. (The structure and Evolution of Primitive seed Plants). Hutchinson University Library, London.
- 3. Sharma, O.P. 1997. Gymnosperms. Pragati Prakashan, Meerut, India.
- 4. Vashista, P.C. 2006. *Botany for Degree Students Gymnosperms* (2nd Edn.,) S. Chand & Co., New Delhi, India.

Paleobotany

- 1. Arnold, C.A. 1947. An Introduction to Paleobotany. McGraw Hill Book Co., New York.
- 2. Delevoryas, T. 1962. *Morphology and Evolution of Fossil Plants*. Holt, Rinehart and Winston. New York.
- 3. Shukla, A.C. and Misra, S. P. 1975. *Essentials of Paleobotany*. Vikas Publishing House (P)

Ltd., Delhi, 1975.

4. Venkatachala, B. S., Shukla, M. and Sharma, M. 1992. *Plant Fossils – a Link with the past (A Birbal Sahni Birth Centenary Tribute)*. Birbal Sahni Institute of Paleobotany, Lucknow, India

REFERENCE BOOKS:

- 1. *Plant Diversity and Evolution*, 2016. Martin Ingrouille, Bill Eddie, Cambridge University Press, ISBN-13: 978-0521794336.
- 2. *Plant Diversity*, 2007. Andrew Hipp, Phil Gibson J, Terri R Gibson, Infobase Publishing.

WEB LINK:

https://nptel.ac.in/content/storage2/courses/102103012/module1/lec1/7.html

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/Se ction	CONTENT	LEARNING OUTCOME	Highest Bloom
			taxonomic
			level of
			transaction

I.		Phycology	
1.1	General characteristics of Algae:- Ecological distribution, -range of thallus organization {motile and non-motile, coenobium, palmelloid, dendroid, filamentous, heterotrichous, siphonous, parenchymatous, pseudo-parenchymatous}, -Cell structure and components-cell wall, pigment system, reserve food, flagella, reproduction (vegetative-asexual-sexual) [only for the group represented in the syllabus].	 Compare the various habitats of Algae List out the systematic characteristics of Algae 	K2 K2
1.2	Classification of algae: - salient features of various classes, - Lifecycle patterns in algae using examples	Classify the Algae according to their habit, pigment and size.	K2
1.3	Type study: External and Internal Structure, Reproductive and life cycle of: (Development not required); Oscillatoria (b) Chlamydomonas (c) Chara (d) Vaucheria e) Sargassum (f) Polysiphonia	 Explain the special characters and life forms of various algae Interpret the land adaptations occurred in Algae 	K2 K5
1.4	Algal biotechnology - In-vitro algal culture for various Culture medium (BG, MN, F/2) for fresh water and marine Algae Economic Importance of Algae- Useful (food and fodder, agriculture and space research, Industry – (Agar Agar, Carrageenin, diatomite, Alginates, EPS, Biofuel, minerals and elements), Medicine, sewage treatment) and Harmful effects (Eutrophication, Algal bloom, bioaccumulation)	Discuss the morpho- anatomical evolution of Algae their adaptations and their economic importance	K5
II		Bryophytes	

2.1	General Characteristics - Adaptation to land habit - range of thallus organization and ecological adaptation - life cycle pattern in Bryophytes	 Recall the morphological structure of Bryophytes. Compare the life cycles of Bryophytes. Justify Bryophytes are amphibians of plant kingdom. 	K2
2.2	Classification: - Rothmaler's classification of Bryophytes	 Classify Bryophytes using the characters. Identify the plants by their thallus. 	K2 K3
2.3	Type study: - Study on the habit, habitat, external and internal structure, reproduction (development not required) of; (a) Marchantia (b) Anthoceros (c) Funaria	 Explain the habit and habitat of Bryophytes. Relate the morphology of Bryophytes. Compare the similarities and dissimilarities with lower and higher forms 	K2 K4
2.4	Economic and ecological importance	 Recognize the importance. Appraise the economic importance of Bryophytes 	K2 K4
III	Pteridoph	ytes	
3.1	General characteristics: - Habit, Habitat, Sporophyte- external and internal characters, - alternation of generation, - Sporangium types- (i. Based on development- Leptosporangium/Eusporangium, ii. Based on structure- Homosporous/ Heterosporous)- {Development not required}, - Life cycles in Pteridophytes	 Identify the habit, habitat characters. Examine the sporogenesis in Pteridophytes. 	K3 K5
3.2	Telome theory - Stelar evolution in Pteridophytes, - Apogamy and Apospory, -Heterospory and seed habit in Pteridophytes	 Discuss various theories on stelar evolution. Examine each theories related to evolution. 	K2
3.3	classification: - Sporne's classification, 1975 (Six classes) Morphology, Anatomy and Reproduction of; (a) Psilotum, (b) Selaginella (c) Equisetum (d) Pteris	 Classify major Pteridophytic forms Differentiate ferns according to their habit. Inspect the evolution of seeds. 	K2 K4

3.4	Ecological and Economic importance	 Recognize the importance of ferns. Conclude the value of ferns in dominant periods. 	K4
IV		Gymnosperms	
4.1	General characteristics	 Recall the habit, habitat characters. Explain the anatomical and evolutionary aspects of Gymnosperms. 	K1 K5
4.2	Classification	K2	
4.3	Type study Morphology, anatomy, reproduction and phylogenetic studies of: (a) Cycas, (b) Pinus (c) Gnetum- Development details not required.	 Explain the habit and habitat of Gymnosperms. Relate the morphology. Assess the similarities and dissimilarities with lower and higher forms 	K2 K5
4.4	Economic importance	 Recognize the importance. Enumerate the economic importance of Gymnosperms. 	K2 K5
V		Paleo botany	
5.1	Methods of fossilization- Petrification, Compressions, Impressions	Select the known fossilsCompare the various fossil formation process	K2
5.2	Contributions of Prof. Birbal Sahni to Paleobotany.	Discuss the works of scientist.	K2
5.3	Geological time scale, Radio carbon dating,	K2	
5.4	Study on fossil forms: (a) Rhynia (b) Lepidodendron (c) Lepidocarpon (d) Calamites (e)Williamsonia	 Summarize the fossilization using the examples 	K2

Mapping Scheme (Course Code: U20BY101)

CO1	Н	_	Н	T.	M	Н	T.	T.	М	M	T.	Н	_
U20BY1	01 PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4

CO2	H	M	L	-	-	L	L	-	L	H	M	H	-
CO3	H	L	-	-	L	-	-	-	M	H	L	H	L
CO4	H	L	L	-	M	-	-	-	M	M	-	H	L
CO5	M	L	-	M	-	L	M	L	-	M	H	-	L
CO6	M	-	-	L	L	M	L	L	M	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Course Assessment Methods:

Direct

- 1. Continuous Assessment in Class test, Group Discussion and Quiz.
- **2.** Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.
- 3. End Semester Examination

Indirect

1. Course-end survey

PHYCOLOGY, ARCHEGONIATE AND PALEOBOTANY [CORE PRACTICAL – I]

Course code: U20BY1P1 Semester: I
Credits: 2 Hours/Week:3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Compare and Interpret the different group of Algae and	K 4	I
	its diversity.		
CO 2	Distinguish the various habitat in Bryophytes and their	K 4	II
	anatomical form.		
CO 3	Examine the different types of spore formation, life	K 4	III
	cycles in Pteridophytic forms and fossilised plants.		
CO 4	Discuss the morphological and anatomical structures of	K4	IV
	various Gymnosperm plant groups.		
CO 5	Compare the external and internal characteristics	K 2	V
	features of selected species.		
CO 6	Importance of Plant diversity in maintaining the	K5	I - IV
	ecosystem.		

SYLLABUS:

Unit-1 (6 Hours)

Observing the thallus by preparing the whole mounts of- *Oscillatoria*, *Chlamydomonas*, *Chara*, *Vaucheria*, *Sargassum*, *Polysiphonia*, Diatoms (*Nitzchia*) – temporary slide preparation and observing permanent slides.

Unit-2 (6 Hours)

Study the morphology- (habit – both ventral and dorsal view), internal anatomy- Vertical sections of *Marchantia*, *Anthoceros*, by temporary slide preparations, Observing permanent slides. Antheridiophore Archegoniophore, L.S of Columella- *Funaria* (permanent slides). *Funaria* - gametophyte with sporophyte picture/specimen.

Unit-3 (6 Hours)

Study on; 1: *Psilotum*- whole habit (Specimen), T.S of Stem (picture/slide), Synangium (permanent slide). 2: *Lycopodium*- whole habit (specimen), temporary slide preparation of T.S of Stem, L.S of Sporophyll, L.S of Strobilus (permanent slide). 3: *Selaginella*- whole habit (specimen), T.S of Stem- temporary slide preparation, L.S of Sporophyll - permanent slide. 4: *Equisetum*- habit, T.S of internode (temporary slide preparation), L.S of Strobilus, Spores- permanent slides.

Unit -4 (6 Hours)

Study on; 1: *Cycas*- habit (Pictures), T.S of Coralloid root, Rachis, leaflet, V.S of Microsporophyll, whole mount of spores (Temporary slides), L.S of Ovule, T.S of root (permanent slides). 2: *Pinus*- habit, long shoot, dwarf shoot, male and female cones, microspores (Specimens), T.S of needle, microsporophyll, TLS, RLS of Stem, L.S of male cone, female cone (permanent slides). 3: *Gnetum*- Morphology (stem, male & female cones), T.S of stem (temporary slide), V.S of Ovule (permanent slide).

Unit -5 (6 Hours)

Observing the fossilized slides of; Rhynia, Lepidodendron, Calamites, Lepidocarpon, Williamsonia.

Visit to a Botanical Garden to study the Biodiversity of Plant forms.

TOPICS FOR SELF STUDY:

Topics	References								
Macroalgae	http://www.gbrmpa.gov.au/ data/assets/pdf_file/0019/3970/SORR_								
	Macroalgae.pdf								
	https://www.sciencedirect.com/topics/earth-and-planetary-								
	sciences/macroalgae								
Development in	https://www.easybiologyclass.com/polysiphonia-thallus-structure-								
Polysiphonia	reproduction-post-fertilization-changes-and-life-								
	cycle/#:~:text=Structure%20and%20Development%20of%20Carpogo								
	nium,cell%20of%20a%20reduced%20trichoblast.								
Anthoceros	https://www.sciencedirect.com/topics/agricultural-and-biological-								
	sciences/anthoceros								

TEXT BOOKS:

- 1. Sharma. O.P. 2011. Algae. McGraw Hill Education Pvt. Limt. Chennai.
- 2. Annie Ragland. 2000. Algae and Bryophytes. Saras Publication, Tamil Nadu
- 3. Sanjay Kumar Singh. 2008. Bryophyta. Campus Books Publishing, New Delhi
- 4. Pandey, B.P.2002. A Text book of Botany –S. Chand & amp; Co., (P) Ltd., New Delhi.
- 5. Pandey. S. N, Misra. S.P, Trivedi P.S. 2002. *A Text Book of Botany*, Vikas Publishing House Pvt. Ltd. New Delhi.

REFERENCE BOOKS:

- 1. Fritsch, F.E. 1965. *The Structure and Reproduction of Algae 1945:* Cambridge University press, Cambridge, U.K.
- 2. Rashid. A. 1998. An introduction to Bryophytes. Vikas Publishing Co. New Delhi.

Web Links:

https://onlinecourses.swayam2.ac.in/cec20_bt11/preview

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of transaction
1	Observing the thallus by preparing the whole mounts of- Oscillatoria, Chlamydomonas, Chara, Vaucheria, Sargassum, Polysiphonia, Diatoms (Nitzchia)— temporary side preparation and observing permanent slides.	 Recall and identify the morphology and anatomy of various Algae Sketch the Algal morphology. Analyse the structure of various Algal forms. 	K4 K3 K4
2	Study the morphology- (habit — both ventral and dorsal view), internal anatomy- Vertical sections of <i>Marchantia</i> , <i>Anthoceros</i> , by temporary slide preparations, Observing permanent slides. Antheridiophore Archegoniophore, L.S of Columella- <i>Funaria</i> (permanent slides). <i>Funaria</i> - gametophyte with sporophyte picture/specimen.	 Discuss the internal parts of Bryophytes Analyse the adaptations evolved for land habitat. Relate the evolutionary aspects of the Bryophytes 	K4 K4 K2
3	Study on; 1: <i>Psilotum</i> - whole habit (Specimen), T.S of Stem (picture/slide), Synangium (permanent slide). 2: <i>Lycopodium</i> -whole habit (specimen),	 Recall the internal and external modifications evolved in the Pteridophytes. 	K2

	temporary slide preparation of T.S of Stem, L.S of Sporophyll, L.S of Strobilus (permanent slide). 3: Selaginella- whole habit (specimen), T.S of Stemtemporary slide preparation, L.S of Sporophyll- permanent slide. 4: Equisetum- habit, T.S of internode	•	Sketch the internal external structure of the Pteridophytes to get an idea on the cellular arrangement, their modifications and evolution.	K3
	(temporary slide preparation), L.S of Strobilus, Spores- permanent slides. 5: Pteris- habit, T.S of Rachis, Rhizome, V.S of Sporophyll, whole mount of spores (temporary slides), prothallus bearing sex organs (Permanent slides).		Examine the leaf, stele, and spore evolution and habitat adaptation of various Pteridophytes under the specific Class. Discuss the stellar	K4
	(Fermanent sinces).		evolution from lower to higher forms of plants	
4	Study on; 1: <i>Cycas</i> - habit (Pictures), T.S of Coralloid root, Rachis, leaflet, V.S of Micosporophyll, whole mount of	•	Define the internal- external structure of Gymnosperms.	К2
	spores (Temporary slides), L.S of Ovule and T.S of root (permanent slides). 2: <i>Pinus</i> - habit, long shoot, dwarf shoot, male and	•	Compare the difference on Pycnoxylic and manoxylic woods.	K2 K4
	female cones, microspores (Specimens), T.S of needle, microsporophyll, TLS, RLS of	•	Examine the anatomical sectioning of coralloid roots, Internal leaf	
	Stem, L.S of male cone, female cone (permanent slides). 3: <i>Gnetum</i> - Morphology (stem, male & female cones), T.S of stem (temporary slide), V.S of Ovule (permanent slide).	•	structure, sporophyll, ovule of the Gymnosperms. Interpret the adaptations of <i>Gnetum</i> as a connection link between Gymnosperm and Angiosperm.	K2
5	Observing the fossilized slides of; Rhynia, Lepidodendron, Calamites, Lepidocarpon, Williamsonnia.	•	Recall the methods of fossilization in Plants.	K 2

Mapping Scheme Course Code: U20BY1P1

U20BY1P1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	M	L	L	-	M	-	L	M	M	L	H	-
CO2	H	L	-	-	-	L	L	L	-	M	L	H	L
CO3	H	L	L	-	L	-	L	-	L	M	L	H	L
CO4	H	-	L	-	L	-	L	-	L	M	L	H	L
CO5	M	-	-	-	L	-	-	-	L	L	-	M	-

CO6	L	-	-	L	-	L	-	L	L	M	M	H	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

CORE II - MICROBIOLOGY AND PLANT PATHOLOGY

Semester : II Course Code : U20BY202

Credits: 6 Hours/Week: 6

Course Outcome

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Interpret and explain various forms of	K2	I, II, III
	Microorganisms		
CO 2	Classify the structure, functions and various	K4	I, II, III
	relationship between the mirobes		
CO 3	Compare and contrast the various types reproductive	K2	I and III
	cycle.		
CO 4	Distinguish the various microbes used in biofertilizer	K5	IV
	preparation.		
CO 5	Identify the causal agent of microbes and control the	К3	V
	mechanisms of plant pathogens and diseases.		
CO 6	Examine the evidences of management and host	K4	V
	resistance of diseases.		

SYLLABUS:

Unit I: Introduction to Microbiology

(18 Hours)

- 1. 1. Microbiology- Definition, Scope of microbiology and Importance of microbiology
- 1.2 Classification of Microorganisms based on R. H. Whittaker
- 1. 3 Bacteria General characteristics, Cell Structure, Reproduction Asexual and sexual methods, Economic Importance of Bacteria,

- 1.4 Virus General characteristic, Morphology, Cell Structure, Reproduction -Lytic and Lysogenic cycle
- 1.5 Yeast—General characteristics, Cell Structure, Reproduction—Vegetative, Asexual and Sexual methods, Economic importance of Yeast.
- 1.6 Cyanobacteria General characteristics, Cell Structure, Reproduction, Vegetative and Asexual methods, Economic Importance of cyanobacteria.
- 1.7 Microscope- Basic Principles of microscopy Light Microscopes: Principle, Structure and applications Compound and Electron microscope and Micrometer-Definition and types (Ocular and Stage micrometer)
- 1.8 Staining- Definition, procedure and Types- Simple, Gram staining and Acid fast staining
- 1.9 Sterilization- Definition, Methods of sterilization- Physical and chemical methods
- 1.10 Culture media- Definition and its types, Liquid, Solid and semisolid medium and Pure culture techniques
- 1.11 Wet Mound preparation for fungal culture and Hanging drop techniques for bacterial modality and Isolation of microbes from soil, air and water.

Unit II: Mycology (18 Hours)

- 2.1 Fungi- General Characters and Ainsworth's Classification (1970)
- 2.2 Thallus organization Unicellular (b) Filamentous; Mycelium- (a) Aseptate Mycelium (b) Septate Mycelium (c) Septal pore; Fungal Flagella- Structure (b) Kinds of Flagella (i) Whiplash (ii) Tinsel
- 2.3 Mode of Nutrition
- 2.4 Reproduction- Asexual and Sexual and Economic Importance

Unit III: Fungi and Lichens

(18 Hours)

- 3.1 Study of Selected fungal species in the following aspects- (a) *Phytophthora* (b) *Mucor* (c) *Peziza* (d) *Polyporus* (e) *Cercospora* Habit and habitat, External and internal Structure, Asexual and sexual reproduction and Life Cycles (Development not required).
- 3.2 Lichens General characters, Thallus Structure- (a) Crustose (b) Foliose (c) Fruticose, Structure and reproduction of *Usnea*, Economic importance.

Unit -IV: Applied Microbiology

(18 Hours)

- 4.1 Biogeochemical cycle: Definition and Role of microorganisms in biogeochemical cycle and Type Nitrogen cycle and Carbon cycle
- 4.2 Biofertilizers- definition and Importance of Biofertilizers
- 4.3 Common Microorganisms used as Biofertilizers- Mass culture and Commercial production-Rhizobium, cyanobacteria and Mycorrhiza,
- 4.4 Biodegradation Definition, Degradation of Xenobiotics,

- 4.5 Bioremediation definition and Advantages of bioremediation.
- 4.6 Bioleaching-Definition and Types Direct bioleaching, Indirect bioleaching and Advantages of bioleaching

Unit V: Plant pathology and Protection

(18 Hours)

- 5. 1 Plant Pathology definition, Classification plant diseases- Types of infections, types of perpetuation and spread,
- 5.2 Survival and dispersal of plant pathogen, phenomenon of infection- pre penetration, penetration and post penetration
- 5.3 Pathogenesis- role of enzymes, toxins, growth regulators and polysaccharides,
- 5.4 Defence mechanisms of plants- structural and biochemical (Pre and post infection),
- 5.5 Plant disease management- general principle, regulatory methods, cultural methods, biological control, physical and chemical methods,
- 5.6 Host plant resistance- Importance disease resistance, tolerance, susceptibility and disease escape.
- 5.7 Study of the following diseases with reference to causal agents, symptoms and prevention and control methods- Little leaf of Brinjal, Tobacco Mosaic virus, Citrus Canker and Red rot of Sugarcane.

Topics for self-study:

TOPICS	References
Kingdom	1. Sharma O.P.,2006. <i>Text book of Fungi</i> , McGrewHillEducation Private
concepts of	Limited, New Delhi, India
classification	2. Michael.J.Pelczar, J.R., E.C.S. Chanand Nod RKrieg. 2013. <i>Microbiology</i> ,
	McGrewHillEducation Private Limited, New Delhi, India.
Arboviruses	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180381/
	https://www.sciencedirect.com/topics/medicine-and-dentistry/arbovirus
	https://www.microbiologyresearch.org/content/arboviruses-and-their-
	<u>vectors</u>
Dualistic	https://www.sciencedirect.com/topics/agricultural-and-biological-
activity of	sciences/enterococcus
Enterococcus	https://cmr.asm.org/content/32/2/e00058-18
in food	
Listeriasis	https://www.cdc.gov/listeria/index.html
Vermicompos	https://www.sciencedirect.com/topics/earth-and-planetary-
ting	<u>sciences/vermicomposting</u>
Environmenta	http://www.fao.org/3/x5872e/x5872e0c.htm
1 reclamation	
Innate	https://pubmed.ncbi.nlm.nih.gov/23660678/
mechanisms	https://www.nature.com/subjects/plant-immunology
in plants	
Crown	https://link.springer.com/article/10.1007/s13225-011-0128-7
Oomycetes	https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/mpp.12190?
	<u>scrollTo=references</u>

TEXT BOOKS:

- 1. Arumugam. N, A. Mani, A. M. Selvaraj and Narayanan. L. M. 2014. *Microbiology*, Saras publication, Nagarcoil, Kanyakumari district.
- 2. Sharma O.P.,2006. *Text book of Fungi*, McGrew Hill Education Private Limited, New Delhi, India

REFERENCES BOOKS-

Microbiology

- **1.**Michael. J. Pelczar, J.R., E.C.S. Chan and Nod RKrieg. 2013. *Microbiology*, Mc Grew Hill Education Private Limited, New Delhi, India.
- 2. Lansing M. Prescott, John P. Harley, Donald A. Klein. 2005. *Microbiology* 6th Edition, Mc Grew Hill Companies, New York.
- 3. Moshrafuddin Ahmed and Basumatary. S. K. 2006. *Applied Microbiology*, MJP Publishers, Chennai.
- 4. Ananthanarayan and Panikers, 2012. Text book of Microbiology 9th Edition. Orient Publication.
- 5. Kathleen P. Talaro and Berry Chess. 2017. Foundations in Microbiology. McGraw-Hill.

Fungi

- 1. Vashishta. B.R., and Singha A.K. 1992. *Botany for Degree students*, S. Chand Publication, New Delhi.
- 2. Arumugam.N, Kumarasen. V and Annie Ragland. 2016. *Fungi and Plant Pathology*, Saras Publication, Nagar Coil, Kanyakumari.
- 3. Sharma, O.P. 1986. Text book of Fungi. New Delhi: Tata McGraw Hill,
- 4. Alexopoulos, C. J. 1962. *Introductory Mycology*. New York: John Wiley Publication.
- 5. Bhattacharya and Gopal. 2013. Textbook of Mycology. Agrotech.

Plant Pathology

- 1.Mehrotra R.S., and Ashok Agarwal, 2008. *Plant pathology*, Tata Mc Grew Hill Education Private Limited, New Delhi, India.
- 2. Sambamurthy A.V.S.S. 2020. *Text book of Plant Pathology*, I. K. International Pvt. Ltd. New Delhi.
- 3. Singh R. S., 2019. *Introduction to principle of Plant Pathology*. 4th Edition, Oxford IBH publishing, New Delhi.

WEB LINK:

https://nptel.ac.in/courses/102/103/102103015/

SPECIFIC LEARNING OUTCOMES (SLO):

Unit	CONTENT	LEARNING OUTCOME	Highest
			Bloom
			taxonomic
			level of

			transaction
I	Introduction	on to Microbiology	
1.1	Microbiology- Definition, Scope of microbiology, Golden Period of Microbiology and importance of Microbiology.	 Illustrate the general characteristic feature of micro-organisms Compare the various period of microbiology apply the scope of microbiology 	K2 K3
1.2	Classification of Microorganisms based on R.H. Whittaker (1969) – Five kingdom concept.	Classify and explain the Whittaker's five kingdom concept	K2
1.3	Bacteria- General Characteristic, Cell structure, Reproduction- Asexual and Sexual methods and Economic importance of Bacteria.	 Explain the morphology and structure of bacteria Interpret the various types of reproduction. Apply the various use of bacteria 	K2 K3
1.4	Plant virus – General characteristic, Morphology, Cell Structure, Reproduction – Bacteriophage, Lytic and Lysogenic cycle	 Illustrate the structure and characteristic of virus Examine the various types of reproduction in virus. 	K2 K4
1.5	Yeast – General characteristics. Cell Structure, Reproduction – Vegetative, Asexual and Sexual methods, Economic importance of Yeast.	 List out characteristic of yeast. Classify the structure of yeast. Explain the types of reproduction in yeast. Utilize the importance of yeast. 	K1 K2 K3
1.6	Cyanobacteria – General characteristics, Cell Structure, Reproduction, Vegetative and Asexual methods, Economic Importance of cyanobacteria.	 Label the structure of cyanobacteria. Demonstrate the reproduction and application of blue green algae. 	K2 K4
1.7	Microscope- Basic Principles of microscopy Light Microscopes: Principle, Structure and	Label the various parts of light and electron	K2

1.8	applications Compound and Electron microscope and Micrometer- Definition and types (Ocular and Stage micrometer) Staining- Definition, procedure and Types- Simple, Gram staining and Acid fast staining.	microscopes. Explain the structure and application of microscopes. Compare and contrast of light and electron microscope. List out the various types of staining methods. Explain the types of staining methods. Apply the use of bacterial based	K2 K4 K2 K2 K3
1.9	Sterilization- Definition, Methods of sterilization- Physical and chemical methods	 staining. Compare and contrast of physical and chemicals methods of sterilization. Relate and apply the types of sterilization techniques. Apply various types physical sterilization. 	K2 K1 K3
1.10	Culture media- Definition and its types, Liquid, Solid and semisolid medium and Pure culture techniques.	 Define and classify the types of culture media. Explain the types of culture media for pure culture isolation. Interpret various form of pure culture and apply in isolation microbes. 	K2 K2
1.11	Wet Mound preparation for fungal culture and Hanging drop techniques for bacterial modality and Isolation of microbes from soil, air and water.	 Summarize the wet mound preparation techniques for fungi. Solve the separation of fungi and bacteria from soil. List out the relationships between fungal and bacterial isolation. Solve and correlate the role of microbes 	K2 K4 K3

		in soil, air and water	
II	N. C.	Mycology	
2.1	Fungi- General Characters and Ainsworth's Classification (1970)	 Illustrate the morphology and structure of fungi. Demonstrate the general characteristic of fungi. Outline the Ainsworth's classification. 	K2
2.2	Thallus organization - Unicellular (b) Filamentous; Mycelium- (a) Aseptate Mycelium (b) Septate Mycelium (c) Septal pore; Fungal Flagella- Structure (b) Kinds of Flagella (i) Whiplash (ii) Tinsel	 Define Mycelium. Compare the relationship between Aseptate and Septate mycelium. Relationship between the various types of thallus variation. 	K2 K2
2.3	Mode of Nutrition	• Explain the types and nutrition in fungi.	K2
2.4	Reproduction- Asexual and Sexual and Economic Importance	 Analyse the types of reproduction in fungi. Interpret heterothallism. Explain in detail study of spore dispersal mechanisms in fungi. Apply the various beneficial aspects of fungi. 	K4 K2 K2 K3
III		and Lichens	
3.1	Study of Selected fungal species in the following aspects- (a) Phytophthora (b)Mucor (c) Peziza (d) Polyporus (e) Cercospora - Habit and habitat, External and internal Structure, Asexual and sexual reproduction and Life Cycles (Development not required)	 List the out external characteristic of fungal species. Outline the various internal structure of fungal species. Experiment with various types of reproduction in the selected fungal species. 	K3 K4

		Τ	T
		 Relationship between various class of fungal species 	
3.2	Lichens - General characters, Thallus Structure- (a) Crustose (b) Foliose (c) Fruticose, Structure and reproduction of <i>Usnea</i> , Economic	 Define phycobiont and mycobiont. List out the general feature of lichen. 	K1 K2
	importance.	Determine the structure of lichen.	K4
		Explain apothecium.Interpret the various types of	K2
		reproduction in lichen.	K3
		Make use of lichen used indicator for pollution	K3
IV	APPLIED	MICROBIOLOGY	
4.1	Biogeochemical cycle: Definition and Role of microorganisms in	List out the types of biogeochemical	K4
	biogeochemical cycle and Type Nitrogen cycle and Carbon cycle	cycle • Explain the role of	K2
		microbes in biogeo chemical cycle.	K2
		 Outline the types of Nitrogen cycle and carbon cycle 	
		Interpret relationship between nitrogen and carbon cycle.	K2
4.2	Biofertilizers- definition and	Define Biofertilizer	K2
	Importance of Biofertilizers	Classify and explain of biofertilizer	K2
4.3	Common Microorganisms used as Biofertilizers- Mass culture and Commercial production-	• Illustrate the mass cultivation <i>Rhizobium</i>	K2
	Rhizobium,, cyanobacteria and Mycorrhiza	 Summarize the relationship between 	K2
		mass and commercial production biofertilizer. • Estimation of	K5
		various production of cultivation process.	
4.4	Biodegradation- Definition,	Comment on	

	Degradation of Xenobiotics	Biodegradation • Explain Xenobiotics	K5
4.5	Bioremediation – definition and Advantages of bioremediation	 List out types of bioremediation. Explain the advantage of bioremediation. 	K4 K5
4.6	Bioleaching-Definition and Types - Direct bioleaching, Indirect bioleaching and Advantages of bioleaching	 Discover the various types of bioleaching methods Make use of the advantage of bioleaching. Explain bioleaching 	K4 K3
V	Plant pathol	logy and Protection	
5.1	Plant Pathology definition, Classification plant diseases- Types of infections, types of perpetuation and spread,	 Define plant pathology Outline the classification of plant diseases Interpret the types of infections 	K2
5.2	Survival and dispersal of plant pathogen, phenomenon of infection- pre penetration, penetration and post penetration	 Explain the dispersal of plant pathogen. Classify and compare various types of penetrations. 	K2
5.3	Pathogenesis- role of enzymes, toxins, growth regulators and polysaccharides	 Understanding and interpretation of pathogenesis. Classify and compare the role of enzymes 	K2
5.4	Defence mechanisms of plants- structural and biochemical (Pre and post infection),	 Identify major principles of plant pathology. Explain pre and post infection 	K2
5.5	Plant disease management- general principle, regulatory methods, cultural methods, biological control, physical and chemical methods,	 Classify the methods to diagnose and manage a wide range of plant diseases. Describe aspects of integrated pest management. 	K4

		 Interpret the relationship between physical and chemical methods 	
5.6	Host plant resistance- Importance – disease resistance, tolerance, susceptibility and disease escape.	 Outline the structure of host resistance mechanisms. Apply various diseases resistance tolerance in plants Analysis the susceptibility and disease escape 	K3
5.7	Study of the following diseases with reference to causal agents, symptoms and prevention and control methods- Little leaf of Brinjal, Tobacco Mosaic virus, Citrus Canker and Red rot of Sugarcane.	 List out the disease causing agents in plants. Compare and contrast various mechanisms of diseases managements. Relationship between symptoms and prevention measure of various disease 	K4 K2

Mapping Scheme Course Code: U20BY202

U20BY	PO1	PO	PSO	PSO	PSO	PSO							
202		2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	-	H	L	M	H	L	L	M	M	L	H	-
CO2	H	M	L	-	-	L	L	-	L	H	M	H	-
CO3	H	L	-	-	L	-	-	-	M	H	L	H	H
CO4	H	L	L	-	M	-	-	-	M	M	-	H	H
CO5	M	L	-	M	-	L	M	L	-	M	H	-	L
CO6	M	-	-	L	L	M	L	L	M	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

CORE PRACTICAL - II

(Microbiology and Plant pathology)

Semester : II Course Code: U20BY2P2

Credits: 2 Hours/Week:3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Identify the interaction of microorganisms and	К3	I - V
	analysis of various microorganisms		
CO 2	Understand and application of various	K2	I - V
	microbiological laboratory equipment.		
CO 3	Interpret various fungal organisms and their	K2	I - V
	internal structure and functions		
CO 4	Distinguish the internal structure of pathogenic	K4	I - V
	organisms and their mode of entry into the plants		
CO 5	Evaluate various pathogen and their controls	K5	I - V
	measure		
CO 6	Analyse and preparation of culture medium to	K4	I - V
	isolate the microorganisms		

SYLLABUS:

Unit- I-Microbiology Practical

(9 Hours)

Basic requirements of a microbiology laboratory Preparation of temporary cotton plugs

Preparation of culture media- Nutrient broth medium and PDA medium Methods of sterilization

Fungal spore identification and germination.

Isolation of Microorganism from soil, air, water, food, vegetables and plants Techniques for pure culture of microorganisms

Serial Dilution -Agar plate method, Disc diffusion, Agar well diffusion,

maintenance Measurement of Microorganisms

Methods of culture, preservation and using micrometer.

Measurement of fungal growth by colony diameter method. Completed Test for coliform bacteria.

Unit II: Fungi (9 Hours)

To study the fungal specimens in reference to plant disease and their spore structure *Phytophthora*, *Cersospora* and *Mucor*.

To disseminate knowledge on fruiting bodies of *Peziza* and *Polyporus* and to study the morphological features.

Taking cross section and structural features-Peziza and Polyporus

Unit III: Lichens (9 Hours)

To study the morphological and general characteristics of lichens To describe the fruiting bodies of Lichen- Apothecium

Unit IV: Plant Pathology

(9 Hours)

Name of the disease, casual organism, symptoms of the disease, control and prevention methods of the following diseases.

Live diseased specimens for spotters

- 1. Little leaf of Brinjal
- 2. Tobacco Mosaic Virus
- 3. Citrus canker
- 4. Red rot of Sugarcane

Unit V: Plant Protection- Spotters

(9 Hours)

- 1. Knapsac Sprayer
- 2. Duster

TEXT BOOKS:

- 1. Dubey R.C., and D. K. Maheswari, 2010. *Practical microbiology*, S. Chand and Company Ltd, New Delhi.
- 2. Sharma O.P., 2006. *Text book of Fungi*, McGrew Hill Education Private Limited, New Delhi, India.

REFERENCES BOOKS:

Microbiology

- 1. Michael. J. Pelczar, J.R., E.C.S. Chan and Noel R. Krieg. 2013. *Microbiology*, Mc Grew Hill Education Private Limited, New Delhi, India.
- 2. Lansing M. Prescott, John P. Harley, Donald A. Klein. 2005. *Microbiology* 6th Edition, Mc Grew Hill Companies, New York.
- 3. Moshrafuddin Ahmed and S.K. Basumatary. 2006. *Applied Microbiology*, MJP Publishers, Chennai.
- 4. Ananthanarayan and Panikers, *Text book of Microbiology* 9th Edition. 2012. Editor Arti Kapil.

Kathleen P.Talaro and Berry Chess, Foundations in Microbiology. McGraw-Hill.

Fungi

- 1. Vashishta. B.R., and A.K. Singha, 1992. *Botany for Degree students*, S. Chand Publication, New Delhi.
- 2. Arumugam. N, Kumarasen. V and Annie Ragland. 2016. *Fungi and Plant Pathology*, Saras Publication, Nagar Coil, Kanyakumari.
- 3. Sharma, O.P. 1986. *Text book of Fungi*. New Delhi: Tata McGraw Hill.
- 4. Alexopoulos, C. J. 1962. *Introductory Mycology*. New York: John Wiley.
- 5. Bhattacharya Gopal. 2013. Textbook of Mycology. Agrotech. 2013.

Plant Pathology

- 1.Mehrotra R.S., and Ashok Agarwal. 2008. *Plant pathology*. Tata McGrewHillEducation Private Limited, New Delhi, India.
- 2. Sambamurthy A.V.S.S. 2020. *Text book of Plant Pathology*, I. K. International Pvt. Ltd. New Delhi.
- 3. Singh R. S. 2019. *Introduction to principle of Plant Pathology 4th Edition*, Oxford IBH publishing, New Delhi.

WEB LINK:

https://onlinecourses.swayam2.ac.in/cec19_bt11/preview

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
Ι		Microbiology	
1.1	Basic requirements of a microbiology laboratory	 Recall the parts of microbiological instruments. Make use of these laboratory apparatus List out the application of chemicals and glassware 	K3 K4
1.2	Preparation of temporary cotton plugs	 Explain the preparation of cotton plugs 	K5
1.3	Preparation of culture media- Nutrient broth medium and PDA medium	Compare synthetic and natural mediumRecall the names of	

		T	1
		fungal and bacterial media	
		 Apply the types of culture medium used for fungi and bacteria 	K3
1.4	Methods of sterilization	 Interpret the important parts of autoclave Explain principle of sterilization procedure Compare and contrast 	K2
		between precaution methods of sterilizationDemonstrate the process	K4
1.5	Fungal spore identification and	of disinfection • Define principle of	K2
	germination	micrometryList out the types of	K3
		fungal culture preservedIdentify the various types fungal spore	K4
1.6	Isolation of microorganism from soil, air, water, food, vegetable and plants for pure culture microbes	 Name some soil and air living microorganisms. Classify suitable media for isolation of soil fungi 	K2
		 Identify the types of pure cultures used for microbes 	K3
1.7	Serial dilution – Agar plant, disc diffusion and agar well diffusion	Explain the various method of zone of inhibition.	K5
		 Apply the types of antibiotic assay preparation 	K3
1.8	Methods of culture, preservation and maintenance	identify the types of culture preservation	К3
		Explain the types of culture maintenance	K5
1.9	Measurement of Microorganism using micrometer	 Define ocular and stage micrometer Illustrate the measurement of 	K2
		microorganisms • Distinguish the calibration and standardization of micrometer.	K4
1.10	Measurement of fungal growth by colony diameter methods	Explain measurement of dimension of the fungiName the main	K4

		components of micrometry	K1
1.11	Completed test for coliform bacteria	 Interpret the coliform bacteria by membrane filter methods Evaluate the chemical oxygen demand of water 	K5
II			
2.1	To study the fungal specimens in reference to plant disease and their spore structure <i>Phytophthora, Cersospora</i> and <i>Mucor</i> .	 List the out external characteristic of fungal spores and mycelium. Outline the various internal structure of fungal species. Experiment with various types of reproduction in fungi. 	K4
2.2	To disseminate knowledge on fruiting bodies of <i>Peziza</i> and <i>Polyporus</i> and to study the morphological features.	 Compare types fruiting bodies of <i>Peziza</i> and <i>Polyporus</i>. Demonstrate the morphological feature of <i>Peziza</i> and <i>Polyporus</i> 	K2
2.3	Taking cross section and structural features- <i>Peziza</i> and <i>Polyporus</i>	 Determine the internal structure of <i>Polyporus</i> Evaluate the variation between <i>Peziza</i> and <i>Polyporus</i> internal structure 	K5
III		Lichens	
3.1	To study the morphological and general characteristics of lichens	 Define phycobiont and mycobiont. List out the general feature of lichen. 	K4
3.2	To describe the fruiting bodies of Lichen- Apothecium	 Determine the structure of lichen. Explain Apothecium. Evaluate the various types of fruit bodies in lichen. List out the importance of lichen 	K2 K5
IV		nology and Plant Protection	Γ
4.1	Name of the disease, casual organism, symptoms of the disease, control and prevention methods of the following diseases. Live diseased specimens for spotters	 List the out external characteristic of bacterial and fungal pathogen. Outline the internal structure of bacterial and fungal mode of entry 	K4 K2

	Little leaf of Brinjal, Tobacco Mosaic Virus, Citrus canker and Red rot of Sugarcane	Summarize the various types of reproduction in bacteria and fungus,					
V	Plant Protection						
5.1	Knapsac sprayer and Duster,	 List out the significance of physical controller Explain the working mechanism of knapsac sprayer and duster 	K4				

Mapping Scheme Course Code: U20BY2P2

U20BY	PO	PSO	PSO2	PSO3	PSO								
2P2	1	2	3	4	5	6	7	8	9	1			4
CO 1	Н	H	-	M	L	H	M	-	L	Н	L	-	M
CO 2	Н	Н	L	H						Н	H	-	H
CO 3	L	M	Н		Н	L		H	M	-	H	M	
CO 4	-	L	M	H	-	H	-	H	M	-	H	M	-
CO 5	M	M	Н	H	L	-	M	-	-	L	-	-	H
CO 6	-	Н	Н	-	-	L	H	L	H	M	H	L	-

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission. Practical tests, Records etc. (as applicable), Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

ALLIED I: ENVIRONMENTAL BOTANY (Odd Semester)

THEORY

Semester I Course Code: U20ESBY1
Credits: 3 Hours/Week: 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)		Unit
CO 1	Interpret the basics of Plant diversity	K2	1
CO 2	Describe the concept of Plant morphology and its Modifications	K2	II

CO 3	Explain various aspects of inflorescence and plant taxonomy	K2	II
CO 4	Discus the basic concepts of plant Anatomy and plant Embryology	K2	III
CO 5	Analyze the various concepts of Plant physiology	K4	IV
CO 6	Describe the various plant diseases and also plant as ecological indicator.	K4	V

SYLLABUS:

Unit I – Plant Diversity

`(9 Hours)

Plant Diversity: Structure, reproduction and life cycle of Algae - *Chlamydomonos*, Fungi - *Penicillium*, Bryophyte - *Riccia*, Pteridophyte - *Lycopodium* and Gymnosperm - *Cycas*.

Unit II - Morphology

(9 Hours)

Morphology: Root, shoot system and its modification. Inflorescence – Simple and compound and Special types – one example each. Flower description. Taxonomy: Nomenclature (Binomial), Systems of Classification (Bentham and Hooker), Study of following families – Annonaceae, Apocynaceae, Lamiaceae, and Poaceae.

Unit III – Anatomy (9 Hours)

Anatomy: Tissue (Meristematic and Permanent), primary structures of Dicot and Monocot Stem and Root. Embryology: Structure of Anther and Ovule; Types of Pollination, Fertilization and development of Dicot Embryo.

Unit IV – Physiology

(9 Hours)

Plant physiology: Absorption of water and salts. Role of mineral elements; Transpiration. Photosynthesis, Light and Dark Reactions – C3 Cycle, Respiration – aerobic, anaerobic, Krebs cycle.

Unit V - Plant as an ecological indicator

(9 Hours)

Plant as an ecological indicator – characteristics, type and physiological changes. Plant pathology: Detailed study of the following plant diseases, symptoms, causal agents and control measures of white rust, citrus canker and tobacco Mosaic disease.

TEXT BOOKS:

- 1. Mathawat, G.S.P., Sharma, D. and Sahni. R.K. 1996. *A text book of Botany*, Ramesh Book depot, Jaipur.
- 2. Mehrothra, R.S. 1991. *Plant Pathology*, Tata McGraw Hill Publishing Co., Ltd., New Delhi
- 3. Muneeswaran, A., 2004. Allied Botany, Titan Books, Madurai, India.
- 4. Pandey, B.P. 1999. *Economic Botany*, S. Chand and Co., New Delhi.
- 5. Rao, K.N. Krishnamoorthy, K. and Rao. G.S. 1979. *Ancillary Botany*, Rajalakshmi Publication, Nagerkoil.

REFERENCES BOOKS:

- 1.S K Verma and Mohit Verma. 1995. *A Textbook of Plant Physiology, Biochemistry and Biotechnology*. S Chand Publications.
- 2. Vinod Kumar Jain. 2009. *Laboratory Manual of Plant Pathology*. Oxford Book Company.

Web Link:

 $\underline{https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf}$

Topics for Self-	Reference Link
Study	
Hill reactions	https://www.sciencedirect.com/topics/biochemistry-genetics-
	and-molecular-biology/hill-reaction
secondary wall	https://www.biologydiscussion.com/plants/cell-
thickening	wall/thickening-of-cell-wall-in-plants-with-diagram-
	botany/68837
Vegetative	https://www.toppr.com/en-in/content/concept/vegetative-
propagation	propagation-201517/

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Section	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomi c level of transactio n
I	Pla	ant Diversity	
1.0	Structure, reproduction and life cycle of Algae - Chlamydomonos, Fungi - Penicillium, Bryophyte -Riccia, Pteridophyte - Lycopodium and Gymnosperm -Cycas.	Explain lower group of plant kingdom and their reproduction systems.	K2
II	N	Torphology	
2.0	Root, shoot system and its modification.	 Explain the importance and study morphological features of plants 	K2
2.1	Inflorescence – Simple and compound and Special types – one example). Flower description.	Tell the inflorescence pattern.	K1

2.2	Taxonomy: Nomenclature (Binomial), Systems of Classification (Bentham and Hooker), Study of following families – Annonaceae, Apocynaceae, Lamiaceae, and Poaceae.	 Explain the various taxonomical information of plants. 	K2
III		Anatomy	
3.0	Anatomy: Tissue (Meristematic and Permanent), primary structures of Dicot and Monocot Stem and Root.	 Demonstrate understanding of fundamental concepts of plant anatomy 	K2
3.1	Embryology: Structure of Anther and Ovule; Types of Pollination, Fertilization and development of Dicot Embryo.	Explain the simple concepts of embryology	K2
IV		Physiology	
4.0	Absorption of water and salts. Role of mineral elements; Transpiration. Photosynthesis, Light and Dark Reactions – C3 Cycle, Respiration – aerobic, anaerobic, Krebs cycle.	 Analyse fundamentals of plant physiology in plants. 	K4
V	Plant as ar	ecological indicator	
5.0	Plant as an ecological indicator – characteristics, type and physiological changes.	Distinguish different Plants as ecological indicator	K4
5.1	Plant pathology: Detailed study of the following plant diseases, symptoms, causal agents and control measures of white rust, citrus canker and tobacco Mosaic disease.	Demonstrate the various plant diseases in India.	K4

Mapping Scheme Course Code: U20ESBY1

U20ESBY1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	M	M	L	-	L	H	-	L	M	H	H	M
CO2	H	H	M	-	-	M	H	L	M	M	H	M	L
CO3	H	M	M	-	-	L	H	M	H	H	H	L	L
CO4	M	H	L	-	-	L	H	-	M	M	L	L	M
CO5	H	M	M	-	L	L	L	M	L	M	M	-	H
CO6	M	L	M	-	H	M	L	M	M	M	L	L	M

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

Allied Practical I: ENVIRONMENTAL BOTANY LAB

Semester I Code: U20ESBP1
Credits: 2 Hours/Week: 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Compare and Interpret the different group of Species diversity.(Plant diversity – Algae, Fungi, Bryophytes, Pteridophyte and Gymnosperms)	K 4	I
CO 2	Distinguish the various habitat in Plants and their Taxonomical form.	K 4	II
CO 3	Discuss the different anatomical structures of various mature plant groups.	K 4	III
CO 4	Examine the different types of Plant functions	K4	IV
CO 5	Importance of Plant pathology (White rust, Citrus canker and Tobacco) Plant specimens for the ecological indicators	K 2	V
CO 6	Understand the importance of plant conservation	K2	I, IV

SYLLABUS:

Unit I- Plant diversity:

(9 Hours)

Plant diversity: Habit, stem, root and reproductive parts of Algae- *Chlamydomonos*; Fungi – *Penicillium*; Bryophyte - *Riccia* – habit, thallus and Capsule; Pteriodophyte - *Lycopodium* – habit and stem; Gymnosperm – *Cycas*.

Unit II- Plant Taxonomy

(9 Hours)

Plant Taxonomy: Annonaceae – *Polyalthia longifollia*; Apocyanacea – *Vinca rosea*; Lamiaceae – *Leucas aspera*; Euphorbiaceae – *Euphorbia hirta* :Poaceae – *Chloris barbata*

Unit III- Plant Anatomy

(9 Hours)

Plant Anatomy: T. S of monocot root - monocot stem - dicot stem - dicot leaf - Embryology: T. S of mature anther - Ovule L. S – Fertilization - Globular – embryo - Cordate embryo

Unit IV- Plant physiology

(9 Hours)

Plant physiology (Demo only): Bell Jar, Thistle funnel, TA balance, Test tube funnel, Ganong light screen and respiroscope.

Unit V- Plant pathology

(9 Hours)

Plant specimens for the ecological indicators; Plant pathology: White rust, Citrus canker and Tobacco Mosaic disease.

TOPICS FOR SELF STUDY:

Topics	References
Plant diversity	https://www.biologydiscussion.com/algae/algae-definition-
	characteristics-and-structure-with-diagram/46727
Plant Taxonomy	https://www.biologydiscussion.com/plant-taxonomy/plant-taxonomy-
	history-classification-and-plant-kingdom/41749
Plant Anatomy	https://www.biologydiscussion.com/plants/anatomical-structure-of-
	plants-with-diagram/6450
Plant physiology	https://www.biologydiscussion.com/plant-physiology-2/notes-plant-
	physiology/34597
Plant pathology	https://www.biologydiscussion.com/plant-pathology/biology-notes-
	on-plant-pathology/46320

TEXT BOOKS:

- 1. Mathawat, G. Sharma. S. P, and R.K. Sahni. R.K. 1996. *A text book of Botany*, Ramesh Book depot, Jaipur.
- 2. Mehrothra, R.S. 1991. *Plant Pathology*, Tata McGraw Hill Publishing Co., Ltd., New Delhi.
- 3. Muneeswaran, A. 2004. Allied Botany, Titan Nooks, Madurai, India.
- 4. Pandey, B.P. 1999. Economic Botany, S. Chand and Co., New Delhi.
- 5. Rao, K.N. Krishnamoorthy, K. and Rao. G.S. 1979. *Ancillary Botany*, Rajalakshmi Publication, Nagerkoil.
- 6. Verma, V. 1980. A Text Book of Economic Botany, Emkay Publications, New Delhi.

REFERENCE BOOKS:

1. Chattopadhya, S.B., 1991. *Principles and Procedures of Plant protection*, (3rd Ed.,), Oxford and IBH Publishing (P) Ltd., New Delhi.

- 2. Edmond, J.B., Musser, A.M. and Andres, F.S. 1957. *Fundamentals of Horticulture*, McGraw Hill Book Co., New Delhi.
- 3. Fuller, H.J. and Tippo, O.1967. College Botany, Henry Holt and Co., New York.
- 4. Gangully, A.K. 1971. *General Botany*, The New Book Stall Calcutta, Vol I and II. Rajalakshmi Publication., Nagerkoil.
- 5. Kumar, N. 1997. *Introduction to Horticulture*, Rajalakshmi Publications, Nagarkoil, India.

WEB LINKS:

https://onlinecourses.nptel.ac.in/noc19_ag04/preview

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of transaction
1	Plant diversity: Structure, reproduction and life cycle of (a) Algae - Chlamydomonos (b) Fungi - Penicillium (c) Bryophytes - Riccia (d) Pteridophytes - Lycopodium (e) Gymnosperms- Cycas	 Explain the habit and habitat of Cryptograms and phanerograms Distinguish life cycle of plant groups 	K2 K 4
2	Plant Taxonomy: Annonaceae — Polyalthia longifollia; Apocyanacea — Vinca rosea; Lamiaceae — Leucas aspera; Euphorbiaceae — Euphorbia hirta: Poaceae — Chloris barbata	 Examine the morphological feature of flowering plants Illustrate the external characteristic features of plant 	K4 K2

3	Plant Anatomy: Primary and Secondary structure of Dicot and Monocot - (a) Leaf (b) Stem (d) Root. Structure of Flower Embryology: T. S of mature anther - Ovule L. S – Fertilization - Globular – embryo - Cordate embryo	 Compare the internal structure of leaf, stem and root Determine the arrangement of tissues in leaf, stem and root Illustrate the arrangements of various parts in flowers Explain the importance of anther and pollen and internal structure of anther Explain the structure of Ovule 	K2 K5 K2 K5
4	Plant physiology (Demo only): (a) Bell Jar, (b) Thistle funnel, (c) TA balance, (d) Test tube funnel, (e) Ganong light screen and (f) respiroscope	Demonstrate the various physiological process Analyze the importance of plant functions.	K2 K4
5	Plant specimens for the ecological indicators; Plant pathology: White rust, Citrus canker and Tobacco	Demonstrate the various infected plants	K 2

Mapping Scheme for the Course Code: U20ESBP1

U20ES BP1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	M	H	-	-	M	-	L	L	H	-	M	L
CO2	M	M	H	-	L	L	-	-	M	H	L	M	H
CO3	L	L	H	-	-	L	-	L	L	H	M	M	L
CO4	M	L	L	-	-	-	-	-	L	H	L	M	L
CO5	L	M	M	-	-	-	-	-	L	H	L	L	-
CO6	L	L	-	-	-	-	-	-	M	H	L	M	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

ALLIED BOTANY - I

Semester: I Course Code: U20BYY11

Credits: 4 Hours/Week: 4

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Classify the character feature and classification of	K2	I
	plant diversity (Cryptograms and Phaneograms) and		
	use that to identify species in plant kingdom		
CO 2	Explain the structure and lifecycle of Algae, Fungi,	K 2	I
	Bryophytes, Ptreridophytes and Gymnosperms with		
	examples from each group		
CO 3	Distinguish the structure and functions of various	K 4	II
	tissues.		
CO 4	Examine the internal structure of Dicot and Monocot	K 4	II
	leaf, stem and root		
CO 5	Determine the various components of male and	K5	III
	female gametophyte and mechanism of fertilization		
CO 6	Determine the mechanism of absorption, transpiration,	K5	IV and V
	respiration and mechanism of photosynthesis in		
	plants		

SYLLABUS:

Unit I: Plant Diversity

(12 Hours)

- 1.1 Introduction to diversity of Plants
- 1.2 General characteristic features and Classification of Algae (F.E. Fritsch's Classification- 1945), Fungi (Ainsworth's 1973), Bryophytes (Rothmaler's-1951), Pteridophytes (Sporne's- 1975) and Gymnosperms (Sporne's- 1965)
- 1.3 Structure, reproduction and life cycle of

(a) Algae - Chlamydomonos
(b) Fungi - Penicillium
(c) Bryophytes - Riccia
(d) Pteridophytes - Lycopodium
(e) Gymnosperms - Cycas

Unit II: Anatomy (12 Hours)

- 2.1 Meristematic Definition, Types (Apical, Lateral and Intercalary) and Functions
- 2.2 Permanent Tissue Parenchyma, Collenchyma, Chlorenchyma and Sclerenchyma Complex tissue Xylem and Phloem
- 2.3 Primary and Secondary structure of Dicot and Monocot (a) Leaf (b) Stem (d) Root.

Unit III: Embryology

(12 Hours)

- 3.1 Structure of Flower
- 3.1 Structure of male gametophyte (Anther- Internal Structure and Functions)
- 3.2 Structure of Female gametophyte (Ovules Definition and Types of ovules Orthotropous, Anatropous, Campylotropous, Hemianatropous and Amphitropous)
- 3.3 Fertilization and Dicot Embryo (Polygonum)

Unit IV: Plant physiology

(12 Hours)

- 4.1 Absorption of water and salts.
- 4.2 Role of mineral elements (Micro minerals and Macro minerals).
- 4.3 Nitrogen cycle.
- 4.4 Transpiration.

Unit V: Photosynthesis

(12 Hours)

- 5.1 Light and Dark Reactions
- 5.3 Respiration (a) Aerobic (b) Anaerobic
- 5.3 Krebs cycle and oxidative phosphorylation.

TEXT BOOKS:

- 1. Sharma. O. P. 2011. Algae, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 2. Sharma. O. P. 2006. *Text book of Fungi*, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 3. Sharma. O. P. 2014. Bryophytes, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 4. Sharma. O. P. 2012. Pteridophytes. Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 5.Bhatnagar, S.P. and Alok Moitra. 2004. *Gymnosperms*, New age international Pvt. Ltd. Publishers, India.
- 6. Pandey. B.P. 2011. Plant Anatomy, Chand Pvt. Ltd.
- 7. Bhojwani, S.S., Bhatnagar, S. P. and Dantu, P. K. 2015. *The Embryology of Angiosperms 6th Edition*. Vikas Publishing House Pvt. LTD.
- 8. Verma, S. K and Mohit Verma, 2007. *A text book of Plant Physiology, Biochemistry and Biotechnology*. S. Chand and Company Ltd. New Delhi.

REFERENCES BOOKS:

- 1.S K Verma and Mohit Verma. 1995. *A Textbook of Plant Physiology, Biochemistry and Biotechnology*. S Chand Publications.
- 2. Vinod Kumar Jain. 2009. *Laboratory Manual of Plant Pathology*. Oxford Book Company.

WEB LINK:

https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf

TOPICS FOR SELF-STUDY:

Sl.	Topics for Self-	Reference Link
No.	Study	
1.	Hill reactions	https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hill-reaction
2.	Ecological adaptations of xerophytes	https://www.biologydiscussion.com/plants/xerophytes/xerophyte-meaning-and-characteristics-plants-botany/75464
3.	Torus	https://www.easybiologyclass.com/pits-ultra-structure- classification-functions-simple-bordered-pits-similarities- differences/
4.	secondary wall thickening	https://www.biologydiscussion.com/plants/cell-wall/thickening- of-cell-wall-in-plants-with-diagram-botany/68837

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomi c level of transacti on					
I:	Plant Diversity							
1.1	Introduction to diversity of Plants	 Classify and describe the major plant kingdom based on flowering and non- flowering 	K 2					
1.2	General characteristic features and Classification of Algae (F.E. Fritsch's Classification- 1945), Fungi (Ainsworth's – 1973), Bryophytes (Rothmaler's-1951), Pteridophytes (Sporne's- 1975) and Gymnosperms (Sporne's- 1965)	Tell the morphology characters	K 1					
1.3	Structure, reproduction and life cycle of (a) Algae - Chlamydomonos (b) Fungi - Penicillium (c) Bryophytes - Riccia (d) Pteridophytes - Lycopodium (e) Gymnosperms- Cycas	 Explain the habit and habitat of Cryptograms and phanerograms Tell life cycle of plant groups 	K2					
II		Anatomy						
2.1	Meristematic - Defintion, Types (Apical, Lateral and Intercalary) and Functions	 Explain tissue in leaf, stem and root 	K2					
2.2	Permanent Tissue - Parenchyma, Collenchyma, Chlorenchyma and Sclerenchyma, Complex tissue - Xylem and phloem	 Examine the order of arrangement of tissues in plants Explain the structure of tissues 	K4					

2.3	Primary and Secondary structure of Dicot and Monocot - (a) Leaf (b) Stem (d) Root.	 Compare the internal structure of leaf, stem and root Analyze the arrangement of tissues in leaf, stem and root 	K2						
III	Embryology								
3.1	Structure of Flower	Illustrate the arrangements of various parts in flowers	K2						
3.2	Structure of male gametophyte (Anther- External and Internal Structure and Functions)	Explain the importance of anther and pollen and internal structure of anther	K5						
3.3	Structure of Female gametophyte (Ovules – Definition and Types of ovules Orthotropous, Anatropous, Campylotropous, Hemianatropous and Amphitropous)	 Recognize main difference between male and female gametophyte Explain the structure of Ovule 	K2 K5						
3.4	Fertilization and Dicot Embryo (Polygonum)	Illustrate mechanism of fertilization	K2						
IV	F	Plant physiology							
4.1	Absorption of water and salts Role of mineral elements (Micro	 Identify the mode of absorption Illustrate and analyze the mechanism of water and salt Absorption Interpret role of minerals in 	K3 K2 K5						
	minerals and Macro minerals)	plant growth							
4.3	Nitrogen cycle	 Explain the significance of nitrogen Illustrate the process of nitrogen fixation 	****						
4.4	Transpiration	 Explain the significance of stomatal transpiration Analyze the mechanism significance of transpiration 	K2 K4						
V		Photosynthesis							
5.1	Light and Dark Reactions	 Illustrate the mechanism of photosynthesis Explain the importance of photosynthesis 	K2 K4						
5.2	Respiration – (a) Aerobic (b) Anaerobic	 Compare the Aerobic and Anaerobic Explain the difference between respiration 	K2 K4						

5.3	Krebs cycle and oxidative phosphorylation	• Illustrate how the plants K2 respire. K3	
		 Apply the mechanism of respiration 	

Mapping Scheme Course Code: U20BYY11

U20BYY	РО	PO	РО	PO	РО	РО	PO	PO	PO	PS	PS	PS	PS
11	1	2	3	4	5	6	7	8	9	01	O 2	O 3	O 4
CO1	L	H	L	-	-	-	L	-	L	Н	M	M	Н
CO2	L	H	L	L	-	-	-	-	L	M	L	H	M
CO3	L	H	L	L	-	-	-	-	-	-	-	Н	-
CO4	L	H	L	-	-	-	-	-	-	-	-	Н	-
CO5	M	H	M	M	-	-	-	-	-	-	-	L	-
CO6	M	H	M	Н	-	M	L	-	L	-	M	M	M

L-Low M-Moderate H- High

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in class works, assignments, seminars.

Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

Allied Botany II

Semester: II Course Code: U20BYY22

Credits: 4 Hours/Week: 4

Course Outcomes:

On completion of this course, the students will be able to

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Understand the plant morphology terminologies and identify morphological peculiarities	K2	I
CO 2	Define members of the major angiosperm families by their features and economic importance.	K2	II
CO 3	Evaluate the economic importance of selected angiosperms.	K4	III

CO 4	Make use of the vegetative propagation methods in	К3	IV
	plants		
CO 5	Interpret plant remains, connections in plant evolution	K2	V
	and conserve the linking plant forms from extinction.		
CO 6	Appraise the adaptations of plants in various habitat	K5	I - V
	and their ecological and economic importance		

SYLLABUS:

Unit I: Morphology of Angiosperms

(12 Hours)

- 1.1 Leaf shape and Phyllotaxy
- 1.2 Inflorescence
- (a) Racemose, (b) Cymose (c) Special types
- 1.3 Terminologies in flower description.
- 1.4 Bentham and Hooker Systems of Classification

Unit II: Plant Taxonomy:

(12 Hours)

- 2.1 Study of following Plant families
- (a) Annonaceae, (b) Cucurbitaceae, (c) Lamiaceae, (d) Euphorbiaceae (e) Poaceae.

Unit III: Economic Botany

(12 Hours)

A brief study of the following economically important plants:- history, botanical name, family, uses(nutritional aspects, active compounds and importance)

(a) Cereals : Oryza sativa and Triticum aestivum

(b) Spices : Cinnamomum verum and Syzygium aromaticum
(c) Essential oils : Sandal wood oil, Eucalyptus oil and Lemon grass oil
(d)Medicinal Plants : Catharanthus roseus (cardiotonic), Withania somnifera

(Drugs acting on nervous system), and Centella asiatica

(Memory booster).

Unit IV: Plant Propagation

(12 Hours)

- 4.1 Asexual methods: (a) Cutting (b) Air layering (c) Grafting (d) Budding.
- 4.2 Micropropagation Medium, Explants, Techniques and Application

Unit V: Distribution & Dispersal of Plants & animals

(12 Hours)

- 5.1 Vegetation types of India
- 5.2 Vegetation and its effect on animal distribution
- 5.3 Pollination & seed dispersal
- 5.4 Shelter & Nesting by animals
- 5.5 Key stone species- Fig

TEXT BOOKS:

- 1. Fuller, H.J. and Tippo, O, 1967. *College Botany*. Henry Holt and Co.
- 2. Gangully, A.K, 1971. General Botany. The New Book Stall Calcutta. Vol I and II.
- 3. Muneeswaran, 2004. A. Allied Botany. Titan Nooks, Madurai, India.

REFERENCE BOOKS:

- 1. Chattopadhya, S.B. 1991. *Principles and Procedures of Plant protection (3rdE.d.,)* Oxford and IBH Publishing Cosec2 (P) Ltd., New Delhi.
- 2. Edmond Musser and Andres. 1957. *Fundamentals of Horticulture*. McGraw Hill Book Co
- 3. Kumar N, 1997. Introduction to Horticulture. Rajalakshmi Publications Nagarcoil, India.
- 4. Mathawat, G.S.P., D. Sharma and R.k. Sahni. 1996. *A text book of Botany*, Ramesh Book depot, Jaipur.
- 5. Pandey, B.P. 1999. Economic Botany. S. Chand and Co. New Delhi.
- 6. Verma, V. 1980. A text book of Economic Botany. Emkay Publications, New Delhi.

WEB LINK:

https://www.iht.edu.in/

https://www.coursera.org/courses?query=botany&page=1

TOPICS FOR SELF-STUDY:

Topics for Self- Study	Reference Link
Identification of common plants	https://www.coursera.org/learn/plant-biology
Modifications of	http://kea.kar.nic.in/vikasana/bridge/biology/chap_05_ppt.pdf
plants	
Gootee	https://www.merriam-webster.com/dictionary/gootee

SPECIFIC LEARNING OUTCOME (SLO):

Unit/	CONTENT	LEARNING OUTCOME	Highest Bloom					
Section			taxonomic					
			level of					
			transaction					
I	Morphology of Angiosperms							

1.1	Leaf shape and Phyllotaxy	Define the morphology, structure and arrangement of leaves, scales, or bracts with flowers along the plant stem.	K2
1.2	Inflorescence – (a) Racemose (b) Cymose (c) Special types	 Explain inflorescence. Identify the parts of an inflorescence Distinguish inflorescence from simple flower 	K2 K3 K4
1.3	Terminologies in flower	List out the terminologies in flower	K1
1.4	Bentham and Hooker systems of classification	Outline the Bentham and hooker systems of classification	K2
II		Plant Taxonomy	
2.1	Study of following plant families (a) Annonaceae (b) Cucurbitaceae (c) Lamiaceae (d) Euphobiaceae (e) Poaceae	 Illustrate the structure and characteristic of selected Plant families. Identify the plant families based on their morphological characters. Examine the plant characters 	K2 K3 K5
III		Economic Botany	
3.1	A brief study of the following economically important plants: history, botanical name, Family uses (nutritional aspects, active compounds and importance) (a)Cereals: Oryza sativa and Triticum aestivum (b) Spices: Cinnamomum verum and Syzygium aromaticum (c) Essential oils: Sandal wood oil, Eucalyptus oil and Lemon grass oil (d)Medicinal Plants: Catharanthus roseus	Explain commercial products derived from plants that provide us with consumable products such as cereals, Spices, essential oilsand medicinal plants.	K2

IV	(cardiotonic), Withania somnifera (drugs acting on nervous system), and Centella asiatica (memory booster).	Plant Propagation	
4.1	Asexual methods: (a) Cutting (b) Air layering (c) Grafting (d) Budding.	Analyze the propagation of different types of plants from cuttings, Air layering, grafting, budding using different propagation methods.	K4
4.2	Micropropagation - (1)Medium,(2)Explants, Techniques and Application	Apply plant tissue culture techniques.	К3
V	Distribution of	& Dispersal of Plants & animals	
5.1	Vegetational types of India	• Compare the various type of Indian forest.	K2
5.2	Vegetation and its effect on animal distribution	 Define sdifferent means of dispersal in different organisms 	K2
5.3	Pollination & seed dispersal	Explain the concept of dispersal and how it helps in the process of colonization of a population	K2
5.4	Shelter & Nesting by animals	• Evaluate the different shelter and nesting by animals	K4
5.5	Key stone species- Fig	• Explain key stone species – fig	K4

Mapping of Course Code: U20BYY22

U20BYY 22											PSO 2		PSO 4	
CO 1	H	M	-	-	M	-	M	-	-	H	L	-	H	
CO 2	H	H	M	H	L	-	L	M	M	H	H	-	Н	
CO 3	M	H	M	L	-	-	M	L	M	H	M	-	H	
CO 4	M	-	M	H	H	M	L	H	H	H	Н	M	M	
CO 5	M	H	M	L	M	-	H	L	M	H	L	M	Н	
CO 6	\mathbf{M}	\mathbf{L}	${f L}$	${f L}$	\mathbf{M}	${f L}$	M	L	L	H	M	${f L}$	M	

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

ALLIED BOTANY PRACTICAL - I

Semester: I & II Course Code: U20BYYP1

Credits: 3 Hours/Week: 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Distinguish the external, internal, reproductive	K4	I
	structure of cryptogamae and phanerogamae		
CO 2	Understand and illustrate the structure and	K 3	II
	arrangement of tissue and morphology of plants		
CO 3	Compare the internal structure of leaf, stem and root	K 4	III
	of dicot and monocot plants		
CO 4	Analyse the structure of male and female gametophyte	K 4	IV
CO 5	Formulate taxonomic formula and explain a variety of	K6	V
	physiological process		
CO 6	Explain the methods of vegetative propagation and	K5	VI, VII, VIII
	preparation of rooting and potting medium		

Unit-1: Plant Diversity Hours)

(6

(a) Algae - *Chlamydomonos* (Slide) (b) Fungi - *Penicillium* (Slide)

(c) Bryophyte - Riccia - Habit, Thallus (Hand work), Sporophyte (Slide)

(d) Pteriodophyte - Lycopodium - Habit, Stem (Hand work),
 (e) Gymnosperm - Cycas - Corolloid root, Rachis, Leaflets,

Microsporophyll (Hand work), Habit (Images/ Life

speciemen) and Megasporophyll (Spotters)

Unit- 2: Anatomy (6 Hours)

- (a) Meristems (slides)
- (b) Tissues Parenchyma, Collenchyma and Sclerenchyma, Xylem and Phloem (slides)
- (a) T.S of dicot Stem, Leaf and Root (Hand work)
- (b) T.S of monocot Stem, Leaf and Root (Hand work)

Unit-3: Embryology

(6 Hours)

- (a) T.S of mature anther (Hand work),
- (b) Ovule ovules: anatropous, orthotropous, circinotropous, amphitropous and campylotropous (Slides)
- (c) Fertilization (Slides)
- (d) Embryo (i) Cordata (ii) Globular- (Slide/images)

Unit-4: Plant Physiology (Demonstration)

(6 Hours)

- (a) Osmosis -Thistle Funnel
- (b) Bell jar
- (c) Ganong's Photometer
- (d) Test Tube and Funnel
- (e) Ganong's light screen
- (f) Ganong's Respiroscope
- (g) Kuhne's Experiment.

Unit-5: Taxonomy- (Hand work)

(6 Hours)

- (a) Annonaceae Polyalthia longifollia
- (b) Cucurbitaceae *Coccinia indica*
- (c) Lamiaceae *Leucas aspera*
- (d) Euphorbiaceae Euphorbia heterophylla
- (e) Poaceae *Chloris barbata*

Unit-6: Economic botany- (Images)

(6Hours)

(a) Cereals : Oryza sativa and Triticum aestivum

(b) Spices : Cinnamomum verum and Syzygium aromaticum
 (c) Essential oils : Sandal wood oil, Eucalyptus oil and Lemon grass oil
 (d) Medicinal Plants : Catharanthus roseus, Withania somnifera, Centella

asiatica

Unit-7: Plant propagation - (Hand work)

(6 Hours)

- (a) Air layering(b) Wedge grafting
- (c) Cleft grafting

Unit-8: Plant – animal interactions and Dispersal-

(3 Hours)

- (a)Pollen and seed dispersal (Photograph)
- (b) Vegetation types in India Map

Text Books:

- 1. Sharma. O. P. 2011. Algae, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 2. Sharma. O. P. 2006. *Text book of Fungi*, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 3. Sharma. O. P. 2014. Bryophytes, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 4. Sharma. O. P. 2012. Pteridophytes. Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 5.Bhatnagar, S.P. and Alok Moitra. 2004. *Gymnosperms*, New age international Pvt. Ltd. Publishers, India.
- 6. Pandey. B.P. 2011. *Plant Anatomy*, Chand Pvt. Ltd.
- 7. Bhojwani, S.S., Bhatnagar, S. P. and Dantu, P. K. 2015. *The Embryology of Angiosperms 6th Edition*. Vikas Publishing House Pvt. LTD.
- 8. Verma, S. K.and Mohit Verma, 2007. *A text book of Plant Physiology, Biochemistry and Biotechnology*. S. Chand and Company Ltd. New Delhi.

REFERENCES BOOKS:

- 1.S K Verma and Mohit Verma. 1995. *A Textbook of Plant Physiology, Biochemistry and Biotechnology*. S Chand Publications.
- 2. Vinod Kumar Jain. 2009. *Laboratory Manual of Plant Pathology*. Oxford Book Company.

TOPICS FOR SELF-STUDY

Topics for Self-	Reference Link
Study	
Hill reactions	https://www.sciencedirect.com/topics/biochemistry-genetics-
	and-molecular-biology/hill-reaction
secondary wall	https://www.biologydiscussion.com/plants/cell-
thickening	wall/thickening-of-cell-wall-in-plants-with-diagram-
	<u>botany/68837</u>
Vegetative	https://www.toppr.com/en-in/content/concept/vegetative-
propagation	propagation-201517/

WEB LINK:

 $\underline{https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf}$

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Secti on	CONTENT	LEARNING OUTCOME	Highest Bloom taxonom ic level of transacti on
1-		Plant Diversity	
	 (a) Algae - Chlamydomonos (b) Fungi- Penicillium (c) Bryophyte - Riccia - Habit, Thallus Sporophyte (d) Pteriodophyte-Lycopodium - Habit, Stem (e) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Leaflets, Microsporophyll And Megasporophyll 	 Distinguish the structure of cryptogamae and phanerogamae via., permanent slides and fresh Specimen List the external characteristic of plant group Illustrate the various external and internal structure of Lower plants 	K4 K1 K2
II		Anatomy	l

VI]	Economic Botany	1
	a) Annonaceae – Polyalthia longifollia (b) Cucurbitaceae – Coccinia indica (c) Lamiaceae – Leucas aspera (d) Euphorbiaceae – Euphorbia heterophylla (e) Poaceae – Chloris barbata	 Examine the morphological feature of flowering plants Illustrate the external characteristic features of plant Construct the floral diagram and formula for each species 	K4 K2 K6
V	a) Annonaceae – <i>Polyalthia</i>	Taxonomy • Examine the morphological	K4
IV	(a) Osmosis -Thistle Funnel (b) Bell jar (c) Ganong's Photometer (d) Test Tube and Funnel (e) Ganong's light screen (f) Ganong's Respiroscope (g) Kuhne's Experiment	 Demonstrate the various physiological process Analyse the various physiological process Explain the important feature of experiments 	K2 K4 K2
	 (a) T.S of mature anther (b) Ovule - ovules: anatropous, orthotropous, circinotropous, amphitropous and campylotropous (c) Fertilization (d) Embryo- (i) Cordata (ii) Globular 	 Analyse the various development pattern of the reproductive structures of plants. Compare the seed development in various plants. 	K4 K2
III		tissues arrangement in leaf stem and root Embryology	
	(a) Meristems (b) Tissues Parenchyma, Collenchyma Chlorenchyma and Sclerenchyma, Xylem and Phloem (a) T.s of dicot Stem, Leaf and Root (b) T.s of monocot Stem, Leaf and Root	 Explain the structure of meristems and tissues Examine the structure of permanent tissue though slides Compare and contrast feature between dicot and monocot Identify and illustrate the 	K2 K2 K3
	(a) Marietame (b) Tieguas	- E1-' (1	V2

	 (a) Cereals: Oryza sativa and Triticum aestivum (b) Spices: Cinnamomum verum and Syzygium aromaticum (c) Essential oils: Sandal wood oil, Eucalyptus oil and Lemon grass oil (d) Medicinal Plants: Catharanthus roseus, Withania somnifera, Centella asiatica 	 List out the economic importance of Plants Categorize the plant species based on various characters. Compare the importance of plant products 	K1 K4 K5
VII	P	Plant Propagation	
	(a) Air layering	 Explain the various kinds of 	K5
	(b) Wedge grafting(c) Cleft grafting	vegetative propagation methods in plants	
VIII	(b) Wedge grafting(c) Cleft grafting	vegetative propagation	

Mapping Scheme Course Code: U20BYYP1

U20BYY	PO	PO	РО	РО	РО	РО	РО	РО	PO	PSO	PSO	PSO	PSO
P1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO 1	-	H	-	-	L	-	-	-	L	H	L	L	M
CO 2	-	Н	-	-	-	-	-			H	-	M	H
CO 3	-	M	-	-	-	-	-	H	M	-	-	M	-
CO 4	-	L	-	H	-	-	-	H	M	-	-	M	-
CO 5	-	M	-	Н	M	-	M	-	-	M	-	H	M
CO 6	-	H	M	Н	M	-	L	L	H	M	L	H	M

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

PLANT SYSTEMATICS AND ECONOMIC BOTANY

Semester: III Course Code: U20BY303

Credits: 6 Hours/Week: 6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Distinguish and apply the morphological variation and	K4	I
	modifications of the plant parts		
CO 2	Analyse the floral taxonomy of angiosperms	K4	II
CO 3	Apply the knowledge on identification of plants, its botanical nomenclature, herbariums and its importance	K3	III
CO 4	Apply the knowledge gained in studying the plants belonging to the Polypetalae, Gamopetalae, Monocot families with their economic importance	К3	IV
CO 5	Distinguish different families on their economic importance.	K4	V
CO 6	Identify the general characteristics, morphological variations and modifications of the plant	K3	I - V

Unit I: Vegetative Morphology

(18 Hours)

- 1.0. Plant Morphology
- 1.1. Plant Habits
- 1.2. Root, Stem and its modification
- 1.3. Leaf structure- simple, compound; Phyllotaxy, venation and its modifications.
- 1.4. Inflorescence and types Racemose and Cymose and special types- Racemose: simple, spike, spadix, catkin, corymb, umbel and head- Cymose: simple, monochasial –helicoids, scorpoid; Dichasial and Polychasium- Special types of Inflorescence: cyathium, verticillaster and Hypanthodium

Unit II: Floral Morphology

(18 Hours)

- 2.1 Floral morphology- Flower as a modified shoot, structure of flower.
- 2.2 Anthers- Types and arrangement
- 2.3 Gynoecium types- Placentation
- 2.4 Aestivation, Floral diagram and floral formula
- 2.5 Classification of fruits- Simple: Fleshy drupe, berry, Hesperidium-Fruits: Dry Dehiscent legume, capsule; Indehiscent -Caryopsis, Cypsella- Schizocarpic lomentum, carcerulus, regma, cremocarp with examples- Aggregate. Multiple: sorosis, syconus.

Unit III: Taxonomy

(21 Hours)

- 3.0 Importance of Taxonomy
- 3.1Systems in Plant Classification (Outline only)- its merits and demerits:
 - 3.1.1 Artificial Systems Linnaeus Binomial System of classification
 - 3.1.2 Natural system Benthem and Hooker System of Classification

- 3.1.3 Phylogenetic systems Hutchinsons system of Classification
- 3.1.4 Molecular systems- APG Systems with special reference to APG IV.
- 3.2. Cytotaxonomy- its applications
- 3.3. Numerical Taxonomy- its applications.
- 3.3 Chemotaxonomy- its applications
- 3.4 Herbarium importance and techniques.
- 3.5 Two important National Herbaria.

Unit IV: Angiosperm Families

(30 Hours)

- 4.0 A detailed study of Angiosperm families with their economic importance.
- 4.1 **Polypetalae:** i) Annonaceae, ii) Sterculiaceae, iii) Rutaceae, iv) Fabaceae, v) Caesalpineaceae, vi) Mimosaceae, vii) Cucurbitaceae, viii) Apiaceae.
- 4.2 **Gamopetalae:** i) Rubiaceae, ii) Asteraceae, iii) Apocynaceae iv) Asclepiadaceae, v) Solanaceae, vi) Lamiaceae, vii) Verbinaceae
- 4.3 Monochlamideae: i) Euphorbiaceae, ii) Amaranthaceae,
- 4.4 Monocotyledonae: i) Orchidaceae, ii) Liliaceae iii) Poaceae.

Unit V: Economic Botany

(3 Hours)

Study of the following medicinal plants with special reference to their systematic position, morphology of useful parts and uses: *Adhatoda, Aloe, Bacopa, Catharanthus, Eclipta, Neem, Ocimum, Phyllanthus niruri, Rauvolfia and Sida*

Topics for self-study:

Self-study topics	References
General	https://naldc.nal.usda.gov/download/CAT78702502/PDF
morphological	https://www.sciencedirect.com/topics/earth-and-planetary-
characters of leaf	sciences/leaf-morphology
Plant Reproductive	https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-
biology/ Pollination	8677.2010.00414.x#:~:text=He%20concluded%20from%20his%20obs
	ervations,to%20attract%20insects%20for%20pollination.&text=Late
	r%2C%20The%20Origin%20of%20Species,relationship%20between
	%20flowers%20and%20pollinators.
Digital herbaria	http://dhcrop.bsmrau.net/
Kew botanical garden	https://www.kew.org/
Plant Databases	http://www.plantgdb.org/
	http://www.plantphysiol.org/content/by/section/BIOINFORMATICS-
	PLANT%20DATABASES
National botanical	https://nilgiris.nic.in/tourist-place/botanical-garden/
garden, Tamil nadu	

TEXT BOOKS:

Taxonomy

- 1. Lawrence, G.I.M. 1953. *Taxonomy of Vascular Plants*. Oxford & IBH Publishers, New Delhi.
- 2. Narayanaswamy, R.V. and Rao, K.N. 1976. *Outlines of Botany*. S. Viswanathan Printers & Publishers, Chennai.
- 3. Pandey, B.P. 1997. *Taxonomy of Angiosperms*. S. Chand & Co., (P) Ltd., New Delhi.
- 4. Sharma, O.P. 2000. Plant Taxonomy. Tata McGraw Hill Publishing Co., New

Delhi.

- 5. Vashista, P.C. 1997. Taxonomy of Angiosperms. S. Chand & Co., New Delhi.
- 6. Eames, A.J, 1969. *Morphology of Angiosperms*. McGraw Hill Publishing Co, New York.
- 7. Naik, V.N, 1984. *Taxonomy of Angiosperms*. Tata McGraw Hill Publishing Co, New Delhi.
- 8. Pandey, S.N and Misra, S.P. 2008. *Taxonomy of Angiosperms*. Ane Books India, New Delhi.
- 9. Sharma, O. P, 1993. *Plant Taxonomy*. Tata Mc Graw Hill Publishing Co Ltd., New Delhi.
- 10. Lawrence GHM, 1951. Taxonomy of Vascular Plants, Oxford &IBH, New Delhi.
- 11. Singh, G. 1999. *Plant Systematics: Theory and Practice*, Oxford & IBH, New Delhi.

WEB LINKS:

https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf

SPECIFIC LEARNING OUTCOMES (SLO):

UNIT/ SECTI ON	CONTENT	LEARNING OUTCOME	HIGHEST BLOOM TAXONO MIC LEVEL OF TRANSA CTION
1.1	Plant Habits	 Recall the Plant Habits Compare the various habitats of Plants List out the systematic characteristics of angiosperm plants 	K1 K2 K4
1.2	Root, Stem and its modification	 Classify the different morphological variation of the plant parts Explain the root, stem and its modification 	K2
1.3	Phyllotaxy	Distinguish the leaf types	K4
1.3.1	Leaf structure- simple, compound venation and its modifications	 Explain the leaf structure its modifications Interpret the adaptations occurred in plant 	K2 K2
1.4	Inflorescence and types - Racemose and Cymose and	Classify the Inflorescence types	K2

	special types		
1.4.1	Racemose: simple, spike, spadix, catkin, corymb, umbel and head	Distinguish between Racemose inflorescence	K4
1.4.2	Cymose: simple, monochasial – helicoids, scorpoid; Dichasial and Polychasial	Compare Cymose inflorescence	K4
1.4.3	Special types of Inflorescence: cyathium, verticillaster and Hypanthodium	• Explain the special types of Inflorescence	K2
II	F	oral Morphology	
2.1.1	Flower as a modified shoot, structure of flower	 Explain the modified shoot Classify structure of flower 	K2 K2
2.1.2	Types of flowers	List out Types of flowers	K1
2.2	Types of anthers and arrangement	Classify the types of anthers and arrangement	K2
2.3	Gynoecium – types Placentation	Distinguish the Gynoecium and types of placentation	K4
2.4	Aestivation Floral diagram and floral formula	 List out the arrangement of petals and sepals in a flower bud. Apply the floral formula is a system of representing the structure of a flower using specific letters, numbers and symbols 	K1
2.5	Classification of fruits Fruits: outline of the classification; Simple: Fleshy – drupe, berry, hesperidium, Dry – Dehiscent – legume, capsule; Indehiscent -Caryopsis, Cypsella, Schizocarpic – lomentum, carcerulus, regma, cremocarp, Aggregate. Multiple: sorosis, syconus	Classify to fruit and types of fruits	K2
III	Impo	ortance of Taxonomy	
3.0	Importance of Taxonomy	List out the Importance of Taxonomy	K1
3.1.1	Systems of Classification, Binomial nomenclature	Apply the importance of Botanical nomenclature	К3

3.1.2	Bentham and Hooker's classification, merits and demerits	Explain the classification of Bentham and Hooker and others	K4
3.1.3	Hutchinson's classification – Merits and demerits.	Outline the classification of Hutchinson's classification – Merits and demerits	K2
3.1.4	Molecular systems- APG Systems with special reference to APG IV.	Explain the modern system of classification	K2
3.2	Cytotaxonomy	Explain the chromosomes studies	K2
3.3	Numerical Taxonomy	 Analyze the importance of Phenetics in phylogenetic study. 	K4
3.4	Chemotaxonomy	 Identify originally plants according to confirmable in their biochemical compositions. 	К3
3.6	Herbarium - importance and techniques	List out the importance of herbariums	K1
3.6.1	Two important national herbaria	List out the national herbaria	K1
IV		Polypetalae	•
4.1	Polypetalae: i)Annonaceae, ii) Capparidaceae, iii) Sterculiaceae, iv) Rutaceae, v) Fabaceae, vi) Caesalpineaceae, vii) Mimosaceae, viii) Cucurbitaceae, ix) Apiaceae.	 Illustrate the salient features of plants belonging to the families Annonaceae to Apiaceae Identify the characters of various plant families. 	K2
4.2	Gamopetalae: i) Rubiaceae, ii) Asteraceae, iii) Apocynaceae iv) Asclepiadaceae, v) Solanaceae, vi) Lamiaceae, vii) Verbinaceae	Distinguish the plants belonging to Gamopetalae and apply the knowledge gained by studying families under Rubiaceae to Verbinaceae	K4
4.3	Monochlamideae i) Euphorbiaceae, ii) Amaranthaceae	Distinguish the plants belonging to the families	K4

4.4	Monocotyledon: i) Orchidaceae, ii) Liliaceae iii) Poaceae	 Distinguish the plants belonging to the families Apply the knowledge gained by studying the plants belonging to Monocotyledon 	K4 K3
V	E	conomic Botany	
5.0	Study of the following medicinal plants with special reference to their systematic position, morphology of useful parts and uses: Adhatoda, Aloe, Bacopa, Catharanthus, Eclipta, Neem, Ocimum, Phyllanthus niruri, Rauvolfia and Sida	 Explain the importance of plants Make use of these plants in future 	K2 K3

Mapping Scheme for the Course Code: U20BY303.

U20BY	PO	PSO	PSO	PSO	PSO								
303	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	H	M	-	-	-	-	-	L	L	H	L	L
CO2	H	H	-	-	-	-	-	-	M	L	H	M	L
CO3	H	H	-	L	-	-	L		-	L	H	M	M
CO4	H	H	-	M	-	-	-	-	-	L	H	L	M
CO5	H	H	-	-	-	L	L	-	M	L	H	L	M
CO6	H	H	L	-	-	L	-	-	L	L	H	L	M

L-Low M-Medium H-High

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

Herbarium, field book

End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICAL III – PLANT SYSTEMATICS AND ECONOMIC BOTANY

Semester : III Course Code : U20BY3P3
Credits : 2 Hours/week. : 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Identify the morphological variations and modifications of	K3	I
	the plant		
CO 2	Analyse plant modifications based on ecological adaptation	K4	I
CO 3	Make use of the knowledge in identifying the plants belonging to the Polypetalae family.	K3	II
CO 4	Distinguish the floral characters of different families belonging to the Gamopetalae	K4	II
CO 5	Identify Monocotyledon plants by their characters	К3	II
CO 6	Explain the economic importance of plant and plant parts.	K2	III

Syllabus:

UNIT I- Morphological studies in Plants

(15 Hours)

- 1.1 Study of Root and its Modifications a) Tap root (*Acalypha*) b) Adventitious root (Grass) c) Storage roots Conical (*Daucas*), Fusiform (*Raphanus*), Napiform (Beta) d) Stilt root (Maize/Pandanus) e) Aerial root (Pothos) f) Respiratory root (*Avicennia*)
- 1.2. Study of Stem and its Modifications a) Underground stem –Corm (Amorphophallus), Tuber (Potato), Bulb (Onion), Rhizome (Ginger) b) Sub aerial stem- Runner (Grass), Offset (Eichhornia). c) Aerial stem Phylloclade (Opuntia), Cladode (Asparagus), Thorn (Bougainvilla), Stem tendril (Passiflora)
- 1.3. Study of Leaf and its diversity a) Types of leaf (Simple (Mango), Compound-Paripinnate (Tamarindus), Imparipinnate (Neem/Rose/Clitoria) b) Shape Linear (Grass), Lanceolate (Nerium), Ovate (Hibiscus), Obcordate (Bauhinia), Elliptical (Guava) c) Venation i) Reticulate- Unicostate (Ficus), Multicostate (Cucurbita) ii) Parallel- i) Unicostate/Pinnate (Canna), ii) Multicostate convergent (Bamboo/Grass) d) Phyllotaxy i) Spiral (Hibiscus), ii) Opposite Decussate (Calotropis/Ixora), Opposite superimposed (Guava) iii) Ternate (Nerium) iv) Whorled (Alamanda) v) Radical (Aloe) vi) Leaf Mosaic (Acalypha) e) Modifications- i) Succulent leaf (Bryophyllum), ii) Reproductive leaf (Kalanchoe).

- 1.4. Study of Flower / Inflorescence a) Typical flower (Hibiscus / Datura), Inflorescence-i) Simple Receme (Tehprosia), Spike (Achyranthes), Corymb (Caesalpinia), Head/Capitulum (Tridax), ii) Cymose Simple cyme (Jasmine), Monochasial Helicoid (Haemelia), Monochasialscorpoid (Heliotropium), Dichasial cyme (Ixora), Polychasial cyme (Nerium), iii) Special-Cyathium (Euphorbia), Thyrsus (Ocimum), Verticillaster (Leucas), Hypanthodium (Fig).
- 1.5. Study of Fruits & its Type a) Simple: i) Dry Dehiscent Legume (Tephrosia), Follicle (Calotropis), Capsule (Ladies finger) ii) Dry Indehiscent Cypsella (Tridax), iii) Splitting/Schizocarpic- Carcerulus (Ocimum) iii) Succulent Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit).

UNIT II. Taxonomy (12 Hours)

Taxonomy Study of various angiosperm families mentioned in the syllabus by using MLS of flower and study of floral whorls with floral formula and floral diagram.

UNIT III. Economic Importance in Plants

(3 Hours)

Binomials and Morphology of the useful parts of the Economic products belonging to the families studied.

Submission Field visit & report, preparation and submission of 20 bonafide Herbarium sheets with Field Note Book and Record should be submitted during the end semester practical examination.

Topics for self-study:

Self-study topics	References
Placentation	https://www.merriam-webster.com/dictionary/placentation
Plant Reproductive biology/ Pollination	https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.2010.00414.x#:~:text=He%20concluded%20from%20his%20observations,to%20attract%20insects%20for%20pollination. &text=Later%2C%20The%20Origin%20of%20Species,relationship%20between%20flowers%20and%20pollinators.
Digital herbaria	http://dhcrop.bsmrau.net/
Kew botanical garden	https://www.kew.org/

TEXT BOOKS:

- 1. Sharma, O.P, 2000. Plant Taxonomy. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Ashok Bendre and Ashok Kumar, 1999. *Economic Botany*. Rastogi Publications, Meerut, India.

REFERENCE BOOK:

- 1. Dr. R. Satish Kumar, *Plant Taxonomy & Embryology (With Practical Manual)*. KNRN publications.
- 2. John C. Semple, 2016. Flowering Plants Laboratory Manual, Aster Graphics Publisher, ISBN: 978-0-9736087-2-4

Web Links:

 $\underline{https://www.acs.edu.au/courses/plant-taxonomy-833.aspx}$

SPECIFIC LEARNING OUTCOMES (SLO):

UNIT/ SECTI ON	CONTENT	LEARNING OUTCOME	HIGHEST BLOOM TAXONO MIC LEVEL OF TRANSA CTION
	-	logical studies in Plants	W2
1.1	Study of Root and its Modifications a) Tap root (Acalypha) b) Adventitious root (Grass) c) Storage roots – Conical (Daucas), Fusiform (Raphanus), Napiform (Beta) d) Stilt root (Maize/Pandanus) e) Aerial root (Pothos) f) Respiratory root (Avicennia)	 Define the root modifications by observing the parts. Explain the useful plant parts 	K2 K2
1.2	Study of Stem and its Modifications a) Underground stem –Corm (Amorphophallus), Tuber (Potato), Bulb (Onion), Rhizome (Ginger) b) Sub aerial stem- Runner (Grass), Offset (Eichhornia). c) Aerial stem – Phylloclade (Opuntia), Cladode (Asparagus), Thorn (Bougainvilla), Stem tendril (Passiflora)	 Explain the use for stem modifications and the parts adaptation Examine the ecological adaptation of plant modification 	K2 K4
1.3	Study of Leaf and its diversity a) Types of leaf (Simple (Mango), Compound- Paripinnate (Tamarindus), Imparipinnate (Neem/Rose/Clitoria) b) Shape – Linear (Grass), Lanceolate (Nerium), Ovate (Hibiscus), Obcordate (Bauhinia), Elliptical (Guava) c) Venation – i) Reticulate- Unicostate (Ficus), Multicostate (Cucurbita) ii) Parallel- i) Unicostate/Pinnate	 Define the leaf modifications in plants Explain the taxonomic principles for plant identification 	K2 K2

1.4	(Canna), ii) Multicostate convergent (Bamboo/Grass) d) Phyllotaxy – i) Spiral (Hibiscus), ii) Opposite Decussate (Calotropis/Ixora), Opposite superimposed (Guava) iii) Ternate (Nerium) iv) Whorled (Alamanda) v) Radical (Aloe) vi) Leaf Mosaic (Acalypha) e) Modifications- i) Succulent leaf (Bryophyllum), ii) Reproductive leaf (Kalanchoe). Study of Flower / Inflorescence a) Typical flower (Hibiscus / Datura), Inflorescence-i) Simple Receme (Tehprosia), Spike (Achyranthes), Corymb (Caesalpinia), Head/Capitulum (Tridax), ii) Cymose – Simple cyme (Jasmine), Monochasial Helicoid (Haemelia), Monochasialscorpoid (Heliotropium), Dichasial cyme (Ixora), Polychasial cyme (Nerium), iii) Special-Cyathium (Euphorbia), Thyrsus (Ocimum), Verticillaster (Leucas), Hypanthodium (Fig).	 Make use of the flower types for plant identification Tell the various types of flowers Analyze the flower modification that favour pollination 	K3 K1
1.5	Study of Fruits & its Type a) Simple: i) Dry Dehiscent — Legume (Tephrosia), Follicle (Calotropis), Capsule (Ladies finger) ii) Dry Indehiscent — Cypsella (Tridax), iii) Splitting/Schizocarpic- Carcerulus (Ocimum) iii) Succulent — Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit).	 Examine the various fruit modifications Analyze the seed dehiscence mechanisms Define the fruit types 	K4 K4 K2
II	Taxonomy Study of various	Taxonomy • Analyze the plant groups	K4

	in the syllabus by using MLS of flower and study of floral whorls with floral formula and floral diagram.	 Identify the plant category Make use of the scientific classification of plants 	K3
III	Econom	ic Importance in Plants	
	Binomials and Morphology of the useful parts of the Economic products belonging to the families studied.	Explain the economic importance of selected plant parts.	K2

Mapping Scheme for the Course Code: U20BY3P3

U20BY	PO	PSO	PSO	PSO	PSO								
3P3	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	M	M	-	-	-	-	-	L	L	H	L	L
CO2	H	H	-	-	-	-	-	-	M	L	M	M	L
CO3	H	H	M	L	L	L	L	M	-	L	H	M	M
CO4	M	H	L	M	-	-	-	-	-	L	H	L	M
CO5	H	H	-	-	-	L	L	-	M	L	H	L	M
CO6	H	H	L	-	-	L	-	-	L	L	H	L	M

L-Low M-Medium H-High

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, record submission.

Class tests, Model Exams.

Herbarium, field book

End Semester Examination

Indirect

1. Course-end survey

NMEC I - NURSERY TECHNOLOGY

Course Code: U20BYPE1 Credits: 2 Semester III Hours/Week: 2

On completion of this course, the student will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Summarize the basic concepts of Nursery Management.	K2	I

CO 2	Explain with the process of vegetative propagations	K5	I
CO 3	Make use of the in vitro cultivation methods.	K3	II
CO 4	Identify plant multiplication methods and nursery structures.	К3	III
CO 5	Distinguish greenhouse farming, net farming, pot culturing.	K4	IV
CO 6	Identify the methods of harvesting, storage in various plants	К3	V

SYLLABUS:

Unit I: Introduction (6 Hours)

Methods of Propagation-Sexual Propagation, Vegetative Propagation, Cuttings, Layering, Grafting, Budding.

UNIT II : Tissue culture (6 Hours)

Methods of Plant multiplication in vitro. Basic parameters for propagation in vitro.

UNIT III: Nursery Structures

(6 Hours)

Store House, Potting and Packing Shed, Nursery Bed, Mist Chamber, Manures, compost, vermicompost.

UNIT IV: (6 Hours)

Green houses for tropical countries - Management, Pot culture, Pot mixture

UNIT V: (6 Hours)

Harvesting, Packing, Storage and Marketing of Nursery Stock

TEXT BOOKS:

- 1. Kumar. N. 1997. *Introduction to Horticulture*. Rajalakshmi Publications Nagercoil, India.
- 2. Manibhushan Rao, K. 1991. Text Book of Horticulture. Macmillon India Ltd.

REFERENCES:

- 1. Edmond Musser and Andres. 1957. Fundamentals of Horticulture. McGraw Hill Book
- 2. Gardener. 1996. Basic Horticulture. Mac Millan N.Y.
- 3. Lex Lauries and Victor H, Rice. 1979. *Floriculture fundamentals and practices*. Mc. Graw Hill publishers N.Y.
- 4. Mukherjee. D. 1977. Gardening in India. Oxford IBH Publishing Co., New Delhi.
- 5. Randhawa. 1997. *Ornamental Horticulture in India*. Today and Tomorrow Publishers New Delhi.
- 6. Sandhu. M.K. 1989. Plant Propagation. Wiley Easter Ltd., New Delhi.

- 7. Sundararajan, J.S., Muthuswamy, J., Shanmugavelu, K.G. and Balakrishnan. R. 1995. *A Guide to Horticulture*. Thiruvenkadam Printers, Coimbatore. 60
- 8. Trevor Thorpe, Indra Hary. 1997. *Application of tissue culture to Horticulture*. International Society for Horticulture and Science. 447. Page 39-48.

Web link:

https://onlinecourses.nptel.ac.in/noc20_ce11/preview

SPECIFIC LEARNING OUTCOME (SLO):

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
I	Introduction Methods of Propagation- Sexual Vegetative.	 Define the basic concepts in plant propagation. List out the major plant propagative methods. Explain the importance of 	K1 K2
II	Tissue culture – Methods of Plant multiplication <i>in vitro</i> .	 plant propagative methods. Define various in vitro and in vivo methods used in plant propagation. Make use of new 	K5 K2 K3
	Basic parameters for propagation <i>in vitro</i> .	 techniques in the <i>in vitro</i> technology. Name various parameters influencing the successful plant <i>in vitro</i> propagation. Select the best planting protocol for various plants. Relate <i>in vitro</i> propagative methods in industrial scale 	K1 K2
III	Nursery Structures – Store House, Potting and Packing Shed, Nursery Bed, Mist Chamber, Manures, compost, vermicompost	 Define the parts of Nursery Structure. Develop new formulations for different plants in growth chamber. 	K1 K3
IV	Green houses for tropical countries – Management, Pot culture, Pot mixture	 Summarize the green house management systems. Analyze best suited practice. 	K2 K4
V	Harvesting, Packing, Storage and Marketing of Nursery Stock	 List out stages in Nursery techniques. Identify the best practice based on utility. 	K2 K3

Mapping Scheme for Course Code: U20BYPE1

U20BY	PO1	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PSO	PSO	PSO	PSO
PE1		2	3							1	2	3	4
CO1	L	-	L	Н	L	-	L	L	M	L	L	M	-
CO2	L	-	L	-	-	L	L	-	L	-	M	M	-
CO3	M	L	-	H	L	-	-	-	M	L	L	L	L
CO4	L	L	L	-	M	-	-	-	M	M	-	H	L
CO5	M	L	-	M	-	L	M	L	-	M	H	-	L
CO6	M	-	-	L	L	M	L	L	M	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Course assessment:

- 1. Continuous assessment by seminars, assignments, records.
- 2. Model exam and End semester exam

Core IV: PLANT ANATOMY AND DEVELOPMENTAL BOTANY

Semester: IV Course Code: U20BY404

Credits: 5 Hours/Week: 6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Classify the major types of tissue system and it functions.		
		K4	I
CO 2	Discuss the theories related with Shoot & Root Apical		
	Meristem.	K6	I
CO 3	Elaborate the developmental process of secondary growth		
	pattern of shoot& Root.	K6	II
CO 4	Discuss the anatomical structure of Anomalies of Monocot		
	and Dicot.	K6	III
	Compare the structure and development of Micro		
CO 5	gametogenesis and Mega gametogenesis.	K4	IV

CO 6	Evaluate the Process of Development of an Embryo, seed		
	structure and apomixes	K5	V

SYLLABUS:

Unit I: Scope of Plant Anatomy & Meristematic Tissue System

(15 Hours)

- **1.1 Scope of Plant Anatomy-** Application in Systematics, forensics and pharmacognosy
- 1.2 Plant Tissues
- 1.2 Tissue definition, characteristics and classification
- **1.3 Simple and Complex tissues (no phylogeny)-** Simple Tissues Structure and Function of Parenchyma, Collenchyma and Sclerenchyma- Complex Tissues Xylem, Phloem and its component Pits and Plasmodesmata
- **1.4 Meristematic Tissue-** Meristem -Characteristics, Classification of meristem based on stage of development- Organization Shoot Apex Apical cell theory, Histogen theory, Tunica Corpus theory. Types of Vascular Bundles, Primary structure of Dicot and Monocot stem.- Organisation- Root Apex Apical cell theory, Histogen theory, Korper-Kappe theory, Quiescent centre, Primary structure of Dicot and Monocot root.
- **1.5 Secretory Tissue-** Laticiferous tissues (i) Non-articulate Latex Ducts / Latex Cell (ii) Articulate Latex Ducts / Latex Vessels- Glandular Tissues (i) Hydathodes, (ii) Lithocysts (iii) Cavities

Unit II: Adaptive and Protective Systems & Vascular Cambium (15 Hours)

2.1 Epidermal Tissue System- Cuticle, epicuticular waxes, trichomes (uni and Multicellular, Glandular and Non-glandular – two examples of each), - Stomata and its types

2.2 Vascular Cambium

Structure and function - Secondary growth in root and stem

2.3 Nodal Anatomy

Anatomical Structure of Monocot & Dicot Leaf- Definition, Leaf Trace, Leaf gap- Types of Nodes – Unilacunar, Trilacunar and Multilacunar

Unit III- Wood and Anomalous secondary growth

(15 Hours)

- **3.1. Cambium-** Axillary and radially oriented elements
- **3.2 Nature of Wood -**Sapwood and Heartwood, Ring and diffuse porous wood & Early and late wood
- 3.3 Tylosis
- 3.4 Dendrochronology
- **3.5 Periderm-** Periderm development
- **3.6 Anomalous Secondary growth-** Anomalous secondary structure of Genus Aristalochia and Dracaena

UNIT IV- DEVLOPEMENTAL EMBRYOLOGY IN ANGIOSPERMS (15 Hours)

- 4.1. Flower and it parts
- 4.2. Stamen and Androecium (microsporangium)- Structure of anther -

Microsporangium-development of anther - Microsporogenesis

4.3 Microgametogenesis- Development of male gametophyte - Pollen development and structure

4.4 Carpel and Gynoecium (Megasporangium)

Megasporangium – Structure - Types of ovules - Orthotropous, Anatropous,

Campylotropous, Hemianatropous and Amphitropous

4.5 Megagametogenesis

Development of female gametophyte - Types of Embryosac – Monosporic (*Polygonum*), Bisporic(*Allium*) and Tetrasporic (*Peperomia*)-Development of Embryosac.

UNIT V: POLLINATION AND FERTILIZATION (15 Hours)

- **5.1 Pollination** Definition Pollination mechanism Types of Pollination Self Pollination, Cross Pollination Advantages and disadvantages of pollination, Pollen pistle interaction
- 5.2 Double Fertilization- Syngamy Triple fusion
- 5.3 Post fertilization changes

5.4 Endosperm

 $Definition, Types-Nuclear, Cellular\ and\ Helobial,\ function\ of\ endosperm-Ruminate\ endosperm$

5.5 Embryo development

Development of Embryo in Dicots and monocots

- **5.6. Seed structure** Structure of monocot and Dicot seed Importance and reserve food materials of seed
- 5.7. Apomixis- (a) Definition (b) Parthenocarpy and its application
- 5.8 Polyembryony and its application

Topics for Self-Study:

Self-Study topics	References
The Cell, Cell	https://www.nature.com/scitable/topic/cell-cycle-and-cell-division-
Cycle & Cell	<u>14122649/</u>
Division	https://www.genome.gov/genetics-glossary/Cell-Cycle
Abscission and	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634118/
healing of wounds	https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-
	8137.1986.tb00606.x
Ecological	https://www.researchgate.net/publication/279432765_Ecological_an
Anatomy	<u>atomy</u>
	https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-
	<u>29452018000400201</u>
Systemic Plant	https://www.sciencedirect.com/topics/agricultural-and-biological-
Anatomy	sciences/plant-anatomy
	https://pubmed.ncbi.nlm.nih.gov/21245193/
Palynology	https://www.floridamuseum.ufl.edu/paleobotany/palynology/#:~:tex
	t=Palynology%20is%20the%20study%20of,both%20living%20an
	d%20fossil%20form.
	https://sfb.univie.ac.at/en/research/palynology/
Embryology in	https://link.springer.com/chapter/10.1007/978-3-642-69302-1_14
relation to	https://www.jstor.org/stable/2481545?seq=1
Taxonomy	
Experimental	https://www.ncbi.nlm.nih.gov/books/NBK10002/
Embryology	https://www.nature.com/articles/080451a0

TEXT BOOKS:

- 1. Pandey B.P. 1990. Plant Anatomy, S. Chand & Co., New Delhi.
- 2. Vashista. P.C. 1998. A Text Book of Plant Anatomy. S Nagin & co
- 3. Bhojwani, S.S. and Bhatnagar, S.P. 2011. *Embryology of Angiosperms*. Vikas Publication House Pvt. Ltd. New Delhi.
- 4. S.N. Pandey and A. Chadha. 1997. Plant Anatomy and Embryology. Sangam Books Ltd.

REFERENCE BOOKS:

- 1. Mauseth, J.D. 1988. *Plant Anatomy*. The Benjamin/Cummings Publisher, USA.
- 2. Esau, K. 1985. Anatomy of seed plants John Willey Publication.
- 3. Cutter. E.G. 1989. *Plant Anatomy Part I*, Addison Wesley Publishing Co.
- 4. Maheswari. P. 1991: *An Introduction to Embryology of Angiosperms*. Tata- McGraw hill Publishing Co. Ltd.
- 5.Swamy B.G.L and Krishnamurthy K.V. 1990. *From flower to fruits*, Tata McGraw hill publishing Co. Ltd
- 6. Erdtman, G. 1954. *An introduction to pollen analysis*. Chronica Botanica, Walthan, Mass. USA.

WEB LINKS:

https://study.com/academy/topic/introduction-to-plant-anatomy.html

Unit	Content	Learning Outcome	Highest Bloom taxonomic
			level of
			transaction
I	Scope of Plant Anat	omy & Meristematic Tissue Syster	n
1.1	Scope of Plant Anatomy	• List out the Scope of Plant Anatomy	K1
	-Application in Systematics,	,	
	forensics and Pharmacognosy	Discuss the scope of Plant anatomy in connection with Systematics, Forensics and	K2
1.2	Plant Tissues	Pharmacognosy fields.	K1
1.2	Tissues – Definition	Define – Tissue	K1
	Characteristics & Classification	• Classify the kinds of Plant tissue	K2
1.3	Simple & Complex tissues (Phylogeny is not included) Simple Tissues – Structure and	Explain the Structure of Simple Permanent tissues	K2
	Function of Parenchyma, Collenchyma & Sclerenchyma	• List out the functions of Simple Permanent tissues.	K4

1.4	Complex Tissues – Xylem, Phloem and its component Pits and Plasmodesmata Meristematic Tissue Characteristics, Classification	 Discuss the Components of Complex tissues. Classify the meristem and its type. 	K2
	of meristem- based on stage of development Organisation – Shoot Apex- Apical Cell theory, Histogen theory, Tunica Corpus theory, Types of Vascular Bundles, Primary Structure of Dicot and Monocot stem Organisation – Root Apex – Apical cell theory, Histogen theory, Korper-Kappe theory, Quiescent centre, Root cap, Endodermis, Origin of lateral root, Primary Structure of Dicot and Monocot Root.	 Elaborate the theories related with the shoot apical meristem. Distinguish Primary Structure of monocot stem from Dicot stem. Discuss the theories related with the Root Apical Meristem Compare the Primary Structure of Dicot and Monocot Root. 	K2 K4 K6 K4
1.5	Secretory Tissue Laticiferous tissues – I) Non- articulate Latex Ducts/Latex cells II) Articulate Latex Ducts/Latex Vessels Glandular tissues – I) Hydathodes II) Lithocytes III) Cavities	 Categorize the kind of Secretory tissue system. Explain the Glandular tissues and its type. 	K4 K5
II	Adaptive and Protect	ctive Systems & Vascular Cambiun	m
2.1	Epidermal Tissue System Cuticle, epicuticular waxes, trichomes (Uni and Multicellular, Glandular and Non-glandular – Two examples each), Stomata and its type.	 Elaborate the types of Epidermal Tissue System. Classify the Stomatal types with examples. 	K6 K4
2.2	Vascular Cambium Structure and Function, Secondary growth in Root and Stem	 Explain the structure and function of Vascular Cambium. Discuss the Secondary growth pattern in Root & Stem. 	K2 K6
2.3	Nodal Anatomy Anatomical Structure of Monocot and Dicot Leaf, Definition – Leaf Trace, Leaf gap, Types of Nodes – Unilacunar, Trilacunar and	 Distinguish the anatomical structure of Monocot and dicot leaf. Define -Leaf Trace, Leaf Gap 	K4 K1 K2

	Multilacunar	•	Explain the types of nodes	
III	Wood and Anomalo	ous Seco	ondary growth	1
3.1	Cambium Axillary and radially oriented elements	•	Compare the anatomy of axillary and radially oriented elements of Cambium.	K4
3.2	Nature of Wood Sap wood and Heartwood, Ring and diffuse porous wood and Early and Late Wood	•	Discuss about the various kinds of wood	K6
3.3	Tylosis	•	Where the tyloses are formed?	K1
3.4	Dendrochronology	•	What Dendrochronology deals with?	K1
3.5	Periderm Periderm development	•	Elaborate the development of Periderm.	K6
3.6	Anomalous Secondary Growth Anomalous secondary growth of Genus <i>Aristalochia</i> and	•	Criticize the anomalous nature of <i>Aristalochia</i> .	K5
	Dracaena	•	Justify the Anomalous secondary growth in <i>Dracaena</i> .	K5
IV	Developmenta	l Embr	yology in Angiosperms	
4.1	Flower and its parts	•	Analyse the flower and its parts	K4
4.2	Stamen and Androecium (microsporangium) -Structure of anther - Microsporangium-development of anther	•	Distinguish the anther wall and sporogenous tissue	K4
4.3	Microgametogenesis - Development of male gametophyte - Pollen development and	•	Explain the development of male gametophyte Examine the pollen	K2
4.4	Carpel and Gynoecium (Megasporangium) - Megasporangium – Structure and development -Types of ovules -	•	Analyse the Structure and development of megasporangium	K4 K4
	Orthotropous, Anatropous, Campylotropous, Hemianatropous and Amphitropous	•	Interpret the types of ovules	K4
4.5	Megagametogenesis - Development of female gametophyte	•	Explain the development of female gametophyte	K2

	Davidonment and atmesting of								
	-Development and structure of								
	Embryosac.	Classify the types of	17.0						
	-Types of Embryosac –	embryo	K2						
	Monosporic (Polygonum),								
	Bisporic (Allium) and								
	Tetrasporic (Peperomia)								
V	Mega gametogenesis Pollination • Compare the various K5								
5.1		Compare the various	K5						
	- Definition	types of pollination.							
	-Pollination mechanism								
	-Types of Pollination – Self								
	Pollination, Cross Pollination								
	-Advantages and disadvantages								
	of pollination.								
	Pollen pistle interaction								
5.2	Double Fertilization	 Analyse the double 	K4						
	- Syngamy - Triple fusion	fertilization changes							
5.3	Post fertilization changes	Understand the post	K2						
		fertilization changes							
5.4	Endosperm	Categorize the types of	K4						
	- Definition, Types – Nuclear,	endosperm							
	Cellular and Helobial, function								
	of endosperm- Ruminate								
	endosperm								
	- Endosperm haustoria								
5.5	Embryo development	Describe the plant embryo	K3						
	-Development and structure of	development and structure							
	Embryo in Dicots and monocots	development and structure							
5.6	Seed structure	Differentiate the monocot	K4						
3.0	-Structure of monocot and	and dicot seed structure	12.1						
	Dicot seed	and dicot seed structure							
	-Importance and reserve food	Manipulata tha							
	materials of seed	Manipulate the importance of the seed.							
<i>-</i> 7		importance of the seed	TZ 4						
5.7	Apomixis	Compare the apomixes	K4						
	- Definition and types	and parthenocarpy							
	- Parthenocarpy and its								
	application								
5.8	-Polyembryony and its	Predict and illustrate the	K4						
	application	poly embryony							

Mapping Scheme for the Course Code: U20BY404

U20BY4	PO	PSO	PSO	PSO	PSO								
04	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	Н	-	-	-	-	Н	Н	L	Н	Н	-	Н
CO2	M	M	Н	-	-	-	Н	M	-	-	-	-	Н
CO3	Н	-	-	-	M	M	Н	-	-	M	M	-	Н

CO4	Н	-	M	-	L	M	Н	-	-	L	L	-	Н
CO5	M	L	-	-	M	Н	M	L	M	M	M	-	Н
CO6	Н	L	Н	1	L	M	Н	M	M	Н	Н	-	Н

L – Low (1) M-Medium (2) H-High (3)

Assessment/Evaluation:

- 1. Continuous Assessment by conducting Class test, Group Discussion and Quiz.
- 2. Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.
- 3. End Semester Examination.

MAJOR PRACTICAL IV – PLANT ANATOMY AND DEVELOPMENTAL BOTANY

[CORE PRACTICAL – IV]

Course code: U20BY4P4

Credits: 2

Semester: IV

Hours/Week: 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Take part in hand dissection in Plant Anatomy and	K4	I
	observing various tissue system.		
CO 2	Distinguish various kind of tracheary elements by	K4	II
	performing Maceration technique.		
CO 3	Dissect the plant specimen of Stem, root and Leaf of	K4	III
	Dicot and Monocot Plants and compare its anatomical		
	features.		
CO 4	Dissect out and mount the Pollinium and Dicot Embryo.	K4	IV

CO 5	Analyze the structure of anther and Embryo sac.	K4	V
CO 6	Explain the process of pollination and its mechanisms.	K2	V

SYLLABUS:

Unit-1- (6 Hours)

Study the Structure of shoot apex using hand section and preparation of temporary mounts-*Hydrilla* twigs with shoot tips. Study of the distribution and function of permanent tissues. (i) Parenchyma (ii) Sclerenchyma and (iii) Collenchyma (iv) Xylem (v) Phloem. To study secretory tissue system through permanent slides: (i) Articulated Latex vessels (ii) Non-Articulated Latex Ducts.

Unit-2 (6 Hours)

Study of Tracheary elements by maceration technique: (1) *Cycas* rachis (2) *Cucurbita* Stem. Study of Stomata from epidermal peels: (i) Actinocytic (ii) Diacytic (iii) Paracytic (iv) Anamocytic (v) Anisocytic (vi) Gramineous. Study of Nodal anatomy: (i) Unilacunar Node (ii) Trilacunar Node (iii) Multilacunar Node.

Unit-3 (6 Hours)

Study of internal structure and preparation of T.S of Primary structure of Dicot and Monocot: Root - *Cicer*, *Canna*; Stem - *Tridax*, *Sorghum*, Leaf - *Tridax*, Grass. Secondary structure: Dicot Root - *Tridax* sp.; Dicot Stem - *Pongamia*. Study of anomalous secondary thickening and preparation of T.S - (i) *Dracaena* (ii) *Aristolochia*.

Unit -4 (6 Hours)

Study of floral parts using bisexual and unisexual flowers. Isolation and mounting of embryo - (i) Globular embryo (ii) Cordate embryo - *Tridax* flower. Pollinium dissection – *Calotropis* flower.

Unit -5 (6 Hours)

Structure of anther and microsporogenesis using permanent slides. Study of ovule & its types — (i) Anatropous (ii) Orthotropous (iii) Circinotropous (iv) Amphitropous (v) Campylotropous using permanent slides and photographs. Study of Embryo sac & Fertilization using photographs. Structure of pollen grains using whole mounts (*Catharanthus*, *Hibiscus*, *Acacia*, *Grass*).

TOPICS FOR SELF STUDY:

Topics	References
Maceration	https://www.ableweb.org/biologylabs/wp- content/uploads/volumes/vol-19/9-yeung.pdf
Anomalous secondary growth	http://virtualplant.ru.ac.za/Main/ANATOMY/prac5.htm
Pollen grain	https://link.springer.com/chapter/10.1007%2F978-3-211-79894-2_4

Morphology	

REFERENCE BOOKS:

Plant Anatomy

- 1. Pandey, B. P. 1984. *Plant Anatomy*. S. Chand and Company Ltd, New Delhi.
- 3. Esau, K. 1953. Plant Anatomy. John Wiley and Sons, INC, New York, London.
- 4. Cutter, E. G. 1978. *Anatomy part I* The English Language Book Society and Edward Arnolds Ltd. London.
- 5. Eames, A. J. and Mac Daniels, I. H. 1947. *An introduction to plant Anatomy*. MC Graw and Hill Book Company, INC., New York, London.

Developmental Botany

- 1. Bhojwani, S. S. and Bhatnagar, S. P. 1978. *The Embryology of Angiosperms*. Vikas Publishing House Pvt. Ltd,
- 2. Maheswari, P. 1950. *An introduction to the Embryology of Angiosperms*. Vikas Publishing House Pvt. Ltd.
- 3. Agarwal, S. B. 1972. Embryology of angiosperms. Sahitya Bhavan, Agra.
- 4. Agrawal, R.L. 1982. Seed technology. Oxford and IBH Publishing CO.

WEB LINKS:

- 1. https://bio.biologists.org/content/7/5/bio031237
- 2.https://biocyclopedia.com/index/introduction_to_botany/simple_tissues_and_complex_tissues.php

Unit/ Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of transaction
1	Study the Structure of shoot apex using hand section and preparation of temporary mounts- <i>Hydrilla</i> twigs with shoot tips.	Dissect out the Shoot Apical Meristem.	K4
	Study of the distribution and function of permanent tissues. (i) Parenchyma (ii) Sclerenchyma and (iii) Collenchyma (iv) Xylem	Identify the simple tissues and Complex tissues	K3

	(v) Phloem To study secretory tissue system through permanent slides: (i) Articulated Latex vessels (ii) Non-Articulated Latex Ducts	Distinguish between Articulated Latex vessels & Non-articulated latex ducts K4	
2	Study of Tracheary elements by maceration technique: (1) <i>Cycas</i> rachis (2) <i>Cucurbita</i> Stem. Study of Stomata from epidermal peels: (i) Actinocytic (ii) Diacytic (iii) Paracytic (iv) Anamocytic (v) Anisocytic (vi) Gramineous. Study of Nodal anatomy: (i) Unilacunar Node (ii) Trilacunar Node (iii) Multilacunar Node.	 Examine the Tracheary elements. Outline the types of stomata Identify the kinds of Nodal anatomy. K3 	
3	Study of internal structure and preparation of T.S of Primary structure of Dicot and Monocot: Root - Cicer, Canna; Stem - Tridax, Sorghum, Leaf - Tridax, Grass. Secondary structure: Dicot Root - Tridax sp.; Dicot Stem - Pongamia. Study of anomalous secondary thickening and preparation of T.S - (i) Dracaena (ii) Aristolochia.	 Compare the anatomical features Primary Structure of stem, root and leaves of Dicot and Monocot Plant specimens. Compare the anatomical anomalies of Secondary thickenings of <i>Dracaena</i> and <i>Aristolochia</i> K5	
4	Study of floral parts using bisexual and unisexual flowers. Isolation and mounting of embryo - (i) Globular embryo (ii) Cordate embryo - <i>Tridax</i> flower. Pollinium dissection – <i>Calotropis</i> flower.	 Examine the floral parts of bisexual and unisexual flowers. Dissect out and mount the Dicot Embryo Dissect out and mount the Pollinium 	
5	Structure of anther and microsporogenesis using permanent slides. Study of ovule & its types – (i) Anatropous (ii) Orthotropous (iii) Circinotropous (iv) Amphitropous (v) Campylotropous using permanent	 Identify and label the parts of anther. Distinguish the various kind of ovules and its arrangement. Analyze the Structure of an Embryo sac. K4	

slides and photographs. Study of	Identify the Pollen	К3
Embryo sac & Fertilization using	Morphology.	
photographs. Structure of pollen		
grains using whole mounts		
(Catharanthus, Hibiscus, Acacia,		
Grass).		

Mapping Scheme for the Course Code: U20BY4P4

U20BY4P4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	-	-	-	L	-	M	-	-	L	-	L	H
CO2	H	-	-	-	-	-	M	-	-	-	-	H	H
CO3	M	L	-	-	L	-	M	-	M	L	-	H	H
CO4	M	L	L	-	L	-	M	-	M	L	-	-	M
CO5	L	-	L	-	-	-	L	-	L	H	-	-	L
CO6	L	L	L	L	L	L	L	M	H	H	L	M	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

NMEC II -MUSHROOM CULTIVATION

Semester IV Course Code: U20BYPE2
Credits 2 Hours/Week: 2

On completion of this course, the student will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Identify the types of mushrooms-edible and poisonous	К3	I
CO 2	Explain the scope of mushroom cultivation	K2	II
CO 3	Experiment with various cultivation methods	K 3	III
CO 4	Distinguish various methods of mushroom cultivation.	K4	IV
CO 5	Select the methods of harvesting, pest management in	К3	V

	mushrooms		
CO 6	Experiment with the process of mushroom cultivation	K3	Practical

SYLLABUS:

Unit I Introduction (6 Hours)

Types of Mushroom-Identification of edible and poisonous Mushroom. Nutritive values life cycle of common edible mushroom.

Unit II (6 Hours)

Scenario of Mushroom cultivation – Prospects and Scope of Mushroom Cultivation.

Unit III - Cultivation methods for different types of Edible mushroom (6 Hours)

Paddy straw mushroom (*Volvariella* Sp.) Button mushroom (*Agaricus* Sp.) Oyster mushroom (*Pleurotus* Sp.)

Unit IV (6 Hours)

Cultivation, Pure Culture Preparation of Spawn and Compost and Spawn Running Cropping and its maintenance Harvesting and Marketing

Unit V (6 Hours)

Protection and Management Disease & Pests of Mushroom and their control measures

TEXT BOOKS:

- 1. Gardner, 1996. Basic Horticulture Mac Milan N Y.
- 2. Tavis Lynch, 2018. Mushroom Cultivation: An Illustrated Guide to Growing Your Own Mushrooms at Home. Quarry Books; Ill edition. ISBN-13: 978-1631594045

REFERENCES

- 1. Manibhushan Rao, K. 1999. Text Book of Horticulture. Macmillon India Ltd.
- 2. Sharma, O. P. 1982. Test Book of Fungi. Tata McGraw-Hill Publishing C., New Delhi.

WEB LINK:

https://onlinecourses.swayam2.ac.in/nos20_ge07/preview

 $\frac{https://nios.ac.in/departmentsunits/vocational-education/stand-alone-courses/oyster-mushroom-production-technology.aspx}{}$

Unit	CONTENT	LEARNING OUTCOME	Highest
			Bloom
			taxonomic
			level of
			transaction
I	Introduction-Types of Mushroom	List out the edible	K1

	-Identification of edible and poisonous Mushroom. Nutritive values life cycle of common edible mushroom.	mushroomsIdentify the edible mushrooms	K3
II	Scenario of Mushroom cultivation —Prospects and Scope of Mushroom Cultivation.	 Tell the scope of mushroom cultivation Explain the challenges in it. 	K1 K2
III	Cultivation methods for different types of Edible mushroom Paddy straw mushroom (<i>Volvariella</i> Sp.) Button mushroom (<i>Agaricus</i> Sp.) Oyster mushroom (<i>Pleurotus</i> Sp.)	 Apply various medium to grow mushroom Compare the growth of mushrooms in different medium. 	K3 K2
IV	Cultivation, Pure Culture Preparation of Spawn and Compost and Spawn Running Cropping and its maintenance Harvesting and Marketing	 Analyze the growth in different substratum Compare the cropping, harvesting and marketing of mushroom products 	K4 K2
Unit V	Protection and Management Disease & Pests of Mushroom and their control measures	 Identify the best practice for disease and pest control. List some of the measures. 	K3 K1
PRACTICAL	1. Setting up of Cultivation room 2. Preparation of Spawn, Spawning & Spawn running 3. Preparation of Compost 4. Harvest and Packing methods	 Experiment with the cultivation of mushrooms. Illustrate different methods and mode of cultivation. 	K3

Mapping Scheme for Course Code: U20BYPE2

U20BYPE2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	L	-	H	-	-	-	L	L	-	L	L	L	-
CO2	M	-	M	-	-	L	L	-	L	-	L	M	-
CO3	L	L	-	-	L	-	-	-	M	H	L	H	L
CO4	-	-	L	L	M	-	-	-	M	M	-	H	L
CO5	-	L	-	-	-	L	M	L	-	M	-	-	L
CO6	M	-	-	L	-	-	L	L	M	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment in Practical works, sectioning, record submission.
- 2. Practical tests, Records etc. (as applicable), Class tests, Model Exams.
- 3. End Semester Examination

Indirect

1. Course-end survey

Core V: PLANT PHYSIOLOGY AND PLANT METABOLISM

Course Code: U20BY505 Semester: V
Credits: 6 Hour/Week: 7

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Develop an insight to the various plant water relations.	K6	I
CO 2	Discuss the mechanism of Photosynthesis.	K6	II
CO 3	Analyze the mechanism of Respiration and Nitrogen	K4	III
	Metabolism		
CO 4	Evaluate the various growth and development processes in	K5	IV
	plants		
CO 5	Compare the properties, structure and function of Primary	K5	V
	and Secondary Metabolites.		
CO 6	Analyze the mechanism of photosynthesis, respiration,	K4	II - V
	nitrogen metabolism and secondary metabolites		

SYLLABUS:

UNIT 1: IMPORTANCE OF WATER & MINERALS

(18 Hours)

1.1 Water – properties & role

- 1.1.1. Structure, Physical and chemical properties
- 1.1.2. Importance of Water

1.2 Osmotic & non-osmotic uptake of water

- 1.2.1. Diffusion Role in Plants
- 1.2.2. Kinds of Solution Hypotonic, Hypertonic and Isotonic
- 1.2.3. Osmosis role in plants, Diffusion Pressure Deficit, Turgor Pressure, Osmotic Pressure and Significance.
- 1.2.6. Plasmolysis definition, Incipient, Deplasmolysis, Advantages
- 1.2.7. Imbibition
- 1.2.8. Water potential & Osmotic relations of plant cells Water potential, Osmotic Potential and Pressure Potential

- 1.2.9. Mechanism of Absorption of water
- (i) Types Active Osmotic and Non-Osmotic absorption, Passive, Symplastic and Apoplastic absorption.
- 1.2.10. Factors affecting absorption of water.
- 1.2.11. Ascent of sap Mechanism Vital force theory, Root pressure theory, Physical force

theory, Transpiration pull and Cohesion of water theory

1.3. Transpiration

1.3.1. Definition, Kinds

1.4. Stomatal transpiration

- 1.4.1. Structure and Mechanism of Stomatal Transpiration
- (i) Opening & Closing of Stomata
- (a) Starch-Sugar Interconversion theory (b) Synthesis of sugars or organic acids in guard cells
- (c) ATP-driven Proton(H+) K+ Exchange pump Mechanism in Guard cells
- 1.4.3. Advantages, factors affecting stomatal movements
- 1.4.4 Transpiration as a Necessary evil

1.5. Translocation of organic solutes & assimilates

1.5.1. Mechanism of Translocation through Phloem- Munch's mass flow hypothesis

1.6 Mineral nutrition of plants

1.6.1. Essential and Non-essential elements, Types- Essential – Major and Minor Elements function and its deficiency symptoms

1.7 Mineral salt absorption

1.7.1. Types – Passive and Active

1.8 Determination of essentiality of mineral elements

1.8.1. Solution Culture, Hydroponics and Aeroponics

UNIT II: PHOTOSYNTHESIS

(18 Hours)

2.1.0 Radiant energy & its role in photosynthesis

- 2.1.1. Photosynthesis definition, significance, Photosynthetic Apparatus
- 2.1.2. Photosynthetic Pigments, Location, Absorption and utilisation of light energy

2.2.0 Absorption Spectrum

- 2.2.1. Absorption Spectra of Chlorophylls, Carotenoids and Phycobilins
- 2.3.0 Red drop & Emerson's Enhancement effect

2.4.0 Photosystems

2.4.1. Types – Photosystem I, Photosystem II

2.5.0 Mechanism of Photosynthesis

- 2.5.1. Parts Light / Hill's Reaction, Dark Reaction / Blackman's reaction
- 2.5.2. Light Reaction
- 2.5.3. Photophosphorylation Types Non-cyclic Photophosphorylation, Cyclic

Photophosphorylation

2.5.5. Dark Reaction - Pathway of C3 Cycle

2.6.0 Hatch and Slack Pathway

2.6.1 C4 – Dicarboxylic Acid Pathway and its Significance

2.7.0 CAM pathway

2.7.1 Crassulacean Acid Metabolism (CAM)

2.8.0 Photorespiration

2.8.1 Glycolate Pathway, Factors affecting photorespiration and Significance

UNIT III: RESPIRATION AND NITROGEN METABOLISM

3.1.0 Respiration

3.1.1. Definition, Organelle involved, kinds – Aerobic and Anaerobic

3.2.0 Glycolysis

3.2.1. Glycolysis / EMP Pathway

3.3.0 Krebs cycle

3.3.1. Krebs / TCA Cycle – pathway

3.4.0 Electron Transport System & Oxidative Phosphorylation

3.5.0 Nitrogen Metabolism

3.5.5 Nitrogen Cycle – **Biological, Industrial and Physical Nitrogen fixation** Steps – Proteolysis, Ammonification, Nitrification and Denitrification,

UNIT IV: PLANT GROWTH

(18 Hours)

4.1.0 Plant Growth

- 4.1.1. Growth-Definition, Growth curve
- **4.2.0** Auxins Discovery and Physiological effects
- **4.3.0 Gibberellins** Discovery and Physiological effects
- **4.4.0 Kinetin** Discovery and Physiological effects
- 4.5.0 Role of Hormones and Florigen in Flowering

4.6.0 Senescence in Plants

- 4.6.1. Definition and its Types Overall, Top, Deciduous and Progressive
- 4.7.0 Abscission of leaves Definition and Mechanism

4.8.0 Photoperiodism

- 4.8.1. Definition, Duration of Photoperiod Short Day, Long Day, Day Neutral, Long Short Day, Short-Long Day Plants.
- 4.8.4. Importance of Photoperiodism

4.9.0 Phytochrome

4.9.1. Definition, Types- Red light absorbing form (PR), Far-red light absorbing Form (PFR)

4.10.0 Vernalization

4.10.1. Definition, Perception of the cold stimulus and other conditions.

4.11.0 Seed dormancy

- 4.11.1. Definition, factors causing dormancy
- 4.11.2. Artificial methods of breaking the dormancy of seeds

4.12.0 Seed Viability

4.12.1. Definition, kinds- Microbiotic, Mesobiotic and Macrobiotic, Viability test

4.13.0 Seed germinability

4.13.1. Physiology, Physiological condition of quiescent seed, of seed germination

UNIT V: BIOCHEMISTRY AND SECONDARY METABOLITES (18 Hours)

5.1.0 Carbohydrates

5.1.1. Definition, Structure, Types – Monosaccharides, Oligosaccharides and Polysaccharides, Function.

5.2.0 Lipids

5.2.1. Definition, Structure, Types – Simple, compound and derived, functions.

5.3.0 Proteins

5.3.1. Definition, Structure, Types – Simple, Conjugated and derived, functions

5.4.0 Enzymes

- 5.4.1. Definition, Nature, Structure & properties
- 5.4.2 Mechanism of Enzyme action Lock & Key theory & Induced Fit theory

5.5.0 Elementary account on Secondary Metabolites

5.5.1. Definition, Structure, Occurrence and properties of the following secondary

Metabolites – Flavonoids, Terpenoids, Alkaloids & Phenolics

TOPICS FOR SELF-STUDY:

Self-Study topics	References
The Cell	https://www.nature.com/scitable/topicpage/what-is-a-cell-14023083/
	https://www.britannica.com/science/cell-biology
The Oxidative	https://www.sciencedirect.com/topics/biochemistry-genetics-and-
Enzymes	molecular-biology/oxidative-enzyme
	https://link.springer.com/chapter/10.1007/978-3-642-66279-9_22
Role of Nucleic	https://www.ncbi.nlm.nih.gov/books/NBK21634/#:~:text=In%20the
Acids in Protein	%20process%20of%20transcription,amino%20acids%20during%2
synthesis	<u>Oprotein%20synthesis</u> .
	https://link.springer.com/chapter/10.1007/978-1-4684-0294-0_10
The fate of Light	https://link.springer.com/article/10.1023/B%3APRES.0000040446.87
energy	<u>305.f4</u>
	http://www.plantphysiol.org/content/176/2/1171
Electro-Osmosis	https://link.springer.com/referenceworkentry/10.1007%2F978-3-
	<u>642-40872-4_2079-</u>
	2#:~:text=Electro%2Dosmosis%20is%20the%20movement,%2C%2
	<u>0microchannel%2C%20or%20porous%20material</u> .
	https://www.sciencedirect.com/topics/chemical-
	engineering/electroosmosis

TEXT BOOKS:

- 1. Jain, V.K. 1997. Fundamentals of Plant Physiology. S. Chand and Co., New Delhi.
- 2. Pandey, S.N. 2005. *Plant Physiology*. Vikas publishing House (P) Ltd., New Delhi.
- 3. Srivastava, H.N. 1998. Plant Physiology. Pradeep Publications, Jalandhar, India.
- 4. Verma, S.K. 1995. A text book of Plant Physiology. S. Chand and Co., New Delhi.
- 5. Srivastava, H.N. 1999. Elements of Biochemistry. Rastogi Publications, Meerut, India.
- 6. Trehan, K. 1987. Biochemistry. Wiley Eastern Ltd., New Delhi.
- 7. Arumugam, N. 1993. *Biochemistry*. Saras publications, Nagercoil, Tamilnadu.

REFERENCE BOOKS:

- 1. Lincoln Taiz and Eduardo Zeiger. 2010. *Plant Physiology* 5th Edition. Sunderland, Massachusetts, USA.
- 2. Devlin, R.M. 1969. *Plant Physiology*. Holt, Rinechart & Winston & Affiliated East. West press (p) Ltd. New Delhi.
- 3. Noggle, R. and Fritz. 1986. *Introductory Plant Physiology*. Prentice Hall of India. New Delhi.
- 4. Harborne, J.B. 1997. *Plant Biochemistry*. Harcourt Asia (P) Ltd., India and Academic Press Singapore.
- 5. Jayaraman, J. 1981. Laboratory Manual of Biochemistry. Wiley Eastern Ltd., New Delhi.

Web links:

https://www.classcentral.com/course/swayam-plant-physiology-and-plant-tissue-culture-14238

https://onlinecourses.swayam2.ac.in/cec19_bt09/preview

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
Ι	Importance of Water and Minerals		
1.1	Water – properties & role Structure, Physical and chemical properties. Importance of Water	 List the Physico- chemical properties of water Summarize the importance of water 	K4 K2
1.2	Osmotic & non-osmotic uptake of water Diffusion – Role in Plants Kinds of Solution – Hypotonic, Hypertonic and Isotonic Osmosis – role in plants, Diffusion Pressure Deficit, Turgor Pressure, Osmotic Pressure and Significance. Plasmolysis – definition, Incipient, Deplasmolysis, Advantages Imbibition Water potential & Osmotic relations of plant cells – Water potential, Osmotic Potential and Pressure Potential Mechanism of Absorption of water Types – Active – Osmotic and Non-Osmotic absorption, Passive, Symplastic and Apoplastic absorption. Factors affecting absorption of water. Ascent of sap –Mechanism – Vital force theory, Root pressure theory, Physical force theory, Transpiration pull and Cohesion of water theory	 Define – Diffusion, Osmosis and Plasmolysis Compare the types of water absorption Distinguish the Osmotic and Non-osmotic active absorption Interpret the various theories related with Ascent of Sap 	K4 K4 K6
1.3	Transpiration Definition, Kinds	• Recall the Kinds of Transpiration	K1
1.4	Stomatal Transpiration Structure and Mechanism of Stomatal Transpiration (i) Opening & Closing of Stomata	Elaborate the Mechanism of Stomatal Movements.	K2

	(a) Starch-Sugar Interconversion theory (b) Synthesis of sugars or organic acids in guard cells (c) ATP-driven Proton(H+) – K+ Exchange pump Mechanism in Guard cells 1.4.3. Advantages, factors affecting stomatal movements		
1.5	Translocation of organic solutes & assimilates Mechanism of Translocation through Phloem- Munch's mass flow hypothesis	 Prove the translocation of Organic solutes and assimilates in the Phloem Column. 	K5
1.6	Mineral nutrition of plants Essential and Non-essential elements, Types- Essential – Major and Minor Elements function and its deficiency symptoms	Determine and Evaluate the Deficiency symptoms and role of Major and Minor elements.	K5
1.7	Mineral salt absorption Types – Passive and Active	 Distinguish the Types of Mineral salt absorption 	K4
1.8	Determination of essentiality of mineral elements Solution Culture, Hydroponics and Aeroponics	Determine the essentiality of Mineral elements	K5
II	Photosynthesis		
2.1	Radiant energy & its role in photosynthesis Photosynthesis – definition, significance, Photosynthetic Apparatus Photosynthetic Pigments, Location, Absorption and utilisation of light energy	Summarize the Photosynthetic apparatus and its role in the capturing of light energy	K2
2.2	Absorption Spectrum Absorption Spectra of Chlorophylls, Carotenoids and Phycobilins	• Interpret the Absorption spectra of Photosynthetic Pigments.	K5
2.3	Red drop & Emerson's Enhancement effect	Evaluate the Red drop and Emerson's enhancement effect in	K5

	1	r	
		relation with	
		the rate of	
2.4	Di d	Photosynthesis.	T7.4
2.4	Photosystems	• Distinguish the	K4
	Types – Photosystem I, Photosystem II	kinds of	
		Photosystem	
2.5	Mechanism of Photosynthesis	Elaborate the	K6
	Parts – Light / Hill's Reaction, Dark	Mechanism of	
	Reaction / Blackman's reaction	Light reaction	
	Light Reaction	 Discuss the 	K6
	PhotophosphorylationTypes – Non-cyclic	Light	
	Photophosphorylation, Cyclic	Independent	
	Photophosphorylation	Phase of	
	Dark Reaction - Pathway of C3 Cycle	Photosynthesis.	
2.6	Hatch and Slack Pathway	 Justify a plant 	K5
	C4 – Dicarboxylic Acid Pathway and its	can	
	Significance	photosynthesize	
		even in	
		presence of	
		very low	
		concentration of CO ₂ .	
2.7	CAM pathway	Criticize the	K5
2.,	Crassulacean Acid Metabolism (CAM)	role of CAM	
	,	pathway in	
		Crassulaceae	
		members.	
2.8	Photorespiration	• Discuss the	
	Glycolate Pathway, Factors affecting	inter-organelle	
	photorespiration and Significance	relationships of	
		Chloroplast,	
		Peroxisome and	K6
		Mitochondria	
III	Respiration and Nitr		
3.1	Definition, Organelle involved, kinds –	 Compare the 	K2
	Aerobic and Anaerobic	aerobic and	
		anaerobic	
0.5		respiration	
3.2	Glycolysis -	Analyse the	K4
	Glycolysis / EMP Pathway	glycolysis	
2.2	TZ L.	pathway	TZ 4
3.3	Krebs cycle	• Assume the	K4
	Krebs / TCA Cycle – pathway	Krebs / TCA	
		Cycle –	
		pathway	
3.4	Electron Transport System & Oxidative	Analyze the	K4
J.T	Phosphorylation	Electron	17.7
	- mospiror jimuon	Licenon	

3.5	Nitrogen Metabolism Nitrogen Cycle—Biological, Industrial and Physical Nitrogen fixation Steps—Proteolysis, Ammonification, Nitrification and Denitrification,	Transport System & Oxidative Phosphorylatio n Discuss the Nitrogen Metabolism and Nitrogen Cycle	K2
IV	Plant Growth		
4.1	Plant Growth Growth-Definition, Growth curve	 Analyse the plant growth curve 	K4
4.2	Auxins – Discovery and Physiological effects	 Examine the Discovery and Physiological effects of auxins 	K4
4.3	Gibberellins – Discovery and Physiological effects	 List the Physiological effects of gibberellins 	K4
4.4	Kinetin – Discovery and Physiological effects	 Identify the physiological role of kinetin 	K3
4.5	Role of Hormones and Florigen in Flowering	 Determine the role of Hormones and Florigen in Flowering 	K5
4.6	Senescence in Plants Definition and its Types – Overall, Top, Deciduous and Progressive	Illustrate the Senescence in Plants	K2
4.7	Abscission of leaves - Definition and Mechanism	 Identify the Abscission of leaves 	К3
4.8	Photoperiodism 4.8.1. Definition, Duration of Photoperiod – Short Day, Long Day, Day Neutral, Long Short L Day, Short-Long Day Plants.	 Analyze the Photoperiod – Short Day, Long Day, Day Neutral, Long Short L Day, Short-Long Day Plants. 	K4
4.9	Phytochrome - Definition, Types- Red light absorbing form(PR), Far-red light absorbing Form(PFR)	Assume the Phytochrome	K4

4.10	Vernalization Definition, Perception of the cold stimulus and other conditions	Inspect the Vernalization	K4
4.11	Seed dormancy Definition, factors causing dormancy, Artificial methods of breaking the dormancy of seeds	Identify the Seed dormancy Artificial methods of breaking the dormancy of seeds	К3
4.12	Seed Viability Definition, kinds- Microbiotic, Mesobiotic and Macrobiotic, Viability test	Explain the Seed Viability, Definition, kinds- Microbiotic, Mesobiotic and Macrobiotic, Viability test	K2
4.13	Seed germinability Physiology, Physiological condition of quiescent seed, of seed germination	Make use of Seed germinability, Physiology, Physiological condition of quiescent seed, of seed germination	K3
V	BIOCHEMISTRY AND SECO	Č	ES
5.1	Carbohydrates Definition, Structure, Types – Monosaccharides, Oligosaccharides andPolysaccharides, Function.	• Compare the Structure, Monosaccharid es, Oligosaccharid es and Polysaccharides , Function.	K5
5.2	Lipids - Definition, Structure, Types – Simple, compound and derived, functions.	Estimate the Structure, Types — Simple, compound and derived, functions	K5
5.3	Proteins Definition, Structure, Types – Simple, Conjugated and derived, functions	Determine the Structure, Types Simple, Conjugated and derived,	K5

		functions	
5.4	Enzymes Definition, Nature, Structure & properties Mechanism of Enzyme action – Lock & Key theory & Induced Fit theory	Explain the properties Mechanism of Enzyme action Lock & Key theory & Induced Fit theory	K5
5.5	Elementary account on Secondary Metabolites Definition, Structure, Occurrence and properties of the following secondary Metabolites – Flavonoids, Terpenoids, Alkaloids& Phenolics	Analyze Elementary account on Secondary Metabolites	K4

Mapping Scheme for the Course Code: U20BY505

U20BY5	PO	PSO	PSO	PSO	PSO								
05	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	M	M	-	-	L	L	-	-	-	L	-	Н	M
CO2	M	M	-	-	L	L	-	-	-	M	-	Н	M
CO3	M	L	L	-	Н	L	-	-	-	M	-	Н	M
CO4	M	L	L	-	M	L	-	L	-	M	-	Н	M
CO5	M	L	L	-	-	L	-	-	-	M	-	Н	Н
CO6	M	-	-	-	M	L	-	-	-	M	-	Н	M

L – Low (1) M-Medium (2) H-High (3)

Course Assessment Methods:

- 1. Continuous Assessment by conducting Class test, Group Discussion and Quiz.
- 2. Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.
- 3. End Semester Examination

CORE VI: GENETICS, EVOLUTION AND PLANT BREEDING

Semester: V Course Code: U20BY506

Credits :6 Hours/Week: 7

Course Outcome

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit

CO 1	Evaluate the basic principles of inheritance in plants, allelic and non-allelic gene, linked gene and recombination gene	K5	I
CO 2	Discuss the inheritance of X and Y linked inheritance gene	K6	I and II
CO 3	Construct and modify personal and family pedigree charts.	K6	I and II
CO 4	Analyze crops to express hybrid vigour, Describe the necessity of breeding programs, Imparting knowledge on means of exploiting plants through breeding	K4	III, IV
CO 5	Estimate the necessity of Plant genetic resources, IPR protecting farmers and breeders	K5	V
CO 6	Appraise how humans have flourished due to breeding and domestication of plants	K5	III, IV, V

SYLLABUS:

UNIT-I -MENDELISM AND GENIC INTERACTION

(18 Hours)

- 1:1 Definition of Genetics, Scope and importance of genetics
- 1:2 Mendel's Laws of inheritance.- Law of segregation, Law of dominance and Law of independent assortment
- 1:3 Monohybrid cross, dihybrid cross, Back cross and Test cross
- 1:4 Variation in Dominance- Incomplete dominance, Co-dominance, Lethal factor in plants.
- 1:5 Gene Interaction- Complementary gene 9:7, Supplementary genes, Duplicate genes.
- 1:6 Epistasis-Definition and types- Dominant Epistasis (12:3:1), Recessive Epistasis (9:3:4)
- 1:7 Multiple alleles- Polygenic inheritance- Definition, Kernel Colour in wheat, Skin colour in human
- 1:8 Blood Group in human, Rh factor.

Unit II- LINKAGE AND CROSSING OVER

(18 Hours)

- 2:1 Linkage Definition and types- complete and incomplete linkage and its Significance of linkage
- 2:2 Crossing over Definition, Types –Single, double and Multiple crossing over and its significance
- 2:3 Crossing over Theories about the mechanisms of crossing over- Stern's experiment, Tetrad analysis and Crighton and McClintocks experiment
- 2:4 Linkage Mapping

- 2:5 Cytoplasmic inheritance— Kappa particle (*Paramaceium*) and Plastid inheritance in *Mirabilis*.
- 2:6 Sex linkage Definition and *Drosophilla* (Bar eye) and human (colour blindness)
- 2:7 Sex determination -Definition and *Drosophilla* and human
- 2:8 Neurospora Genetics

UNIT-III- EVOLUTION

(18 Hours)

- 3.1 Definition of Evolution Inorganic, Organic Evolution
- 3.2 Theories of Evolution of organic forms- Theory of Eternity, Theory of Special creation, Cosmozoic theory, Catastrophism and Modern theory
- 3.3 Theories of Evolution- inheritance of acquired characters (Lamarckism) and natural selection (Darwinism)
- 3.4 Modern Synthetic Theory
- 3.5 Isolation Types of Isolation and Role.
- 3.6 Speciation—Definition, Gradual Speciation Allopatric Speciation and Sympatric Speciation.

UNIT- IV- PLANT BREEDING

(18 Hours)

- 4.1 **Introduction to Plant breeding -** History (Pre and post-Mendelian era), Objectives Scope and Importance and future prospect.
- 4.2 Plant Domestication- Concepts of Domestication Acclimatization and plant introduction, Role of plant introduction in plant breeding
- 4.3 Genetics in relation to plant breeding, modes of reproduction, apomixes, self-incompatibility- Heteromorphic and Homomorphic- Gametophyic and Sporophytic and male sterile
- 4.4 Centre of Origin of Species (N. Vavilov)
- 4.5 Basic principles of selection methods- Mass Selection, Pureline Selection and Clonal selection

UNIT- V- BREEDING METHODS

(18 Hours)

- 5.1 Hybridization- Objectives, Hybridization procedure (a) Choice of parents(b) Emasculation(c) Bagging and Labelling (d) Harvesting and Raising F1 generation
- 5.2 Heterosis Definition, Genetic causes of heterosis- (a) Dominance theory (b) Over dominance theory, Physiological causes of heterosis and Effects of heterosis.
- 5.3 Mutation Breeding- Definition Mutation and Mutagenesis, Types of mutation Spontaneous and Induction -Physical and Chemical, Application and limitation and Achievements.

- 5.4 Polyploidy in breeding- Types of Polyploidy- (a) Aneuploidy (b) Euploidy (c) Autopolyploidy (d) Allopolyploidy, Application and Achievements
- 5.5 Breeding for disease resistance- Nature of Disease resistance- Vertical and Horizontal, Mechanisms of Disease resistance (a) Mechanical(b) Hypersensitivity(c) Antibiosis(d) Nutritional and Achievements.
- 5.6 Seed certification- Purpose and necessity of seed certification; seed act 1996.
- 5.7 IPRs in plant breeding: UPOV, Plant Breeders Rights (PBRs), Protection of plant varieties and farmers rights act (PPV & FRA) 2001.

TOPICS FOR SELF-STUDY:

Topic	Web links
Chromosomal	https://www.sciencedirect.com/topics/biochemistry-genetics-
rearrangement	and-molecular-biology/chromosomal-rearrangement
Karyotype	https://www.genome.gov/genetics-
	glossary/Karyotype#:~:text=A%20karyotype%20is%20an%20in
	dividual's,numbers%20or%20structures%20of%20chromosomes
	·
convergent	https://www.sciencedirect.com/topics/agricultural-and-
evolution	biological-sciences/convergent-evolution
genetic drift	https://www.sciencedirect.com/topics/neuroscience/genetic-drift
instant speciation	http://www.chemistrylearning.com/instantaneous-speciation/
Genetic Variability	https://www.sciencedirect.com/topics/medicine-and-
	dentistry/genetic-variability
Pedigree Method,	https://www.slideshare.net/ShekhAlisha/pedigree-method-of-
	<u>plant-breeding</u>
Bulk Method,	https://www.slideshare.net/pawannagar8/bulk-method-pedigree-
	method-ampline-breeding
Plant Uniformity and Stability	https://link.springer.com/article/10.1007/s001220100710
Inbreeding	https://en.wikipedia.org/wiki/Inbreeding_depression#:~:text=Inb
Depression,	reeding%20depression%20is%20the%20reduced,result%20of%
	20a%20population%20bottleneck.
Reciprocal hybrid	https://en.wikipedia.org/wiki/Reciprocal_cross
disease endurance,	https://en.wikipedia.org/wiki/Endurance

Heterosis in crop	https://link.springer.com/chapter/10.1007/978-94-007-1040-
Plants	<u>5_19</u>
Male sterility	https://link.springer.com/chapter/10.1007/978-94-011-1524-
	<u>7_15</u>
Pedigree analysis	https://www.sciencedirect.com/topics/biochemistry-genetics-
for genetic disease,	and-molecular-biology/pedigree-analysis
challenges to	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098457/
overcome self-	
sterility in crop	
plants	

TEXT BOOKS:

- 1. Veer Bala Rastogi, 2019. *Genetics IV Edition*, Scientific International Pvt Ltd, New Delhi
- 2. Chahal, G.S. and Gosal, S.S. 2015. *Principles and Procedures of Plant Breeding*, *Biological and Conventional Approaches*. New Delhi: Narosa Publishing House Pvt. Ltd.
- 4. Daniel L Harti. 2014. Essential Genetics. Jones and Bartlett, Unites States of America.
- 5. Kumar Sushil. 2016. Plant Breeding and Genetics, Book Enclave, Jaipur.
- 6. Kumaresan, V. 2009. Plant Breeding. Saras Publications Nagercoil.
- 7. Mann Rosanna. 2017. Human Genetics and Genomics, Callisto publish.
- 8. Singh, M.P. and Sunil Kumar. 2016. *Genetics and Plant Breeding*, Vol. I & II New Delhi, APH Publishing Corporation.
- 9. Verma, P.S, V.K. Agarwal. 2014. *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology*, S. Chand, New Delhi.
- 10. Benjamin, L. 2014. *Genes IX*. Lewin Oxford University Press, Oxford, New York.

REFERENCE BOOKS:

- 1. Meyyan, R.P. 2010. Fundamental of Genetics, Saras Publication, Nagarcoil.
- 2. Chopra, V.I. 1998. *Plant breeding Theory and Practices* (2ndEdn.) Oxford IBH Publishing Co., (P) Ltd., New Delhi, India.

Web Links:

https://www.plantbreeding.org/content/online-resources-for-plant-breeding-education https://onlinecourses.swayam2.ac.in/cec20_bt03/preview

Unit	CONTENT	LEARNING OUTCOME	Highest
			Bloom

			taxonomic level of transaction
	UNIT-I -MENDELISM A	AND GENIC INTERACTION	
1.1	Definition of Genetics, Scope and importance of genetics	 Recall the concepts of genetics Classify the scope and importance genetics 	K4
1.2	Mendel's Laws of inheritance Law of segregation, Law of dominance and Law of independent assortment	 Prove the Mendel's Law. Distinguish between law of dominance and Law of independent assortment 	K5
1.3	Monohybrid cross, dihybrid cross, Back cross and Test cross	 Explain monohybrid and dihybrid cross. Make up the back cross and test cross 	K6
1.4	Variation in Dominance- Incomplete dominance, Co-dominance, Lethal factor in plants	 Determine the incomplete and codominance Explain lethal factor 	K5
1.5	Gene Interaction- Complementary gene 9:7, Supplementary genes, Duplicate genes.	Make use of the gene interaction with a allelic and non allelic gene interaction.	К3
1.6	Epistasis-Definition and types- Dominant Epistasis (12:3:1), Recessive Epistasis (9:3:4)	 Define Epistasis Interpret dominant and recessive epistasis and its significance 	K5
1.7	Multiple alleles- Polygenic inheritance- Definition, Kernel	 Recall the multiple allele. Prove kernel colour in wheat and skin colour in human 	K5

	Colour in wheat, Skin		
	colour in human		
1.8	Blood Group in human and Rh factor. Unit II- LINKAGE	 List out the types of blood groups Illustrate the blood groups in human and Rh factor AND CROSSING OVER	K2
2.1	Linkage - Definition and types- complete and incomplete linkage and its Significance of linkage	 Define Linkage Explain the characteristic of linkage. Importance of complete and incomplete linkage 	K5
2.2	Crossing over - Definition, Types – Single, double and Multiple crossing over and its significance	 What is crossing over Explain they types of crossing over and its significance 	K5
2.3	Crossing over - Theories about the mechanisms of crossing over- Stern's experiment, Tetrad analysis and Creighton and McClintocks experiment	Prove crossing over theories and its mechanisms	K6
2.4	Linkage Mapping	 Construct the Linkage mapping. Solve the sum of gene mapping 	K3 K6
2.5	Cytoplasmic inheritance– Kappa	 Define Plasmagene. Support the kappa particle and plastid 	K5

	montials (D	inheritance in Mirabilis.	1
	particle (<i>Paramaceium</i>)	innernance in Mirabilis.	
	and Plastid inheritance		
	in Mirabilis.		
2.6	Sex linkage – Definition and	Make use of sex linkage in <i>Drosophila</i> and	K3
	Drosophilla (Bar eye) and human (colour blindness)	human, • Solve the colour blindness and haemophilia through sex linkage	К6
2.7	Sex determination -	 Classify the sex 	K4
	Definition and	determination and	
	Drosophilla and human	Drosophila and Human.	
2.8	Neurospora Genetics	Explain Neurospora in genetics	K4
	UNIT-III-	EVOLUTION	
3.1	Definition of Evolution - Inorganic, Organic	Define EvolutionCategorize the evolution	K1
	Evolution	- Curegorize the evolution	K4
3.2	Theories of Evolution	Theories of evolution	K6
	of organic forms- Theory of Eternity, Theory of Special creation, Cosmozoic theory, Catastrophism and Modern theory	Classify the evolution of organic forms	K2
3.3	Theories of Evolution- inheritance of acquired characters (Lamarckism) and natural selection (Darwinism)	Discuss Lamarckism and Darwinism	К6
3.4	Modern Synthetic Theory	Explain modern synthetic theory	K5
3.5	Isolation - Types of Isolation and Role	List out the types of Isolation and its role	K4
3.6	Speciation—Definition, Gradual Speciation - Allopatric Speciation and Sympatric Speciation.	Illustrate speciation and its types	K2

	UNIT- IV- PL	ANT BREEDING	
4.1	Introduction to Plant breeding - History (Pre and post-Mendelian era), Objectives Scope and Importance and future prospect	Explain the importance of plant breeding to increase the food production	K2
4.2	Plant Domestication- Concepts of Domestication Acclimatization and plant introduction, Role of plant introduction in plant breeding	 Explain the necessity of Plant Domestication Indentify desirable variability in wild plants 	K2 K3
4.3	Genetics in relation to plant breeding, modes of reproduction, apomixes, self-incompatibility-Heteromorphic and Homomorphic-Gametophyic and Sporophytic and male sterile	Examine the mode of reproduction and pollination control in crop plants	K4
4.4	Centre of Origin of Species (N. Vavilov)	 Outline the origin of cultivated plants in the world Utilize the crops to maximize the agricultural productivity 	K2 K3
4.5	Basic principles of selection methods-Mass Selection, Pureline Selection and Clonal selection	 Distinguish the varies methods of plant selection Evaluate the crop plants to observe quality and quantity character 	K4 K5
	UNIT- V- BRE	EDING METHODS	
5.1	4.1. Hybridization- Objectives, Hybridization procedure - (a) Choice of parents(b) Emasculation(c) Bagging and Labelling	Demonstrate controlled pollination in plant to create genetic variability	K2 K5

	(d) Harvesting and Raising F1 generation	 Determine the crossing ability of one or more characters into a single plant 	
5.2	Heterosis – Definition, Genetic causes of heterosis- (a) Dominance theory (b) Over dominance theory, Physiological causes of heterosis and Effects of heterosis	Estimate the vigour and causes of heterosis in F1 generation	K5
5.3	Mutation Breeding- Definition – Mutation and Mutagenesis, Types of mutation - Spontaneous and Induction -Physical and Chemical, Application and limitation and Achievements	 Explain the importance of Mutation breeding Determine and evaluate genetic variation in mutant variety 	K2 K5
5.4	Polyploidy in breeding- Types of Polyploidy- (a) Aneuploidy (b) Euploidy (c) Autopolyploidy (d) Allopolyploidy, Application and Achievements	 Explain the production of improved varities through Ploidy breeding Examine crops by manipulating the chromosomes numbers 	K2 K4
5.5	Breeding for disease resistance- Nature of Disease resistance- Vertical and Horizontal, Mechanisms of Disease resistance - (a) Mechanical(b) Hypersensitivity(c) Antibiosis(d) Nutritional and Achievements	 Identify the plant mode of disease resistance in plants Determine the plant varieties capable of resisting pathogens 	K3 K5
5.6	Seed certification- Purpose and necessity of seed certification; seed act 1996	Discuss the role and necessity Seed certification in crop production	K6

5.7	IPRs in plant breeding: UPOV, plant breeders rights (PBRs), Protection of plant varieties and farmers rights act (PPV & FRA) 2001	 Prioritize the protection of breeders and farmers right 	K5
-----	---	---	----

Mapping Scheme for Course Code: U20BY506

U20BY506	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	M	L	-	-	H	L	-	L	H	M	H	-
CO2	H	M	-	-	M	-	-	-	M	H	L	H	L
CO3	H	L	L	-	M	-	-	-	M	M	-	H	L
CO4	M	L	-	M	-	L	M	L	-	M	H	-	L
CO5	H	-	-	-	-	-	L	M	M	H	M	-	M
CO6	Н	M	-	-	M	-	-	H	H	H	H	L	H

L-Low M- Medium H-High

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission. Practical tests, Records etc. (as applicable), Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICAL: V – PLANT PHYSIOLOGY & PLANT METABOLISM, GENETICS, EVOLUTION & PLANT BREEDING

Semester: V Course Code: U20BY5P5

Credits: 2 Hours/Week: 3

Course Outcome:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Experiment with plant cells in relation to water.	K3	I
CO 2	Estimate the amount of sugar & lipid concentration in a given plant tissue.	K5	I
CO 3	Estimate the rate of photosynthesis under various	K5	I

	environmental conditions.		
CO 4	Solve the practical problems in Mendelian Genetics,	K6	II
	Gene Interaction & Gene Mapping.		
CO 5	Demonstrate the life cycle of <i>Drosophila</i>	K2	II
CO 6	Experiment with Hybridization & Emasculation techniques, Evaluate the Pollen viability & germinability	K5	III

SYLLABUS:

PHYSIOLOGY EXPERIMENTS TO BE PERFORMED BY EACH STUDENT (15 Hours)

- 1. Estimation of sugars (Colorimetric).
- 2. Estimation of lipids (Gravimetric).
- 3. Demonstration of Osmosis by Potato Osmoscope Method.
- 4. Determination of stomatal frequency and index.
- 5. Determination of the ratio between the stomatal and cuticular transpiration by Cobalt Chloride Method.
- 6. Comparison of stomatal and cuticular transpiration.
- 7. Determination of absorption and transpiration ratio in plants.
- 8. Separation of plant pigments by paper chromatography.
- 9. Determination of photosynthetic rate in water plants under different CO2 concentrations.
- 10. Measurement of O2 evolution under different colour lights using Wilmott's bubbler.
- 11. Qualitative test for phytochemicals Starch, sugar, protein, Amino acid, Phenols, Alkaloids, flavonoids, Saponins and tannins.

GENETICS (15 Hours)

- a. Problems based on Mendel's Laws of inheritance
- b. Problems based on Interaction of Genes-Allelic and Non-Allelic
- c. Problems based on Gene Mapping
- d. Life Cycle of *Drosophila* (Culture Studies) Demonstration
- e. Construction and Analysis of Family Pedigree Charts

PLANT BREEDING (15 Hours)

Selection methods- Explanation through charts

- a. Mass selection
- b. Pureline selection
- c. Clonal selection
- d. Floral biology in self and cross pollinated species
- e. Center of Origin of Species
- f. Hybridization and Emasculation
- g. Pollen viability and pollen germination

TEXT BOOKS:

- 1. Taiz, L., Zeiger, E., 2010. Plant Physiology. Sinauer Associates Inc., U.S.A. 5th Edition.
- 2. Hopkins, W.G., Huner, N.P. 2009. *Introduction to Plant Physiology*. John Wiley & Sons, U.S.A. 4th Edition.
- 3. Bajracharya, D. 1999. *Experiments in Plant Physiology- A Laboratory Manual*. Narosa Publishing House, New Delhi.
- 4. Gardner EJ, Simmons MJ, Snustad DP. 2008. *Principles of Genetics*. 8th Ed. Wiley India.

- 5. Snustad, D.P. and Simmons, M.J. 2010. *Principles of Genetics*, John Wiley & Sons Inc., India. 5th edition.
- 6. Klug WS, Cummings MR, Spencer, C, Palladino, M. 2011. *Concepts of Genetics*, 10th Ed., Benjamin Cummings
- 7. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. 2010. *Introduction to Genetic Analysis*. W. H. Freeman and Co., U.S.A. 10th edition.

REFERENCE BOOKS:

- 1. Pierce BA. 2011. *Genetics: A Conceptual Approach*, 4th Ed., Macmillan Higher Education Learning 6. Singh, B.D. 2005. *Plant Breeding: Principles and Methods*. Kalyani Publishers. 7th edition.
- 2. Chaudhari, H.K. 1984. *Elementary Principles of Plant Breeding*. Oxford IBH. 2nd edition.
- 10. Acquaah, G. 2007. *Principles of Plant Genetics & Breeding*. Blackwell Publishing. **Web link:**

https://onlinecourses.swayam2.ac.in/cec20_bt03/preview

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
I	Plant Phys	siology	
I	1.Estimation of sugars (Colorimetric).	 Estimate the Concentration of Sugar in the given Plant tissue 	K5
	2.Estimation of lipids (Gravimetric).	• Estimate the Concentration of Lipid present in the Plant tissue	K5
	3.Demonstration of Osmosis by Potato Osmoscope Method.	• Experiment with Potato Osmoscope.	К3
	4.Determination of stomatal frequency and index.	• Estimate the stomatal frequency and index	K5
	5.Determination of the ratio between the stomatal and cuticular transpiration by Cobalt Chloride Method.	 Determine the rate of Stomatal and cuticular transpiration 	K5
	6.Determination of absorption and transpiration ratio in plants.	Estimate the transpiration and absorption rate by using TA Balance apparatus	K5
	7. Separation of plant pigments by paper	 Estimate the Rf 	K5

	chromatography.		value of Plant Pigments	
	8.Determination of photosynthetic rate in water plants under different CO2 concentrations.	•	Estimate the Photosynthetic rate under different CO2 concentrations	K5
	9.Measurement of O2 evolution under different color lights using Wilmott's bubbler.	•	Measure the Photosynthetic rate by using Wilmott's bubbler.	K5
	10.Qualitative test for phytochemicals – Starch, sugar, protein, Amino acid, Phenols, Alkaloids, flavonoids, Saponins and tannins.	•	Identify the Phytochemical compound in the given Plant extracts.	К3
II	Genet	ics		
	1.Problems based on Mendel's Laws of inheritance	•	Solve the Problems related with Monohybrid cross and Dihybrid Cross	K6
	2.Problems based on Interaction of Genes- Allelic and Non-Allelic	•	Solve the Problems related with gene interaction	K6
	3.Problems based on Gene Mapping	•	Solve the Linkage Mapping	K6
	4.Life Cycle of <i>Drosophila</i> (Culture Studies) - Demonstration	•	Demonstrate the Life Cycle of <i>Drosophila</i>	K2
	5.Construction and Analysis of Family Pedigree Charts	•	Solve Family Pedigree problems	K6
III	Plant Bre	eding		
	1. Mass selection	•	Outline the Protocol of Mass Selection	K2
	2. Pure line selection	•	Outline the Protocol of Pure line selection	K2
	3.Clonal selection	•	Outline the Protocol of Clonal selection	K2
	4.Floral biology in self- and cross-pollinated species	•	Examine the self- and Cross- pollinated flowers	K4
	5.Center of Origin of Species	•	List the Centre of Origin of Species	K4
	6.Hybridization and Emasculation	•	Experiment on emasculation, bagging & tagging	K5

		for controlled pollination.	
7	Pollen viability and pollen germination	To measure the Pollen Viability and Germination rate of Pollen grains	K5

Mapping Scheme for the Course Code: U20BY5P5

U20BY5P5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	-	-	-	-	-	L	-	-	-	-	H	L
CO2	H	-	-	-	-	-	L	-	-	-	-	H	H
CO3	M	-	-	-	L	-	L	-	-	-	-	H	L
CO4	M	-	-	-	-	M	-	-	-	-	-	-	-
CO5	L	-	-	-	-	-	-	-	-	-	-	-	-
CO6	M	-	-	L	-	M	-	-	-	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration Experiments, Written test on Protocols.
- 2. Assessment also done through solving Genetics problems, Hands on Techniques, Lab Attendance and Practical Record work.
- 3. End Semester Practical Examination

Elective-I: BIOSTATISTICS, COMPUTER APPLICATION AND BIOINFORMATICS

Course code: U20BY5:1 Hours/Week:5 Semester: V Credits: 5

Course Outcomes:

On completion of the course the students will be able to:

No	COURSE OUTCOMES (CO)	level	Unit
CO 1	Make use of the statistical data in scientific studies	К3	I
CO 2	Distinguish the importance of advanced statistical operations	K4	II
CO 3	Apply the basics of computer in further studies	К3	III
CO 4	Explain the databases and tools of bioinformatics	K5	IV
CO 5	Analyse the use of bioinformatics in solving	K4	V

	evolution						
CO 6	Compare th	* *	of	bioinformatics	in	K5	V

Syllabus:

Unit I: BASIC CONCEPT OF BIOSTATISTICS

(15 Hours)

- 1.1. Biostatistics Definition Scope
- 1.2. Data Definition -Types- (a) Primary(b) Secondary, Collection of data
- 1.3. Population Definition Types of population (a) Finite population (b) Infinite population
- 1.4. Samples -Definition Sampling techniques -Random sampling techniques
- 1.5. Frequency distribution Definition Discrete method & Continuous method-Frequency graphs
- 1.6. Statistical table Rules, Organization and types of table
- 1.7. Graphical Representation of Data Importance and general guidelines Types of graphs (a) Bar (b) Simple(c) Multiple(d) Percentage (e) Subdivided (f) Pie diagram (g) Pictogram (h) Cartogram
- 1.8. Central Tendency -Mean (a) Definition (b) Merits and demerits (c) Problems Median (a) Definition (b) Merits and demerits (c) Problems Mode (a) Definition (b) Merits and demerits (c) Problems

Unit II: DESCRIPTIVE AND INFERENTIAL STATISTICS (15 Hours)

- 2.1. Measure of dispersion Definition Types of dispersion (a) Absolute measure of dispersion (b) Relative measure of dispersion
- 2.2. Probability Probability scale, Definition, Types and application of biological problems
- 2.3. Binomial distribution Introduction, Definition and Properties of binomial distribution
- 2.4. Poisson Distribution Introduction, Definition and Properties of Poisson distribution
- 2.5. Normal distribution Introduction, Definition and Properties
- 2.6. Test of Significance Introduction, Definition, Procedure and application of chi-square test

UNIT- III- INTRODUCTION TO COMPUTERS

(15 Hours)

- 3.1- Computer- Characteristics of computer- Applications of computer, generations of computer, Classification of computers
- 3.2- Components of computer system. Input/Output Units: Keyboard, Mouse, Trackball, Joystick, Digitizing tablet, Scanners, Digital Camera, MICR, OCR, OMR, Bar-code Reader, Voice Recognition, Light pen, Touch Screen, CRT, LCD, LED Monitors.
- 3.3- Number systems -Binary, Octal, Decimal, Hexadecimal
- 3.4- Introduction to Operating Systems- Introduction of MS-Office, Different elements of word processing (MS-WORD), Spreadsheets (MS EXCEL), Data storage (MS ACCESS) and PowerPoint presentation (MS POWERPOINT).
- 3.5- Computer Networking and security Networking gadgets (Router, Switch, etc), Communication Links (Wire pairs, Coaxial cables, Fiber optics, Microwave, Satellite, etc)

- Local Area Network (LAN), Wide Area Network (WAN), Metropolitan Area Network (MAN) - Network Security: Firewall, Packet filtering, Honeypots

UNIT-IV- INTRODUCTION TO BIOINFORMATICS (15 hours)

- 4.1- Bioinformatics and its importance.
- 4.2.-Examples of related tools (FASTA, BLAST, RASMOL)- Databases (GENBANK)
- 4.3- General Introduction of Biological Databases- Nucleic acid databases (NCBI, DDBJ, and EMBL)- Protein databases (Primary, Composite, and Secondary)- Specialized Genome databases: (SGD, TIGR, and ACeDB)- Structure databases (CATH, SCOP, and PDB sum).
- 4.4- Data generation, Data storage and retrieval- Generation of large scale molecular biology data. (Through Genome sequencing, Protein sequencing, Gel electrophoresis, NMR Spectroscopy, X-Ray Diffraction and microarray)- (Detailed study not required) 4.5- Applications of Bioinformatics.

UNIT-V- BIOINFORMATICS AND ITS APPLICATION (15 Hours)

- 5.1- Genomics-Concept, Evolution of Genomics-Structural and Functional Genomics-Comparative Genomics- Microarray: technique, Design, Analysis.
- 5.2- Systems biology: Introduction to Associated disciplines- Interactomics (PPI)-Fluxomics.
- 5.3- Metagenomics: Introduction to metagenomics- Tool's in metagenomics, MEGAN, MG- RAST, and SEED- Application (Gene survey, Environmental genomes, Microbial diversity).
- 5.4- Concept of metabolome and metabolomics, its applications- Chemoinformatics: Cheminformatics tools for drug discovery.

TOPICS FOR SELF-STUDY:

Biostatical study in Health management	https://www.publichealthcareeredu.org/biostatistics-and-informatics
Epidemiology	https://www.bmj.com/about-bmj/resources- readers/publications/epidemiology-uninitiated/1-what-epidemiology
MEGA Softwares.	https://www.megasoftware.net/
Software for security operations	https://respond-software.com/automate-your-soc/

TEXTBOOKS:

- 1.Gurumani. N, 2015. An introduction to biostatistics. 2nd Edition, MJP Publishers, Chennai, India.
- 2. Pranab kumar Banerjee, 2014. *Introduction to Biostatistics*. S. Chand And Company pvt ltd. New Delhi, India.
- 3. Rastogi, V.B. Fundamentals of biostatistics. 2nd Edition, Anne Books Pvt Ltd, New Delhi, India,

- 4. David W. Mound, 2001. *Bioinformatics: Sequence and Genome analysis*. Gold Spring Harbour Laboratory Press, New York.
- 5. Sundararajan.S. & R. Balaji. 2002. *Introduction to Bioinformatics*, Mumbai, Himalaya.
- 6. Ramakrishnan, P, 2001. Biostatistics. Saras Publication, Nagarcoil, Tamil Nadu, 2001.

REFERENCE BOOK:

- 1. Bryant, T.N. and J. W. T. 1989. *Computers in Microbiology. Practical Approach Series*. (Published in the Practical Approach Series. Editors, D. Rickwood and B.D. Hames.) Oxford University Press. Oxford, New York.
- 2. Walid A. Houry, 2016. The Molecular Chaperones Interaction Networks in Protein Folding and Degradation: 1 (Interactomics and Systems Biology), Springer.

Web Links:

https://www.mooc-list.com/tags/plant-bioinformatics

http://www.srtmun.ac.in/images/Data2020/SchoolCirculars/EnrollmentOpenforSWAYAM NPTELCoursesJulytoDecember2020.pdf

Unit	Content	Learning Outcome	Highest Blooms Taxonomic level of transaction.
Ι	Biostatis	tics	
1.1	Biostatistics - Definition – Scope	 Define the subject by own 	K1
1.2	Data- Definition -Types- (a) Primary(b) Secondary - Collection of data	Recall the concept of data	K1
1.3	Population - Definition -Types of population - (a) Finite population (b) Infinite population	Summarize the population statistics	K2
1.4	Samples -Definition - Sampling techniques - Random sampling techniques	Define sample	K1
1.5	Frequency distribution - Definition - Discrete method & Continuous method- Frequency graphs	 Select sampling techniques Compare the various methods in frequency distribution 	K1
1.6	Statistical table - Rules, Organization and types of table	Make use of statistical tables	K3
1.7	Graphical Representation of Data - Importance and general guidelines - Types of graphs - (a) Bar (b) Simple(c) Multiple(d) Percentage (e) Subdivided (f) Pie diagram (g) Pictogram (h) Cartogram	 Interpret the graphical representation on data Distinguish among various graphical 	K2

		methods of data	
1.8	Central Tendency -Mean (a) Definition (b) Merits and demerits (c) Problems - Median (a) Definition (b) Merits and demerits (c) Problems - Mode (a) Definition (b) Merits and demerits (c) Problems	 presentation Explain the use of mean, median and mode value in statistics. 	K2
II	Measure of di	spersion	
2.1	Definition - Types of dispersion (a) Absolute measure of dispersion (b) Relative measure of dispersion	 Recall the use of dispersion Compare the different dispersion methods 	K2 K4
2.2	Probability - Probability scale, Definition, Types and application of biological problems	 Define probability Make use of the concept of probability in future studies 	K1 K3
2.3	Binomial distribution - Introduction, Definition and Properties of binomial distribution	Interpret Binomial distribution	K2
2.4	Poisson Distribution - Introduction, Definition and Properties of Poisson distribution	 Utilize poisson distribution for further studies 	K3
2.5	Normal distribution - Introduction, Definition and Properties	Explain the concept of normal distribution	K2
2.6	Test of Significance - Introduction, Definition, Procedure and application of chi-square test	 Make use of the test of significant functions in statistical survey 	К3
III	Introduction to	computers	
3.1	Computer- Introduction- generations of computer, Applications of computer, Classification of computers.	Define what computer is and the uses of computer Explain the	K1
		Explain the classification of computer in various generation	K2
3.2	Components of computer system. Input/Output Units: Keyboard, Mouse, Trackball, Joystick, Digitizing tablet, Scanners, Digital Camera, MICR, OCR, OMR, Bar-code Reader, Voice Recognition, Light pen, Touch Screen, CRT, LCD, LED Monitors.	Identify the input and output devices in computer	K2
3.3	Number systems-Binary, Octal, Decimal, Hexadecimal	Interpret the number systems used in computer	K2

3.5	Introduction to Operating Systems- Introduction of MS-Office, Different elements of word processing (MS-WORD), Spreadsheets (MS EXCEL), Data storage (MS ACCESS) and PowerPoint presentation (MS POWERPOINT). Computer Networking and security - Networking gadgets (Router, Switch, etc), Communication Links (Wire pairs, Coaxial cables, Fiber optics, Microwave, Satellite, etc) - Local Area Network (LAN), Wide Area Network (WAN), Metropolitan Area Network (MAN) - Network Security: Firewall, Packet filtering, Honeypots	 Apply the basics in learning the software Make use of the MS software Define the physical needs of networking Define the network issues and network security settings Explain the various network 	K3 K3 K2 K2
		connections used	
IV	Introduction To Bi	oinformatics	
4.1	Bioinformatics and its importance	 Tell the definition of Bioinformatics 	K1
4.2	Examples of related tools (FASTA, BLAST, RASMOL)- Databases (GENBANK)	 Interpret the databases used in Bioinformatics Make use of the tools used in Bioinformatics 	K2 K3
4.3	General Introduction of Biological Databases-Nucleic acid databases (NCBI, DDBJ, and EMBL)- Protein databases (Primary, Composite, and Secondary)- Specialized Genome databases: (SGD, TIGR, and ACeDB)- Structure databases (CATH, SCOP, and PDB sum).	 Distinguish the molecular and protein databases List out the specialized databases. Evaluate the databases based on skeleton of nucleotide representation 	K4 K4 K5
4.4	Data generation, Data storage and retrieval-Generation of large scale molecular biology data. (Through Genome sequencing, Protein sequencing, Gel electrophoresis, NMR Spectroscopy, X-Ray Diffraction, and microarray.	 Examine the feasible process of data extraction Criticize the data management and storing in the field of Bioinformatics. Deduct the data analysis using the search methods 	K4 K5 K5
4.5	Applications of Bioinformatics.	 Analyse the 	K4

		importance of	
		importance of bioinformatics in	
		recent studies	
V	Disinformation And		
	Bioinformatics And		IZ 1
5.1	Genomics-Concept, Evolution of Genomics-	• Define the concept	K1
	Structural and Functional Genomics-	of genomics and	
	Comparative Genomics- Microarray: technique,	various aspects of	IZO.
	Design, Analysis	it.	K2
		• Compare the	
		population studies	
		and genomic	
		variation studies related to	K4
			IX4
		speciation.	
		 Interpret the microarray 	
		technique for future	
		studies	
5.2	Systems Biology: Introduction to Associated	Identify the scope	K3
3.2	disciplines- Interactomics (PPI)- Fluxomics.	in Biomics using	IX.5
	disciplines interactionnes (111) Transmissi	Bioinformatics.	
		 Explain the basics 	K2
		of metabolomics	
		and chemo	
		informatics.	
5.3	Metagenomics: Introduction to metagenomics-	Define the	K2
	Tool's in metagenomics, MEGAN, MG- RAST,	procedural study on	
	and SEED- Application (Gene survey,	Metagenomics	
	Environmental genomes, Microbial diversity)	 Construct 	
		phylogenetic trees,	K6
		modify the	
		available nucleotide	
		data using the tools	
		available	
		 Apply the 	K3
		metagenomics	
		methods in	
		genomic studies.	
5.4	Concept of metabolome and metabolomics, its	 Define the basics of 	K5
	applications- Chemoinformatics:	advent branches of	
	Cheminformatics tools for drug discovery.	Bioinformatics.	

Mapping Scheme for the Course Code: U20BY5:1

U20BY5:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	-	-	M	M	M	H	-	L	H	-	L	L
CO2	M	-	-	L	L	-	H	L	-	L	-	L	L
CO3	L	L	-	L	-	-	L	-	L	-	-	L	L

CO4	L	L	L	L	-	-	H	M	-	-	L	L	L
CO5	-	-	-	-	-	L	H	L	-	L	-	M	-
CO6	L	-	-	-	-	-	H	L	-	-	-	-	L

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, record submission.

Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

Elective I: BIO -INSTRUMENTATION

Semester: V Course Code: U20BY5:2

Credits: 5 Hours/Week: 5

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Apply the process safety and describe the benefits of process safety to an General Lab safety and to society	K2	1
CO 2	Explain Instrumentation, separation and identification of compounds by electrophoresis technique	К5	II
CO 3	Explain Instrumentation, Working mechanism and Application of PCR.	K4	II
CO 4	Apply the knowledge about the various aspects of Centrifugation and Microscopy for identification, and characterization of compounds	К3	III
CO 5	Explain the varies concepts of chromatography techniques	K5	IV
CO 6	Describe the concept of Spectrophotometry, Tracer techniques	K2	V

SYLLABUS:

Unit – I: Laboratory Safety Management

(15 Hours)

General Lab safety - Basic Safety Rules, Laboratory Specific Safety Rules (Tissue culture, Microbiology, Biochemistry). **Personal protective Equipment** (PPE) – introduction,

Hazard Assessment – survey, sources, Eye and face protection, Head protection, Hand protection. **Administrative Control** – orientation and training, standard operation procedures(SOPs), safety signs, Personal Hygiene. **Biological**– Biosafty levels, Risk Assessment, Safety data sheets for infected substances. **Chemical Safety** –Safety data

sheet, safe work practice – general rules and regulations **Waste management** – Biological and Chemical waste disposal. General waste management procedure and waste determination processes,

Laboratory waste classification. **Emergency procedure** – Spill, First Aid, Emergency kits

Unit II – Electrophoresis

(15 Hours)

Electrophoresis- Principles and types- Agrose gel Electrophoresis, Pulsed Field Gel Electrophoresis (PFGE), Polyacrylamide Gel Electrophoresis (PAGE). Blotting Technology- Southern, Northern and Western blot. PCR: Working mechanism and Application

Unit – III: Analytical Techniques

(15 Hours)

Centrifugation - Types of Centrifuge & Centrifugation (definition, principle, uses), Microscopy - Fluorescence, Flow cytometry, confocal and Electron Microscope (SEM and TEM).

UNIT – IV- Chromatography

(15 Hours)

Chromatography - Basic principles, types – Paper, Column, TLC, HPTLC, GC-MS, HPLC, Ion exchange, Size exclusion, Hydrophobic interaction, Gel filtration and Affinity chromatography.

UNIT – V: Spectrophotometry

(15 **Hours**)

Spectrophotometry - Principle and Instrumentation, UV-Visible, FTIR, NMR, X-ray Crystallography, MALDI-TOF.

Tracer techniques - Nature of radio activity- GM Counter, Scintillation Counter, Auto radiography and applications of isotopes.

TOPICS FOR SELF-STUDY:

Self-Study topics	Reference Links
Metabolomics	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850886/
Confocal	https://www.olympus-lifescience.com/en/microscope-
microscopy	resource/primer/techniques/confocal/confocalintro/
Protein-3-D	https://www.princeton.edu/news/2020/11/03/software-determining-
softwares	3d-structure-proteins

TEXT BOOK:

• Jayaraman, J. 2006. *Laboratory manual in Biochemistry*, New Delhi, India, New Age International Ltd.

REFERENCE BOOKS:

- Palanivelu, P. 2000. Laboratory manual for Analytical Biochemistry and Seperation techniques, Madurai, India.
- Plummer, D.T. 1999. *An introduction to practical Biochemistry*, New Delhi, McGrew Hills Publishing Company.

WEB LINKS:

https://www.sathyabama.ac.in/course-materials/virtual-bioinstrumentation

https://onlinecourses.nptel.ac.in/noc20_bt21/preview

Unit/ Sectio n	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
I	Laborator	ry Safety Management	
1.1	General Lab safety - Basic Safety Rules, Laboratory Specific Safety Rules (Tissue culture, Microbiology, Biochemistry)	Recall general lab safety in laboratory.	K2
1.2	Personal protective Equipment (PPE) – introduction. 1.2.1 Hazard Assessment – survey, sources, 1.2.2 Eye and face protection, 1.2.3 Head protection, 1.2.4 Hand protection,	Demonstrate understanding of fundamental concepts of Personal protective Equipments.	K2
1.3	Administrative Control – orientation and training, standard operation procedures(SOPs) , safety signs, Personal Hygiene,	Explain the various administrative control in the lab.	K2
1.4	Biological—Biosafty levels, Risk Assessment, Safety data sheets for infected substances. Chemical Safety—Safety data sheet, safe work practice—general rules and regulations	Demonstrate the biological safety level and chemical safety level.	K2
1.5	Waste management – Biological and Chemical waste disposal 5.5.1 General waste management procedure and waste determination processes, Laboratory waste classification	Explain Waste management both biological and chemical waste in the laboratory.	K2
1.6	Emergency procedure – Spill, First Aid, Emergency kits	Discuss the Emergency procedure in laboratory.	K2
II	E	lectrophoresis	
2.1	Electrophoresis- Principles and types- Agrose gel Electrophoresis, Pulsed Field Gel Electrophoresis (PFGE), Polyacylamide Gel Electophoresis (PAGE).	Appraise the application of Electrophoresis	K4
2.2	Blotting Technology- Southern, Northern and Western blot.	Examine the different blotting technology in biotechnological field	K5
2.3	PCR: Working mechanism and Application	Explain the varies application of PCR in the Biotechnological industry	K2

III	Analytical Techniques									
3.1	Centrifugation - Types of Centrifuge & Centrifugation (definition, principle, uses)	Develop interest in principles of Centrifugation	K3							
3.2	Microscopy – Fluorescence, Flow cytometry, confocal and Electron Microscope (SEM and TEM).	Recall the importance and scope of Microscopes	K2							
IV	Ch	romatography								
4.1	Chromatography - Basic principles, types – Paper, Column, TLC, HPTLC, GC-MS, HPLC, Ion exchange, Size exclusion, Hydrophobic interaction, Gel filtration and Affinity chromatography.	 Determine Chromatography techniques involved in biotechnological field. Explain the basic biointeraction techniques. 	K5							
V	Spe	ctrophotometry								
5.1	Spectrophotometry - Principle and Instrumentation, UV-Visible, FTIR, NMR, X-ray Crystallography, MALDITOF.	Explain the various Spectrophotometry instruments	K2							
5.2	Tracer techniques - Nature of radio activity- GM Counter, Scintillation Counter, Auto radiography and applications of isotopes.	Demonstrate understanding of fundamental concepts of Tracer techniques	K2							

Mapping Scheme for Course Code: U20BY5:2

U20BY5:2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	L	-	-	L	M	H	L	-	M	H	M	L
CO2	H	M	H	H	M	L	L	-	L	L	-	-	H
CO3	H	M	H	H	H	L	L	-	L	-	M	-	L
CO4	M	M	M	M	L	-	M	-	L	M	L	-	-
CO5	H	M	L	-	-	L	H	L	-	M	-	-	M
CO6	M	L	-	L	L	-	M	H	M	-	L	L	M

L-Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration Experiments, Written test on Protocols.
- 2. End Semester Practical Examination

ELECTIVE (CAC): COMPETITIVE BOTANY

Semester: V Course Code: U20CAC5:1

Credits :2 Hours/Week: 3

Course Outcome

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Develop the skill to crack competitive exams in Listening, reading, learning, problem solving and thinking out of Box.	K6	I - V
CO 2	Choose an appropriate sampling scheme and/or experimental design for a given biological question.	K5	I, - V
CO 3	Apply an appropriate analytical methods to work out the given biological data.	К3	I, - V
CO 4	Demonstrate the necessary skills for biological data management, analysis and graphical presentation.	К2	I - V,
CO 5	Discover their ability to reason both inductively and deductively with experimental information and data.	K4	I - V
CO 6	Summarize and interpret the primary literature in botany.	K2	I - V

SYLLABUS:

Unit 1: Aptitude & Mental Ability Tests, Microbiology and Plant Pathology- 6 Hours

- 1.1 Conversion of information to data--Collection, Compilation and presentation of data Tables, graphs, diagrams-Analytical interpretation of data.
- 1.2 Simplification-Percentage-Highest Common Factor (HCF)-Lowest Common Multiple (LCM)-1.3 Ratio and Proportion-Simple interest-Compound interest-Area-Volume-Time and Work

- 1.4 Decision making and problem solving-Logical Reasoning-Puzzles-Dice-Visual
- 1.5 Reasoning -Alpha numeric Reasoning- Number Series- Logical Number/ Alphabetical/ Diagrammatic Sequences
- 1.6 Structure and reproduction/multiplication of viruses, viroids, bacteria, fungi, and mycoplasma;
- 1.7 Applications of microbiology in agriculture, industry, medicine and in control of soil and water pollution; Prion and Prion hypothesis.
- 1.8 Important crop diseases caused by viruses, bacteria, mycoplasma, fungi, and nematodes; Modes of infection and dissemination;
- 1.9 Molecular basis of infection and disease resistance/ defense; Physiology of parasitism and control measures; Fungal toxins; Modelling and disease forecasting; Plant quarantine.

Unit II: Cryptogamae, Phanerogamae, Morphogenesis, Plant Resource Development- 6 Hours

- 2. 1 Algae, fungi, lichens, bryophytes, pteridophytes structure and reproduction from the evolutionary viewpoint; Distribution of Cryptogams in India and their ecological and economic important.
- 2.2 Gymnosperms: Concept of Progymnosperms; Classification and distribution of gymnosperms; Salient features of Cycadales, Ginkgoales, Coniferales and Gnetales, their structure, and reproduction;
- 2.3 A General account of Cycadofilicales, Bennettitales and Cordaitales; Geological time scale; Type of fossils and their study techniques.
- 2.4 Angiosperms: Systematics, anatomy, embryology, palynology, and phylogeny.
- 2.5 Taxonomic hierarchy; International Code of Botanical Nomenclature; Numerical taxonomy and chemotaxonomy; Evidence from anatomy, embryology, and palynology. Origin and evolution of angiosperms;
- 2.6 Comparative account of various systems of classification of angiosperms; Study of angiospermic families Magnoliaceae, Ranunculaceae, Brassicaceae, Rosaceae, Fabaceae, Euphorbiaceae, Malvaceae, Dipterocarpaceae, Apiaceae, Asclepiadaceae, Verbenaceae, Solanaceae, Rubiaceae, Cucurbitaceae, Asteraceae, Poaceae, Arecaceae, Liliaceae, Musaceae and Orchidaceae.
- 2.7 Stomata and their types; Glandular and non-glandular trichomes; Unusual secondary growth; Anatomy of C3 and C4 plants; Xylem and phloem differentiation; Wood anatomy.
- 2.8 Development of male and female gametophytes, pollination, fertilization; Endosperm its development and function; Patterns of embryo development;
- 2.9 Polyembryony and apomixes; Applications of palynology; Experimental embryology including pollen storage and test-tube fertilization.
- 2.10 Domestication and introduction of plants;
- 2.11 Origin of cultivated plants; Vavilov's centres of origin; Plants as sources for food, fodder, fibre, spices, beverages, edible oils, drugs, narcotics, insecticides, timber, gums, resins and dyes, latex, cellulose, starch and its products; Perfumery;
- 2.12 Importance of Ethnobotany in Indian context; Energy plantations; Botanical Gardens and Herbaria.
- 2.13 Totipotency, polarity, symmetry, and differentiation; Cell, tissue, organ and protoplast culture; Somatic hybrids and Cybrids;
- 2.14 Micropropagation; Somaclonal variation and its applications; Pollen haploids, embryo rescue methods and their applications.

Unit III: Cell Biology, Genetics, Evolution and Plant Breeding, Biotechnology and Biostatistics (6 Hours)

- 3. 1 Techniques of cell biology; Prokaryotic and eukaryotic cells structural and ultrastructural details; Structure and function of extracellular matrix (cell wall), membranes-cell adhesion, membrane transport and vesicular transport;
- 3.2 Structure and function of cell organelles (chloroplasts, mitochondria, ER, dictyosomes ribosomes, endosomes, lysosomes, peroxisomes); Cytoskelaton and microtubules; Nucleus, nucleolus, nuclear pore complex; Chromatin and nucleosome;
- 3. 3 Cell signalling and cell receptors; Signal transduction; Mitosis and meiosis;
- 3.4 Molecular basis of cell cycle; Numerical and structural variations in chromosomes and their significance; Chromatin organization and packaging of genome; Polytene chromosomes; B-chromosomes structure, behaviour and significance.
- 3.5 Development of genetics; Gene versus allele concepts (Pseudoalleles); Quantitative genetics and multiple factors; Incomplete dominance, polygenic inheritance, multiple alleles;
- 3.6 Linkage and crossing over; Methods of gene mapping, including molecular maps (idea of mapping function);
- 3.7 Sex chromosomes and sex-linked inheritance, sex determination and molecular basis of sex differentiation; Mutations (biochemical and molecular basis);
- 3.8 Cytoplasmic inheritance and cytoplasmic genes (including genetics of male sterility).
- 3.9 Structure and synthesis of nucleic acids and proteins; Genetic code and regulation of gene expression; Gene silencing;
- 3.10 Multigene families; Organic evolution evidence mechanism, and theories. Role of RNA in origin and evolution.
- 3.11 Methods of plant breeding introduction, selection and hybridization (pedigree, backcross, mass selection, bulk method);
- 3.12 Mutation, polyploidy, male sterility and heterosis breeding; Use of apomixes in plant breeding; DNA sequencing;
- 3.13 Genetic engineering methods of transfer of genes; Transgenic crops and biosafety aspects; Development and use of molecular markers in plant breeding; Tools and techniques probe, southern blotting, DNA fingerprinting, PCR and FISH.
- 3.14 Standard deviation and coefficient of variation (CV); Tests of significance (Z-test, t-test and chi-square test); Probability and distributions (normal, binomial and Poisson); Correlation and regression.

Unit IV: Physiology and Biochemistry

(6 Hours)

- 4.1 Water relations, mineral nutrition and ion transport, mineral deficiencies;
- 4.2 Photosynthesis photochemical reactions; photo-phosphorylation and carbon fixation pathways; C3, C4 and CAM pathways;
- 4.3 Mechanism of phloem transport; Respiration (anerobic and aerobic, including fermentation) electron transport chain and oxidative phosphorylation; Photorespiration; Chemiosmotic theory and ATP synthesis;
- 4.4 Lipid metabolism; Nitrogen fixation and nitrogen metabolism; Enzymes, coenzymes; Energy transfer and energy conservation;
- 4.5 Importance of secondary metabolites; Pigments as photoreceptors (plastidial pigments and phytochrome); Plant movements; Photoperiodism and flowering, vernalization, senescence;
- 4.6 Growth substances their chemical nature, role and applications in agri-horticulture; Growth indices, growth movements; Stress physiology (heat, water, salinity, metal); Fruit and seed physiology; Dormancy, storage and germination of seed; Fruit ripening its molecular basis and manipulation.

Unit V: Ecology and Plant Geography

- (6 Hours)
- 5.1 Concept of ecosystem; Ecological factors; Concepts and dynamics of community; Plant succession;
- 5.2 Concept of biosphere; Ecosystems; Conservation; Pollution and its control (including phytoremediation); Plant indicators; Environment (Protection) Act.
- 5.3 Forest types of India Ecological and economic importance of forests, afforestation, deforestation and social forestry; Endangered plants, endemism, IUCN categories, Red Data Books; Biodiversity and its conservation; Protected Area Network; Convention on Biological Diversity;
- 5.4 Farmers' Rights and Intellectual Property Rights; Concept of Sustainable Development; Biogeochemical cycles; Global warming and climatic change; Invasive species; Environmental Impact Assessment; Phytogeo-graphical regions of India.

TOPICS FOR SELF STUDY:

Topic	Web links
Mean, Median	https://en.wikipedia.org/wiki/Mean
and mode	https://www.khanacademy.org/math/statistics-
	probability/summarizing-quantitative-data/mean-median-
	<u>basics/a/mean-median-and-mode-review</u>
Correlation and	https://www.statisticshowto.com/probability-and-
deviation	statistics/correlation-coefficient-formula/
population	https://en.wikipedia.org/wiki/Population_genetics
genetics, Lod score,	https://www.genome.gov/genetics-glossary/LOD-Score
Lou score,	nttps://www.genome.gov/genetics-giossary/LOD-score
Mortality and	https://en.wikipedia.org/wiki/Natality_in_population_ecology#:~:text
Natality,	=Natality%20in%20population%20ecology%20is,staying%20the%2
3 /	Osame%20in%20size.
SCP	https://en.wikipedia.org/wiki/Single-
Ser	cell_protein#:~:text=Single%2Dcell%20proteins%20(SCP),consump
	tion%20or%20as%20animal%20feeds.
Algal bloom,	https://en.wikipedia.org/wiki/Algal_bloom
genomics,	https://en.wikipedia.org/wiki/Genomics
proteomics,	https://en.wikipedia.org/wiki/Proteomics#:~:text=Proteomics%20is%
proteomics,	20the%20large%2Dscale,ever%20increasing%20numbers%20of%20
	protein.
COVID-19,	https://en.wikipedia.org/wiki/Coronavirus_disease_2019
Swine flu,	https://en.wikipedia.org/wiki/Swine_influenza

Dengue,	https://www.cdc.gov/dengue/symptoms/index.html
MAB,	https://en.wikipedia.org/wiki/Man_and_the_Biosphere_Programme
Insitu and exsitu conservation,	https://www.yourarticlelibrary.com/biodiversity/conservations-of-biodiversity-in-situ-conservation-and-ex-situ-conservation/30144
Hotspot	https://en.wikipedia.org/wiki/Biodiversity_hotspot

TEXT BOOK:

- 1. Saxnena, N. P. 2011. Objective Botany, Prakashan Media (P) Ltd, Meerut, U.P, India.
- 2. Pandey, B. P. 2015. *College Botany Volume –I, II and III*, S. Chand Pvt. Ltd. New Delhi.
- 3. Kumar and Malik. 2019. *Objective Botany for AIPMET and All other medical examination*, Prakash Publication, Meerut.

REFERENCE BOOK

- 1. Patil, D. A., 2020. *Objective Botany MCQ's*, Scientific publishers, ISBN: 9789389832761.
- 2. Hemant Roy, 2016. Comprehensive MCQ in Biology for competitive Examinations, Laxmi publication.
- 3. Gangwar, H.O., 2019. *Objective Biology for NEET, AIIMS and other competitive examinations*. Dinesh Publication Pvt, Ltd. New Delhi.
- 4. Aggarwal, R.S. 2016. A modern Approach to verbal and Non-verbal reasoning. S. Chand Publication, New Delhi.
- 5. Sijwali and Indu Sijwali. 2018. *A new approach to reasoning verbal, non-verbal and analytical*. Arihant Publishers, New Delhi.
- 6. Arumugam, N., and Senthil Kumar, P., 2018. *Bio- Botany 1 mark solved questions*. Saras Publication, Nagar Coil.
- 7. Pandey, B. P., 2015. *College Botany Volume –I, II and III*, S. Chand Pvt. Ltd. New Delhi.
- 8. Pandey, S.N, Misra. S.P, Trivedi. P.S. 2002. *A Text Book of Botany*, Vikas Publishing House Pvt. Ltd. New Delhi.

Web Links:

https://www.classcentral.com/report/swayam-moocs-course-list/https://www.swayamprabha.gov.in/index.php/program/archive/9https://swayam.gov.in/NPTEL

Unit/	CONTENT	LEARNING OUTCOME	Highest
Section			Bloom taxonomic
			level of
			transaction
I	Aptitude & Mental Ability Tests,	Microbiology and Plant Pathol	ogy
1.1	Conversion of information to	 Interpret various types 	K5

	dataCollection, Compilation and presentation of data Tables, graphs, diagrams-Analytical interpretation of data.	of data, graphs, diagram and tables • Find the values rational and irrational numbers	
1.2	Simplification-Percentage-Highest Common Factor (HCF)-Lowest Common Multiple (LCM)	 Determine the percentage, HCF and LCM. Find gain or loss percentage 	K5
1.3	Ratio and Proportion-Simple interest-Compound interest-Area-Volume-Time and Work	 Estimate the ratio, volume, time and work Find the simple and compound interest 	K6
1.4	Decision making and problem solving-Logical Reasoning-Puzzles-Dice-Visual	 Compare and contrast between logical and reasoning puzzles Solve verbal and non verbal reasoning Identify the statement and conclusion Which is the following correct position 	K6
1.5	Reasoning -Alpha numeric Reasoning- Number Series- Logical Number/ Alphabetical/ Diagrammatic Sequences	 Formulate the alphabetical and logical sequences Distinguish between local value and face value 	K6
1.6	Structure and reproduction/ multiplication of Viruses, Viroids, Bacteria, Fungi, and Mycoplasma;	 Explain various types of reproduction in viruses, bacteria, fungi and mycoplasma. Consider the statement regarding reproduction 	K5

			in fungi	
		•	Identify and label the structure of microbes	
1.7	Applications of microbiology in agriculture, industry, medicine and in control of soil and water pollution; Prion and Prion hypothesis.	•	Utilize the application of microorganisms in agriculture, industry, medicine and environment	К3
1.8	Important crop diseases caused by viruses, bacteria, mycoplasma, fungi, and nematodes; Modes of infection and dissemination;	•	List out the types of diseases and mode of entry	K4
1.9	Molecular basis of infection and disease resistance/ defence; Physiology of parasitism and control measures; Fungal toxins; Modelling and disease forecasting; Plant quarantine.	•	Explain the types of infections and control measure	K5
II Cry	ptogamae, Phanerogamae, Morpho	ogenesi	s and Plant Resource De	evelopment
2.1	Algae, Fungi, Lichens, Bryophytes, Pteridophytes — structure and reproduction from the evolutionary viewpoint; Distribution of Cryptogams in India and their ecological and economic important.	•	Discuss the various types structure, reproduction, ecological, phylogenetic and economic importance of Cryptogames. Match the different types fern. Select the incorrect area of distribution of Cryptogames	K6
2.2	Gymnosperms: Concept of Progymnosperms; Classification and distribution of gymnosperms; Salient features of Cycadales, Ginkgoales, Coniferales and Gnetales, their structure, and reproduction;	•	Explain the anatomical and evolutionary aspects of Gymnosperms. List out the salient feature of Cycas, Ginkgo and Pinus Assess the similarities and dissimilarities with lower and higher	K5

		forms	
2.3	A General account of Cycadofilicales, Bennettitales and Cordaitales; Geological time scale; Type of fossils and their study techniques	Determine the types of fossils, geological time scale and their study techniques.	K5
2.4	Angiosperms: Systematics, anatomy, embryology, palynology, and phylogeny.	• Explain the types of classification, morphological and phylogenetic variations of angiosperms	K5
2.5	Taxonomic hierarchy; International Code of Botanical Nomenclature; Numerical taxonomy and chemotaxonomy; Evidence from anatomy, embryology, and palynology. Origin and evolution of angiosperms;	Discuss in details about ICBN and various evidences of taxonomy of flowering plants	K6
2.6	Comparative account of various systems of classification of angiosperms; Study of angiospermic families – Magnoliaceae, Ranunculaceae, Brassicaceae, Rosaceae, Fabaceae, Euphorbiaceae, Malvaceae, Dipterocarpaceae, Apiaceae, Asclepiadaceae, Verbenaceae, Solanaceae, Rubiaceae, Cucurbitaceae, Asteraceae, Poaceae, Arecaceae, Liliaceae, Musaceae and Orchidaceae.	Compare and contrast between various types of family and genus	K2
2.7	Stomata and their types; Glandular and non-glandular trichomes; Unusual secondary growth; Anatomy of C3 and C4 plants; Xylem and phloem differentiation; Wood anatomy.	 Compare the types of stomata, C3 and C4 plants. Comment on stomata. Explain wood anatomy 	K2
2.8	Development of male and female gametophytes, pollination, fertilization; Endosperm – its development and function; Patterns of embryo development	Outline the structure, development, fertilization of male and female gametes.	K2

2.9	Polyembryony and apomixes; Applications of palynology; Experimental embryology including pollen storage and test- tube fertilization.	•	Utilize the importance of polyembryony and apomixes	К3
2.10	Domestication and introduction of plants	•	Recall the centre of domestication of plants	K1
2.11	Origin of cultivated plants; Vavilov's centres of origin; Plants as sources for food, fodder, fibre, spices, beverages, edible oils, drugs, narcotics, insecticides, timber, gums, resins and dyes, latex, cellulose, starch and its products; Perfumery	•	List out the application of plants as source for food	K4
2.12	Importance of Ethnobotany in Indian context; Energy plantations; Botanical Gardens and Herbaria.	•	List out the application of ethnobotany and botanical Garden	K4
2.13	Totipotency, polarity, symmetry, and differentiation; Cell, tissue, organ and protoplast culture; Somatic hybrids and Cybrids;	•	Explain the various types of <i>invitro</i> culture methods.	K4
2.14	Micropropagation; Somaclonal variation and its applications; Pollen haploids, embryo rescue methods and their applications.	•	Recommend the types of micropropagation methods and its uses	K5
Unit II	I Cell Biology, Genetics and Evolut	ion and	Plant Breeding, Biotech	nology and
3.1	Techniques of cell biology; Prokaryotic and eukaryotic cells – structural and ultra-structural details; Structure and function of extracellular matrix (cell wall), membranes-cell adhesion, membrane transport and vesicular transport;	•	Elaborate the structure and function of prokaryotic and eukaryotic	K6
3.2	Structure and function of cell organelles (chloroplasts, mitochondria, ER, dictyosomes ribosomes, endosomes, lysosomes, peroxisomes); Cytoskelaton and microtubules; Nucleus, nucleolus, nuclear pore complex; Chromatin and	•	Classify the various and structure and function of cell organelles	K4

	nucleosome;		
3.3	Cell signalling and cell receptors; Signal transduction; Mitosis and meiosis	 Compare the division and signaling of mitosis and meiosis 	K5
3.4	Molecular basis of cell cycle; Numerical and structural variations in chromosomes and their significance; Chromatin organization and packaging of genome; Polytene chromosomes; B-chromosomes – structure, behaviour and significance.	Interpret the various types of chromosomes and its significance	K5
3.5	Development of genetics; Gene versus allele concepts (Pseudoalleles); Quantitative genetics and multiple factors; Incomplete dominance, polygenic inheritance, multiple alleles;	Compare the inheritance, Allelic and non allelic interaction	K2
3.6	Linkage and crossing over; Methods of gene mapping, including molecular maps (idea of mapping function);	Summarize the character, types and function of linkage and crossing over	K2
3.7	Sex chromosomes and sex-linked inheritance, sex determination and molecular basis of sex differentiation; Mutations (biochemical and molecular basis)	Demonstrate the molecular and biochemical basis of sex determination and sex linkage	K2
3.8	Cytoplasmic inheritance and cytoplasmic genes (including genetics of male sterility).	 Prove the extra chromosomal inheritance and male sterility 	K5
3.9	Structure and synthesis of nucleic acids and proteins; Genetic code and regulation of gene expression; Gene silencing;	• Explain the genetic code and its regulation of gene expression.	K5
3.10	Multigene families; Organic evolution – evidence mechanism, and theories. Role of RNA in origin and evolution.	Prove the organic theories of evolution and RNA.	K5
3.11	Methods of plant breeding – introduction, selection and hybridization (pedigree, backcross, mass selection, bulk	Discuss various types traditional and conventional methods	K6

	method);	of breeding	
3.11	Mutation, polyploidy, male sterility and heterosis breeding; Use of apomixes in plant breeding; DNA sequencing	Differentiate between mutation and heterosis	K4
3.12	Genetic engineering – methods of transfer of genes; Transgenic crops and biosafety aspects; Development and use of molecular markers in plant breeding; Tools and techniques – probe, southern blotting, DNA fingerprinting, PCR and FISH.	Explain the various types of gene transfer methods and biosafety	K4
3.13	Standard deviation and coefficient of variation (CV); Tests of significance (Z-test, t-test and chisquare test); Probability and distributions (normal, binomial and Poisson); Correlation and regression.	Estimate the standard deviation, co efficient and probability	K6
IV	Physiology	and Biochemistry	
4.1	Water relations, mineral nutrition and ion transport, mineral deficiencies;	 List out the major and minor nutrients and their application and deficiencies 	K1
4.2	Photosynthesis – photochemical reactions; photo-phosphorylation and carbon fixation pathways; C3, C4 and CAM pathways	 Demonstrate photosynthesis and C3, C4 and CAM pathways 	K2
4.3	Mechanism of phloem transport; Respiration (anerobic and aerobic, including fermentation) – electron transport chain and oxidative phosphorylation; Photorespiration; Chemiosmotic theory and ATP synthesis;	Elaborate the process of, respiration, photorespiration ad chemiosotic theory	K6
4.4	Lipid metabolism; Nitrogen fixation and nitrogen metabolism; Enzymes, coenzymes; Energy transfer and energy conservation;	Importance of Lipid metabolism and Nitrogen fixation	K5
4.5	Importance of secondary metabolites; Pigments as photoreceptors (plastidial	Determine the importance of	K5

4.6	pigments and phytochrome); Plant movements; Photoperiodism and flowering, vernalization, senescence Growth substances – their	secondary metabolites and pigments. • Explain Plant movement, photoperiodism, vernalization and senescence • Influence of growth	K5
	chemical nature, role and applications in agri-horticulture; Growth indices, growth movements; Stress physiology (heat, water, salinity, metal); Fruit and seed physiology; Dormancy, storage and germination of seed; Fruit ripening – its molecular basis and manipulation.	 substance their role and application. Evaluated the seed physiology, dormancy and fruit ripening 	
V	Ecology an	d Plant Geography	
5.1	Concept of ecosystem; Ecological factors; Concepts and dynamics of community; Plant succession;	 Recall the concepts of ecosystem, dynamics of community and succession 	K1
5.2	Concept of biosphere; Ecosystems; Conservation; Pollution and its control (including phytoremediation); Plant indicators; Environment (Protection) Act.	Illustrate various types of biosphere, pollution and its control	K2
5.3	Forest types of India – Ecological and economic importance of forests, afforestation, deforestation and social forestry; Endangered plants, endemism, IUCN categories, Red Data Books; Biodiversity and its conservation; Protected Area Network; Convention on Biological Diversity;	 Explain the types of forest and their conservation network. Discuss Importance of forest and social forest. 	K5
5.4	Farmers' Rights and Intellectual Property Rights; Concept of Sustainable Development; Biogeochemical cycles; Global warming and climatic change; Invasive species; Environmental	 Discuss the role of IPR and their function. Solve issues of global warming and climatic 	K6

Impact Assessment; Phytogeographical regions of India.	changes
8-4	 Define phytogeographical region of India.

Mapping Scheme for the Course Code: U20CAC5:1

U20CAC	PO	PSO	PSO	PSO	PSO								
5:1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	-	H	L	M	H	L	L	M	M	L	H	-
CO2	H	M	L	-	-	L	L	-	L	H	M	H	-
CO3	H	L	-	M	L	-	M	-	M	H	L	H	H
CO4	H	L	L	-	M	-	-	-	M	M	-	H	H
CO5	M	L	-	M	-	L	M	L	-	M	H	-	L
CO6	M	-	-	L	L	M	L	L	M	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration Experiments, Written test on Protocols.
- 2. End Semester Practical Examination

SBEC I – MUSHROOM AND NURSERY TECHNOLOGY

Semester : V Course Code : U20BYPS1 Credits : 2 Hours/Week : 2

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Explain the general information about mushrooms including edible and poisonous mushroom	K5	I
CO 2	Design and develop various technology for mushroom cultivation	K6	II
CO 3	Analyze post harvesting of mushroom and making up recipes using mushroom	K4	III
CO 4	Discuss concepts in nursery technology.	K5	IV
CO 5	Construction of nursery and greenhouse using various technology	K6	V

CO 6	Develop Entrepreneurship skill by understanding the	K6	IV,V
	cultivation and development technology for		

SYLLABUS:

Unit I: INTRODUCTION TO MUSHROOMS

(6 Hours)

- 1.1 Introduction and Systematic position
- 1.2. Structure of mushroom
- 1.3. Types of mushrooms- Edible mushroom (a)Definition(b) Cultivation of Edible of mushroom-Poisonous mushroom -(a) Introduction(b) Definition
- 1.4 Identification of edible and poisonous Mushrooms Physical and Chemical method
- 1.5 Nutrient values of edible mushroom
- 1.6 Life cycle
- 1.7 Economic values

Unit II: CULTIVAT9ION OF MUSHROOMS

(6 Hours)

- 2..1 Mushroom cultivation Compost beds, Spawn types, Production and management of Spawn, Spawn running
- 2.2 Disease and pest management Insects, Nematodes, Mites, Virus, Bacteria and Fungi
- 2.3 Harvesting methods

Unit III: MUSHROOMS -POST HARVEST AND PROCESSING (6 Hours)

- 3.1 Post harvesting technology Cleaning, Freezing, Freeze drying, Packing and Marketing
- 3.2 Mushroom recipes preparation Pickle, Soup, Gravy and Biriyani

Unit IV: BASIC CONCEPTS AND TECHNIQUESOF NURSERY TECHNOLOGY – (6 Hours)

- 4.1 Nursery technology Introduction, Definition
- 4.2 Methods of Propagation Sexual Propagation Vegetative Propagation (a) Cuttings (i) Stem cuttings Hibiscus (ii) Root cuttings Rose (b) Layering (i) Simple layering, (ii) Air layering Ixora (c) Grafting (i) Inarching Guava (ii) Wedge grafting Mango
- 4.3 Garden implements Garden Hose, Pick Axe, Trenching Hoe, Knapsac sprayer, Mist Chamber, Trowel, Sprinkler, Rose Kittle, Crow Bar, Garden scissor, Grafting Knife, Rake, Sprayer, Pruning saw, Plant cutter

UNIT V: COMPONENTS AND PREPARATION OF NURSERY BED (6 Hours)

5.1Nursery Structures - Store House, Potting, Packing Shed, Nursery bed preparation, Mist chamber, Manures preparation, Compost preparation, Vermicompost preparation

5.2. Green houses for tropical countries - Management, Pot mixture, Pot culture, Maintenance and Marketing of Nursery Stock

TEXT BOOKS:

- 1. Bahl, N. 2002. *Hand book on mushrooms.* 4th *Edition*. Oxford and IBH publishing Co., Pvt. Ltd., New Delhi.
- 2. Dey, S.C. 2010. Mushroom growing, Agrobios (India), Jodhpur.
- 3. Edmond Musser and Andres. 1957. *Fundamentals of Horticulture*. McGraw Hill Book Co, New Delhi.
- 4. Gardener. 1996. Basic Horticulture. Mac Millan, New York.
- 5. Kapoor, J.N. 2001. Mushroom cultivation, Krishi Bhavan, NewDelhi.
- 6. Kumar N. 1997. *Introduction to Horticulture*. Rajalakshmi Publications, Nagercoil, India.
- 7. Lex Lauries and Victor H. Rice. 1979. *Floriculture fundamentals and practices*, McGraw Hill publishers, New York. Mukherjee. D. 1977. *Gardening in India*. Oxford IBH Publishing Co., New Delhi.
- 9. Pathak, V.N., Yadav N. and Gaur M. 2010. *Mushroom production and processing Technology* Agrobios (India), Jodhpur.

REFERENCE BOOKS:

- 1. Sharma, V.P. 2006. *Diseases and Pests of Mushrooms*, MIS. IBD Publishers and Distributors, New Delhi.
- 2. Sharma, O.P. 2003. Textbook of Fungi, Tata McGraw Hill Publishing Co., New Delhi.
- 3. Singh. 2005. Modern mushroom cultivation. International book distributors, Dehradun.

Web link:

https://onlinecourses.nptel.ac.in/noc20 ce11/preview

Unit/ Sectio n	Content	Learning Outcome	Highest Bloom taxonomic level of transaction			
1	Introduction to Mushrooms					
1.1	Introduction and Systematic position	Categorize scientific classification of mushroom	K4			
1.2	Structure of mushroom	Discuss and elaborates about various forms of mushroom	К2			

1.3	Types of mushrooms	Compile and understand the	К3
	Edible mushroom - (a)	different types of mushroom	K4
	Definition(b) Cultivation of Edible of mushroom	 Analyze mushroom cultivation techniques 	K4
	Poisonous mushroom -(a) Introduction(b) Definition	Examine and recognize the poisonous mushroom	
1.4	Identification of edible and poisonous Mushrooms - Physical and Chemical method	 Analyse methods for identifying poisonous mushroom 	K4
1.5	Nutrient values of edible mushroom	Inspect the importance of nutritional values of mushroom	K4
1.6	Life cycle	Interpret the life cycle of mushroom	K5
1.7	Economic values	Apply the economic importance of mushroom	К3
II	Cul	ltivation of Mushrooms	
2.0	Mushroom cultivation - Compost beds, Spawn types, Production and management of Spawn, Spawn running	Develop a concept about a method for mushroom cultivation	К6
2.1	Disease and pest management – Insects, Nematodes, Mites, Virus, Bacteria and Fungi	Discuss and know the disease and pest management during mushroom cultivation	К6
2.2	Harvesting methods	Evaluate of harvesting techniques	K5
III	Mushroom	s –Post Harvest and Processing	1
3.1	Post harvesting technology – Cleaning, Freezing, Freeze drying, Packing and Marketing	Analyze post-harvesting technology	K4
3.2	Mushroom recipes preparation – Pickle, Soup, Gravy and Biriyani	Make up various recipes using mushroom	К3
IV	Basic Concepts ar	nd Techniques of Nursery Technolog	ev

4.1	Nursery technology – Introduction, Definition	•	Assess new methods in nursery technology	K5
4.2	Methods of Propagation	•	Analyze various propagation techniques	K4
4.2	Sexual Propagation	•	Interpret the importance of sexual propagation	K5
4.2	Vegetative Propagation –(a) Cuttings, (b) Stem cuttings– Hibiscus, (c) Root cuttings – Rose	•	Make use of plants using numerous vegetative propagation	К3
4.2	Layering -(a) Simple layering, (b) Air layering – <i>Ixora</i>	•	Explain layering methods	K5
4.2	Grafting-(a) Inarching – Guava (b)Wedge grafting - Mango	•	Explain grafting method for planting	K5
4.3	Garden implements - Garden Hose, Pick Axe, Trenching Hoe, Knapsac sprayer, Mist Chamber, Trowel, Sprinkler, Rose Kittle, Crow Bar, Garden scissor, Grafting Knife, Rake, Sprayer, Pruning saw, Plant cutter	•	Recommends tools for gardening	K5
V	Components	and Pr	reparation of Nursery Bed	
5.1	Nursery Structures - Store House, Potting, Packing Shed, Nursery bed preparation, Mist chamber, Manures preparation, Compost preparation, Vermicompost preparation	•	Compose and construct a nursery Explain the various composting techniques.	K6
5.2	Green houses for tropical countries - Management, Pot mixture, Pot culture, Maintenance and Marketing of Nursery Stock	•	Elaborates greenhouse technology in various countries	К6

Mapping Scheme for the Course Code: U20BYPS1

U20BYPS	PO	PSO	PSO	PSO	PSO								
1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	-	-	M	-	Н	Н	Н	-	-	-	-	-	M
CO2	-	-	M	-	M	Н	L	-	-	-	-	-	L
CO3	L	-	M	-	-	-	-	-	-	-	-	-	L
CO4	-	-	M	-	L	-	M	-	-	-	-	-	L
CO5	L	-	-	-	-	-	M	-	-	-	-	-	L
CO6	-	-	-	L	-	L	L		-		-	-	L

Course assessment:

- 1. Continuous assessment by seminars, assignments, records.
- 2. Model exam and End semester exam

CORE VII- ECOLOGY AND PHYTOGEOGRAPHY

Semester: VI Course Code: U20BY607

Credits: 6 Hours/Week: 6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Identify the varying environmental factors and its influence on plants	К3	I
CO 2	Analyze Ecological structure of Plant communities in relation with the Abiotic and Biotic factors	K4	II
CO 3	Differentiate the vegetation types of plant communities	K4	III
CO 4	Apply different methods of vegetation studies to analyze the plant communities	К3	III
CO 5	Classify and correlate the Ecological adaptation of Plants	K5	IV
CO 6	Apply principles of biogeography to predict and explain general characteristics of a plant community	K5	V

Syllabus:

Unit I: ENVIRONMENTAL FACTORS

(18 Hours)

- 1.1. Soil, Origin of soil, Soil Profile, Component of Soils, Soil Minerals, Soil Air, Soil, Soil Water, Soil erosion and Soil types of India.
- 1.2. Water, Different Forms of Water, Fresh water and Marine water, Elementary knowledge on Ground and surface water systems
- 1.3. Air, Components of Air and Structure of Atmosphere

Unit II : ECOLOGY (18 Hours)

- 2.1. Scope and importance of studying ecology.
- 2.2. Approaches to the study of ecology- Autecology and Synecology
- 2.3. Plants and Environmental factors Climate, Edaphic, Biotic factors and Topographic factors.
- 2.4. Ecosystem Types of Ecosystem, Ecological Pyramid, energy flow, Food web- Niche
- 2.5. Community ecology and Population Dynamics.

Unit III – EVOLUTION OF PLANT COMMUNITY

(18 Hours)

- 3.1. Development of vegetation, Migration, Ecesis and colonization.
- 3.2. Methods of studying vegetation, Physiognomic method, Phytosociological method Quadrat, transect and Point method, Determination of Density, Frequency and Abundance, Verification of Raunkier's Law
- 3.4. Plant succession, Hydrosere and Xerosere., Climax Concept
- 3.5. Biome

Unit IV - PLANT ECOLOGICAL RESPONSE

(18 Hours)

- 4.1. Ecological classification of plants, Hydrophytes, Mesophytes Xerophytes, Epiphytes and Halophytes
- 4.2. Ecological Adaptation of Plants, Morphological and anatomical features of plants and their correlation to their respective Habitats
- 4.3. Plant as Ecological Indicators

Unit V: PHYTOGEOGRAPHY

(18 Hours)

- 5.1 Definition and importance
- 5.2. Types of distribution of plants (continuous and discontinuous)
- 5.3. Climate of India and climatic zones.
- 5.4. Phytogeographic regions of India
- 5.3. Forest types of India, characterization and its management.
- 5.4. Vegetational types of Tamil Nadu Evergreen, deciduous, scrub and mangrove.
- 5.5. Conservation of vegetation and its importance

TOPICS FOR SELF-STUDY:

Topics	Web Links
Geographic Deltas	https://www.geographynotes.com/landforms/classification-of-deltas-6-
of India	types-landforms-geography/2470
	https://www.nationalgeographic.org/encyclopedia/delta/

Climate in India	https://www.toppr.com/guides/geography/climate/climate-of-india/
	https://www.newworldencyclopedia.org/entry/Climate_of_India
The Kharif and	https://www.javatpoint.com/kharif-crops-vs-rabi-
Rabi Crops in	<pre>crops#:~:text=Major%20Kharif%20crops%20are%20rice,for%20the%2</pre>
India	Ogrowth%20of%20crops.
	https://www.drishtiias.com/to-the-points/paper3/cropping-patterns-and-
	major-crops-of-india-part-one

TEXT BOOKS:

- 1. Ambasht, R.S. 1974. *Text Book of Plant Ecology* (3rd Edition) Students & Friends Co., Varanasi.
- 2. Odum, E.P. 1975. Ecology, Holt, Rinert & Winston.
- 3. Kochhar, P.L *Plant Ecology* (9th Edition) S.Nagi& Co, Jullandhar.
- 4. Cain, S.A. 1944. Foundations of Plant Geography, Harper & Brothers N.Y.
- 5. Sharma, P.D. 1989. Element of Ecology. Rastogi Publications, U.K.
- 6. Newman, E.I. 2000. Applied Ecology. Blackwell scientific Publishers U.K.

REFERENCE BOOKS:

- 1. Shukla, R.S. and P.S Chandel, 1975. *Plant Ecology & Soil Science*. S. Chand & Co., New Delhi.
- 2. Mani, M.S. 1974. *Ecology & Biogeography of India*. Dr. W. Junk Publishers, The Hague.
- 3. Good, R. 1977. *The Geography of the flowering plant* (2nd edition) Longmans Green & Co., Inc. London & Allied Science Publishers, New Delhi.

WEB LINKS:

https://onlinecourses.nptel.ac.in/noc19_ge23/preview https://onlinecourses.swayam2.ac.in/cec19_bt03/preview

Unit/Se ction	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
I	ENVII	RONMENTAL FACTORS	
1.1	Soil Origin, Profile, Component, Soil erosion and management and Types of Soils in India.	 Define the soil formation and its characteristics. Explain various zones of soil profile Classify the various types of soils 	K1 K2 K2
1.2	Water, Different Forms of Water, Fresh water and Marine water, Elementary knowledge on Ground and surface water systems	 recall and explain the different forms of water in earth apply the knowledge on ground water systems for proper use. 	K2 K3

1.3	Air and its Components Structure of Atmosphere	 classify the various components of Air. outline the structure of Atmosphere and its nature 	K2 K2					
II								
2.1	Scope and importance of studying ecology.	 explain the importance of Ecology make use of the various scopes in Ecology 	K2 K3					
2.2	Approaches to the study of ecology, Autecology Synecology	relate the different studies in ecology.	K2					
2.3	Plants and Environmental factors Climate, Topographic factors, Edaphic factors, Plants and Biotic factors	 compare the distribution of plants in relation with their environmental factors explain the various interaction of with its biotic factors 	K4					
2.4	Ecosystem -Types of Ecosystem, Ecological Pyramid, energy flow, Food web - Niche	illustrate the structure and function of different ecosystem	K2					
2.5.	Community ecology and Population Dynamics.	Analyze the natality, mortality, productivity of a population.	K4					
III	EVOLUTION OF PLANT COMMUNITY							
3.1	Development of vegetation, Migration, Ecesis and colonization.	demonstrate the development of vegetation	K2					
3.2	Methods of studying vegetation, Physiognomic method, Phytosociological method, Quadrat, transect and Point method, Determination of Density, Frequency and Abundance, Verification of Raunkier's Law	 apply different methods of vegetation studies in Field interpret the data obtained from vegetation studies. 	K3					

3.3	Plant succession, Hydrosere and Xerosere. Climax Concept, Biome 3.2. Methods of studying vegetation, Physiognomic method, Phytosociological method - Quadrat, transect and Point method, Determination of Density, Frequency and Abundance, Verification of Raunkier's Law 3.4. Plant succession, Hydrosere and Xerosere., Climax Concept 3.5. Biome	 summarize the various concepts of plant succession Distinguish the different stage of plant succession 	K2 K4
IV	PLANT	ECOLOGICAL RESPONSE	
4.1	Ecological classification of plants, Hydrophytes, Xerophytes, Epiphytes, Halophytes	 classify the plants based on their habitats 	K2
4.2	Ecological Adaptation of Plants, Morphological and anatomical features of plants and their correlation to their respective Habitats	 explain the adaptation of plants in relation with their habitat. examine morphological and anatomical modification of plants in different environmental condition. 	K2
4.3	Plant as ecological Indicator	Define the importance of plants as the ecological indicator.	K5
V	P	HYTOGEOGRAPHY	
5.1	Phytogeography Definition and importance, Types of distribution of plants (continuous and discontinuous)	 categorize the different Phytogeographic regions. explain the distribution of plants 	K4 K2
5.2	Climate of India and climatic zones. Phytogeographic regions of India	Summarize the phytogeographic regions of India	K2
5.3	Forest types of India, characterization and its management, -Vegetational types of Tamil Nadu - Evergreen, deciduous, scrub and mangrove.	Classify the vegetation types based on the component of the forests	K4

importance conservation of vegetation conservation of vegetation	5.4	Conservation of vegetation and its importance	E	K5
--	-----	---	---	----

Mapping Scheme for the Course Code: U20BY607

U20BY607	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	L	M	-	H	M	-	-	-	H	-	-	-
CO2	M	-	M	-	H	-	-	-	H	H	-	-	-
CO3	H	-	-	-	L	L	-	M	H	M	-	-	-
CO4	H	M	-	-	L	L	H	-	M	-	L	-	H
CO5	H	L	L	-	M	-	-	-	M	M	-	-	M
CO6	H	M	-	-	-	-	-	M	H	L	L	-	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission. Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

CYTOLOGY AND MOLECULAR BIOLOGY

Semester : VI Course Code: U20BY608

Credits : 5 Hours/Week:6

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Determine the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles	K5	I
CO 2	Discuss the Nucleus, chromosomes and cell divisions	K6	II
CO 3	Explain the multiplication of DNA	K5	III
CO 4	Discuss the process of gene regulation	K6	IV
CO 5	Choose appropriate markers of gene cloning	K6	V
CO 6	Compare the gene modification and importance of wild varieties.	K5	V

SYLLABUS:

UNIT I- CELL AND ITS INCLUSIONS

(18 Hours)

- 1.1 History of cell biology cell as basic unit of life, cell theory, protoplasm theory and organismal theory
- 1.2 Cell- Definition and types- Prokaryotic cell and Eukaryotic cells and their similarities and differences
- 1.3 Cell Wall- Bacterial (a) Gram positive and (b) Gram negative cell wall- Plant cell wall Ultra structure and functions
- 1.4 Cytoplasm- physical, chemical and biological properties
- 1.5 Plasma membrane Ultra structure, Models (Sand wich and Fluid mosaic model) function Cytoskeleton structure microtubules, microfilaments, intermediate filament.
- 1.6 Mitochondria- ultra structure and functions
- 1.7 Plastids- Types and functions
- 1.8 Chloroplasts distribution, Ultra structure and functions
- 1.9 Endoplasmic Reticulum Ultrastructure, types and functions
- 1.10 Golgi Apparatus Ultrastructure and functions
- 1.11 Ribosomes- Ultrastructure and function
- 1.12 Microbodies (peroxysomes and glyoxysomes), vacuoles

Unit - II- NUCLEUS AND CELL DIVISION

(18 Hours)

- 2.1 Nucleus Ultra structure and functions
- 2.2 Chromosomes- types Euchromatin and Heterochromatin (a) Facultative and (b) Constitutive heterochromatin
- 2.3 Special types of Chromosomes- (a) Lamp-brush chromosomes (b) Polytene chromosomes
- 2.4 Ribonucleic acid mRNA, rRNA, tRNA Clover leaf model
- 2.5 Chromosomes- definition, types. Special type of Chromosomes.
- 2.6 Cell division- Amitosis, Mitosis and Meiosis- Occurrence, Processes and Significances.

Unit III- Introduction to Molecular Biology

(18 Hours)

- 3.1-Discovery of DNA as genetic material- Griffith's experiment- Hershy and Chase warring blender experiment -Chargaff's rule,
- 3.2- Genetic molecules- (a) DNA- Structure (Watson and Crick Model)- Properties- Types (Nuclear, mitochondrial), Forms (A-DNA, B-DNA, c-DNA, Z-DNA). (b) RNA-Structure, Types and Functions- (c) Proteins
- 3.3- Central dogma- One gene-one enzyme hypothesis

Unit VI- Gene regulation

(18 Hours)

- 4.1-Basic mechanism of replication of DNA- replication fork, primer binding, initiation and elongation- Transcription- initiation, elongation and synthesis translation in plant cells- Enzymes related to DNA synthesis Reverse transcription.
- 4.2- Gene regulation in prokaryotes and eukaryotes positive regulation, negative regulation, attenuation- gene regulation in lambda phage life cycle RNA processing and post transcriptional regulation.
- 4.3- Plasmids-various forms (F-plasmid, R-plasmid, Ti-plasmid, virulence, col plasmids) DNA Cloning and Gene therapy Vectors for DNA cloning- Recombinant DNA Technology-its applications.

Unit-V Transcriptional And Translational Regulation

(18 Hours

)

- 5.1- Eukaryotic transcription factors, enhancers, silencers, insulators, chromatin structure and gene regulation,
- 5.2- Translational regulation in prokaryote and eukaryotes Post translational modification and protein stability PCR- definition, applications
- 5.3- Molecular markers- RAPD, AFLP, AFLP, Microsatellite Gene silencing- Genetically modified crops- its benefits and drawbacks- GURT.

TOPICS FOR SELF STUDY:

Topics	Reference Book/Web Links
Cell Junction	https://www.ncbi.nlm.nih.gov/books/NBK26857/
	https://courses.lumenlearning.com/boundless-ap/chapter/cell-junctions/
DNA damage	https://www.intechopen.com/books/new-research-directions-in-dna-repair/dna-
	damage-dna-repair-and-
	cancer#:~:text=DNA%20damage%20is%20a%20change,chains%20of%20the
	%20DNA%20strands.
Gap Junction	https://biologydictionary.net/gap-junction/
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742079/
Chemokines	https://biologydictionary.net/chemokines/
Cytolysis	https://biologydictionary.net/cytolysis/
Anticodon	https://biologydictionary.net/anticodon/
Transferrin	https://www.ncbi.nlm.nih.gov/books/NBK532928/#:~:text=Transferrin%20is
	%20a%20blood%2Dplasma,liver%2C%20spleen%20and%20bone%20marrow

TEXT BOOKS:

- 1. Verma P.S. and Agarwal V.K. 2016. *Cell Biology (Cytology, Biomolecules, Molecular Biology)*, Paperback, S. Chand and Company Ltd.
- 2. Kumar P. and Mina U. 2018. *Life Sciences: Fundamentals and Practice, Part-I, 6th Edn.*, Pathfinder Publication. p.608.
- 3. Hardin. J. and Bertoni. G. 2017. *Becker's World of the Cell. 9th Edn (Global Edition)*. Pearson Education Ltd., p. 923

REFERENCE BOOKS:

- 1. Karp. G, Iwasa J. and Masall W. 2015. *Karp's Cell and Molecular Biology Concepts and Experiments*. 8th Edn. John Wiley and Sons. p.832.
- 2. Cooper G.M. 2019. *The Cell A Molecular Approach*, 8th Edn., Sinauer Associates Inc., Oxford University Press p.8
- 3. J.D.Watson . Molecular biology of gene, Pearson Publications, ISBN-10: 0321507819,
- 4. Benjamin Lewin, Gene VIII, Pearson Publications, ISBN-13: 978-0131439818
- 5. Friefelder David. 1983. *Applications to Biochemistry and Molecular Biology*, W.H Freman and Co Publishing Pvt. Ltd., ISBN-13: 978-0716713159
- 6. Rasthogi. R.C. *Molecular Biology- a book review*, CBS Publishing, ISBN-13: 978-8123913704

Web Links:

https://ocw.mit.edu/courses/biology/

https://online-learning.harvard.edu/course/cell-biology-mitochondria

https://onlinecourses.swayam2.ac.in/cec19_bt02/preview

Unit/ Section	Content	Learning Outcome	Highest Blooms taxonomic level of transaction.					
Ι	CYTOLOGY							
1.1	History of cell biology cell as basic unit of life, cell theory, protoplasm theory and organismal theory	Recall the cell theory, protoplasm theory and organismal theory	K2					
1.2	Cell- Definition and types- Prokaryotic cell and Eukaryotic cells and their similarities and differences	Compare the Prokaryotic cell and Eukaryotic cells and their similarities and differences	K4					
1.3	Plant cell wall – Ultra structure and functions	Dissect the plant cell and its structure	K4					
1.4	Cytoplasm- physical, chemical and biological properties	Examine the Cytoplasm- physical, chemical and biological properties	K4					
1.5	Plasma membrane – Ultra structure, Models (Sandwich and Fluid mosaic model) functions - Cytoskeleton structure – microtubules, microfilaments, intermediate filament.	Discuss the Plasma membrane — Ultra structure, Models (Sandwich and Fluid mosaic model) functions	K2					
1.6	Mitochondria- ultra structure and functions	Analyze Mitochondria, its ultra structure and functions	K4					
1.7	Plastids- Types and functions	Interpret the types and functions of plastids	K5					
1.8	Chloroplasts— distribution, Ultra structure and functions	 Explain the distribution, Ultra structure and functions Chloroplasts 	K2					

1.9	Endoplasmic Reticulum – Ultra structure, types and functions	Illustrate the Endoplasmic Reticulum Ultra structure, types and functions	K2
1.10	Golgi Apparatus – Ultra structure and functions Ribosomes- Ultra structure and function	• Infer the Golgi Apparatus – Ultra structure and functions, Ribosomes- Ultra structure and function	K2
1.11	Microbodies (peroxysome glyoxysomes), vacuoles	Compare the peroxisomes, glyoxysomes and vacuoles	K5
II	NUCLEUS AND C	ELL DIVISION	
2.1	Nucleus – Ultra structure and functions	Interpret the Ultra structure and functions	K2
2.2	Chromosomes- types – Euchromatin and Heterochromatin (a) Facultative and (b) Constitutive heterochromatin	Identify the chromosomes in a cell	K3
2.3	Special types of Chromosomes- (a) Lampbrush chromosomes (b) Polytene chromosomes	Distinguish the chromosome types	K4
2.4	Ribonucleic acid- mRNA, rRNA, tRNA Clover leaf model Chromosomes	• Explain the RNA structure	K5
2.5	Cell division- Amitosis, Mitosis and Meiosis- Occurrence, Processes and Significances.	• Compile the cell division and its significance	K6
III	INTRODUCTION TO M	MOLECULAR BIOLOGY	
3.1	Discovery of DNA as genetic material - Griffith's experiment, Harshy-Chase experiment - Chargoff rule	Summarise the experiments conducted on DNA	K2
3.2	Genetic Molecules -DNA- Structure (Watson and Crick)- Properties- Types (Nuclear,	Recall the DNA molecular structure Compare the	K2
	mitochondrial), Forms (A-DNA, B-DNA, c-DNA, Z-DNA) RNA- Structure, Types and Functions.	different types of genetic material. • Identify the RNA forms	K2 K3
3.3	DNA replication- mechanism- semi conservative method - Meselson and Stahl's Experiment, Rolling circle mechanism DNA polymerase I, II, III, Topoisomerase, SSB protein.	 Interpret the enzymes related to DNA multiplication. Explain the mechanism of DNA 	K2
	r	medianism of DIVA	

	- Origin of replication- replication fork, leading strands, lagging strands, Okasaki fragments	multiplication • List out the enzymes related to DNA multiplication	K4
IV	GENE REC	GULATIONS	_
4.0	Central dogma of molecular biology - Prokaryotic transcription (a) RNA polymerase in prokaryotes, (b) Transcription unit, (c) recognition of	 Explain the process of gene regulation Elaborate the various 	K2
4.1	promoter region, (d) Initiation of polynucleotide chain (e) Elongation of RNA polynucleotide (f) Termination.	steps in eukaryotic and prokaryotic gene regulation	K6
4.2	Eukaryotic Transcription –factors. - RNA Polymerase I, II, III- Role in transcription. -Gene regulation- Lac Operon, Tryptophan operon, attenuation, -RNA processing and post transcriptional regulation. -Translation process in Prokaryote and Eukaryote- Initiation, Elongation, Termination	 Discuss the process of gene regulation Examine the transcriptional and translational process 	K6
V	APPLICATIONS OF M	IOLECULAR BIOLOGY	
5.1	Restriction enzymes, Ligase	• Interpret the enzymes related to gene multiplication	K2
5.2	Vectors for DNA cloning, Genomic and c-DNA libraries	Evaluate the vectors related to genetic cloning	K5
5.3	Recombinant DNA Technology-its applications.	• Illustrate the genetic cloning and the application in various studies	K2
5.4	Blotting Techniques- Southern, Northern, Western blotting	 Defend the techniques related to Genetic molecule identification 	K5
5.5	Molecular markers- PCR, RFLP, RAPD-Principles, Applications.	Examine the genetic product after PCR and choose the primers related to the experiment.	K5
5.6	DNA Fingerprinting.	Analyze the importance of DNA studies in various fields of identification, forensic and molecular identity	K4

5.7	Genetically modified crops- Benefits and	•	Value	the	K5
	drawbacks.		application	of gene	
			manipulatio	n and its	
			significance).	

Mapping Scheme for the Course Code: U20BY608

U20BY6	PO	PSO	PSO	PSO	PSO								
08	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	M	-	M	-	-	M	-	-	Н	-	Н	-
CO2	Н	M	-	Н	-	-	L	-	-	-	-	Н	-
CO3	Н	-	L	Н	M	-	M	M	L	-	-	Н	M
CO4	Н	-	L	Н	-	M	Н	Н	-	-	M	Н	M
CO5	Н	-	M	Н	L	Н	M	Н	M	-	M	Н	M
CO6	Н	-	M	Н	L	Н	-	Н	M	-	M	Н	M

L – Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration Experiments, Written test on Protocols.
- 2. Hands on Techniques, Lab Attendance and Practical Record work.
- 3. End Semester Practical Examination

Core Practical –VI- ECOLOGY & PHTOGEOGRAPHY, CYTOLOGY & MOLECULAR BIOLOGY

Hours/Week: 3 Credits: 2

Course Code: U20BY6P6 Semester: VI

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	LEVEL	UNIT
CO 1.	Explain the importance of food web and organisms in each level	K2	I
CO 2	Identify the process of ecological succession	К3	I
CO 3	Determine the importance of soil microbes and quality of soil structure	K5	I
CO 4	Explain the important phyto-geographic zones	K2	II
CO 5	Identify the cell inclusions and its functions	К3	III
CO 6	Explain the structure of cell organelle	K2	III

SYLLABUS

ECOLOGY (24 Hours)

1. Construct an ecological niche from given set of data (Representation only required, drawing not necessary)- Draw Ecological Pyramids (number, biomass, energy) with given set of data.

- 2. Study of Morphological and anatomical characteristics of Plant groups: Hydrophytes, Xerophytes
- 3. Study of Plant Communities: Determination of density, abundance, frequency and dominance by quadrat method.
- 4. Study on edaphic factors: Determination of water and soil pH, Capillarity and Retentivity of soil.
- 5. Determination of dissolved Oxygen by Winkler's method.
- 6. Study of Ecosystems -Pond, Grassland, Agricultural land and Scrub vegetation.

PHYTOGEOGRAPHY

(3 Hours)

Mark the Phytogeographic zones of India.

Forest management and conservation in Tiger reserve - a case study – Submission of field report.

CYTOLOGY (18 Hours)

- 1. Study the structure of plant cell through temporary mounts.
- 2. Study of the structure of cell organelles through photomicrographs.
- 3. Study of Mitosis- Acetocarmine squash preparation of Onion root tip.
- 4. Study on Meiosis using Acetocarmine Submit any two stages for evaluation.

TEXT BOOKS:

- 1. Shukla, R.S. and P.S Chandel, 1989. *Plant Ecology & Soil Science*. S. Chand & Co., New Delhi.
- 2. Sharma, P.D. Element of Ecology. 1989. Rastogi Publications, U.K.
- 3. Rekha Arya. 2014. *Unified Practical Botany*. Hindi Sahitya Sadan. ISBN: 81-88388-78

REFERENCE BOOKS:

- 1. Newman, E.I. 2000. Applied Ecology. Blackwell scientific Publishers U.K.
- 2. P.K. Chhonkar, Bhadrarav. S, Patra. A.K. 2001. *Experiments In Soil Biology And Biochemistry*. Prestige Publishers. India.
- 3. Huihong Xu, Xiaohua Qian, He Wang, 2020. *Practical Cytopathology*, Springer Publications.

Web link:

https://www.coursera.org/courses?query=ecology

https://www.acsedu.com/courses/cell-biology-877.aspx

TOPICS FOR SELF-STUDY:

Topics for	Reference Link
Self-	
Study	
Law of ten	https://en.wikipedia.org/wiki/Ecological_efficiency
percent	
BOD,	https://www.usgs.gov/special-topic/water-science-
COD	school/science/biological-oxygen-demand-bod-and-water
Staining	https://courses.lumenlearning.com/microbiology/chapter/staining-
techniques	microscopic-specimens/

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
I		ECOLOGY	
1	Food web, Ecological pyramid	Explain the importance of levels of organizationRelate the organisms	K2 K2
2	Morphological and anatomical study of plant groups	 Define the internal structure of plants in special habits Explain the adaptations of plants on specific groups 	K1
3	Study of plant communities	 Analyze the importance of plant community development Explain each communities in a succession 	K4 K2
4	Study of edaphic factors	 Define the importance of soil components Compare the soil components. 	K1 K2
5	Study of DO and ecosystems	 Explain the structure of various ecosytems Analyze the pollution content in an ecosysytem 	K2 K4
II		Phytogeography	1
1	Mark the phyto-geographic zone of India	Explain the different zones	K2

III	CYTOLOGY						
1	Study of plant cells	Explain the structure of plant cells in detail	К2				
2	Study of Mitosis, Meiosis	Identify the cell division	К3				
		 Explain in detail about the chromosomes, cell multiplication 	К2				

Mapping Scheme for the Course Code: U20BY6P6

U20BY6P	PO	PSO	PSO	PSO	PSO								
6	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	-	M	Н	M	-	L	M	Н	Н	-	-	M
CO2	Н	-	M	-	M	Н	L	-	-	Н	-	M	L
CO3	L	-	-	M	-	-	-	-	-	-	-	-	L
CO4	L	-	M	-	L	-	M	-	-	-	-	-	L
CO5	Н	L	-	-	-	-	M	-	-	Н	-	Н	L
CO6	M	M	-	L	-	L	L		-	Н	-	Н	L

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

- 1. Course-end survey
- 2. Field studies.

Course code: U20BY6:3 Semester: VI Credits: 5 Hours/Week: 5

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Explain the fundamentals of Ethnobotany, life style of ethnic groups and plants used by them	K5	I
CO 2	Explain the methodologies of ethnobotanical studies	K5	II
CO 3	Elaborate the medico-ethnobotanical sources and	K 6	III
	significances of ethnobotanical practices in India		
CO 4	Functions of ethnobotany in modern medicines in	K4	IV
	respect to specific plants, ethnic groups in		
	conservation and forest management		
CO 5	Improve ethnobotany as a protecting tool of ethnic	K6	V
	groups interest and its legal aspects		
CO 6	Summarize the role of ethnobotany as a tool of	K6	II - ,V
	conservation, forest management, medicine, interest of		
	ethnic groups and their legal issues		

SYLLABUS:

Unit I: Ethnobotany

(15 Hours)

- 1.1. Introduction, concept, scope and objectives; Ethnobotany as an interdisciplinary science.
- 1.2. The relevance of ethnobotany in the present context; Major and minor ethnic groups or Tribals of India and their life styles.
- 1.3. Plants used by the tribals: a) Food plants b) intoxicants and beverages c) Resins and oils and miscellaneous uses.
- 1.4. An Oultine on Indigenous traditional health care systems in India Ayurveda, Siddha, Unani, Yoga, Naturopathy and Homoeopathy.
- 1.5. Role of AYUSH.

Unit II: Methodology of Ethnobotanical studies

(15 Hours)

- 2.1. a) Field work
- 2.2. b) Herbarium
- 2.3. c) Ancient Literature
- 2.4. d) Archaeological findings
- 2.5. e) Temples and sacred places
- 2.6. f) Questionnaire for documentation.

Unit III: Role of ethnobotany in Medicine

(15 Hours)

- 3.1. Medico- ethnobotanical sources in India.
- 3.2. Significance of the following plants in ethno botanical practices (along with their habitat and morphology)
- 3.2 a) Azadiractha indica b) Ocimum sanctum c) Vitex negundo d) Gloriosa superba e) Tribulus terrestris f) Pongamia pinnata g) Cassia auriculata h) Indigofera tinctoria, i) Andrographis paniculata j) Erythrina variegata.

Unit IV: Role of ethnobotany in modern medicine and Role of ethnic groups (15 Hours)

- 4.1. Role of ethnobotany in modern medicine with special example *Rauvolfia serpentina*, *Trichopus zeylanicus*, *Artemisia*, *Withania*.
- 4.2. Role of ethnic groups in conservation of plant genetic resources.
- 4.3. Endangered taxa and forest management (participatory forest management).

Unit V: Ethnobotany and legal aspects

(15 Hours)

- 5.1. Ethnobotany as a tool to protect interests of ethnic groups.
- 5.2. Sharing of wealth concept with few examples from India.
- 5.3. Biopiracy, Intellectual Property Rights and Traditional Knowledge.

TOPICS FOR SELF-STUDY:

Topics	Reference Book/Web Links
Anthropology	https://anthropology.ucdavis.edu/undergraduate/what-is-anthropology
	https://www.britannica.com/science/anthropology
Indigenous	https://www.nationalgeographic.com/environment/2018/11/can-indigenous-
Biodiversity	<u>land-stewardship-protect-biodiversity-</u>
	/#:~:text=Comprising%20less%20than%205%25%20of,protect%2080%25%2
	<u>0of%20global%20biodiversity.&text=The%20region%20is%20home%20to,w</u>
	atched%20over%20by%20indigenous%20people.
Economic Botany	Verma, V. 1980. A text book of Economic Botany. Emkay Publications,
	New Delhi.
	Pandey, B.P. 1999. Economic Botany. S. Chand and Co. New Delhi.

TEXT BOOK:

1. Trivedi. P.C. and Niranjan Sharma, 2011. Text Book of Ethnobotany (ISBN 10:

8171326552 / ISBN 13: 9788171326556). Pointer Pub Publishers

REFERENCE BOOKS

- 1) Jain. S.K. 1995. Manual of Ethnobotany, Scientific Publishers, Jodhpur.
- 2) Jain. S.K. (ed.), 1981. Glimpses of Indian. Ethnobotany, Oxford and I B H, New Delhi.
- 3) Lone et al,1995. Paleoethnobotany, Asian Perspectives, Vol. 34, No. 1, pp. 125-127
- 4) Jain. S.K. (ed.) 1989. *Methods and approaches in ethnobotany*. Society of ethnobotanists, Lucknow, India.
- 5) Jain. S.K. 1990. Contributions of Indian ethnobotany. Scientific publishers, Jodhpur.
- 6) Colton C.M. 1997. *Ethnobotany Principles and applications*. John Wiley and sons Chichester
- 7) Rama Rao, N and Henry A.N. 1996. *The Ethnobotany of Eastern Ghats in Andhra Pradesh, India*. Botanical Survey of India. Howrah.
- 8) Rajiv K. Sinha. 1996. *Ethnobotany The Renaissance of Traditional Herbal Medicine* INA –shree Publishers, Jaipur.

WEB LINK:

$\underline{https://onlinecourses.swayam2.ac.in/cec20_bt11/preview}$

SPECIFIC LEARNING OUTCOMES (SLO):

Unit	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
Ι		Ethnobotany	
1.1	Introduction, concept, scope and objectives; Ethnobotany as an interdisciplinary science.	Explain ethnobotany as an interdisciplinary science	K5
1.2	The relevance of ethnobotany in the present context; Major and minor ethnic groups or Tribals of India, and their life styles.	 Relationship between ethnic groups and ethnobotany List out the major and minor ethnic groups of India 	K4 K4
1.3	Plants used by the tribals: a) Food plants b) intoxicants and beverages c) Resins and oils and miscellaneous uses.	Categorize the plants used by tribals in India	K4
1.4	An Oultine on Indigenous traditional health care systems in India - Ayurveda, Siddha, Unani, Yoga, Naturopathy and Homoeopathy.	Explain the basics of various medicine systems	K2
1.5	Role of AYUSH	Define the term	K1
II	Methodolo	ogy of Ethnobotanical studies	
2.1	a) Field work	Why field work in mandatory in Ethnobotany?	K1
2.2.	b) Herbarium	Determine the role of herbarium in Ethnobotany	K5
2.3.	c) Ancient Literature	Examine the Importance of ancient literature in ethnobotany	K5
2.4.	d) Archaeological findings	Explain the role of archaeological findings in ethnobotany	K2
2.5.	e) temples and sacred places	Discuss the role of sacred groves and temples in the conservation of plants	K6
2.6.	f) Questionnaire for documentation.	Interviewing method for documentation in ethnobotany.	K3
III	Role of eth	nobotany in Medicine	
3.1.	Medico- ethnobotanical sources in India.	Interpret the medico- ethnobotanical sources in India	K5

3.2.	Significance of the following plants in ethno botanical practices (along with their habitat and morphology)	Justify the significances of plants in ethnobotanical practices	K5
3.2.1.	a) Azadiractha indica b) Ocimum sanctum c) Vitex negundo d) Gloriosa superba e) Tribulus terrestris f) Pongamia pinnata g) Cassia auriculata h) Indigofera tinctoria. Andrographis paniculata j) Erythrina variegata.	 Identify the ethnobotanical value of these plants. List out the medicinal uses of this plants Compare these plants with their habitat and morphology 	K3 K4 K4
IV	Role of ethnobotany in r	nodern medicine and Role of ethnic group	ps
4.1	Role of ethnobotany in modern medicine with special example Rauvolfia serpentina, Trichopus zeylanicus, Artemisia, Withania.	Discuss the ethnobotanical role of these plants in modern medicine	K6
4.2.	Role of ethnic groups in conservation of plant genetic resources.	Elaborate the role of ethnic groups in conservation of plant genetic resources	K6
4.3.	Endangered taxa and forest management (participatory forest management).	Evaluate the role of forest management in endangered taxa	K5
\mathbf{V}	Ethno	botany and legal aspects	
5.1	Ethnobotany as a tool to protect interests of ethnic groups.	 Influence of ethnobotany as a tool to protect ethnic groups and their interest 	K5
5.2	Sharing of wealth concept with few examples from India.	List the wealth of India in the means of biodiversity	K4
5.3	Biopiracy, Intellectual Property Rights and Traditional Knowledge.	 Discuss the importance of biopiracy and IPR in ethnobotany Rate the role of biopiracy and IPR in traditional knowledge 	K6 K5

Mapping Scheme for Course code: U20BY6:3

U20BY6:3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	L	L	-	H	L	L	M	M	M	L	L	L
CO2	M	H	L	-	L	-	L	-	-	M	L	L	M
CO3	M	H	M	-	L	M	M	M	L	L	H	L	L
CO4	M	M	H	M	L	M	H	M	M	H	H	L	M
CO5	M	L	M	-	-	L	L	L	M	L	L	M	M
CO6	H	H	M	M	M	M	M	M	M	H	H	H	M

L-Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration, Written test on Protocols.
- 2. End Semester Practical Examination

Elective II: HORTICULTURE AND ORGANIC FARMING

Course code: U20BY6:4 Semester: VI Credits: 5 Hours/Week: 5

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Classify the scope, Climate, soil, water irrigation, propagation methods of horticulture and their implements	K4	I
CO 2	Discuss the principles, methods of indoor and outdoor gardening, Lawn and water garden	K 6	II
CO 3	Explain gardening, Bonsai, Floriculture and Hydroponics	K2	III
CO 4	Elaborate organic farming, vermicompost and its advantages	К6	IV
CO 5	Illustrate the cultivation of organic vegetables, fruit crops and layout of kitchen garden	K2	V
CO 6	Importance of horticulture and their methods with organic farming practices	K5	I - V

SYLLABUS:

Unit I (15 Hours)

- 1.1. Importance and scope of horticulture
- 1.2. Divisions of horticulture
- 1.3. Climate, soil and nutritional needs
- 1.4. Water irrigation
- 1.5. Plant propagation method Cutting, layering, grafting, budding.
- 1.6. Stock scion relationship and Glass houses and green houses

Unit II (15 Hours)

- 2.1. Principles and methods of designing outdoor garden hedges, edges, fences, trees, climbers, rockeries, arches, terrace garden
- 2.2. Lawn making and maintenance
- 2.3. Water garden cultivation of water plants-common water plants.

Unit III (15 Hours)

- 3.1. Indoor gardening Foliage plants, flowering plants, hanging basket
- 3.2. Bonsai plants Training, watering and pruning.
- 3.3. Floriculture Cultivation of commercial flower crops Rose, Jasmine and Chrysanthemum,
- 3.4. Introduction to Hydroponics

Unit IV (15 Hours)

- 4.1. Organic Farming Concept, Scope and importance of organic farming, Compost, Decomposition manure.
- 4.2. Vermicompost Scope, importance, Types and uses. Vermi castings. Potentials and constraints for vermiculture in India.
- 4.3. Advantages of Organic farming.

Unit V (15 Hours)

- 5.1. Cultivation of some Organic vegetable Tomato, potato, brinjal, onion, cabbage and snake guard.
- 5.2. Organic Fruit crops Induction of flowering, flower thinning, fruit setting, fruit development.
- 5.3. Cultivation of some organic fruit crops Mango, Grapes, Sapota and Guava.
- 5.4. Layout for a model kitchen garden

TOPICS FOR SELF-STUDY:

Topics	Reference Book/Web Links
Foundation Seed	https://vikaspedia.in/agriculture/agri-inputs/seeds/classes-of-seeds
Landscape design,	http://www.indiaagronet.com/horticulture/CONTENTS/LANDSCAPE.htm
Market Gardening	https://douglas.extension.wisc.edu/files/2010/05/Market-Gardening-
	Getting-Started-ATTRA.pdf
	https://marketbusinessnews.com/financial-glossary/market-garden/
Slow-release	https://www.ekompany.eu/en/slow-versus-controlled-release-fertilizers/
fertilizer	

TEXT BOOKS:

- 1. Kumar, N. 1987. Introduction to Horticulture. Rajalakshmi Publishers, Nagercoil.
- 2. Manibushan Rao, K. 1991. *Textbook of Horticulture*. Macmillan Publishing Co., New York.
- 3. Rao, K.M. 2000. Textbook of Horticulture. Macmillan India Ltd., New Delhi.

REFERENCE BOOKS:

- 1. Arora, J.S. 1992. Introductory Ornamental Horticulture. Kalyani Publishers, New Delhi.
- 2. Edmond, J.B. *et al.* 1977. *Fundamentals of Horticulture*. Tata–McGraw Hill Publishers Co. Ltd., New Delhi.
- 3. George Acquaah. 2002. *Horticulture Principles and Practices (2nd ed.)*. Pearson Education, New Delhi.

No Practical for this paper

WEB LINKS:

https://onlinecourses.nptel.ac.in/noc19_ag04/preview https://onlinecourses.swayam2.ac.in/nou19_ag08/preview

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Sectio n	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomi c level of transactio n
I		Introduction	
1.1	Importance and scope of horticulture	 Explain the scope of horticulture 	K2
1.2	Divisions of horticulture	Classify the divisions of horticulture	K4
1.3	Climate, soil and nutritional needs	Influence of climate, soil and nutritional needs in horticulture	K5
1.4	Water irrigation	Categorize the water irrigation	K4
1.5	Plant propagation method – Cutting, layering, grafting, budding.	List out the propagation methods	K4
1.6	Stock – scion relationship and Glass houses and green houses	Relationship between Stock and scion and the role of Glass and Green houses	K4
II	Principles a	nd Methods of Horticulture	
2.1.	Principles and methods of designing outdoor garden – hedges, edges,	Outline the principles of outdoor garden.	K2
	fences, trees, climbers, rockeries, arches, terrace garden	Explain the methods and designing of outdoor garden	K2
2.2.	Lawn making and maintenance	Discuss about lawn and its maintenance	K6
2.3.	Water garden – cultivation of water plants-common water plants.	 Construct water garden List out the common water plants 	K6 K4
	Unit III - Indoor ga	ardening and Floriculture	<u>l</u>

3.1.	Indoor gardening – Foliage plants, flowering plants, hanging basket	Discuss the indoor gardeningIdentify the foliage and flowering plants	K2 K3
3.2.	Bonsai plants – Training, watering and pruning.	 Explain Bonsai plants and its training 	K5
3.3.	Floriculture – Cultivation of commercial flower crops – Rose, Jasmine and Chrysanthemum	Explain floriculture	K5
3.4.	Introduction to Hydroponics	Outline of hydroponics	K2
IV	Scope and Im	portance of Organic farming	
4.1	Organic Farming – Concept, Scope and importance of organic farming, Compost, Decomposition manure.	 Explain scope, importance of organic farming Discuss the concept of organic farming 	K2 K6
		 Distinguish compost and decompost manures 	K4
	Vermicompost – Scope,	Elaborate vermicompost	K6
4.2.	importance, Types and uses. Vermi castings. Potentials and constraints for vermiculture in India.	List out the limitations for vermiculture in India	K4
4.3.	Advantages of Organic farming.	• Importance of organic farming	K5
V	Olerio	culture and Pomology	•
5.1	Cultivation of some Organic vegetable – Tomato, potato, brinjal, onion, cabbage and snake guard.	 Explain cultivation of organic vegetables Choose the soil formulations for vegetables cultivation Analyze cultivation practices 	K2 K5 K4
		for selected vegetables	
5.2	Organic Fruit crops – Induction of flowering, flower thinning, fruit setting, fruit development.	explain organic fruit crops	K5
5.3	Cultivation of some organic fruit crops - Mango, Grapes, Sapota and	 Value cultivation of organic fruit production 	K6
	Guava.	 Analyse the cultivation practices for selected fruit yielding trees and climbers 	K4
5.4	Layout for a model kitchen garden	Illustrate the layout of kitchen garden	K2

Mapping Scheme for the Course code: U20BY6:4

U20BY6:4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	L	-	-	L	-	L	M	-	M	-	-	L
CO2	H	L	-	-	-	-	L	M	-	L	-	-	L
CO3	H	L	L	-	-	-	L	L	-	L	-	-	L
CO4	H	L	L	-	-	-	L	L	-	L	-	-	L
CO5	H	L	L	-	-	-	L	L	-	L	-	-	L
CO6	H	L	M	-	L	L	M	M	-	M	-	-	M

L-Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration Experiments, Written test on Protocols.
- 2. Practical Record work.
- 3. End Semester Practical Examination

Elective III: BIOTECHNOLOGY

Semester: VI Course Code: U20BY6:5

Credits: 5 Hours/Week: 5

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Analyze the applications of plant biotechnology	K 4	I
CO 2	Determine various aspects of tissue culture and their applications	K5	II
CO 3	Explain plant biotechnological applications viz., Algal and transgenic crops	K5	III
CO 4	Apply the concepts of Biotechnology in Environmental Management.	К3	IV
CO 5	Analyze the reasons for pollution and choose the method of pollution management.	K5	IV
CO 6	Discuss Ethical Issues, intellectual property management and handling of GMOs.	K 6	V

Syllabus:

Unit I: Plant invitro Technology

(15 Hours)

- 1.1 Introduction History, Scope, concepts, branches and applications of plant biotechnology
- 1.2 Plant Tissue culture: Sterilization, Media and Plant Growth Hormones in *In vitro* cultures and Explants

- 1.3 Micro-propagation -direct and indirect morphogenesis, Callus Culture and anther and embryo culture
- 1.4 Somatic Hybridization: Protoplast Culture: Isolation of protoplast, somatic cell hybridization, selecting desired hybrids and regeneration into plants.

Unit II: Genetic Engineering- rDNA technology

(15 Hours)

- 2.1 Introduction to Genetic Engineering
- 2.2. Techniques: Restriction endonucleases, Electrophoresis, PCR and Blotting
- 2.3 Cloning Vectors, Plasmid
- 2.4 Methods of Gene transfer Agrobacterium mediated, Direct DNA transfer
- (I) Micro injection (II) Electroporation (III) Biolistics

Unit III- ENVIRONMENTAL BIOTECHNOLOGY

(15 Hours)

- 3.1 Renewable and non- renewable energy resources, Fossil fuels as energy source and their impact on environment, Non-conventional source biomass as source of bioenergy
- 3.2 Environmental Pollution: Pollution, (1) Types of pollution- Air, Water, land/Soil, Noise, Radioactive pollution, Impact of pollution- greenhouse gases and global warming.
- 3.3 Methods of Treating Pollution- Physical, Chemical, Biological methods- Algae, Fungi, Bacteria.
- 3.4 Bioremediation—concepts and types (*in-situ* and *ex-situ*);

Unit IV- Biomedical applications of Biotechnology

(15 Hours)

4.1 Biotechnological applications in health care,

(1) Molecular diagnosis – monoclonal antibodies, DNA probes, Microarrays, DNA finger printing, Gene therapy, Antisense Technology.

Unit- V- Biotechnology and Biosafety

(15 Hours)

- 5.1 Biotechnology Act- regulatory agencies Biosafety for human health and environment.
- 5.2 Social and ethical issues of biosafety- Use of genetically modified organisms (BT cotton and BT brinjal) and their release into the environment. Ethical issues of Synthetic biology and nanobiotechnology.
- 5.3 Intellectual property right (IPR), Intellectual property protection (IPP)- Intellectual property rights (IPR), patenting (Process and Product

TOPICS FOR SELF-STUDY:

Topics	Reference Book/Web Links
GURT	https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.12084
Bt-GM crops	https://ejbpc.springeropen.com/articles/10.1186/s41938-018-0051-2
	Chopra, V. L. and Nasim, A. 1990. Genetic engineering and
	Biotechnology. Concepts, Methods and Application. (4th Ed.).
	Oxford and IBH Publication.
Microbes as a tool	https://www.sciencedirect.com/topics/medicine-and-dentistry/biological-
in biowar	<u>warfare</u>
	https://www.britannica.com/technology/biological-weapon
Impact of	https://cban.ca/gmos/issues/terminator-technology/

terminator seeds	https://www.sites.ext.vt.edu/newsletter-archive/cses/1999-02/1999-02-
on Agriculture	<u>03.html</u>

TEXT BOOKS:

- 1. Chawla, H.S. 2002. *Introduction to plant biotechnology*, second edition, Oxford & IBH Publishing, Co,Pvt. Ltd., New Delhi.
- 2. Jwala Aggarwal and Shekhar K. Arora. 2014. *Experiments in Plant Tissue Culture*. Campus Book International, New Delhi.
- 3. Dubey. R.C. 2006. *A text book of Biotechnology*. S. Chand and Company ltd. Ramnagar New Delhi.
- 4. Rittmann, B.E. and McCarty, P.L. 2001. *Environmental Biotechnology: Principles and Applications*, McGraw-Hill.
- 5. Sharma. P.K. 2011. *An Introduction To Nanotechnology And Its Analysis*. Gaurav Book Centre Pvt Ltd.

REFERENCE BOOKS:

- 1. Razdan, M.K. 2003. *Introduction to Plant Tissue Culture*, Second edition. Oxford and IBH publishing, New Delhi.
- 2. Thara, K.M. 2009. *Practical Manual series-4. Biotechnology*, New India Publishing Agency, New Delhi.
- 3. Bhojwani, S. S. and Razdan. M. K. 1996. *Plant Tissue Culture*: Theory and Practice, a revised edition. Elsevier Science, Netherlands.

WEB LINKS:

https://www.classcentral.com/course/swayam-principles-of-biotechnology-17738 https://onlinecourses.swayam2.ac.in/cec20_bt07/preview

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Secti on	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomi c level of transacti on
I-	INTRODUCTION PI	LANT INVITRO TECHNOLOGY:	
1.1	Introduction – History, Scope, concepts, branches and applications of plant biotechnology	 Recognize the importance and scope Appraise the application of plant biotechnology Develop interest in micropropagating plants 	K2 K4 K3
1.2	Plant Tissue culture:- Sterilization, Media and Plant Growth Hormones in <i>In vitro</i> cultures and Explants	Identify suitable explants and medium for <i>In vitro</i> Propagation	К3

1.3	Micropropagation -direct and indirect morphogenesis, Callus Culture and anther and embryo culture	 Plan the protocol for micropropagation Plan Micropropagation experiments 	К3
1.4	Somatic Hybridization: Protoplast Culture: Isolation of protoplast, somatic cell hybridization, selecting desired hybrids and regeneration into plants.	Define biotechnological techniques involved in breeding plants	K1
II	GENET	TIC ENGINEERING	
2.1	rDNA technology: Introduction to Genetic Engineering	Summarize the application techniques in Genetic Engineering	K2
2.2	Techniques: Restriction endonucleases, Electrophoresis, PCR and Blotting	Apply the knowledge gained from Genetic Engineering in Crop plants	К3
2.3	Cloning Vectors, Plasmid	Identify the suitable vectors for expression of genes	К3
2.4	Methods of Gene transfer - Agrobacterium mediated, Direct DNA transfer (I) Micro injection (II) Electroporation (III) Biolistics	Determine biotechnological techniques involved in breeding plants	K5
III	ENVIRONME	NTAL BIOTECHNOLOGY	
3.1	4.1 Renewable and non- renewable energy resources, Fossil fuels as energy source and their impact on environment, Non-conventional source – biomass as source of bioenergy.	•Demonstrate understanding of fundamental concepts of natural resources	K2
3.2	Types of biomass – plant, animal and microbial biomass.	• Explain the role of Renewable and non renewable energy resources and types of biomass.	K5
3.3	Environmental Pollution: Pollution, (1) Types of pollution- Air, Water, land/Soil, Noise, Radioactive pollution, Impact of pollution- greenhouse gases and global warming.	Identify Bioremediation and Restoration of Environment	К3

3.4	Methods of Treating Pollution- Physical, Chemical, Biological methods- Algae, Fungi, Bacteria.	Explain the various bioremediation process	K2
3.5	Bioremediation—concepts and types (<i>in-situ</i> and <i>ex-situ</i>);	Explain the various concept of Bioremediation	K2
IV	BIOMEDICAL APPLIC	CATIONS OF BIOTECHNOLOGY	
4.1	Biotechnological applications in health care, (1) Molecular diagnosis – monoclonal antibodies, DNA probes, Microarrays, DNA finger printing, Gene therapy, Antisense Technology	Analyze the use of Biotechnological aspects in clinical field.	K5
V	BIOTECHNO	LOGY AND BIOSAFETY	
5.1	Biotechnology Act- regulatory agencies -	Discuss the Social and ethical issues of bio safety	K6
5.2	Biosafety for human health and environment. Social and ethical issues of biosafety-Use of genetically modified organisms (BT cotton and BT brinjal) and their release into the environment. Ethical issues of Synthetic biology and nanobiotechnology	Discuss the ethical issues of synthetic biology	K6
5.3	Intellectual property rights (IPR), patenting (Process and Product)	Explain the importance of IPR and Patenting	K2

Mapping Scheme for the Course Code: U20BY6:5

U20BY6:5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	L	M	L	M	L	-	-	-	H	M	-	L
CO2	M	-	-	M	H	H	-	H	H	H	H	L	M
CO3	L	M	H	M	H	M	-	H	H	H		L	M
CO4	H	M	H	-	L	H	-	M	L	H	M	-	-
CO5	H	H	L	-	-	M	L	L	M	M	L	L	-
CO6	H	M	L	-	L	M	L	H	H	L	M	-	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in assignments, record submission. Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

Elective III: NANOTECHNOLOGY

COURSE CODE: U20BY6:6 CREDITS: 5
HOUR/Week: 5 Hours SEMESTER: VI

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Explain the scope of nanotechnology and its applications	K2	I
CO 2	Interpret the methods of nanoparticle synthesis	K2	II
CO 3	Apply the nanoparticle synthesis using potential green plants	К3	III
CO 4	Analyse the uses of nanoparticles in the biomedical field.	K4	IV
CO 5	Take part in the works and discussions related to the applications of nanoparticles in agriculture	K4	IV
CO 6	Test for the phytochemicals in biomedical field using the nanotechnology	K4	V

Syllabus:

Unit I- Introduction to Nanotechnology

(15 Hours)

- 1.1 Nanotechnology- Definition, scope and importance.
- 1.2 Nanomaterial and Nanocomposites. Origin and Types of Nanomaterials.
- 1.3 Classification of nanostructure- Top-down and bottom-up approaches.
- 1.4 Quantum dots -- Quantum wire Quantum well and Carbon nanotubes

Unit II – Nano particle synthesis

(15 Hours)

- 2.1 Nanosynthesis Definition.
- 2.2 Methods in Nanosynthesis Physical methods using Plasma and Laser, Chemical method using Sol-gel, Co-precipitation.
- **2.3** Advantages and Disadvantages of physical and chemical methods

Unit III- Green Nano synthesis and Characterization

(15 Hours)

3.1 Green Nanosynthesis using fungus and plant material.

- 3.2 Characterization of Nanoparticles Principle, methodology and interpretation of the size, shape, structure, chemistry and crystallography of nanoparticles by the following techniques - UV Visible Spectroscopy, FTIR, Electron microscopy – TEM, SEM.
- 3.3 Merits of Green Nanosynthesis

Unit IV – Applications of nanomaterials

(15 Hours)

4.1 Applications of nanotechnology in Agriculture- nanoparticle based pesticides, Environment Remediation, Food packaging and monitoring.

Unit V – Biomedical applications of Nanotechnology

(15 Hours)

- 5.1 Applications of nanotechnology as Nanomedicine cancer therapy.
- 5.2 Nanosensors types and its applications.
- 5.3 Nanobiotechnology for Drug Discovery, Quantum Dots, Nanolasers, Lipid Nanoparticles as Drug Carriers and Nanocapsules.

TOPICS FOR SELF-STUDY:

Topics	Reference Book/Web Links
Biosensors	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862100/
Bio-	https://www.news-medical.net/life-sciences/Bionanotechnology-
	Applications.aspx#:~:text=Bionanotechnology%20is%20a%20science%20t
nanotechnology	hat, biological%20problems%2C%20creating%20specialized%20applicatio
	<u>ns</u> .
Methods of	http://www.issp.ac.ru/ebooks/books/open/The_Delivery_of_Nanoparticles.
nanometal	<u>pdf</u>
extraction from	Hashim, A. 2012. The Delivery of Nanoparticles, In Tech
potential plants	Publications, Janeza Trdine 9, 51000 Rijeka, Croatia.
Biophotonics and	https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527643981.bphot001
simulations in	
medical industry	

TEXT BOOKS:

- 1. Ratner, M. and Ratner, D. 2005. *Nanotechnology: A Gentle Introduction to the Next Big idea*. Pearson Education, Inc. NJ, USA.
- 2. Jain, K.K. 2006. *Nanobio-Technology in Molecular Diagnostics: Current Techniques and Applications*. Horizon Biosciences, India.
- 3. Cao. G. 2004. Nanostructures and Nanomaterials, Imperial College Press, London.
- 4. Murty, B.S., Shankar, P., Raj, B., Rath, B.B., Murday J. 2013. *Textbook of Nanoscience and Nanotechnology*. Springer.244 Pages

REFERENCE BOOKS:

- 1. Rao. C. N. R, Mu'ller. A, Cheetham. A. K. 2006. *The Chemistry of Nanomaterials :Synthesis, Properties and Applications*, Wiley-VCH.
- 2. Breachignac. C, Houdy. P, Lahmani. M. 2006. *Nanomaterials and Nanochemistry*, Springer, Publ.
- 3. Guozhong Cao. 2011. *Nanostructures and Nanomaterials: Synthesis, Properties, and Applications*, World Scientific Publishing Private, Ltd..
- 4. Zhong Lin Wang. 2004. Characterization Of Nanophase Materials, Springer Publ.

Web Links:

https://onlinecourses.nptel.ac.in/noc19_bt28/preview

http://www.biolim.org/programmes/online-courses/open/certificate-course-on-nanobiotechnology/

https://swayam.gov.in/nc_details/NPTEL

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Secti on	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
I	NA	NOTECHNOLOGY	
1.1	Nanotechnology- Definition, scope and importance.	Define the scope of nanotechnology.	K1 K2
1.2	Nanomaterial and Nanocomposites. Origin and Types of Nanomaterials.	 Interpret the uses of nanomaterials. 	K2
1.4	Classification of nanostructure- Top-down and bottom-up approaches. Quantum dots Quantum wire - Quantum well and Carbon nanotubes.	Explain the approaches for nanotechnology studies.	
II	N	IANOSYNTHESIS	
2.1 2.2 2.3	Nanosynthesis – Definition. Methods in Nanosynthesis Physical methods using Plasma and Laser, Chemical method	Summarise the methods in nanoparticle synthesis	K2 K2
2.4	using Sol-gel, Coprecipitation. Advantages and Disadvantages of physical and chemical methods	Compare the merits and demerits of the methods	
III	GREEN NANOSYNT	THESIS AND CHARACTERIZA	TION

	<u></u>		T
3.1	Green Nanosynthesis using	 Choose different metals 	K3
3.2	fungus and plant material, Characterization of Nanoparticles – Principle, methodology and interpretation of the size, shape, structure, chemistry and crystallography of nanoparticles by the following techniques - UV Visible Spectroscopy, FTIR, Electron microscopy – TEM, SEM. Merits of Green Nanosynthesis	 for bio-nanoparticle synthesis Interpret the colour changes in nanoparticles when the using metal varies Plan suitable metal by discussing the characteristics Apply the nanoparticle synthesis using plants. 	K2 K3 K3
IV		ONS OF NANOMATERIALS	T
4.1	Applications of nanotechnology in Agriculture- nanoparticle based pesticides, Environment Remediation, Food packaging and monitoring	 Inspect the various uses of nanoparticles in the fields of agriculture, chemicals in pesticides, biomedical applications etc. 	K4
\mathbf{V}	BIOMEDICAL APPL	ICATIONS OF NANOTECHNO	LOGY
5.1	Applications of nanotechnology as Nanomedicine - cancer	• Explain the uses of nanosensors and the area where it can be explored	K2 K4
5.2	therapy. Nanosensors - types and its applications. Nanobiotechnology for Drug Discovery, Quantum Dots, Nanolasers, Lipid Nanoparticles as Drug Carriers and Nanocapsules.	Conclude the usage of certain metals in nanoparticle synthesis	

Mapping Scheme for the Course Code: U20BY6:6

U20BY6:6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	-	H	-	L	H	M	M	M	L	L	M	-
CO2	Н	-	M	-	-	L	L	-	L	-	M	L	-
CO3	Н	L	-	-	L	-	-	-	L	-	L	L	L
CO4	H	-	L	-	M	M	-	-	M	M	-	-	L
CO5	M	-	-	M	-	L	M	L	-	M	-	-	L

CO6 M L L M L M L	-	-	
-------------------	---	---	--

L-Low (1) M-Medium (2) H-High (3)

Evaluation:

Continuous Assessment methods by class test, discussion, assignments Semester exams, Projects

SBEC II - MOLECULAR AND PLANT TISSUE CULTURE TECHNIQUES

Course Code: U20BYPS2 Semester: VI Credits: 2 Hours/Week: 2

Course Outcome:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Build the concepts and criteria to design, organise, and maintenance of Plant Tissue Culture Laboratory	K6	I
CO 2	Comparing the gene transformation techniques using photographs and videos	K4	II
CO 3	Elaborating sterilization techniques, hands-on media preparation and monitoring the cultures	K6	IV
CO 4	Interpreting, analyzing, and validation of the bio-molecules (DNA and Protein) using the methods and protocols	K5	II
CO 5	Evaluating the direct and indirect methods for performing different micro propagation techniques	K5	III
CO 6	Propose a model of well equipped laboratory be able to develop Entrepreneurship skill with the prior knowledge of ethical values	K6	I, - V

Syllabus:

Unit I- Introduction and Molecular BioLaboratory organization (6 Hours)

- 1.1 Molecular Biology- Definition and importance
- 1.2 Laboratory organization- Laboratory design- Laboratory requirements
- (a) Instruments (b) Glass wares (c) Chemicals Laboratory safety- (a) Handling of Chemicals (b) Storage of Chemicals Room Temperature - Refrigerator Deep Freezer
- (c) Personal safety (d) Disposal methods

Unit -II- Plant DNA Extraction and Quantification

(6 Hours)

- 2.1 Plant DNA- Extraction- Separation Agarose Gel Electrophoresis
- 2.2. Plant Protein- Extraction Separation SDS PAGE

Unit- III - Genetic transformation techniques -

(6 Hours)

- 3.1 Indirect DNA delivery- Ti plasmid Agrobacterium-mediated transformation
- 3.2 Direct DNA delivery- Biolistics- Microinjection- Electroporation

Unit –IV- Plant Tissue Culture and Sterilization Techniques (6 Hours)

- 4.1 Sterilization techniques concepts and performance- Glass wares Cleaning and sterilization, Medium-(a) Preparation Murashige and Skoog (b) Maintenance of pH (c) Sterilization.
- 4.2 Explant- Washing- Sterilization
- 4.3 Culture room- Fumigation- Laminar air flow chamber -(a) Cleaning(b) UV exposure

Unit-V- Micro propagation

(6 Hours)

- 5.1 Introduction to Plant tissue culture- Definition and importance- Micropropagation Techniques- Micropropagation- Direct Indirect
- 5.2. Embryogenesis
- 5.3. Synthetic seed
- 5.4. Hardening
- 5.5. Field visit to Commercial Plant Tissue Culture Laboratory

TEXT BOOKS:

- 1. Rajini Sharma. 2000. Plant Tissue Culture, Campus books international, New Delhi,
- 2. Razdan, M.K. 2003. *Introduction to Plant Tissue Culture*, Second edition. Oxford and IBH publishing, New Delhi.
- 3. Thara, K.M. 2009. *Practical Manual series-4. Biotechnology*, New India Publishing Agency, New Delhi.
- 4. Bhojwani, S. S. and M. K. Razdan. 1996. *Plant Tissue Culture: Theory and Practice*, a revised edition. Elsevier Science, Netherlands.
- 5. Chawla, H.S. 2002. *Introduction to plant biotechnology*, second edition, Oxford & IBH Publishing, Co, Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

- 1. Rajendra Reddy and Abhay Shankar, J.P. 2008. *Tissue Culture*. Commonwealth Publishers, NewDelhi.
- 2. Jwala Aggarwal and Shekhar K. Arora. 2014. *Experiments in Plant Tissue Culture*. Campus Book International, New Delhi.

WEB LINKS:

https://onlinecourses.swayam2.ac.in/cec19_bt01/preview

https://adlonlinecourses.com/product/levels/professional-development/tissue-culture-100-hours-certificate-course/

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	Content	Learning Outcome ta	ighest loom xonomic vel of ansaction						
1	Introduction	Introduction and Laboratory Organization							
1.1	Molecular Biology- Definition and importance	 Define the basic concepts and principles Discuss the importance of plant culturing. 	K6						
1.2	Laboratory Design and Requirements	·							
II	Plant DNA	Extraction and Quantification	l						
2.1	DNA Extraction and Separation by Agarose Gel Electrophoresis	 Make use of suitable technique in the separation o DNA Explain the quality and 	K3						
2.2	Protein Extraction and Separation by SDS-PAGE	Re Protein							
		Asses the quality and quantity of Protein	K4						
III	Genetic transformat	ion techniques – Photographs and V Presentation	100						
3.1	DNA transformation by indirect methods (Ti Plasmid and Agrobacterium-mediated transformation)	 Distinguish between DNA transformation indirect methods Model of genetic elements present on the Ti plasmid Relate the concepts of Agrobacterium mode of genetransfer in transformation 	K4						

3.2	DNA transformation by direct methods (Biolistics, Microinjection and Electroporation)	 Compare and contrast the process of DNA transformation using direct methods Distinguish between the principles of microinjection, electroporation and biolistic gun in DNA transformation 	K 4
IV	Plant Tissue Cu	ulture and Sterilization Techniques	
4.1	Sterilization and Media Preparation	 Choose suitable sterilization methods glassware and media Influence of micro-, macronutrients and plant growth regulators Discuss about key components of media 	K6
4.2	Explants preparation	Assess the knowledge of choosing and using specific explants	K5
4.3	Culture room set-up and Laminar Air Flow maintenance	 Determine fumigation methods Make use of skills in working in Laminar Air Flow 	K5
V		Micropropagation	
5.1	Micropropagation of explants by direct and indirect methods	 Outline the procedure of <i>in-vitro</i> culturing the explants Assess the suitable methods for propagating plants Interpret, troubleshoot and standardize the protocols 	K5
5.2	Embryogenesis	Examine the stages of embryo development	K4
5.3	Synthetic seed	 Develop procedures for synthetic seeds Select suitable methods for production of synthetic seeds 	К3
5.4	Hardening	Outline the procedure of <i>in-vivo</i> conditions for growing the explants	K2
5.5	Field Visit	 Perceive novel ideas of gardens. Planning and designing of lab Relate with commercial 	K5

Mapping Scheme for the Course Code: U20BYPS2

U20BYPS2	PO	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	M	-	-	M	-	-	Н	M	Н	L	-	L	L
CO2	M	-	-	M	-	_	M	L	L	-	-	-	-
CO3	M	L	L	Н	-	L	Н	M	M	M	-	L	Н
CO4	Н	M	M	M	_	_	Н	L	M	-	Н		
CO5	M	L	-	Н	-	-	M	L	L	-	-	-	1
CO6	Н	M	L	Н	-	L	Н	L	L	-	-	M	-

Assessment/Evaluation:

- 1. Class test, assignments
- 2. End semester exams.

SBEC III – PLANTS AND HUMAN WELFARE

Semester : IV Course Code : U20BYPS3

Credits : 2 Hours/Week : 2

Course Outcome

On completion of the course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Construct new patterns of designs in making Bouquets, garlands and hair designs.	K6	I
CO 2	Make use of techniques of Pickle and beverage preparation	К3	II
CO 3	Explain the protocols of making products by using plant fibers.	K2	III
CO 4	Evaluating the application of Medicinal plants in the preparation of Cosmetics, face packs and Herbal products.	K5	IV
CO 5	Create a wealthy product from the Phyto-wastes.	K6	V
CO 6	Develop Entrepreneurship skill by knowing the Aesthetic value, Medicinal value and Commercial value of Plant & its resources.	K6	I, - V

SYLLABUS:

Unit I : Flowers (6 Hours)

- 1.1. Bouquet
- 1.2. Garlands and Strings
- 1.3. Regular and festival decorations
- 1.4. Hair designs

Unit II: Vegetables and Fruits

(6 Hours)

- 2.1 Pickle (Lime / Mango / Ginger)
- 2.2. Juice (Lemon / Sweet lime)/ squash (Graph / Orange)
- 2.3. Drying (Direct & treated)
- 2.4. Vegetable, pith and grain carving

Unit III: Fibers

(6 Hours)

- 3.1 Baskets and pans
- 3.2. Ropes and chords
- 3.3. Brushes and brooms
- 3.4 . Mats and Carpets

Unit IV: Cosmetics and Medicines

(6 Hours)

- 4.1. Medicinal oils / Application Hair oils
- 4.2. Preparation of Decoctions Syrups
- 4.3. Herbal Remedies Ointments, Pain balms
- 4.4. Cosmetics, Face packs & Skin care

Unit V: Phytowastes to wealth

(6 Hours)

- 5.1. Shells and rinds (Useful and ornamental articles)
- 5.2. Waste/used papers and wood (recycling)
- 5.3. Leaves (cups and plates)
- 5.4 Phytojewellery (ear drops, studs, bangles / necklace)

(Details about the cultivation / procuring, processing uses and sales of these based on the availability will be dealt with the support of the field experts and field visits)

REFERENCE BOOKS:

- 1. Pandey, B.P. 2007. Economic botany. S. Chand and Co. New Delhi.
- 2. Samba Murty, A.V.S., Subramaniyan, N.S. 1989. *A Text book of economic botany*. Wiley Eastern Ltd. New Delhi,.
- 3. Siddappa, G.S. and Tandon, G.L. 1998. *Preservation of fruits and vegetables*. ICAR, New Delhi.

WEB LINK:

https://www.theindianwire.com/education/swayam-post-graduate-college-students-complete-course-details-25307/

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
I		Flowers	
1.1	Bouquet	Develop the skills of making bouquet	K6

1.2	Garlands and Strings	•	Compile various hands on techniques to make the Garlands and floral strings	K6	
1.3	Regular and festival decorations	•	Create decorative products	K6	
1.4	Hair designs	•	Make up various hair designs by using plant products	K6	
II	,	Vegetab	oles and Fruits		
2.1	Pickle (Lime/Mango/Ginger)	•	Demonstrate the pickle preparation	K2	
2.2	Juice (Lemon/Sweet Lime) / Squash (Grape/Orange)	•	Adapt a suitable preservation method in the preparation of squash/juice	K6	
2.3	Drying (Directed & Treated)	•	List the drying methods	K1	
2.4	Vegetable, pith and grain carving	•	Examine the carving techniques	K4	
III			Fibers		
3.1	Baskets and Pans	•	Outline the procedure in the preparation of Baskets and Pans	K2	
3.2	Ropes and Chords	•	Modify the process of Rope and Chord making.	K6	
3.3	Brushes and Brooms	•	Compare the techniques of making Brushes and Brooms	K4	
3.4	Mats and Carpets	•	Demonstrate the Mat and Carpet making	K2	
IV	Co	smetic	s and Medicines	•	
4.1	Medicinal oils / Application – Hair Oil	•	Make use of suitable technique in the preparation of Medicinal Oil.	K3	
4.2	Preparation of Decoctions- Syrups	•	formulate the Medicinal Plants in the preparation of Decoction	K6	
4.3	Herbal Remedies – Ointments, Pain balms	•	Analyse the formulations in the preparation of Ointments and Pain balms	K4	
4.4	Cosmetics, Face Packs & Skin Care	•	Make use of the Plant resources in the preparation of Cosmetics and Face Packs	К3	
V	P	Phyto-w	astes to wealth		
5.1	Shells and rinds (Useful and Ornamental articles)	•	Make use of the Phyto wastes such as Shells and rinds for the production of commercial products.	K3	

5.2	Waste/used papers and wood (recycling)	 Demonstrate the Process of making Paper cups. 	K2
5.3	Leaves (Cups and Plates)	 Construct leaf cups and Palm plates by using Phyto- wastes 	K6
5.4	Phyto jewellery (ear drops, studs, bangles/necklace)	 Make use of the Phyto waste in the making of Phyto Jewels preparation. 	K3

Mapping Scheme for the Course Code: U20BYPS3

U20BYP	PO	PS	PS	PS	PS								
S3	1	2	3	4	5	6	7	8	9	O1	O2	O3	O4
CO1	M	M	L	-	-	-	Н	L	L	-	-	-	-
CO2	M	M	L	-	-	-	Н	L	L	-	-	-	-
CO3	L	M	L	-	-	-	Н	L	L	-	-	-	-
CO4	Н	M	Н	-	L	L	Н	L	M	-	Н	-	-
CO5	M	M	Н	-	-	-	Н	L	L	-	-	_	-
CO6	Н	M	L	-	-	L	Н	L	L	-	-	-	-

Assessment / Evaluation:

- 1. Continuous Assessment by conducting Model Exams, Demonstration Experiment, Written test on Protocols.
- 2. Assessment also done through Lab Attendance and Practical Record work.
- 3. End Semester Practical Examination