**B. Sc Mathematics** 

## Courses of study, Schemes of Examinations

## & Syllabi

## For the students admitted in the academic year 2021-2022

(Under Choice Based Credit System)



## PG AND RESEARCH DEPARTMENT OF MATHEMATICS

## (DST - FIST sponsored)

## **BISHOP HEBER COLLEGE (Autonomous)**

## (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC &

Identified as College of Excellence by the UGC)

DST - FIST Sponsored &

**DBT Sponsored** 

TIRUCHIRAPPALLI - 620 017

TAMIL NADU, INDIA

2021 - 2022

# Vision and Mission of the Department.

## **Our Vision**

✓ To develop globally competent mathematicians through industry-linked, research-focused, technology-enabled seamless higher education in Mathematics and mould the young minds to serve for the betterment of the society with love and justice.

## **Our Mission**

- ✓ Offer Competent and comprehensive curriculum and conducive environment for holistic development.
- ✓ Inculcate passion for research and perform widely recognized outstanding research in the fields of Mathematics, Statistics and the interdisciplinary areas
- ✓ Collaborate globally, construct industry academia link and contribute for nation building

# Program Outcome and Program Specific Outcomes

# Program Outcomes (POs)

# After successful completion of the program, the students will be able to:

## KNOWLEDGE

**PO1:** Analyze problems and formulate appropriate mathematical models in various areas of Mathematics.

**PO2:** Demonstrate knowledge and understanding of pure and applied Mathematics in other disciplines of basic sciences, where the problem-solving techniques are required.

## SKILLS

**PO3:** Express thoughts and ideas of mathematical statements which are validated by establishing the proofs using rigorous mathematical arguments.

**PO4:** Employ confidently the knowledge of mathematical software and tools for treating the complex mathematical problems and investigate scientific data.

**PO5:** Create mathematical models of empirical or theoretical phenomena in domains such as physical, natural, or social science.

**PO6:** Analyze given quantitative and qualitative data by employing different measures, draw conclusions using appropriate mathematical solving methods and communicate effectively.

## ATTITUDES

**PO7:** Demonstrate critical thinking, creativity and lifelong learning necessary for various employment demands.

**PO8:** Make rigorous mathematical arguments, including how to prove and disprove conjectures.

## ETHICAL & SOCIAL VALUES

**PO9:** Practice moral and ethical values in all walks of life and meet community expectations.

## Programme Specific Outcomes (PSOs) - B.Sc.,

# After successful completion of the program, the students will be able to:

## **INTELLECTUAL SKILLS**

**PSO1:** Identify, determine, evaluate and effectively solve the practical problems using Mathematical arguments in a logical and technical manner.

**PSO2:** Exhibit knowledge and understanding in o areas of Mathematics, Statistics, computational packages and programming languages.

## PRACTICAL SKILLS

**PSO3:** Critically analyze and solve real world problems that are expressed in terms of equations, numbers, algebraic structures, etc.

## **TRANSFERABLE SKILLS**

**PSO4:** Formulate and use quantitative models to address problems arising in social science, business and other areas of science and technology

## PG AND RESEARCH DEPARTMENT OF MATHEMATICS

| Course Code | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PSO1 | PSO2 | PSO3 | PSO4 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| U21MA101    | Н   | М   | М   | -   | Μ   | М   | М   | М   | -   | Н    | Н    | М    | Μ    |
| U21MA202    | Н   | Н   | L   | L   | L   | L   | -   | -   | -   | Н    | М    | М    | -    |
| U21MA2:1    | М   | Н   | М   | L   | Н   | М   | Μ   | М   | -   | Н    | М    | М    | Μ    |
| U21MA303    | Н   | Н   | Н   | L   | Н   | Н   | Н   | Н   | -   | Н    | М    | Н    | Н    |
| U21MA304    | L   | L   | L   | М   | L   | L   | -   | М   | -   | М    | L    | М    | L    |
| U21MAS31    | Н   | Н   | Н   | Н   | Н   | Н   | М   | М   | -   | Н    | М    | Н    | Н    |
| U21MA405    | Н   | L   | L   | L   | L   | L   | L   | -   | -   | L    | М    | L    | L    |
| U21MAS42    | Н   | М   | L   | -   | L   | L   | L   | М   | -   | М    | L    | L    | L    |
| U21MA4P1    | М   | М   | М   | Н   | М   | М   | М   | L   | L   | М    | М    | М    | L    |
| U21MA506    | Н   | М   | Н   | -   | L   | М   | L   | Н   | -   | Н    | Н    | М    | -    |
| U21MA507    | М   | М   | М   | L   | М   | М   | Μ   | М   | L   | М    | L    | М    | L    |
| U21MA508    | Н   | Н   | М   | -   | L   | М   | М   | L   | -   | Н    | М    | М    | L    |
| U21MA509    | Н   | М   | М   | Н   | М   | Н   | М   | L   | -   | Н    | Н    | М    | Н    |
| U21MA610    | М   | L   | Н   | -   | М   | -   | М   | Н   | -   | М    | Н    | L    | -    |
| U21MA611    | Н   | Н   | Н   | М   | М   | Н   | Μ   | Н   | -   | Н    | Н    | М    | L    |
| U21MA612    | М   | Н   | М   | М   | L   | М   | Н   | М   | -   | М    | Н    | Н    | Μ    |
| U21MA6:2    | М   | М   | L   | М   | L   | L   | L   | -   | L   | М    | М    | М    | Μ    |
| U21MA6:3    | М   | Н   | L   | М   | Н   | М   | М   | L   | М   | L    | М    | L    | Н    |
| U21MA3E1    | Н   | Н   | М   | -   | Н   | Н   | Н   | -   | -   | Н    | М    | Н    | Н    |
| U21MAPE2    | М   | М   | М   | Н   | М   | М   | М   | L   | L   | М    | М    | М    | L    |
| U21MA1S1    | Н   | Н   | М   | -   | Н   | Н   | Н   | -   | -   | Н    | М    | Н    | Н    |
| U21MAPS2    | Н   | Н   | L   | Н   | L   | L   | М   | -   | -   | М    | Н    | L    | L    |
| U21MAPS3    | М   | L   | -   | Н   | L   | -   | Μ   | -   | -   | L    | Н    | L    | Μ    |
| U20MAY11    | Н   | Μ   | Μ   | -   | М   | М   | М   | М   | -   | М    | Μ    | М    | L    |
| U20MAY22    | Н   | L   | L   | L   | -   | -   | L   | М   | -   | L    | L    | М    | L    |
| U20MAY23    | Н   | Н   | М   | М   | -   | -   | L   | -   | -   | Н    | Н    | М    | L    |
| U20MAC11    | М   | Н   | М   | L   | L   | М   | -   | М   | -   | Н    | М    | Н    | L    |
| U20MAC22    | Н   | L   | L   | L   | -   | -   | L   | М   | -   | L    | L    | М    | -    |
| U20MAC23    | М   | L   | М   | L   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| U20MAZ11    | Н   | Н   | М   | -   | Н   | Н   | Н   | L   | -   | Н    | Н    | Н    | Н    |
| U20MAZ22    | Н   | Н   | L   | L   | L   | М   | L   | L   | -   | Н    | L    | М    | L    |
| U20MAZ23    | М   | М   | L   | М   | L   | L   | L   | L   | L   | М    | М    | L    | L    |

## ARTICULATION MATRIX 2021 -2022

#### **B. Sc Mathematics**

#### Structure of the Curriculum

| Parts of the         | No. of  | Credits |
|----------------------|---------|---------|
| Curriculum           | Courses |         |
| Part – I : Language  | 4       | 12      |
| Part – II : English  | 4       | 12      |
| Part – III           | -       |         |
| Major                |         |         |
| Core                 | 13      | 62      |
| Elective             | 3       | 15      |
| Allied               |         |         |
| Allied (Physics/     | 3       | 12      |
| Computer Science)    |         |         |
| Allied (Statistics)  | 3       | 10      |
|                      |         |         |
| Part – IV            |         |         |
| SBEC                 | 3       | 6       |
| NMEC                 | 2       | 4       |
| VLOC                 | 1       | 2       |
| Env. Studies         | 1       | 2       |
| SBC                  | 1       | 1       |
| Part – V             |         |         |
| Extension Activities | 1       | 1       |
| Gender Studies       | 1       | 1       |
| Total                | 39      | 140     |

#### List of Core Courses

- 1. Algebra, Trigonometry and Differential Calculus
- 2. Integral Calculus and Analytical Geometry of Three Dimensions
- 3. Sequences & Series
- 4. Differential Equations and Laplace Transforms
- 5. Theory of Equations and Fourier Series
- 6. Algebra
- 7. Real Analysis
- 8. Mechanics
- 9. Numerical Methods
- 10. Complex Analysis
- 11. Discrete Mathematics
- 12. Elementary Number Theory

#### List of Elective Courses:

- 1. Vector Calculus
- 2. MATHLAB
- 3. Mathematical Modelling
- 4. Operations Research
- 5. Graph Theory
- 6. Information Theory
- 7. Group Project

#### List of Non-Major Elective Courses (NMEC) (Offered to students of other discipline)

- 1. Mathematics for Competitive Examinations
- 2. Statistical Applications

#### List of Skill Based Elective Courses (SBEC):

- 1. Mathematics for Competitive Examinations
- 2. Introduction to Scientific Computing (OCTAVE)
- 3. Programming in C (Linux OS)

#### Skill Based Course (SBC)

1. Life Skills

#### Extra Credit Courses:

- 1. Data Structures
- 2. Fourier Transforms
- 3. Fuzzy Mathematics
- 4. Simulation

#### **B.Sc.** Mathematics

## For the students admitted in the academic year 2021-2022

| Sem. | Dent | 0                                                                                                                             | Course                 | Course Title                                                                                          | Hrs / | Credits | Marks     |           |       |
|------|------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------|-------|---------|-----------|-----------|-------|
| sem. | Part | Course                                                                                                                        | Code                   | Course Title                                                                                          | week  | Credits | CIA       | ESA       | Total |
|      | Ι    | செய்யுள் , இலக்கிய வரலாறு<br>Tamil I /* U18TM1L1 , உரரநர <b>ை ,</b><br>ச <b>ாழிப</b> ்சபயரல் சி ,<br>பரலைப் பாக <b>்கமு</b> ் |                        |                                                                                                       |       | 3       | 25        | 75        | 100   |
|      | II   | English I                                                                                                                     | U21EGNL1               | Language through Literature:<br>Prose & Short Stories                                                 | 6     | 3       | 40        | 60        | 100   |
|      |      | Core I                                                                                                                        | U21MA101               | Algebra, Trigonometry and<br>Differential Calculus                                                    | 5     | 4       | 25        | 75        | 100   |
| I    | III  | Allied I                                                                                                                      | U21PHY01/<br>U16CSY11  | Mechanics, Sound, Thermal<br>Physics and Optics /<br>Fundamentals of C Programming                    | 4     | 4       | 25        | 75        | 100   |
|      |      | Allied<br>Practical                                                                                                           | U21PHYP1<br>/U16CSYP1  | Allied Physics Practical/<br>Allied Computer Science Practical                                        | 3     |         |           |           |       |
|      |      | Env. Stud.                                                                                                                    | U16EST11               | Environmental Studies                                                                                 | 2     | 2       | 25        | 75        | 100   |
|      | IV   | VLOC.                                                                                                                         | U14VL1:1/<br>U14VL1:2  | Value education ( RI / MI )                                                                           | 2     | 2       | 25        | 75        | 100   |
|      |      | SBEC I                                                                                                                        | U21MA1S1               | Mathematics for Competitive<br>Examinations                                                           | 2     | 2       | 25        | 75        | 100   |
|      | Ι    | Tamil II /*                                                                                                                   | U18TM2L2               | செய்யுள் , இலக்கிய வரலாறு<br>,<br>ச <b>ிற</b> ுகதைைைதி<br>ரடஞ் , ச                                    | 6     | 3       | 25        | 75        | 100   |
|      | II   | English II                                                                                                                    | U21EGNL2               | Language through Literature:<br>Poetry and Shakespeare                                                | 6     | 3       | 40        | 60        | 100   |
| II   |      | Core II                                                                                                                       | U21MA202               | Integral Calculus and Analytical<br>Geometry of Three Dimensions                                      | 5     | 5       | 25        | 75        | 100   |
|      |      | Elective I                                                                                                                    | U21MA2:1 /<br>U21MA2:2 | Vector Calculus / MATHLAB                                                                             | 6     | 5       | 25        | 75        | 100   |
|      | III  | Allied II                                                                                                                     | U21PHY02/<br>U16CSY22  | Electricity, Atomic, Nuclear<br>Physics and Electronics /<br>Object Oriented Programming<br>with JAVA | 4     | 4       | 25        | 75        | 100   |
|      |      | Allied<br>Practical                                                                                                           | U21PHYP1<br>/U16CSYP1  | Allied Physics Practical/ Allied<br>Computer Science Practical                                        | 4     | 4       | 40        | 60        | 100   |
|      | Ι    | Tamil III/*                                                                                                                   | U18TM3L3               | செய் யுள் – காப்பியங் கள் ,<br>இலக்கிய வரலாறு , நாவல்<br>, ச ாழிப <b>் சபயர</b> ெசி                   | 6     | 3       | 25        | 75        | 100   |
|      | II   | English III                                                                                                                   | U21EGNL3               | English for Competitive<br>Examinations                                                               | 6     | 3       | 40        | 60        | 100   |
|      |      | Core III                                                                                                                      | U21MA303               | Sequences and Series                                                                                  | 5     | 4       | 25        | 75        | 100   |
| III  | III  | Core IV                                                                                                                       | U21MA304               | Differential Equations and<br>Laplace Transforms                                                      | 5     | 4       | 25        | 75        | 100   |
|      |      | Allied III                                                                                                                    | U21MAS31               | Mathematical Statistics I                                                                             | 4     | 4       | 25        | 75        | 100   |
|      | IV   | SBEC II                                                                                                                       | U21MAPS2               | Introduction to Scientific<br>Computing (OCTAVE)                                                      | 2     | 2       | 40        | 60        | 100   |
|      | 1V   | NMEC I                                                                                                                        |                        | To be selected from courses offered by other departments                                              | 2     | 2       | 25/<br>40 | 75/<br>60 | 100   |

| 0    | Dent | 0                       | 0                      | 0                                                        | Hrs / | 0       |           | Marks     |       |  |
|------|------|-------------------------|------------------------|----------------------------------------------------------|-------|---------|-----------|-----------|-------|--|
| Sem. | Part | Course                  | Course Code            | Course Title                                             | week  | Credits | CIA       | ESA       | Total |  |
|      | Ι    | Tamil IV /*             | U18TM4L4               | செய் யுள் (மேற்கணக்கு,<br>கீழ்கணக்கு), இலக்கிய<br>வரலாறு | 5     | 3       | 25        | 75        | 100   |  |
|      | II   | English IV              | U21EGNL4               | English through Literature                               | 5     | 3       | 40        | 60        | 100   |  |
|      |      | Core V                  | U21MA405               | Theory of Equations and<br>Fourier Series                | 6     | 5       | 25        | 75        | 100   |  |
| IV   | III  | Allied IV               | U21MAS42               | Mathematical Statistics II                               | 6     | 4       | 25        | 75        | 100   |  |
|      |      | Allied<br>Practical     | U21MA4P1               | Mathematical Statistics III                              | 4     | 2       | 40        | 60        | 100   |  |
|      | IV   | NMEC II                 |                        | To be selected from courses offered by other departments | 2     | 2       | 25/<br>40 | 75/<br>60 | 100   |  |
|      |      | SBC                     | U16LFS41               | Life Skills                                              | 2     | 1       | 100       |           | 100   |  |
|      | V    | Extension<br>Activities |                        | 1                                                        | -     | -       | -         |           |       |  |
|      |      | Core VI                 | U21MA506               | Algebra                                                  | 6     | 6       | 25        | 75        | 100   |  |
|      |      | Core VII                | U21MA507               | Real Analysis                                            | 6     | 6       | 25        | 75        | 100   |  |
| * 7  | III  | Core VIII               | U21MA508               | Mechanics                                                | 6     | 5       | 25        | 75        | 100   |  |
| V    |      | Core IX                 | U21MA509               | Numerical Methods                                        | 5     | 4       | 25        | 75        | 100   |  |
|      |      | Core Project            | U21MA5PJ               | Project                                                  | 5     | 3       | -         | -         | 100   |  |
|      | IV   | SBEC III                | U21MAPS3               | Programming in C (Linux OS)                              | 2     | 2       | 40        | 60        | 100   |  |
|      |      | Core X                  | U21MA610               | Complex Analysis                                         | 6     | 6       | 25        | 75        | 100   |  |
|      |      | Core XI                 | U21MA611               | Discrete Mathematics                                     | 6     | 5       | 25        | 75        | 100   |  |
|      | III  | Core XII                | U21MA612               | Elementary Number Theory                                 | 6     | 5       | 25        | 75        | 100   |  |
| VI   |      | Elective II             | U21MA6:2               | Mathematical Modelling                                   | 6     | 5       | 25        | 75        | 100   |  |
|      |      | Elective III            | U21MA6:3 /<br>U21MA6:4 | Operations Research /<br>Information Theory              | 6     | 5       | 25        | 75        | 100   |  |
|      | V    |                         | U16GST61               | Gender Studies                                           | -     | 1       | I         | -         | 100   |  |
|      |      |                         |                        | Total                                                    |       | 140     |           |           | 3800  |  |

SBEC - Skill Based Elective Course

NMEC - Non-Major Elective Course

VLOC - Value added Life Oriented Course

**CIA - Continuous Internal Assessment** 

SBC - Skill Based Course

ESA- End Semester Assessment

| * Other<br>Languages | Hindi    | Sanskrit | French   |                 | Hindi    | Sanskrit | French   |
|----------------------|----------|----------|----------|-----------------|----------|----------|----------|
| Semester I           | U18HD1L1 | U21SK1L1 | U21FR1L1 | Semester<br>III | U18HD3L3 | U21SK3L3 | U21FR3L3 |
| Semester II          | U18HD2L2 | U21SK2L2 | U21FR2L2 | Semester<br>IV  | U18HD4L4 | U21SK4L4 | U21FR4L4 |

| NMEC offered by the | 1. Mathematics for Competitive<br>Examinations | U21MA3E1 |
|---------------------|------------------------------------------------|----------|
| Department          | 2. Statistical Applications (Practical's)      | U21MAPE2 |

#### **Core Course I: ALGEBRA, TRIGONOMETRY AND DIFFERENTIAL CALCULUS**

Semester: I

#### Course Code: U21MA101

Credit: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to:

| CO.<br>No.  | Course Outcomes                                                                      | Level | Unit |
|-------------|--------------------------------------------------------------------------------------|-------|------|
| <b>CO</b> 1 | Find the Eigen values, Eigen vectors of a given matrix and diagonalize the matrices. | КЗ    | I    |
| CO2         | Describe circular functions as a series                                              | K5    | II   |
| CO3         | Formulate Curvature, Radius of curvature, Evolutes and Involutes of any curve        | K5    | III  |
| CO4         | Examine the higher derivatives, Maxima and Minima of given functions.                | K4    | IV   |
| CO5         | Apply higher derivatives in the practical situation problems.                        | К3    | IV   |
| CO6         | Verify Euler's theorem for partial differentiation                                   | K6    | v    |

#### 2A. SYLLABUS

#### Unit I: Algebra

Characteristic equation - Eigen values and Eigen vectors of the matrix - Cayley-Hamilton theorem.

#### **Unit II: Trigonometry**

Expansion of cos n $\theta$ , sin n $\theta$  and tan n $\theta$  (n is a positive integer) – derivations and problems -Expansion of  $\cos^n \theta$ ,  $\sin^n \theta$  and  $\tan^n \theta$  in a series of sines, cosines and tangents of multiples of  $\theta$ ,  $\theta$ given in radians – Expansion of  $\cos\theta$ ,  $\sin\theta$  and  $\tan\theta$  in terms of  $\theta$  - Hyperbolic functions – Relation between the circular and hyperbolic functions.

#### **Unit III: Differential Calculus**

Leibnitz formula for the n<sup>th</sup> derivative of product - Curvature – circle, radius and centre of curvature - Cartesian formula for the radius of curvature - The co-ordinates of the centre of curvature - Evolute and involute - Radius of curvature (polar co-ordinates).

#### Unit IV: Maxima and Minima

Meaning of the derivative – Meaning of the sign of the differential coefficient – Related problems – Maxima and Minima – Conditions for maximum and minimum values of f(x) – Related problems.

#### **Unit V: Partial Differentiation**

Partial differentiation - Total differential coefficient - Implicit functions - Homogeneous functions -Maxima and minima of functions of two variables - Lagrange's method of undetermined multipliers.

#### **B. TOPICS FOR SELF STUDY:**

| S1.<br>No. | Topics                              | Web Links                                                                                  |
|------------|-------------------------------------|--------------------------------------------------------------------------------------------|
| 1          | Continued fractions                 | <u>http://www.maths.surrey.ac.uk/hostedsi</u><br><u>tes/R.Knott/Fibonacci/cfINTRO.html</u> |
| 2          | Summation of trigonometrical series | https://www.youtube.com/watch?v=qPO<br>7Zg57T74                                            |
| 3          | Tracing of curves                   | https://www.youtube.com/watch?v=zMU<br>2dVRgW6g                                            |
| 4          | Applications of Maxima and Minima   | https://www.youtube.com/watch?v=63x<br>O LhF8zoS                                           |

# (15 hours)

(15 hours)

(15 hours)

#### (15 hours)

#### (15 hours)

Hours/Week: 5

#### C. TEXTBOOK(s)

- 1. T. K. Manickavasagam Pillay, T. Natarajan and K. S. Ganapathy, Algebra Volume II, S. Viswanathan (Printers & Publishers) Pvt. Ltd., Reprint 2011 (Unit I).
- 2. S. Narayanan, T. K. Manickavasagam Pillay, Trigonometry, S. Viswanathan (Printers and Publishers) Pvt. Ltd., Reprint 2009 (Unit II).
- S. Narayanan and T. K. Manickavasagam Pillay, Calculus Volume I, S. Viswanathan (Printers & Publishers) Pvt. Ltd. Reprint 2011(Units III, IV and V).
  - Unit I Chapter 2 § 16
  - Unit II Chapter 3 § 1-5 (excluding formation of equations) Chapter 4§ 1, 2
  - Unit III Chapter 3 § 2.1, 2.2 Chapter 10 § 2.1 2.6
  - Unit IV Chapter 4 § 1, 2.1, 2.2 Chapter 5 § 1.1 1.5
  - Unit V Chapter 8 § 1.3 1.7, 4 & 5

#### **D. REFERENCE BOOKS**

- 1. Dr Perumal Mariappan, Differential Calculus An Application, New Century Book House, Pvt. Ltd, Chennai.
- 2. Dr P Mariappan and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.
- 3. Dr P. Mariappan and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt.Ltd, Chennai.
- 4. S. Sudha, Algebra, Analytical Geometry of (2D) and Trigonometry, Emerald Publishers, Chennai, First Edition 1998.
- 5. S. Sudha, Calculus, Emerald Publishers, Chennai, First Edition 1998.

#### E. WEB LINKS

- 1. https://lib.alfaisal.edu/pdf/AlgebraAndTrigonometry-LR.pdf
- 2. https://amsi.org.au/ESA\_Senior\_Years/PDF/IntroDiffCall3b.pdf

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit /<br>Section | Course Content                                                                                                                                                                              |                                                                               |    |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----|--|--|
| I                 | Cayley Hamilton Theore                                                                                                                                                                      | em                                                                            |    |  |  |
| 1.1               | Characteristic equation                                                                                                                                                                     | Find the characteristic equations of the square matrix.                       | K5 |  |  |
| 1.2               | Eigen Values                                                                                                                                                                                | Find the Eigen values of the given matrices                                   | K5 |  |  |
| 1.3               | Eigen vectors                                                                                                                                                                               | Find the Eigen vectors of the given matrices                                  | K5 |  |  |
| 1.4               | Cayley-Hamilton<br>theorem.                                                                                                                                                                 | Verify Cayley Hamilton theorem for the given square matrices                  | K6 |  |  |
| 1.5               | Inverse of the matrix                                                                                                                                                                       | Find the inverse of the matrices using<br>Cayley Hamilton theorem             | K5 |  |  |
| 1.6               | Diagonalisation of the<br>matrices Diagonalise the Square matrix                                                                                                                            |                                                                               | K5 |  |  |
| II                | Expansion of Trigonome                                                                                                                                                                      | etric series                                                                  |    |  |  |
| 2.1               | Expansion of $\cos n\theta$ , $\sin n\theta$ and $\tan n\theta$ (n is a positive integer)                                                                                                   | Expand the trigonometric functions in a series of sines, cosines and tangents | K4 |  |  |
| 2.2               | Derivations and problems                                                                                                                                                                    | Derive the expansion of the trigonometric functions                           | K5 |  |  |
| 2.3               | Expansion of $\cos^n \theta$ , sin<br><sup>n</sup> $\theta$ and $\tan^n \theta$ in a<br>series of sines, cosines<br>and tangents of<br>multiples of $\theta$ , $\theta$ given in<br>radians | Expand the trigonometric functions                                            | K4 |  |  |
| 2.4               | Expansion of $\cos\theta$ , $\sin\theta$<br>and $\tan\theta$ in terms of $\theta$                                                                                                           | Expand the trigonometric functions in a series of sines, cosines and tangents | K4 |  |  |

| 2.5 | Hyperbolic functions                                           | Express circular functions in Hyperbolic<br>and inverse hyperbolic functions | K3 |
|-----|----------------------------------------------------------------|------------------------------------------------------------------------------|----|
| 2.6 | Relation between the<br>circular and hyperbolic<br>functions   | Derive the relation between circular and<br>hyperbolic functions             | K5 |
| III | Curvature Evolutes and                                         | Involutes                                                                    |    |
| 3.1 | Leibnitz formula for the n <sup>th</sup> derivative of product | Find the nth derivative of given function                                    | K5 |
| 3.2 | Curvature                                                      | Evaluate the Curvature for any curve                                         | K6 |
| 3.3 | Circle, radius, and centre of curvature                        | Evaluate radius and centre of the curvature for any curve                    | K6 |
| 3.4 | Cartesian Formula for<br>the radius of curvature               | Derive the Cartesian formula for the radius<br>of curvature for any curve    | K4 |
| 3.5 | The co-ordinates of the centre of curvature                    | Evaluate the co-ordinates of the centre of<br>curvature for any given curve  | K6 |
| 3.6 | Evolutes                                                       | Find the Evolutes of any curve                                               | K5 |
| 3.7 | Involutes                                                      | Find the Involutes of any curve                                              | K5 |
| 3.8 | Radius of curvature (polar co-ordinates).                      | Derive the radius of curvature in polar co-<br>ordinates for any given curve | K5 |
| IV  | Maxima and Minima                                              |                                                                              |    |
| 4.1 | Meaning of the derivative                                      | Find the derivative of the function                                          | K5 |
| 4.2 | Meaning of the sign of<br>the differential<br>coefficient      | Find the sign of the differential coefficient                                |    |
| 4.3 | Related Problems                                               | Find whether the function is increasing or decreasing.                       | K5 |
| 4.4 | Maxima and Minima                                              | Find the maxima and minima of given function.                                | K5 |
| 4.5 | Conditions for<br>maximum and<br>minimum values of f(x)        | Derive the Conditions for maximum and<br>minimum values of f(x)              | K6 |
| 4.6 | Related problems                                               | Determine the maxima and minima of the given problem                         | K6 |
| V   | Partial Differentiation                                        | · · · · · · · · · · · · · · · · · · ·                                        |    |
| 5.1 | Partial differentiation<br>Total differential<br>coefficient   | Find the total differential coefficient for the given functions              | K5 |
| 5.2 | Implicit functions                                             | Find the implicit function for the given functions                           | K5 |
| 5.3 | Homogeneous function                                           | Verify Euler's theorem for the given curve                                   | K6 |
| 5.4 | Maxima and minima of<br>functions of two<br>variables.         | Find the maxima and minima for the functions with two variables              | К5 |

## 4. MAPPING SCHEME (POs, PSOs and COs)

| U21MA101 | PO1 | P02 | PO3 | P04 | PO5 | P06 | P07 | PO8 | P09 | PS01 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | L   | М   | -   | М   | М   | М   | М   | -   | Η    | Η    | М    | М    |
| CO2      | Н   | М   | М   | -   | М   | L   | М   | М   | -   | Η    | Η    | М    | М    |
| CO3      | Н   | L   | М   | -   | L   | М   | М   | М   | -   | Η    | М    | Н    | Н    |
| CO4      | Н   | М   | М   | -   | L   | М   | М   | М   | -   | Н    | Η    | М    | М    |
| CO5      | Η   | М   | М   | -   | М   | L   | М   | М   | -   | Н    | Η    | М    | М    |
| CO6      | Η   | L   | М   | -   | L   | Η   | М   | М   | -   | Н    | Η    | М    | М    |

L-Low M-Moderate

## 5. COURSE ASSESSMENT METHODS

## **DIRECT:**

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

## **INDIRECT**:

1. Course end survey (Feedback)

#### NAME OF THE COURSE COORDINATOR: Mrs. B. Abinaya

#### Core course II: INTEGRAL CALCULUS AND ANALYTICAL GEOMETRY OF THREE DIMENSIONS

Semester: II

#### Credits: 5

#### 1. COURSE OUTCOMES

#### After the successful completion of this course, the students will be able to:

| CO. No. | Course Outcomes                                      | Level | Unit |
|---------|------------------------------------------------------|-------|------|
| CO1     | Evaluate the solution of integrals of some functions | K5    | Ι    |
| CO2     | Solve complex integrals by beta and gamma functions  | K3    | II   |
| CO3     | Evaluate Multiple integrals                          | K5    | III  |
| CO4     | Explain straight line in three dimensions            | K5    | IV   |
| CO5     | Interpret about sphere                               | K5    | V    |
| C06     | Illustrate tangent plane to a given sphere           | K2    | V    |

#### 2A. SYLLABUS

#### Unit I: Integrals of some function

Integration of the forms

(i)  $\int [(px+q) / (ax^2+bx+c)] dx$  (ii)  $\int [(px+q) / (\sqrt{(ax^2+bx+c)})] dx$ 

(iii)  $\int [(px+q)\sqrt{(ax^2+bx+c)}]dx$  (iv)  $\int dx / (a+bcosx)$  - Properties of definite integrals – Integration by parts.

#### Unit II: Beta, Gamma functions

Reduction formula, Beta and Gamma functions.

#### Unit III: Multiple Integrals

Multiple integral - Double integral - Change of order of integration - Triple integral.

#### Unit IV: Straight Line

Equation of the straight line – shortest distance between two skew lines – Equation to the line of shortest distance.

#### **Unit V: Sphere**

Sphere – Standard equation – Length of the tangent from any point – Sphere passing through a given circle – Intersection of two spheres – tangent plane.

#### **B. TOPICS FOR SELF STUDY**

| S1.<br>No. | Topics                               | Web Links                                                                  |
|------------|--------------------------------------|----------------------------------------------------------------------------|
| 1          | Shell integration                    | https://math.libretexts.org/_The_Shell_Method                              |
| 2          | Kinetic energy improper<br>integrals | https://www.whitman.edu/mathematics/calculus_onl<br>ine/section09.07.html  |
| 3          | Numerical Integration                | https://www.whitman.edu/mathematics/calculus_onl<br>ine/section08.06.html  |
| 4          | Calculus with parametric equations   | https://www.whitman.edu/mathematics/calculus_onl_<br>ine/section10.05.html |

Course Code: U21MA202

Hours/Week: 5

#### (15 hours)

(15 hours)

#### (15 hours)

#### (15 hours)

#### (15 hours)

#### C. TEXTBOOK(S)

- S. Narayanan and T. K. Manickavasagam Pillay, Calculus Volume II, S. Viswanathan (Printers and Publishers) Pvt. Ltd., Reprint 2011. (Units I, II & III)
   T. K. Manickavasagam Pillay and T. Natarajan, A Textbook of Analytical Geometry (Part – II
- 2. T. K. Manickavasagam Pillay and T. Natarajan, A Textbook of Analytical Geometry (Part II Three Dimensions), S. Viswanathan (Printers and Publishers) Pvt. Ltd., Reprint 2008. (Units IV & V).
  - Unit I Chapter 1 § 7.3 (Rule b, type (ii)), 8 (Cases (ii) & (iii)), 9, 11, 12
  - Unit II Chapter 1 § 13.1 13.10 Chapter 7 § 2.1,2.3,3,4,5
  - Unit III Chapter 5 § 1, 2.1,2.2 (Problems Only), 3.1,3.2,4
  - Unit IV Chapter 3 §1-8
  - Unit V Chapter 4

#### **D. REFERENCE BOOKS**

- 1. Dr Perumal Mariappan, Integral Calculus An Application, New Century Book House, Pvt. Ltd, Chennai.
- 2. Dr P Mariappan and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.
- 3. Shanthi Narayanan and Mittal P.K., Analytical Solid Geometry, 16<sup>th</sup> Edition, S. Chand & Co., New Delhi, 1999.

#### E. WEB LINKS

- 1. NPTEL: Mathematics NOC: Multivariable Calculus
- 2. SWAYAM: Integral Calculus by Prof. Hari Shankar Mahato | IIT Kharagpur

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit / Section | Course Content                                | Learning outcomes                                  | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|----------------|-----------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| I              | Integrals of some functions                   |                                                    | Transaction                                                |
| 1.1            | $(i) \int [(px+q) / (ax^2+bx+c)]dx$           | Find the value of integrals                        | K5                                                         |
| 1.2            | (ii) $\int [(px+q) / (\sqrt{(ax^2+bx+c)})]dx$ | Evaluate integral function                         | K5                                                         |
| 1.3            | $(iii)\int [(px+q)\sqrt{(ax^2+bx+c)}]dx$      | Find the value of integrals                        | K5                                                         |
| 1.4            | (iv) $\int dx / (a+b\cos x)$                  | Determine the value of integrals                   | К5                                                         |
| 1.5            | Properties of definite integrals.             | List out the properties of definite integrals      | K1                                                         |
| 1.6            | Integration by parts                          | Evaluate some integral function                    | K5                                                         |
| II             | Beta, Gamma functions                         |                                                    |                                                            |
| 2.1            | Reduction formula                             | Solve integrals using reduction formula            | КЗ                                                         |
| 2.2            | Beta functions                                | Show that integrals by using beta function         | K2                                                         |
| 2.3            | Gamma functions                               | Evaluate integral function<br>using gamma function | К5                                                         |
| III            | Multiple Integrals                            | · · · · ·                                          | •                                                          |
| 3.1            | Double integral                               | Evaluate double integral                           | K5                                                         |
| 3.2            | Change the order of integration               | Evaluate by changing the order of integration      | K5                                                         |
| 3.3            | Triple integral                               | Evaluate volume of an integral                     | K5                                                         |
| IV             | Straight Line                                 |                                                    |                                                            |
| 4.1            | Equation of the straight line                 | Interpret the forms of straight-line equations     | K2                                                         |
| 4.2            | shortest distance between two<br>skew lines   | Find the shortest distance between skew lines.     | K1                                                         |
| 4.3            | Equation to the line of shortest distance     | Find the equation to the line of shortest distance | K1                                                         |

| V                               | Sphere                                |                                                  |    |
|---------------------------------|---------------------------------------|--------------------------------------------------|----|
| 5.1 Standard equation of sphere |                                       | Define sphere and its general equation           | K1 |
| 5.2                             | Length of the tangent from any point  | Find length of tangent from any point of sphere  | K1 |
| 5.3                             | Sphere passing through a given circle | Find equation of sphere passing through a circle | K1 |
| 5.4                             | Intersection of two spheres           | Interpret intersection of spheres is a circle    | K2 |
| 5.5                             | Tangent plane                         | Show that the plane touches sphere               | K2 |

#### 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA202 | P01 | P02 | PO3 | P04 | P05 | P06 | 704 | P08 | 60d | IOSA | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | Н   | М   | М   | -   | Μ   | Μ   | -   | -   | Н    | Μ    | М    | -    |
| CO2      | Μ   | Η   | М   | М   | L   | Μ   | -   | -   | -   | Η    | Μ    | Μ    | -    |
| CO3      | Н   | Н   | -   | М   | L   | М   | -   | -   | -   | Н    | М    | М    | -    |
| CO4      | Η   | Η   | М   | М   | Μ   | L   | -   | -   | -   | Η    | М    | Μ    | -    |
| CO5      | Η   | Η   | -   | -   | Μ   | -   | -   | -   | -   | Η    | М    | L    | -    |
| CO6      | Н   | М   | -   | -   | М   | -   | -   | -   | -   | Н    | М    | L    | -    |

L-Low M-Moderate H- High

#### 5. COURSE ASSESSMENT METHODS

#### **DIRECT:**

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

#### **INDIRECT**:

1. Course end survey (Feedback)

## NAME OF THE COURSE COORDINATOR: Mr. K. Srinivasan

#### **Elective Course I: VECTOR CALCULUS**

#### Semester: II

#### Credits: 5

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to:

| CO. No. | Course Outcomes                                                            | Level | Unit |  |
|---------|----------------------------------------------------------------------------|-------|------|--|
| C01     | Explain about derivative of vector and scalar functions                    | K5    | I    |  |
| C02     | CO2 Evaluate gradient and directional derivative of scalar point functions |       |      |  |
| CO3     | Estimate divergence and curl of a vector point functions                   | K6    | II   |  |
| CO4     | Determine vector integration                                               | K5    | III  |  |
| CO5     | <b>CO5</b> Evaluate line, surface and volume integrals                     |       | IV   |  |
| CO6     | Apply Stoke's and Greens theorem to compute the integrals                  | K3    | v    |  |

#### **2A. SYLLABUS**

#### **Unit I: Derivatives of Vector and Scalar Functions**

Limit of a vector function - Continuity of vector functions - Derivative of a vector function -Geometrical significance of vector differentiation - Physical application of derivatives of vectors -Partial derivatives of a vector function – Scalar and vector point functions – Level surface – Gradient of a scalar point function - Directional derivative of a scalar point function - Equation of tangent plane and normal line to level surface.

#### **Unit II: Divergence of Vector Functions** (18 hours)

Divergence and curl of a vector point function - Solenoidal vector - Irrotational vector - Vector identities.

#### **Unit III: Line Integrals**

Vector integration – Line integral – Application of line integral.

#### **Unit IV: Volume Integrals**

Surface and Volume integrals – Applications - Gauss Divergence theorem.

#### **Unit V: Surface Integrals**

Stoke's theorem – Green's theorem in plane.

#### **B. TOPICS FOR SELF STUDY**

| S1.<br>No. | Topics                         | Web Links                                                                               |  |  |
|------------|--------------------------------|-----------------------------------------------------------------------------------------|--|--|
| 1          | Chain Rule with more variables | https://ocw.mit.edu/Chain rule with more variables                                      |  |  |
| 2          | Two-Dimensional Flux           | https://ocw.mit.edu/courses/mathematics/-<br>greens-theorem/session-69-flux-in-2d       |  |  |
| 3          | Extended Greens Theorem        | https://ocw.mit.edu/courses/extended-greens-<br>theorem-boundaries-with-multiple-pieces |  |  |
| 4          | Maxwells Equations             | https://ocw.mit.edu/maxwells-equations                                                  |  |  |

#### **B. TEXTBOOK(S)**

P. R. Vittal and V. Malini, Vector Analysis, Margham Publications, Chennai, 2006.

Unit I Chapter 1 Page 1 - 20

Unit II Chapter 1 Page 22 - 51

## (20 hours)

#### (18 hours)

(18 hours)

(16 hours)

Hours/Week: 6

Course Code: U21MA2:1

| Unit III | Chapter 2 | Page 54 - 72   |
|----------|-----------|----------------|
| Unit IV  | Chapter 2 | Page 75 - 106  |
| Unit V   | Chapter 2 | Page 108 - 140 |

#### **C. REFERENCE BOOKS**

- 1. Dr. P. Mariappan and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt. Ltd, Chennai.
- 2. T. K. Manickavasagam Pillay and Others, Vector Calculus, S. Viswanathan Publications.
- 3. S. Shanti Narayan, A Text Book of Vector Calculus, S. Chand and Co., New Delhi, 2003.

#### **D. WEB LINKS**

- 1. NPTEL: Mathematics NOC: Multivariable Calculus
- 2. SWAYAM: Vector Calculus by Prof. Hari Shankar Mahato | IIT Kharagpur

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit /<br>Section | Course Content                                     | Learning outcomes                                                        | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |
|-------------------|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| I                 | Derivatives of Vector and Scala                    | r Functions                                                              |                                                            |  |  |
| 1.1               | Limit of a vector function                         | Illustrate the concept of vector function                                | K2                                                         |  |  |
| 1.2               | Continuity of vector functions                     | Explain about the continuity of vector function                          | K2                                                         |  |  |
| 1.3               | Derivative of a vector function                    | Find derivatives of vector function                                      | K1                                                         |  |  |
| 1.4               | Geometrical significance of vector differentiation | Relate the vector functions geometrically                                | K2                                                         |  |  |
| 1.5               | Scalar point functions                             | Illustrate scalar point function                                         | K2                                                         |  |  |
| 1.6               | vector point functions                             | Illustrate scalar point function                                         | K2                                                         |  |  |
| 1.7               | Level surface                                      | Understanding concept of level<br>surface                                | K2                                                         |  |  |
| 1.7               | Physical application of derivatives of vectors     | Apply the concept of derivatives of vectors                              | K3                                                         |  |  |
| 1.8               | Partial derivatives of a vector function           | Explain the concept of partial derivatives                               | K2                                                         |  |  |
| 1.9               | Gradient of a scalar point function                | Determine Gradient and<br>directional derivative of vector<br>functions. | K5                                                         |  |  |
| 1.10              | Directional derivative of a scalar point function  | Evaluate directional derivative of vector function                       | K5                                                         |  |  |
| II                | Divergence of Vector Functions                     | 5                                                                        |                                                            |  |  |
| 2.1               | Divergence of a vector functions                   | Understanding the facts of<br>Divergence of vector functions             | K2                                                         |  |  |
| 2.2               | Curl of a vector point function                    | Find Curl of Vector functions                                            | K1                                                         |  |  |
| 2.2               | Solenoidal vector                                  | Show that given vectors are solenoidal                                   | K2                                                         |  |  |
| 2.3               | Irrotational vector                                | Prove that given vectors are irrotational                                | K5                                                         |  |  |
| 2.4               | Vector identities                                  | Relating the equality of vector functions                                | K2                                                         |  |  |
| III               | Line Integrals                                     |                                                                          |                                                            |  |  |
| 3.1               | Vector integration                                 | Apply vector point function in integrals                                 | K3                                                         |  |  |
| 3.2               | Line integral                                      | Illustrate the line integrals                                            | K2                                                         |  |  |
| 3.3               | Application of line integral                       | Evaluate Line Integrals                                                  | K5                                                         |  |  |
| IV                | Volume Integrals                                   |                                                                          |                                                            |  |  |
| 4.1               | Surface Integrals                                  | Explain about surface integrals                                          | K2                                                         |  |  |
| 4.2               | Volume integrals                                   | Interpret volume integrals                                               | K2                                                         |  |  |
|                   |                                                    |                                                                          |                                                            |  |  |

| 4.3 | Applications of surface integrals             | Evaluate surface integrals                                           | K5 |
|-----|-----------------------------------------------|----------------------------------------------------------------------|----|
| 4.4 | Applications of volume integrals              | Evaluate volume integrals                                            | K5 |
| 4.5 | Gauss Divergence theorem                      | Prove and evaluate vector function<br>using Gauss divergence theorem | K5 |
| v   | Surface Integrals                             |                                                                      |    |
| 5.1 | Stoke's theorem                               | Compare surface integral and line integral                           | K5 |
| 5.2 | Evaluate surface integrals by Stoke's theorem | Evaluate surface integrals                                           | K5 |
| 5.3 | Green's theorem                               | Apply Green's theorem to evaluate integrals                          | K3 |
| 5.4 | Green's theorem in plane                      | Evaluate vector function using<br>Gauss divergence theorem           | K5 |

#### 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA2:1 | POI | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PS01 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Μ   | Η   | Μ   | -   | Η   | Η   | Μ   | Μ   | -   | Η    | М    | Μ    | Μ    |
| CO2      | Μ   | Η   | Μ   | -   | Η   | Μ   | Μ   | М   | -   | Η    | М    | Μ    | Μ    |
| CO3      | Μ   | Н   | М   | -   | М   | М   | L   | М   | -   | Н    | М    | Μ    | Μ    |
| CO4      | Μ   | Н   | М   | М   | М   | М   | М   | М   | -   | Н    | М    | Μ    | Μ    |
| CO5      | М   | Н   | М   | М   | Η   | М   | М   | L   | -   | Н    | М    | Н    | Н    |
| CO6      | М   | Η   | Μ   | М   | Η   | Μ   | Н   | L   | -   | Η    | М    | Η    | Н    |

L-Low M-Moderate

H- High

#### 5. COURSE ASSESSMENT METHODS

#### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

#### **INDIRECT**:

1. Course end survey (Feedback)

#### NAME OF THE COURSE COORDINATOR: Mr. K. Srinivasan

#### **Elective Course I – MATHLAB**

General objectives & Learning outcomes:

On completion of this course, the learner will

1. know the essential commands of MATLAB.

2. know how to solve flow problems using MATLAB.

3. be able to apply SIMULINK in population dynamics, Linear Economic models and Linear Programming Problems

## Unit I

MATLAB Basics – Input and Output – Arithmetic – Algebra – Symbolic Expressions, Variable Precision, and Exact Arithmetic – Managing Variables – Errors in Input – Online Help – Variables and Assignments – Solving Equations – Vectors and Matrices -Vectors – Matrices – Suppressing Output – Functions – Built-in functions – User defined functions – Graphics – The MATLAB Interface – M-Files – Loops

## Unit II

Suppressing Output – Data Classes – Functions and Expressions - More about M-Files – Complex Arithmetic – More on Matrices – Doing Calculus with MATLAB – Default variables- MATLAB Graphics – Two- Dimensional Plots – Three - Dimensional Plots-Special Effects – Customizing and Manipulating Graphics – Sound.

#### Unit III

M-Books - MATLAB Programming – Branching – More about Loops – Other Programming Commands – Interacting with the Operating System .

#### Unit IV

SIMULLINK and GUIS SIMULINK - Applications – Mortgage Payments – Monte Carlo Simulation - Population Dynamics – Linear Economic Models - Linear Programming – The 360 ° Pendulum.

#### Unit V

Applications (continued) -Numerical Solution of the Heat Equation – A Model of Traffic flow- Troubleshooting.

#### **Text Book**

Brian R.Hunt, Ronald L.Lipsman, Jonathan M. Rosenberg "A guide to MATLAB beginners and Experienced Users", Cambridge University Press edition, 2008.

Unit I Chapter 2 & 3 Unit II Chapter 4 & 5 Unit III Chapter 6 & 7 Unit IV Chapter 8 & 9 upto page 184

Unit V Chapter 9 (Pages 184 to 203) & Chapter 11 Practicals only

## References

- 1. Website: www.ann.jussieu.fr/free.htm
- 2. MATLAB The language of technical computing, The MATH WORKS Inc., Version 5 1996

(http: \\www.mathworks.com)

3. L.F. Shampine, I.Gladwell, S. Thompson , Solving ODEs with MATLAB, Cambridge University press 2003.

#### **Core Course III: SEQUENCES AND SERIES**

#### Semester: III

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to:

| CO. No. | Course Outcomes                                                        | Level | Unit |  |
|---------|------------------------------------------------------------------------|-------|------|--|
| CO 1    | Explain on basic terminology and convergence of sequences              | K5    | Ι    |  |
| CO 2    | Illustrate properties of convergent and divergent sequences.           | K2    | II   |  |
| CO 3    | Solve problems by applying properties                                  | K3    | II   |  |
| CO 4    | Explain the behavior of series and convergence of geometric series     | K5    | III  |  |
| CO 5    | Determine if a series convergent or divergent by applying various test | K5    | IV   |  |
| CO 6    | <b>6</b> Solve the alternating series problems.                        |       |      |  |

#### **2A. SYLLABUS**

#### **Unit I: Infinite sequences**

Definition of a metric space – 'R' as a metric space with usual metric – Infinite Sequences Bounded Sequences - Limit of a sequence- Convergent, Divergent and Oscillating Sequences.

#### Unit II: Properties of convergent and divergent sequences

Properties of convergent and divergent sequences - Monotonic sequences - Behavior of monotonic sequences - Theorems on limits.

#### Unit III: Cauchy sequence and infinite series

Subsequences - Cauchy's general principle of convergence - Infinite Series - Convergence, Divergence, and oscillation of a series - General properties of series -Geometric series.

#### Unit IV: Cauchy's general principle of convergence for series (15 hours)

Cauchy's general principle of convergence for infinite series - Comparison test for convergence and divergence of series of positive terms - The k-series- Application of the comparison tests (simple problems) – Binomial theorem for rational index – Exponential theorem – Logarithmic series.

#### Unit V: Various types of tests for convergence and divergence (15 hours)

An important property of convergent series - D'Alembert's ratio test with simple problems -Cauchy's root test - Cauchy's integral test and their simple problems- Raabe's test -Alternating series – Series of positive & negative terms - Tests for absolute convergence.

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                | Web Links                                                              |
|-----------|-----------------------|------------------------------------------------------------------------|
| 1         | Sequence of functions | https://mathcs.org/analysis/reals/funseq/<br>pconv.html                |
| 2         | Power Series          | https://www.whitman.edu/mathematics/ca<br>lculus_online/chapter11.html |

## (15 hours)

## (16 hours)

(14 hours)

#### Course Code: U21MA303

Hours/Week: 5

| 3 | Application of sequences and series           | https://www.utas.edu.au/mathematics-<br>pathways/pathway-to-<br>engineering/supporting-modules-8-12 |
|---|-----------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 4 | Series of complex numbers and its convergence | https://complex-<br>analysis.com/content/series.html                                                |

#### C. TEXTBOOK(s)

1. M. K. Venkatraman and Manorama Sridhar, Sequences and Series, The National Publishing Company, 2002.

| Unit | Ι   | Chapter 2 | § | 2.1 - 2.6          |              |             |
|------|-----|-----------|---|--------------------|--------------|-------------|
| Unit | II  | Chapter 2 | § | 2.7 - 2.11         |              |             |
| Unit | III | Chapter 2 | § | 2.12, 2.15, 2.16   | Chapter 3    | § 3.1 - 3.5 |
| Unit | IV  | Chapter 3 | § | 3.6 - 3.12         | Chapter 4    | § 4.4       |
|      |     | Chapter 5 | § | 5.3                | Chapter 6    | §6.1,6.2    |
| Unit | V   | Chapter 3 | § | 3.13 - 3.16, 3.19, | 3.20, 3.25 - | - 3.28      |

#### **D. REFERENCE BOOKS**

- 1. M. K. Singal and Asha Rani Singal, A First Course in Real Analysis, R. Chand & Co., 2008.
- 2. S. Arumugam, A. Thangapandi Isaac, Sequences and Series, New Gamma Publishing House, 1999.
- 3. T. K. Manicavachagom Pillay, T. Natarajan and K. S Ganapathy, Algebra (Volume 1), S. Viswanathan Pvt. Ltd., 2004.

4. Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co. Pvt. Ltd., 2017.

#### E. WEB LINKS

- 1. https://nptel.ac.in/courses/122/104/122104017/
- 2. https://nptel.ac.in/courses/111/106/111106053/

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit /<br>Section | Course Content                                            | Learning outcomes                                                                             | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|-------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Unit - I          | Infinite Sequences                                        |                                                                                               |                                                            |
| 1.1               | Introduction of infinite sequences                        | Explain infinite sequence                                                                     | K2                                                         |
| 1.2               | Bounded<br>sequences                                      | Explain bounded sequences                                                                     | K2                                                         |
| 1.3               | Convergent<br>sequences                                   | Describe the definition of convergent<br>sequence and analyze the definition<br>geometrically | K4                                                         |
| 1.4               | Null sequences                                            | Analyze the concept of null sequences and its properties                                      | K4                                                         |
| 1.5               | Divergent and<br>Oscillating<br>sequences                 | Describe the definition of divergent<br>sequence and analyze the definition<br>geometrically  | K4                                                         |
| Unit II           | <b>Properties of conve</b>                                | ergent and divergent sequences                                                                |                                                            |
| 2.1               | Properties of<br>convergent and<br>divergent<br>sequences | Explain properties of convergent and divergent sequences                                      | K2                                                         |

| 2.2      | Monotonic<br>sequences                                                              | Explain monotonic sequence                                                        | K2 |
|----------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----|
| 2.3      | Behavior of<br>Monotonic<br>Sequences                                               | Analyze the monotonic sequence of convergence geometrically                       | K4 |
| 2.4      | Theorems on limits                                                                  | Solve the problem using Cauchy's limit theorems                                   | К3 |
| Unit III | Cauchy sequence a                                                                   | nd Infinite series                                                                |    |
| 3.1      | Subsequences                                                                        | Explain subsequences                                                              | K2 |
| 3.2      | Cauchy sequences<br>and Cauchy's<br>general principle of<br>convergence             | Analyze Cauchy's principle of convergence                                         | K4 |
| 3.3      | Infinite series and<br>Convergence,<br>Divergence and<br>Oscillation of a<br>series | Explain series of convergence and<br>divergence through sequence<br>convergence   | K2 |
| 3.4      | General properties<br>of Series and the<br>Geometric series                         | Analyze the Geometric series of convergence                                       | K4 |
| Unit IV  |                                                                                     | rinciple of convergence for series                                                |    |
| 4.1      | Cauchy's general<br>principle of<br>convergence for<br>infinite series              | Analyze the Cauchy's principle                                                    | K4 |
| 4.2      | Comparison test<br>for convergence<br>and divergence of a<br>series and k-series    | Analyze the comparison test and k-series<br>and apply this test to solve problems | K4 |
| 4.3      | Binomial theorem<br>for rational index                                              | Determine the limit of binomial series                                            | K5 |
| 4.4      | Exponential<br>theorem                                                              | Analyze the exponential series convergence                                        | K4 |
| 4.5      | Logarithmic series                                                                  | Analyze the logarithmic series convergence                                        | K4 |
| Unit V   | Various types of te                                                                 | st for convergence and divergence                                                 |    |
| 5.1      | D' Alembert ratio<br>test                                                           | Analyze the D' Alembert ratio test for convergence and divergence                 | K4 |
| 5.2      | Cauchy's root test                                                                  | Solve problems by using Cauchy root test                                          | К3 |
| 5.3      | Cauchy's integral test                                                              | Solve problems by using integral test                                             | К3 |
| 5.4      | Raabe's test                                                                        | Solve problems by using Raabe's tests                                             | КЗ |
| 5.5      | Alternating series                                                                  | Analyze the Leibnitz's test for convergence                                       | K4 |
| 5.6      | Series of positive<br>and negative terms<br>and test for<br>absolute<br>convergence | Explain the absolute convergence and conditionally convergent                     | K2 |

#### 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA303 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | PO8 | 909   | PS01   | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-------|--------|------|------|------|
| CO1      | Η   | Н   | Н   | М   | М   | Η   | Η   | Η   | -     | Н      | М    | М    | М    |
| CO2      | Η   | Н   | Н   | М   | Η   | Η   | Η   | Η   | -     | Н      | М    | М    | М    |
| CO3      | Н   | Н   | Н   | -   | Н   | Η   | Н   | Н   | -     | Н      | М    | Н    | Н    |
| CO4      | Н   | Н   | Н   | -   | Н   | Η   | Н   | Η   | -     | Н      | М    | Н    | Н    |
| CO5      | Η   | Н   | Н   | -   | Н   | Η   | Н   | Η   | -     | Н      | Μ    | Н    | Н    |
| CO6      | Н   | Н   | Н   | -   | Н   | Н   | Н   | Н   | -     | Н      | М    | Н    | Н    |
|          |     |     |     |     |     | L-L | ow  | 1   | M-Mod | lerate |      | H    | High |

#### **5. COURSE ASSESSMENT METHODS**

#### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

#### **INDIRECT**:

1. Course end survey (Feedback)

NAME OF THE COURSE COORDINATOR: Mr. N. Lakshmi Narayanan

#### **Core Course IV: DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS**

Semester: III

#### Course Code: U21MA304

## Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to

| CO. No. | Course Outcomes                                                         | Level | Unit |
|---------|-------------------------------------------------------------------------|-------|------|
| CO1     | Solve ordinary differential equations of first and second order.        | К3    | Ι    |
| CO2     | Find Particular integral for various forms of X.                        | K5    | Ι    |
| CO3     | Solve exact differential equations of first order but of higher degree. | КЗ    | п    |
| CO4     | Identify the standard form of partial differential equation.            | K4    | III  |
| CO5     | Define Laplace and inverse Laplace transforms.                          | К3    | IV   |
| CO6     | Apply Laplace transforms to solve differential equations.               | K6    | V    |

#### **2A. SYLLABUS**

#### **Unit I: Differential Equations**

Differential Equations - Linear differential equations with constant coefficients - The operators D and D<sup>-1</sup>– Particular Integral – Special methods of finding particular integral – Linear equations with variable coefficients – To find the particular integral – Special method of evaluating the particular integral when x is of the form x<sup>m</sup>.

#### **Unit II: Exact differential equations**

Exact differential equations – conditions of integrability of Mdx + Ndy = 0 – Practical rule for solving an exact differential equation – Rules for finding integrating factors – equations of the first order but of higher degree – Solvable for x, y, dy/dx – Clairaut's form – equations that do not contain x explicitly - Equations that do not contain y explicitly- Equations homogeneous in x & y.

#### **Unit III: Partial differential equations**

Partial differential equations - Derivation of partial differential equations by elimination of constants, arbitrary functions - Different Integrals of P.D.E. - Solutions of P.D.E. in some simple cases- Standard types of first order equations - Standard I, II, III, IV - Equations reducible to the standard forms - Lagrange's equation.

#### **Unit IV: Laplace Transforms**

The Laplace Transforms - Sufficient conditions for the existence of the Laplace Transforms -Laplace Transforms of periodic functions - General theorems - Evaluation of certain integrals using Laplace Transforms.

#### Unit V: The Inverse transforms

The Inverse transforms – Inverse transforms of functions – Method of partial fractions – Application of Laplace Transforms to solve ordinary differential equations

#### (20 hours)

#### (20 hours)

## (15 hours)

# (10 hours)

#### (10 hours)

## Hours/Week: 5

#### **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                                    | Web Links                                                                           |
|-----------|-------------------------------------------|-------------------------------------------------------------------------------------|
| 1         | Differential Equations of higher order    | https://www.math.ucdavis.edu/~tracy/cour<br>ses/math22B/22BBook.pdf                 |
| 2         | Orthogonal Families of Curves             | https://vardhaman.org/wp-<br>content/uploads/2018/12/Mathematics-<br>I.pdf          |
| 3         | One Dimensional Wave and Heat<br>Equation | http://egov.uok.edu.in/eLearningDistance/t<br>utorials/7970_4_2017_170727143335.pdf |
| 4         | Applications of Laplace transform         | https://math.mit.edu/~jorloff/18.04/notes/<br>topic12.pdf                           |

#### C. TEXTBOOK(s)

1. S. Narayanan & T. K. Manickavasagam Pillay, Calculus Volume III, S. Viswanathan Pvt. Ltd., 2008.

#### **D. REFERENCE BOOKS**

- 1. P. R. Vittal, Differential Equations and Laplace Transforms, Margham Publications, 2004.
- 2. S. Sudha, Differential Equations and Integral Transforms, Emerald Publishers, 2003.

#### E. WEB LINKS

- 1. https://nptel.ac.in/courses/111/106/111106100/
- 2. https://nptel.ac.in/courses/111/106/111106139/

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit /<br>Section | Course Content                                              | Learning outcomes                                                       | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |
|-------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| I                 | Differential Equations with c                               | onstant coefficients                                                    |                                                            |  |  |
| 1.1               | Linear differential equations<br>with constant coefficient  | Identify a linear differential<br>equation with constant<br>coefficient | K3                                                         |  |  |
| 1.2               | The operators D and D-1                                     | Define the operators D and D <sup>-1</sup>                              | K1                                                         |  |  |
| 1.3               | Special methods of finding particular integral              | Solve Differential equations<br>with different forms of X               | K3                                                         |  |  |
|                   | Differential Equations with v                               | ariable coefficients                                                    |                                                            |  |  |
| 1.4               | Linear differential equations<br>with variable coefficients | Identify a linear differential<br>equation with Variable<br>coefficient | K3                                                         |  |  |
| 1.5               | Special methods of finding particular integral              | Solve Differential equations<br>with different forms of X               | K3                                                         |  |  |
| II                | <b>Exact differential equations</b>                         |                                                                         |                                                            |  |  |
| 2.1               | Exact differential equations                                | Define an Exact differential equation                                   | K1                                                         |  |  |
| 2.2               | conditions of integrability of<br>Mdx + Ndy = 0             | Construct the condition of integrability                                | K6                                                         |  |  |
| 2.3               | Practical rule for solving an exact differential equation   | List the rules for solving an<br>Exact differential equation            | K4                                                         |  |  |

| 2.4 | Rules for finding integrating factors                                                                     | Formulate rules for finding integrating factors                         | K6 |  |  |
|-----|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----|--|--|
| 2.5 | Equations of the first order but of higher degree                                                         | List types of equations of first<br>order but of higher degree          | K4 |  |  |
| 2.6 | Solvable for x, y, dy/dx                                                                                  | Solve equations of the form $f(x,y,p)=0$ and solve for x, y, $dy/dx$    | K3 |  |  |
| 2.7 | Clairaut's form                                                                                           | Define Clairaut's form to solve<br>the special case                     | K1 |  |  |
| 2.8 | Equations that do not contain<br>x, y explicitly and<br>homogeneous in x and y                            | Solve equations that do not contain x and y explicitly                  | K3 |  |  |
| III | Partial Differential Equations                                                                            |                                                                         |    |  |  |
| 3.1 | Derivation of partial<br>differential equations by<br>elimination of constants and<br>arbitrary functions | Design PDE by elimination of constants                                  | K6 |  |  |
| 3.2 | Derive PDE by elimination of constants                                                                    | List the different integrals of PDE                                     | K4 |  |  |
| 3.3 | Standard types of first order equations                                                                   | Create the standard types of<br>first order equations                   | K6 |  |  |
| 3.4 | Standard I, II, III, IV                                                                                   | Solve the standard types of first order equations                       | КЗ |  |  |
| 3.5 | Equations reducible to the standard forms                                                                 | Identify the equations reducible to standard forms                      | K3 |  |  |
| 3.6 | Lagrange's equation                                                                                       | Solve Lagrange's equations                                              | КЗ |  |  |
| IV  | Laplace Transforms                                                                                        |                                                                         |    |  |  |
| 4.1 | Laplace Transforms                                                                                        | Define Laplace Transforms                                               | K1 |  |  |
| 4.2 | Sufficient conditions for the<br>existence of the Laplace<br>Transforms                                   | Identify the condition for<br>existence of Laplace transforms           | КЗ |  |  |
| 4.3 | Laplace Transforms of periodic functions                                                                  | Evaluate the Laplace<br>transforms for periodic<br>functions            | К5 |  |  |
| 4.4 | General theorems                                                                                          | List various theorems on<br>Laplace transforms                          | K4 |  |  |
| 4.5 | Evaluation of certain integrals<br>using Laplace<br>Transforms                                            | Identify certain integrals and solve using Laplace transform            | K3 |  |  |
| V   | Inverse Laplace Transforms                                                                                |                                                                         |    |  |  |
| 5.1 | Inverse transforms of<br>functions                                                                        | Define inverse of Laplace<br>transforms                                 | K1 |  |  |
| 5.2 | Method of partial fractions                                                                               | Evaluate Laplace transforms<br>using the method of Partial<br>fractions | К5 |  |  |
| 5.3 | Application of Laplace<br>Transforms to solve ordinary<br>differential equations                          | Apply Laplace transforms to<br>solve Ordinary differential<br>equations | K3 |  |  |

## 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA304 | PO1 | P02 | PO3 | P04 | 204 | 90d | P07 | 80d | 60d | 10S4 | PS02 | EOS4 | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Μ   | Η   | L   | Η   | L   | L   | L   | М   | -   | М    | М    | Η    | L    |
| CO2      | L   | L   | L   | Н   | L   | М   | -   | М   | -   | Η    | М    | Н    | L    |

| CO3 | L | М | М | М | L | L | - | L | - | М | L | L | L |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | - | - | - | - | - | L | - | L | - | L | - | L | L |
| CO5 | М | - | L | L | L | L | - | L | - | L | L | L | - |
| CO6 | М | М | М | Η | L | М | - | Μ | - | М | М | М | L |

L-Low M-Moderate H- High

#### 5. COURSE ASSESSMENT METHODS

#### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

#### **INDIRECT**:

1. Course end survey (Feedback)

#### NAME OF THE COURSE COORDINATOR: Dr. P. Ambika

#### Allied course III: MATHEMATICAL STATISTICS I

#### Semester: III

#### Course Code: U21MAS31

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to:

| CO.<br>No. | Course Outcomes                                                                                                                     | Level | Unit |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Analyse statistical data using the measure of central tendency, measures of dispersion, skewness, and kurtosis.                     | К4    | Ι    |
| CO2        | Apply the basic probability rules under additive and multiplication<br>laws, illustrating independent and mutually exclusive events | КЗ    | п    |
| CO3        | Identity the characteristics of different discrete and continuous distribution.                                                     | K2    | п    |
| CO4        | Distinguish various density function and find mathematical expectation, moments, and characteristics function.                      | К5    | III  |
| C05        | Determine expectation, variance and moment generating function of continuous random variable                                        | К5    | IV   |
| CO6        | Evaluate the correlation and regression.                                                                                            | K5    | v    |

#### 2A. SYLLABUS

#### Unit I: Measure of Central Tendency

Measures of central tendency – Arithmetic mean - Median – Mode – Geometric mean – Harmonic mean –Measures of dispersion - Range – Quartile deviation – Mean deviation – Standard deviation and root mean square deviation – coefficient of dispersion – Skewness -Kurtosis.

#### Unit II: Baye's Theorem

Probability – Mathematical Notion – law of multiplication – Baye's theorem – random variable – distribution function – discrete random variable – continuous random variable.

#### Unit III: Probability Mass Function and Mathematical Expectation (12 hours)

Joint probability mass function and marginal and conditional probability function – joint probability distribution function – joint density function – marginal density function – independent random variables – The conditional distribution function and conditional probability density function – mathematical expectation – addition and multiplication theorem of expectation – covariance.

#### **Unit IV: Moment Generating Function**

Expectation of a continuous random variable – conditional expectation and conditional variance – moment generating function – cumulants – characteristic function.

#### **Unit V: Bivariate Frequency Distribution**

Bi-variate distribution, correlation – scatter diagram – Karl Pearson coefficient of correlation – calculation of the correlation coefficient for a bivariate frequency distribution – rank correlation – regression – lines of regression.

#### (12 hours)

(12 hours)

# (12 hours)

#### (12 hours)

able to:

Hours/Week: 4

#### **B. TOPICS FOR SELF STUDY**

| S1.<br>No. | Topics                             | Web Links                                                                                                                     |
|------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1          | Transformation of Random Variables | https://wwwf.imperial.ac.uk/~ayoung/m<br>2s1/M2S12011.PDF                                                                     |
| 2          | Central limit theorem              | https://www.probabilitycourse.com/chap<br>ter7/7_1_2_central_limit_theorem.php                                                |
| 3          | Geometric Distribution             | https://opentextbc.ca/introbusinessstato<br>penstax/chapter/geometric-distribution/                                           |
| 4          | Uniform distribution               | https://learn.lboro.ac.uk/archive/olmp/<br>olmp_resources/pages/workbooks_1_50_j<br>an2008/Workbook38/38_2_unifm_dist.p<br>df |

#### C. TEXTBOOK(s)

1. S.C. Gupta, V.K. Kapoor, Elements of Mathematical Statistics, Sultan Chand & sons, Educational Publishers, New Delhi, 3<sup>rd</sup> Edition, Reprint 2008.

| Unit I   | Chapter 2 § 2.3, 2.5-2.9                                |
|----------|---------------------------------------------------------|
|          | Chapter 3 § 3.3-3.6, 3.7, 3.7.1, 3.7.2, 3.8, 3.11, 3.12 |
| Unit II  | Chapter 4 § 4.6, 4.7, 4.8                               |
|          | Chapter 5 § 5.1, 5.2, 5.3, 5.4                          |
| Unit III | Chapter 5 § 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.5           |
|          | Chapter 6 § 6.1, 6.2, 6.3, 6.4                          |
| Unit IV  | Chapter 6 § 6.7, 6.8, 6.9, 6.10, 6.11                   |
| Unit V   | Chapter 10 § 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.7.1 |
|          |                                                         |

#### **D. REFERENCE BOOKS**

- 1. A.M. Mood, F.A. Faybill, and O.C. Bosses, Introduction to Theory of Statistics, McGraw hill,1974.
- 2. Rahatgi, U.K., An introduction to probability theory and Mathematical statistics, Wiley Eastern, 1984.

#### E. WEB LINKS

- 1. https://onlinecourses.swayam2.ac.in/cec20\_ma01/preview
- 2. https://nptel.ac.in/courses/111/105/111105041/

#### **3. SPECIFIC LEARNING OUTCOMES (SLOs)**

| Unit /<br>Section | Course Content               | Learning outcomes                               | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |  |  |
|-------------------|------------------------------|-------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| I                 | Measures of central tendency | 7                                               |                                                            |  |  |  |  |
| 1.1               | Arithmetic mean              | Recall basic statistical measures and summarize | K1                                                         |  |  |  |  |
| 1.2               | Median                       | Find median of Statistical data's               | K1                                                         |  |  |  |  |
| 1.3               | Mode                         | Find mode of Statistical data's                 | K1                                                         |  |  |  |  |
| 1.4               | Geometric mean               | Define Geometric mean                           | K1                                                         |  |  |  |  |
| 1.5               | Harmonic Mean                | Define Harmonic Mean                            | K1                                                         |  |  |  |  |
| 1.6               | Measures of dispersion       | Illustrate measures of dispersion and           |                                                            |  |  |  |  |

| 1.7 | Skewness                                                              | Analyse the measure of symmetricity                                                                                  | K4 |
|-----|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----|
| 1.8 | Kurtosis                                                              | Illustrate the measures of kurtosis                                                                                  | K2 |
| II  | Probability                                                           |                                                                                                                      |    |
| 2.1 | Probability and mathematical notation                                 | Illustrate with examples and<br>summarize the probability<br>axioms and the mathematical<br>notations.               | K3 |
| 2.2 | Baye's theorem                                                        | Apply Baye's theorem to solve problems                                                                               | КЗ |
| 2.3 | Random variable                                                       | Explain random variable                                                                                              | K2 |
| 2.4 | Distribution Functions                                                | Defin Distribution Function                                                                                          | K2 |
| 2.5 | Continuous random variable                                            | Evaluate the values of<br>Continuous random variable                                                                 | K5 |
| 2.6 | Discrete random variable                                              | Evaluate the values of Discrete random variable                                                                      | K5 |
| III | Distributions                                                         |                                                                                                                      |    |
| 3.1 | Joint Probability function.                                           | Classify the probability mass<br>function and probability<br>density function                                        | К3 |
| 3.2 | Conditional probability function                                      | Explain conditional probability function                                                                             | K2 |
| 3.3 | Probability distribution                                              | Explain probability distribution function                                                                            | K2 |
| 3.4 | Density function                                                      | Define density function                                                                                              | K1 |
| 3.5 | Independent random<br>variables                                       | Explain the definitions and<br>properties for two-dimensional<br>random variable on joint<br>distribution function.  | K2 |
| 3.6 | Conditional probability<br>density function                           | Interpret conditional<br>probability density function                                                                | K2 |
| 3.7 | Mathematical expectation                                              | Obtain the expectation of the random variable.                                                                       | K5 |
| 3.8 | Covariance                                                            | Evaluate covariance of probability mass function                                                                     | K5 |
| IV  | Expectation of a continuous                                           | random variable                                                                                                      |    |
| 4.1 | Continuous expectation                                                | Explain the definition and<br>properties and theorems of the<br>expectation of continuous<br>random variable         | K2 |
| 4.2 | Conditional expectation                                               | Explain conditional expectation                                                                                      | K2 |
| 4.3 | Variance                                                              | Determine variance of the function                                                                                   | K5 |
| 4.4 | Moment generating function,                                           | Determine moment generating function                                                                                 | K5 |
| 4.5 | Cumulants                                                             | Find cumulants                                                                                                       | K1 |
| V   | <b>Correlation and Regression</b>                                     |                                                                                                                      |    |
| 5.1 | Bi-variate distribution and                                           | Classify Bi-variate distribution,<br>correlation; scatter diagram and<br>Karl Pearson coefficient of<br>correlation. | K3 |
| 5.2 | correlation (including Karl<br>Pearson coefficient of<br>correlation) | Evaluate Coefficient of<br>Correlation                                                                               | К5 |
| 5.3 | Bivariate frequency<br>distribution                                   | Evaluate the problems on rank<br>correlation, regression and lines<br>of regression.                                 | K5 |

| 5.4 | Properties and theorems      | List out properties                                                              | K1 |
|-----|------------------------------|----------------------------------------------------------------------------------|----|
| 5.5 | Problems on rank correlation | Evaluate rank correlation                                                        | K5 |
| 5.6 | Problems on regression       | Explain the regression of two<br>lines and estimate unknown<br>values from known | К5 |

#### 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MAS31 | PO1 | P02 | EO4 | P04 | 204 | 90d | 704 | PO8 | 60d | IOSA | PS02 | EOSA | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | Н   | Н   | Η   | Н   | Н   | Μ   | Μ   | -   | Η    | Н    | Н    | Η    |
| CO2      | Н   | Н   | Η   | Н   | Η   | Η   | Μ   | Η   | -   | Η    | Μ    | Μ    | Η    |
| CO3      | Η   | Η   | Η   | Η   | Η   | Η   | Μ   | Μ   | -   | Η    | Μ    | Η    | Μ    |
| CO4      | Η   | Η   | Η   | Η   | Η   | Η   | Μ   | Μ   | -   | Η    | -    | Μ    | Μ    |
| CO5      | Н   | Η   | Η   | Η   | Η   | Η   | Η   | Μ   | -   | Η    | Μ    | Μ    | Η    |
| CO6      | Н   | Н   | Н   | Н   | Η   | Η   | Н   | Н   | -   | Η    | Н    | Н    | Η    |

L-Low M-Moderate H- High

#### 5. COURSE ASSESSMENT METHODS

#### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

#### **INDIRECT**:

1. Course end survey (Feedback)

#### NAME OF THE COURSE COORDINATOR: Mrs. A. Leonishiya

#### **Core Course V: THEORY OF EQUATIONS AND FOURIER SERIES**

#### Semester: IV

Credits: 5

#### Course Code: U21MA405

Hours/Week: 6

#### **1. COURSE OUTCOMES**

#### After the completion of this course, the students will be able to:

| CO. No. | Course Outcomes                                                                                                    | Level | Unit |
|---------|--------------------------------------------------------------------------------------------------------------------|-------|------|
| CO1     | Relation between the roots and coefficients of a polynomial equation                                               | К5    | I    |
| CO2     | Identify reciprocal equations from polynomial equations<br>and apply relevant methods to solve them                | К3    | II   |
| CO3     | Apply rules of signs to find the real roots and imaginary roots of a polynomial equation.                          | К3    | III  |
| C04     | Determine the transformed equation by increasing or decreasing the roots of the given equation.                    | К3    | III  |
| CO5     | Explain periodic functions and find Fourier series expansion for them                                              | К5    | IV   |
| C06     | Distinguish between odd and even functions and apply the formulae to find the Fourier series expansion accordingly | K4    | v    |

#### 2A. SYLLABUS

#### Unit I: Relation between roots and coefficients of polynomial equations (18 hours)

Relations between the roots and coefficients - Symmetric functions of the roots – Sum of the powers of the roots - Newton's theorem.

#### Unit II: Transformations of equations

Transformations of equations – Reciprocal equations – Diminishing and increasing the roots – form of the quotient and remainder when a polynomial is divided by a binomial – Removal of terms.

#### Unit III: Different methods for finding real and imaginary roots (18 hours)

Formation of equation whose roots are any power of the roots of a given equation – Transformation in general – Descartes' rule of signs – Horner's Method.

#### Unit IV: Periodic function and Fourier Series expansion

Definition of Fourier series – Finding Fourier series expansion of a periodic function with period  $2\pi$  - Odd and even functions.

#### Unit V: Half-range Fourier cosine and sine series (18 he

Half Range Fourier series - Development in cosine series-development in sine series-Change of interval-Combination of series.

#### (18 hours)

#### (18 hours)

(18 hours)

#### **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                                     | Web Links                                                                                                                             |
|-----------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1         | A first course in the theory of equations  | https://www.gutenberg.org/files/29785/<br>29785-pdf.pdf                                                                               |
| 2         | One Dimensional wave Equations             | https://ocw.mit.edu/courses/mathemati<br>cs/18-303-linear-partial-differential-<br>equations-fall-2006/lecture-<br>notes/waveeqni.pdf |
| 3         | Real world examples of quadratic equations | https://www.mathsisfun.com/algebra/q<br>uadratic-equation-real-world.html                                                             |
| 4.        | One Dimensional Heat Equations             | https://math.libretexts.org/Bookshelves/<br>Differential_Equations/the_heat_equation                                                  |

#### C. TEXTBOOK(s)

T. K. Manickavasagam Pillay, T. Natarajan, K. S. Ganapathy, Algebra Volume I, S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2011 (Units I, II & III).
 T. K. Manickavasagam Pillay, S. Narayanan, Calculus Volume III, S. Viswanathan Pvt. Ltd., 2008 (Units IV & V).

| Unit I   | Chapter 6 | § 11 to 14    |
|----------|-----------|---------------|
| Unit II  | Chapter 6 | § 15 to 19    |
| Unit III | Chapter 6 | § 20,21,24,30 |
| Unit IV  | Chapter 6 | § 1 to 3      |
| Unit V   | Chapter 6 | § 4 to 7      |

#### **D. REFERENCE BOOKS**

- 1. Dr R Gethsi Sharmila and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.
- 2. S. Arumugam and Issac, Trigonometry & Fourier Series 2000.
- 3. M. L. Khanna., Theory of Equations, Jaiprakash, Merrut, 1983.

#### E. Web Links:

- 1. https://nptel.ac.in/courses/111/106/111106111/
- 2. https://nptel.ac.in/courses/111/101/111101117/

#### 3. SPECIFIC LEARING OUTCOMES (SLOs)

| Unit /<br>Section | Course Contents                              | Learning Outcomes                                                   | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |
|-------------------|----------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|--|--|
| I                 | Relation between roots an                    | nd coefficients of polynomial eq                                    | uations                                                    |  |  |
| 1.1               | Relations between the roots and coefficients | Relate the roots and<br>coefficients of a polynomial<br>equation    | K2                                                         |  |  |
| 1.2               | Symmetric functions of the roots             | Explain symmetric functions of the roots                            | K2                                                         |  |  |
| 1.3               | Sum of the powers of the roots               | Find the sum of powers of the roots                                 | K1                                                         |  |  |
| 1.4               | Newton's theorem.                            | Apply Newtons' theorem to<br>find the sum of powers of the<br>roots | K3                                                         |  |  |

| п   | Transformations of equat                                                                                                                                                                | ions                                                                                                  |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----|
| 2.1 | Transformations of equations                                                                                                                                                            | Define reciprocal equation                                                                            | K1 |
| 2.2 | Reciprocal equations                                                                                                                                                                    | Resolve the reciprocal equation                                                                       | K4 |
| 2.3 | Diminishing and<br>increasing the roots                                                                                                                                                 | Identify the transformed<br>equation by diminishing or<br>increasing the roots by a given<br>quantity | K2 |
| 2.4 | Finding quotient and<br>remainder when a<br>polynomial is divided by a<br>binomial                                                                                                      | Determine the quotient and<br>remainder when a polynomial<br>is divided by the other<br>polynomial    | K4 |
| 2.5 | Removal of terms                                                                                                                                                                        | Develop a method to remove a term from the equation.                                                  | K5 |
| III |                                                                                                                                                                                         | ding real and imaginary roots                                                                         |    |
| 3.1 | Formation of equation<br>whose roots are any<br>power of the roots of a<br>given equationDeduce an equation whose<br>roots are the squares or cubes<br>of the roots of a given equation |                                                                                                       | K5 |
| 3.2 | Transformation in general                                                                                                                                                               | Review the method to<br>transformation of equations in<br>general                                     | K6 |
| 3.3 | Descartes' rule of signs                                                                                                                                                                | Classify the real and<br>imaginary roots by applying<br>Descartes's rule of signs                     | K4 |
| 3.4 | Horner's Method.                                                                                                                                                                        | Apply Horner's method to find<br>a real root of the given<br>equation                                 | K3 |
| IV  | Periodic function and Fou                                                                                                                                                               | rier Series expansion                                                                                 |    |
| 4.1 | Definition of Fourier<br>series Finding Fourier<br>series expansion of a<br>periodic function with<br>period $2\pi$                                                                     | Understand periodic function                                                                          | K2 |
| 4.2 | Finding Fourier series<br>expansion of a periodic<br>function with period $2\pi$                                                                                                        | Design Fourier series<br>expansion of given function                                                  | K5 |
| 4.3 | Odd and even functions.                                                                                                                                                                 | Differentiate odd and even functions                                                                  | K4 |
| V   | Half-range Fourier cosine                                                                                                                                                               |                                                                                                       |    |
| 5.1 | Half Range Fourier series                                                                                                                                                               | Express half range Fourier<br>series for the given function                                           | K2 |
| 5.2 | Development in cosine<br>and sine series                                                                                                                                                | Develop Fourier cosine and<br>sine series for the given<br>function                                   | К5 |
| 5.3 | Change of interval                                                                                                                                                                      | Construct Fourier series for<br>the given periodic function<br>with period 2 <i>l</i>                 | К5 |
| 5.4 | Combination of series.                                                                                                                                                                  | Deduct Fourier series for the<br>given function from the<br>combination of series                     | K5 |

#### 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA405 | P01 | P02 | PO3 | P04 | P05 | P06   | P07 | 804 | 60d         | PS01   | PS02 | PSO3 | PSO4    |
|----------|-----|-----|-----|-----|-----|-------|-----|-----|-------------|--------|------|------|---------|
| CO1      | Н   | М   | М   | L   | L   | М     | L   | -   | -           | М      | Η    | Η    | М       |
| CO2      | Н   | М   | Μ   | L   | L   | М     | L   | -   | -           | М      | М    | -    | М       |
| CO3      | Н   | М   | Μ   | L   | L   | L     | М   | -   | -           | L      | L    | М    | L       |
| CO4      | Н   | L   | L   | -   | -   | М     | М   | -   | -           | L      | М    | L    | L       |
| CO5      | М   | -   | -   | -   | -   | -     | -   | L   | -           | -      | L    | -    | L       |
| CO6      | М   | -   | L   | -   | М   | -     | L   | -   | -           | -      | L    | L    | -       |
|          |     |     |     |     |     | L-Low |     |     | <b>M</b> -I | Modera | ate  | H    | I- High |

#### 5. COURSE ASSESSMENT METHODS

#### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

## **INDIRECT**:

1. Course end survey (Feedback)

#### NAME OF THE COURSE COORDINATOR: Dr. P. Ambika

#### Allied course IV: MATHEMATICAL STATISTICS II

#### Semester: IV

#### Course Code: U21MAS42

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to:

| CO.<br>No. | Course Outcomes                                                                                             | Level | Unit |
|------------|-------------------------------------------------------------------------------------------------------------|-------|------|
| 1          | Apply the theoretical discrete and Continuous distribution                                                  | К3    | Ι    |
| 2          | Analyze the Normal, Gamma, Beta, Exponential, Chi-square distributions.                                     | К4    | II   |
| 3          | Identify Sampling, Parameter and Statistic, Estimators, Rao-<br>Cramer inequality.                          | КЗ    | III  |
| 4          | Evaluate Test of significance, Null hypothesis, Sampling distributions.                                     | К5    | IV   |
| 5          | Evaluate Chi-Square probability cure, Chi-Square distribution, F-Statistic, ANOVA (one way classification). | К5    | v    |
| 6          | Evaluate Samplings, Null hypothesis, Test of significance, Chi –<br>Square distribution                     | К5    | v    |

#### 2A. SYLLABUS

#### Unit I: Discrete and Continuous distributions

Bernoulli distribution – Binomial distribution – Poisson distribution - Rectangular distribution

#### Unit II: Normal, Gamma, Beta, Exponential Distribution

Normal distribution - Gamma distribution – Beta distribution of first and second kind – exponential distribution-Chi-square variate – derivation of the Chi-square distribution – MGF of Chi-square distribution.

#### Unit III: Sampling, Parameter and Statistic

Sampling introduction – types of sampling – parameters and statistic - Introduction to theory of estimation–characteristics of estimators – method of estimation – Rao-Cramer inequality.

#### Unit IV: Test of Hypothesis

Tests of significance – null hypothesis – errors in sampling – critical region and level of significance – tests of significance for large samples – sampling of attributes.

#### **Unit V: Test of Statistics**

Chi-square probability curve - Applications of Chi-square distribution – Introduction – student's 't' – F-statistic - ANOVA (one way classification)

## (18 hours)

#### (18 hours)

(18 hours)

# (18 hours)

·

# (18 hours)

# Hours/Week: 6

#### **B. TOPICS FOR SELF STUDY:**

| S.<br>No. | Topics                                     | Web Links                                                                                                                                   |
|-----------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Mathematical statistics II                 | https://stat.ethz.ch/~geer/mathstat.pdf                                                                                                     |
| 2         | Mathematical Statistics and Applications   | http://elearn.luanar.ac.mwith<br>odl/public/Files/Mathematical%20statistics%20<br>with%20applications.pdf                                   |
| 3         | Fundamentals of<br>Mathematical Statistics | https://www.dcpehvpm.org/E-<br>Content/Stat/FUNDAMENTAL%20OF%20MATH<br>EMATICAL%20STATISTICS-<br>S%20C%20GUPTA%20&%20V%20K%20KAPOO<br>R.pdf |
| 4         | Probability and Mathematical statistics    | https://www.researchgate.net/publication/2722<br>37355_Probability_and_Mathematical_Statistics                                              |

#### C. TEXTBOOK(s)

S.C. Gupta, V.K. Kapoor, Elements of Mathematical statistics, Sultan Chand & Sons, Educational Publishers, New Delhi, 3<sup>rd</sup> Edition, Reprint 2008.

| croman | 1 0.01 | 1011010, 1101 | Domi, o Baillo  |
|--------|--------|---------------|-----------------|
| Unit   | Ι      | Chapter 7     | § 7.1, 7.2, 7.3 |
|        |        | Chapter 8     | § 8.1           |
| Unit   | II     | Chapter 8     | § 8.2,8.3 – 8.6 |
|        |        | Chapter 13    | § 13.1 – 13.3   |
| Unit   | III    | Chapter 12    | § 12.1 – 12.3   |
|        |        | Chapter 15    | § 15.1 – 15.4   |
| Unit   | IV     | Chapter 12    | § 12.4 – 12.9   |
| Unit   | V      | Chapter 13    | § 13.4,13.5     |
|        |        | Chapter 14    | § 14.1 – 14.3   |
|        |        | Chapter 17    | § 17.1,17.2     |
|        |        |               |                 |

#### **D. REFERENCE BOOKS**

- 1. Perumal Mariappan, Statistics for Business, 1<sup>st</sup> Edition, CRC Press Taylor & Francis Group Boca Raton London New York, 2019; ISBN: 978 1 138 33617 9.
- 2. A.M. Mood, F.A. Graybill and O.C. Boses, Introduction to Theory of Statistics, McGraw Hill, 1974.
- 3. Rahatgi U.K., An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern, 1984.

#### E. WEB LINKS

- 1. https://swayam.gov.in/
  - (i) https://onlinecourses.swayam2.ac.in/cec21\_ma04/preview
  - (ii) https://onlinecourses.nptel.ac.in/noc21\_ma34/preview
- 2. https://nptel.ac.in/
  - (i) https://onlinecourses-archive.nptel.ac.in/

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                      | Learning outcomes                       | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|------------------|-------------------------------------|-----------------------------------------|------------------------------------------------------------|
| I                | <b>Discrete and Continuous dist</b> | ributions                               |                                                            |
| 1.1              | Bernoulli distribution              | Understanding Bernoulli<br>distribution | K2                                                         |

| 1.2 | Binomial distribution                        | Understanding Binomial                                    | K2 |
|-----|----------------------------------------------|-----------------------------------------------------------|----|
| 1.3 | Poisson distribution                         | distribution<br>Understanding Poisson<br>distribution     | K2 |
| 1.4 | Rectangular distribution.                    | K2                                                        |    |
| II  | Normal, Gamma, Beta, Expor                   | distribution                                              |    |
|     |                                              | Analyze the Normal                                        |    |
| 2.1 | Normal distribution                          | distribution                                              | K4 |
| 2.2 | Gamma distribution                           | Analyze the Gamma<br>distribution                         | K4 |
| 2.3 | Beta distribution of first and second kind   | Analyze the Beta distribution<br>of first and second kind | K4 |
| 2.4 | Exponential distribution                     | Analyze the Exponential distribution                      | K4 |
| 2.5 | Chi – square variate                         | Explain Chi-Square variate                                | K2 |
| 2.6 | Derivation of the Chi-Square<br>distribution | Evaluate derivation of the Chi-<br>Square distribution    | K5 |
| 2.7 | MGF of Chi-Square<br>distribution            | Evaluate MGF of Chi-Square<br>distribution                | K5 |
| III | Sampling, Parameter and Sta                  |                                                           |    |
| 3.1 | Sampling introduction                        | Understanding Sampling<br>introduction                    | K2 |
| 3.2 | Types of Sampling                            | Understanding Types of<br>Sampling                        | K2 |
| 3.3 | Parameter and Statistic                      | Understanding Parameter and<br>Statistic                  | K2 |
| 3.2 | Introduction to theory of estimation         | Explain Introduction to theory of estimation.             | K2 |
| 3.5 | Characteristics of estimators                | Explain Characteristics of estimators                     | K3 |
| 3.6 | Rao-Cramer inequality                        | Analyzing the Rao-Cramer inequality                       | K4 |
| IV  | Test of Hypothesis                           |                                                           |    |
| 4.1 | Test of significance                         | Evaluate Test of significance                             | K5 |
| 4.2 | Null hypothesis                              | Evaluate Null hypothesis                                  | K5 |
| 4.3 | Error in sampling                            | Evaluate Error in sampling                                | K5 |
| 4.2 | Critical region and level of significance    | Evaluate Critical region and level of significance        | K5 |
| 4.5 | Test of significance for large samples       | Evaluate Test of significance<br>for large samples        | K5 |
| 4.6 | Sampling of attributes                       | Evaluate Sampling of<br>attributes                        | K5 |
| v   | Test of Statistics                           |                                                           |    |
| 5.1 | Chi – square probability curve               | Understanding Chi-square<br>probability cure              | K2 |
| 5.2 | Application of Chi-square distribution       | Evaluate Application of Chi-<br>square distribution       | K5 |
| 5.3 | Student's 't'-statistic                      | Evaluate Student's 't' statistic                          | K5 |
| 5.4 | Student's F-statistic                        | Evaluate Student's F statistic                            | K5 |
| 5.5 | ANOVA (one way<br>classification)            | Evaluate ANOVA (one way classification)                   | K5 |

| U21MAS42 | P01 | P02 | PO3 | P04 | PO5 | P06              | P07 | 804 | 60d | PSO1 | PSO2 | PSO3    | PSO4 |
|----------|-----|-----|-----|-----|-----|------------------|-----|-----|-----|------|------|---------|------|
| CO1      | Η   | Μ   | L   | -   | L   | -                | Μ   | Μ   | -   | Μ    | М    | Μ       | L    |
| CO2      | Η   | Μ   | -   | -   | -   | Μ                | L   | Μ   | -   | -    | -    | Μ       | -    |
| CO3      | Η   | М   | L   | L   | L   | -                | -   | Μ   | -   | М    | -    | М       | М    |
| CO4      | Η   | Η   | Μ   | -   | Μ   | L                | Μ   | Μ   | -   | Μ    | М    | -       | -    |
| CO5      | Η   | М   | L   | L   | М   | L                | L   | -   | -   | L    | L    | М       | L    |
| CO6      | Н   | М   | М   | -   | М   | L                | -   | М   | -   | М    | L    | -       | -    |
|          |     |     |     |     |     | L-Low M-Moderate |     |     |     | te   | H    | I- High |      |

### 5. COURSE ASSESSMENT METHODS

### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion,

Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

## **INDIRECT**:

1. Course end survey (Feedback)

NAME OF THE COURSE COORDINATOR: Mr. M. Suresh kumar

#### Allied Practical – Mathematical Statistics III

#### Sem: IV

#### Credit: 2

#### **1. COURSE OUTCOMES**

After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                        | Level | Unit |
|------------|------------------------------------------------------------------------|-------|------|
| CO 1       | Download and install R and R Studio                                    | K2    | Ι    |
| CO 2       | Learn to apply R programming for data processing                       | K2    | II   |
| CO 3       | Develop codes using R for analyzing statistical data                   | К3    | III  |
| CO 4       | Produce data visualizations using packages                             | КЗ    | II   |
| CO 5       | Compute basic summary statistics                                       | К3    | v    |
| CO 6       | Use different modules of R for different applications to analyse data. | K4    | IV   |

#### 2A. SYLLABUS

#### Unit I

- 1. Calculation of measures of central tendency
- 2. Calculation of measures of dispersion
- 3. Calculation of Skewness and Kurtosis
- 4. Import data from excel

#### Unit II

- 5. Graphical display of data
- 6. Analyzing data using tables
- 7. Expectations of discrete and continuous random variables
- 8. Binomial, Normal and Poisson Distributions

#### Unit III

- 9. One sample t test
- 10. Independent sample t test
- 11. Dependent sample t test

#### Unit IV

12. One-way Between -Groups ANOVA

#### Course Code: U21MA4P1

Hours/Week: 4

(12 hours)

(12 hours)

(12 hours)

(12 hours)

- 13. Two-way Between -Groups ANOVA
- 14. Chi square test of independent samples

#### Unit V

- 15. Bi-variate correlation
- 16. Partial correlation
- 17. Rank correlation
- 18. Linear regression
- 19. Performing Statistics using R-Packages

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                                                     | Web Links                                                                |
|-----------|------------------------------------------------------------|--------------------------------------------------------------------------|
| 1         | Data Management with repeats, sorting, ordering and lists. | https://onlinecourses.nptel.ac.in/noc21_ma75/previ<br>ew                 |
| 2         | Robust error handling in R                                 | https://www.youtube.com/watch?v=WjtXc4OXZuk                              |
| 3         | Proper design of Functions                                 | http://home.iitk.ac.in/~shalab/swayamprabha/rswi<br>th sp-rsw-lect-8.pdf |

#### **C. REFERENCES**

- 1. Mark Gardener, Beginning R The Statistical Programming Language, Wiley Publications, 2015.
- 2. W. John Braun and Duncan J. Murdoch, A First Course in Statistical Programming with R, Cambridge University Press, 2007.

#### **D. WEB LINKS:**

- 1. <u>https://onlinecourses.nptel.ac.in/noc19\_ma33/preview</u>
- 2. https://www.digimat.in/nptel/courses/video/111104100/L01.html
- 3. <u>https://cse.iitkgp.ac.in/~dsamanta/courses/da/resources/slides/04Programming</u> <u>%20with%20R.pptx</u>

#### 3. SPECIFIC LEARNING OUTCOMES (SLO)

| S. No. | Lab Exercises                               | Learning outcomes                                                                                            | Bloom's<br>Taxonomy Level<br>of Transaction |
|--------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1      | Calculation of measures of central tendency | To construct data tables that<br>facilitate the calculation of mean,<br>median, mode, and range              | K3                                          |
| 2      | Calculation of measures of dispersion       | To compute and explain the<br>range, the interquartile range, the<br>standard deviation, and the<br>variance | КЗ                                          |
| 3.     | Calculation of Skewness and<br>Kurtosis     | To distinguish between a symmetrical and a skewed                                                            | K4                                          |

(12 hours)

| 4Import data from excelTo understand how to read and<br>import spreadsheet files using<br>basic R and packages.K25.Graphical display of dataTo understand the graphical<br>display of dataK26Analyzing data using tablesTo analyze data using tablesK47.Expectations of discrete and<br>continuous random variablesTo distinguish Binomial, Poisson<br>and Normal and<br>Poisson DistributionsK49Independent sample t - test,<br>Dependent sample t - test,<br>Dependent sample t - testTo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>Rank correlation, Linear<br>regressionTo describe the differences<br>between 'correlation' and<br>'regression'.K313Performing Statistics using R-<br>PackagesTo learn how to use R - packages<br>for performing statisticsK3                                                                                                                                                                                                                                                                                               |    |                                |                                     | []    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------|-------------------------------------|-------|
| 4       Import data from excel       To understand how to read and import spreadsheet files using basic R and packages.       K2         5.       Graphical display of data       To understand the graphical display of data like histogram, pie chart etc       K2         6       Analyzing data using tables       To analyze data using tables       K4         7.       Expectations of discrete and continuous random variables       To calculate expectations of discrete and continuous random variables       K3         8       Binomial, Normal and Poisson Distributions       To distinguish Binomial, Poisson and Normal Distributions       K4         9       One sample t - test, Dependent sample t - test, Dependent sample t - test, To know how to do the calculations which enable you to draw conclusions about variance found in data sets       K1         10       Chi - square test of independent samples       To compute the chi-square goodness of fit test and interpret the results.       K3         11       Partial correlation, Linear regression 'regression'.       To describe the difference between 'correlation' and 'regression'.       K1         12       Performing Statistics using R-       To learn how to use R – packages       K1       |    |                                |                                     |       |
| 4       Import data from excel       import spreadsheet files using<br>basic R and packages.       K2         5.       Graphical display of data       To understand the graphical<br>display of data like histogram, pie<br>chart etc       K2         6       Analyzing data using tables       To analyze data using tables       K4         7.       Expectations of discrete and<br>continuous random variables       To calculate expectations of<br>discrete and continuous random<br>variables       K3         8       Binomial, Normal and<br>Poisson Distributions       To distinguish Binomial, Poisson<br>and Normal Distributions       K4         9       Independent sample t - test,<br>Dependent sample t - test       To know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data sets       K1         10       Chi - square test of<br>independent samples       To compute the chi-square<br>goodness of fit test and interpret<br>the results.       K3         11       Partial correlation,<br>regression '.       To describe the difference<br>between 'correlation' and<br>'regression'.       K1         12       Partial correlation, Linear<br>regression '.       To learn how to use R – packages       K3 |    |                                |                                     |       |
| basic R and packages.5.Graphical display of dataTo understand the graphical<br>display of data like histogram, pie<br>chart etcK26Analyzing data using tablesTo analyze data using tablesK47.Expectations of discrete and<br>continuous random variablesTo calculate expectations of<br>discrete and continuous random variablesK38Binomial, Normal and<br>Poisson DistributionsTo distinguish Binomial, Poisson<br>and Normal DistributionsK49Independent sample t - test,<br>Dependent sample t - testTo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK110Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>Rank correlation, Linear<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K113Performing Statistics using R-To learn how to use R - packagesK3                                                                                                                                                                                                                                                                                                                         |    |                                |                                     |       |
| 5.Graphical display of dataTo understand the graphical<br>display of data like histogram, pie<br>chart etcK26Analyzing data using tablesTo analyze data using tablesK47.Expectations of discrete and<br>continuous random variablesTo calculate expectations of<br>discrete and continuous random<br>variablesK38Binomial, Normal and<br>Poisson DistributionsTo distinguish Binomial, Poisson<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4  | Import data from excel         |                                     | K2    |
| 5.       Graphical display of data       display of data like histogram, pie chart etc       K2         6       Analyzing data using tables       To analyze data using tables       K4         7.       Expectations of discrete and continuous random variables       To calculate expectations of discrete and continuous random variables       K3         8       Binomial, Normal and Poisson Distributions       To distinguish Binomial, Poisson and Normal Distributions       K4         9       One sample t - test, Independent sample t - test, Dependent sample t - test       To know how to do the calculations which enable you to draw conclusions about variance found in data sets       K1         10       Chi - square test of independent samples       To compute the chi-square goodness of fit test and interpret the results.       K3         11       Partial correlation, regression       To describe the difference       K3         12       Partial correlation, Linear regression       To describe the difference between 'correlation' and K1       K1         13       Performing Statistics using R-       To learn how to use R - packages       K3                                                                                                   |    |                                | basic R and packages.               |       |
| 6Analyzing data using tablesTo analyze data using tablesK47.Expectations of discrete and<br>continuous random variablesTo calculate expectations of<br>discrete and continuous random<br>variablesK38Binomial, Normal and<br>Poisson DistributionsTo distinguish Binomial, Poisson<br>and Normal DistributionsK49One sample t - test,<br>Dependent sample t - testTo understand Statistical<br>differences between the means of<br>two groupsK210One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>Rank correlation, Linear<br>regressionTo learn how to use R - packagesK1                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                |                                     |       |
| 6       Analyzing data using tables       To analyze data using tables       K4         7.       Expectations of discrete and continuous random variables       To calculate expectations of discrete and continuous random variables       K3         8       Binomial, Normal and Poisson Distributions       To distinguish Binomial, Poisson and Normal Distributions       K4         9       One sample t - test, Dependent sample t - test, Dependent sample t - test       To understand Statistical differences between the means of traw conclusions about variance found in data sets       K1         10       Chi - square test of independent samples       To compute the chi-square goodness of fit test and interpret the results.       K3         11       Partial correlation, Linear regression       To describe the difference between 'correlation' and 'regression'.       K1         12       Performing Statistics using R-       To learn how to use R – packages       K3                                                                                                                                                                                                                                                                                         | 5. | Graphical display of data      | display of data like histogram, pie | K2    |
| 7.Expectations of discrete and<br>continuous random variablesTo calculate expectations of<br>discrete and continuous random<br>variablesK38Binomial, Normal and<br>Poisson DistributionsTo distinguish Binomial, Poisson<br>and Normal DistributionsK49One sample t - test,<br>Dependent sample t - test,<br>Dependent sample t - testTo understand Statistical<br>differences between the means of<br>two groupsK210One-way Between Groups<br>Groups ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo describe the difference<br>between 'correlation' andK312Partial correlation,<br>Rank correlation, Linear<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K113Performing Statistics using R-To learn how to use R – packagesK3                                                                                                                                                                                                                                                                                                                                                             |    |                                | chart etc                           |       |
| 7.Expectations of discrete and<br>continuous random variablesdiscrete and continuous random<br>variablesK38Binomial, Normal and<br>Poisson DistributionsTo distinguish Binomial, Poisson<br>and Normal DistributionsK49One sample t - test,<br>Dependent sample t - testTo understand Statistical<br>differences between the means of<br>two groupsK210One-way Between Groups<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>Rank correlation, Linear<br>regressionTo learn how to use R - packagesK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  | Analyzing data using tables    | To analyze data using tables        | K4    |
| 1.       continuous random variables       discrete and continuous random       K3         8       Binomial, Normal and<br>Poisson Distributions       To distinguish Binomial, Poisson<br>and Normal Distributions       K4         9       One sample t - test,<br>Dependent sample t - test,<br>Dependent sample t - test       To understand Statistical<br>differences between the means of<br>two groups       K2         10       One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVA       To know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data sets       K1         11       Chi - square test of<br>independent samples       To compute the chi-square<br>goodness of fit test and interpret<br>the results.       K3         12       Partial correlation,<br>Rank correlation, Linear<br>regression       To learn how to use R - packages       K1                                                                                                                                                                                                                                                                                                                                                        |    | Expectations of discrete and   | To calculate expectations of        |       |
| 8Binomial, Normal and<br>Poisson DistributionsTo distinguish Binomial, Poisson<br>and Normal DistributionsK49One sample t - test,<br>Independent sample t - test,<br>Dependent sample t - testTo understand Statistical<br>differences between the means of<br>two groupsK210One-way Between Groups<br>Groups ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>Rank correlation, Linear<br>regressionTo learn how to use R - packagesK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7. |                                | discrete and continuous random      | K3    |
| 8       Poisson Distributions       and Normal Distributions       K4         9       One sample t - test,<br>Independent sample t - test,<br>Dependent sample t - test       To understand Statistical<br>differences between the means of<br>two groups       K2         10       One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVA       To know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data sets       K1         11       Chi - square test of<br>independent samples       To compute the chi-square<br>goodness of fit test and interpret<br>the results.       K3         12       Partial correlation,<br>Rank correlation, Linear<br>regression       To learn how to use R – packages       K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | continuous random variables    | variables                           |       |
| Poisson Distributionsand Normal Distributions9One sample t - test,<br>Independent sample t - test,<br>Dependent sample t - testTo understand Statistical<br>differences between the means of<br>two groups10One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data sets11Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.12Partial correlation,<br>Rank correlation, Linear<br>regressionTo learn how to use R - packages13Performing Statistics using R-<br>To learn how to use R - packagesK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q  | Binomial, Normal and           |                                     | КA    |
| 9Independent sample t - test,<br>Dependent sample t - testdifferences between the means of<br>two groupsK210One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0  | Poisson Distributions          | and Normal Distributions            | K4    |
| Dependent sample t - testtwo groups10One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi - square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | One sample t – test,           | To understand Statistical           |       |
| 10One-way Between Groups<br>ANOVA, Two-way Between<br>Groups ANOVATo know how to do the<br>calculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi – square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  | Independent sample t – test,   | differences between the means of    | K2    |
| 10ANOVA, Two-way Between<br>Groups ANOVAcalculations which enable you to<br>draw conclusions about variance<br>found in data setsK111Chi – square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K113Performing Statistics using R-<br>Image To learn how to use R – packagesK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Dependent sample t – test      | two groups                          |       |
| 10       Groups ANOVA       draw conclusions about variance found in data sets       K1         11       Chi – square test of independent samples       To compute the chi-square goodness of fit test and interpret the results.       K3         12       Partial correlation, Linear regression       To describe the difference between 'correlation' and frequency' in the results.       K1         13       Performing Statistics using R-       To learn how to use R – packages       K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | One-way Between Groups         | To know how to do the               |       |
| Groups ANOVA       draw conclusions about variance found in data sets         11       Chi – square test of independent samples       To compute the chi-square goodness of fit test and interpret the results.         12       Partial correlation, Linear regression       To describe the difference between 'correlation' and 'regression'.         13       Performing Statistics using R-       To learn how to use R – packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 |                                |                                     | K1    |
| Chi – square test of<br>independent samplesTo compute the chi-square<br>goodness of fit test and interpret<br>the results.K312Partial correlation,<br>Rank correlation, Linear<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K113Performing Statistics using R-<br>K3To learn how to use R – packagesK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 | Groups ANOVA                   | draw conclusions about variance     | IX1   |
| 11       independent samples       goodness of fit test and interpret the results.       K3         12       Partial correlation, Linear regression       To describe the difference between 'correlation' and 'regression'.       K1         13       Performing Statistics using R-       To learn how to use R – packages       K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                | found in data sets                  |       |
| the results.12Partial correlation,<br>Rank correlation, Linear<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.13Performing Statistics using R-<br>K3To learn how to use R – packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | Chi – square test of           | To compute the chi-square           |       |
| Partial correlation,<br>Rank correlation, Linear<br>regressionTo describe the difference<br>between 'correlation' and<br>'regression'.K113Performing Statistics using R-<br>K3To learn how to use R – packagesK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 | independent samples            | goodness of fit test and interpret  | K3    |
| 12       Rank correlation, Linear regression       between 'correlation' and 'regression'.       K1         13       Performing Statistics using R-       To learn how to use R – packages       K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                | the results.                        |       |
| regression 'regression'.<br>Performing Statistics using R- To learn how to use R – packages <sub>K3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Partial correlation,           | To describe the difference          |       |
| Performing Statistics using R- To learn how to use R – packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 | Rank correlation, Linear       | between 'correlation' and           | K1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | regression                     | 'regression'.                       |       |
| Packages for performing statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | Performing Statistics using R- |                                     | K3    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | Packages                       | for performing statistics           | NO NO |

| U21MA4P1 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PS01 | PS02 | PSO3 | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | L   | L   | L   | М   | L   | L   | L   | L   | L   | М    | L    | L    | L    |
| CO2      | Μ   | Μ   | Μ   | Η   | Μ   | Μ   | L   | -   | -   | Н    | Н    | L    | L    |
| CO3      | М   | Η   | М   | Η   | М   | Н   | М   | -   | -   | М    | Η    | М    | L    |
| CO4      | М   | Μ   | L   | Η   | М   | Н   | L   | I   | I   | М    | Μ    | Μ    | L    |
| CO5      | М   | Н   | М   | Η   | М   | Μ   | Μ   | L   | L   | М    | М    | Н    | М    |
| CO6      | L   | Н   | L   | М   | М   | М   | М   | L   | L   | М    | М    | М    | L    |

L-Low M-Moderate

H- High

### 5. COURSE ASSESSMENT METHODS

### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. M. Joseph Paramasivam

#### **Core Course VI: ALGEBRA**

#### Semester: V

Hours/Week: 6

Course Code: U21MA506

#### **Credits: 6**

## **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                                                      | Level | Unit |
|------------|------------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Analyze of groups, Subgroups, Cyclic groups, Order of an element,<br>Cosets and Lagrange's Theorems. | K4    | I    |
| CO2        | Analyze Normal subgroups and Quotient groups                                                         | K4    | п    |
| CO3        | Identify different algebraic structure of Isomorphism and Homomorphism                               | К3    | II   |
| CO4        | Analyze Rings and Fields and Homomorphism of Rings.                                                  | K4    | III  |
| CO5        | Analyze Vector Spaces, Subspaces, Linear Transformations, Span<br>of a set, Linear independence.     | K4    | IV   |
| CO6        | Evaluating Basis and Dimension, Rank and Nullity, Matrix of a Linear Transformation                  | К5    | v    |

#### 2A. SYLLABUS

#### Unit I: Groups

Groups-Subgroups-Cyclic Groups-Order of an element-Cosets and Lagrange's Theorem.

#### Unit II: Normal Subgroups and Quotient Groups

Normal subgroups and Quotient groups -Isomorphism and Homomorphism.

#### **Unit III: Rings and Ideals**

Rings and Fields-Elementary properties of Rings-Isomorphism-Types of Rings - Characteristic of a Ring – Subrings-Ideals - Quotient rings - Homomorphism of Rings.

#### Unit IV: Vector Spaces and Linear Transformation

Vector Spaces –Subspaces –Linear Transformations-Span of a set-Linear independence.

#### Unit V: Basis and Matrix of a Linear Transformation

Basis and Dimensions –Rank and Nullity-Matrix of a Linear Transformation.

#### **B. TOPICS FOR SELF STUDY:**

| S.<br>No. | Topics                                | Web Links                                                                        |
|-----------|---------------------------------------|----------------------------------------------------------------------------------|
| 1         | Algebra                               | https://www.math.ucdavis.edu/~linear/line<br>ar-guest.pdf                        |
| 2         | Elements of Mathematics Algebra       | http://www.cmat.edu.uy/~marclan/TM/Alg<br>ebra%20i%20-%20Bourbaki.pdf            |
| 3         | Beginning and Intermediate<br>Algebra | http://www.wallace.ccfaculty.org/book/Begi<br>nning_and_Intermediate_Algebra.pdf |

#### (18 Hours)

(18 Hours)

### (18 Hours)

# (18 Hours)

(18 Hours)

| 4 | Basic Algebra | http://www.wallace.ccfaculty.org/book/Begi |  |  |  |  |
|---|---------------|--------------------------------------------|--|--|--|--|
| 4 | Dasic Aigebra | nning_and_Intermediate_Algebra.pdf         |  |  |  |  |

#### C. TEXTBOOK(s)

 N. Arumugam and A. Thangapandi Issac, Modern Algebra, SciTech Publishing House 2003. 5<sup>th</sup> Reprint July 2006.

#### **D. REFERENCE BOOKS**

- 1. M. L. Santiago, Modern Algebra, Tata McGraw Hill, 2003
- 2. R. Balakrishnan and N. Ramabhadran, A Text Book of Modern Algebra, Vikas, New Delhi, 2000.
- **3.** Shanthi Narayanan, A Text Book of Modern Abstract Algebra, S. Chand & Co., New Delhi, 1983.

# E. WEB LINKS:

- 1. https://swayam.gov.in/
  - (i) https://onlinecourses.nptel.ac.in/noc21\_ma03/preview
  - (ii) https://onlinecourses.nptel.ac.in/noc21\_ma32/preview
- 2. https://nptel.ac.in/
  - https://docs.google.com/spreadsheets/d/e/2PACX-1vQOHER38F\_mi8Nj0n4NOrrvIigNWQcyBiPtSRjj1gvRiaxL4py3UYem0o8nP0L LKk78qfC2bdedBTawith pubhtml

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                                    | Learning outcomes                                                  | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| Ι                | Groups                                            |                                                                    |                                                            |
| 1.1              | Groups                                            | Explain the definition of groups                                   | K2                                                         |
| 1.2              | Subgroups                                         | Understanding the concepts of Subgroups                            | K2                                                         |
| 1.3              | Cyclic groups                                     | Classify the concepts of Cyclic groups                             | K4                                                         |
| 1.4              | Order of an element                               | Identify an Order of an element                                    | K3                                                         |
| 1.5              | Cosets                                            | Classify the concepts of groups                                    | K4                                                         |
| 1.6              | Lagrange's Theorem                                | Explain Lagrange's Theorem                                         | K2                                                         |
| II               | Normal Subgroups and Quo                          | tient groups                                                       |                                                            |
| 2.1              | Normal subgroups                                  | Explain the definition of<br>Normal groups                         | K2                                                         |
| 2.2              | Quotient groups                                   | Explain the definition of<br>Quotient groups                       | K2                                                         |
| 2.3              | Isomorphism                                       | Analyze Isomorphism                                                | K4                                                         |
| 2.4              | Homomorphism                                      | Analyze Homomorphism                                               | K4                                                         |
| III              | Rings and Ideals                                  | · · ·                                                              | •                                                          |
| 3.1              | Rings                                             | Explain the definition of Rings                                    | K2                                                         |
| 3.2              | Fields                                            | Explain the definition of Rings                                    | K2                                                         |
| 3.3              | Elementary properties of<br>Rings and Isomorphism | Understanding Elementary<br>properties of Rings and<br>Isomorphism | K2                                                         |
| 3.4              | Ideals                                            | Explain the definition of Ideals                                   | K2                                                         |

| 3.5 | Quotient rings                             | Explain the definition of<br>Quotient rings       | K2 |
|-----|--------------------------------------------|---------------------------------------------------|----|
| 3.6 | Homomorphism of Rings<br>Triple integral   | Analyze Homomorphism of<br>Rings Triple integrals | K4 |
| IV  | Vector Spaces and Linear Tra               | nsformation                                       |    |
| 4.1 | Vector Spaces                              | Explain the definition of Vector<br>Spaces        | K2 |
| 4.2 | Subspaces                                  | Explain the definition of<br>Subspaces            | K2 |
| 4.3 | Linear Transformations                     | Classify the Linear<br>Transformations            | K4 |
| 4.4 | Span of a set                              | Classify the Span of a set                        | K4 |
| 4.5 | Linear independence                        | Analyze Linear independence                       | K4 |
| v   | Basis and Matrix of a Linear 1             | <b>Fransformation</b>                             |    |
| 5.1 | Basis and Dimensions – Rank<br>and Nullity | Explain the definition of Basis                   | K2 |
| 5.2 | Dimensions                                 | Explain the definition of<br>Dimensions           | K2 |
| 5.3 | Rank                                       | Evaluate Rank                                     | K5 |
| 5.4 | Nullity                                    | Evaluate Nullity                                  | K5 |
| 5.5 | Matrix of a Linear<br>Transformation       | Evaluate matrix of a Linear<br>Transformation     | К5 |

| U21MA506 | PO1 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | 909 | PS01 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Η   | Μ   | Η   | -   | L   | Μ   | L   | Η   | -   | Η    | Η    | Μ    | -    |
| CO2      | Η   | Μ   | Н   | -   | L   | Μ   | L   | Η   | -   | Η    | Н    | Μ    | -    |
| CO3      | Η   | Μ   | Η   | -   | L   | Μ   | L   | Η   | -   | Η    | Η    | Μ    | -    |
| CO4      | Η   | Μ   | Η   | -   | L   | Μ   | L   | Η   | -   | Η    | Η    | Μ    | -    |
| CO5      | Η   | Μ   | Η   | -   | L   | Μ   | L   | Η   | -   | Η    | Η    | Μ    | -    |
| CO6      | Н   | Μ   | Н   | -   | L   | М   | L   | Η   | -   | Η    | Н    | Μ    | -    |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. N. Lakshmi Narayanan

#### **Core Course VII: REAL ANALYSIS**

#### Semester: V

#### Course Code: U21MA507

#### Credits: 6

#### Hours/Week: 6

#### **1. COURSE OUTCOMES:**

At the end of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                                                             | Level | Unit |
|------------|-------------------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Describe fundamental properties of the real numbers that lead to<br>the development of real analysis        | K5    | Ι    |
| CO2        | Illustrate the properties of continuous function using limit function                                       | К3    | II   |
| CO3        | Study the algebra of derivatives                                                                            | K6    | III  |
| CO4        | Construct the mathematical proof of Mean value theorem by using<br>the derivatives and continuous functions | K4    | IV   |
| CO5        | Explain the Riemann integral                                                                                | K4    | v    |
| CO6        | Explain concept of fundamental theorem.                                                                     | K5    | v    |

#### 2A. SYLLABUS

#### Unit I: Real number system

Real number system-field axioms - Order relations in R - Absolute Value of a real number and its Properties-Supremum and infimum of a set - Order Completeness property-countable and uncountable sets.

#### **Unit II: Continuous functions**

Continuous functions-Limit of functions-Algebra of limits-Continuity of function-Types of discontinuties. Elementary properties of continuous functions and Uniform continuity of a function.

#### Unit III: Derivability

Differentiability of a function – derivability and continuity – Algebra of derivatives – inverse function theorem: Darboux's theorem on derivatives.

#### Unit IV: Mean value theorems

Rolle's theorem-Mean value theorems on derivatives Taylor's theorem with Remainder. Power series expansion.

#### **Unit V: Riemann Integration**

Riemann Integration - Definition - Darboux's theorem conditions for Integrability -Integrability of continuous and monotonic functions - Integral functions continuity and derivability of integral functions. The first mean value theorem and the fundamental theorem of calculus.

(18 Hours)

(18 Hours)

# (18 Hours)

(18 Hours)

#### (18 Hours)

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                               | Web Links                                                                                               |  |  |  |  |
|-----------|--------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1         | Lebesgue integral                    | https://ocw.mit.edu/courses/mathematics<br>/18-125-measure-and-integration-fall-<br>2003/lecture-notes/ |  |  |  |  |
| 2         | Lebesgue dominated theorem           | https://ocw.mit.edu/courses/mathematics<br>/18-125-measure-and-integration-fall-<br>2003/lecture-notes/ |  |  |  |  |
| 3         | Improper Riemann integral            | https://www.sciencedirect.com/topics/mat<br>hematics/improper-integral                                  |  |  |  |  |
| 4         | Levi monotone convergence<br>theorem | http://mathonline.wikidot.com/levi-s-<br>monotone-convergence-theorems                                  |  |  |  |  |

#### C. TEXTBOOK(s)

- 1. M. K. Singal & Asha Rani Singal, A First Course in Real Analysis, R. Chand & Co., 2008 (Units I, II, III & IV).
- 2. Shanthi Narayan, A Course of Mathematical Analysis, S. Chand & Co., 1986. (Unit V)

### **D. REFERENCES**

- 1. S. L. Gupta and N. R. Gupta, Principles of Real Analysis, Pearson Education Pvt. Ltd., New Delhi, Second Edition 2003.
- 2. Tom Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 2002.

#### E. WEB LINKS:

- 1. https://nptel.ac.in/courses/111/106/111106053/
- 2. https://onlinecourses.nptel.ac.in/noc21\_ma04/preview

#### 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Unit/<br>Section | Course Content                                     | Learning outcomes                                                     | Bloom's<br>Taxonomy<br>Level of |
|------------------|----------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|
| I                | Real number system                                 |                                                                       |                                 |
| 1.1              | Real number system                                 | Apply the properties of real numbers.                                 | КЗ                              |
| 1.2              | Field axioms.                                      | Explain field axioms with<br>operation addition and<br>multiplication | K2                              |
| 1.3              | Order relations in R.                              | Compare order relations<br>between pairs of real numbers              | K5                              |
| 1.4              | Absolute Value of a real number and its properties | Understand and apply of absolute value of real number                 | K3                              |
| 1.5              | Supremum and infimum of a set                      | Measure supremum and infimum of a set                                 | K5                              |
| 1.6              | Order Completeness<br>property                     | Analyze order completeness property                                   | K4                              |

| 1.7 | Countable and uncountable sets.                      | Relate mathematical proofs of countable and uncountable sets.                                       | K4 |
|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----|
| II  | <b>Continuous functions</b>                          |                                                                                                     |    |
| 2.1 | Limit of functions.                                  | Recall limit of functions                                                                           | K1 |
| 2.2 | Algebra of limits                                    | Analyze operations of limits                                                                        | K4 |
| 2.3 | Continuity of function                               | Describe the definition of<br>continuity of function and<br>analyze the definition<br>geometrically | K4 |
| 2.4 | Types of discontinuties.                             | Classify point of discontinuous function                                                            | K4 |
| 2.5 | Elementary properties<br>of continuous<br>functions  | Explain the properties of continuous function                                                       | K2 |
| 2.6 | Uniform continuity of a function.                    | Analyze uniform continuous function of function                                                     | К5 |
| III | Derivability                                         |                                                                                                     |    |
| 3.1 | Differentiability of a function                      | Measure the basic idea of<br>differentiability of a function                                        | К5 |
| 3.2 | Derivability and continuity                          | Compare derivability and continuity function                                                        | К5 |
| 3.3 | Algebra of derivatives                               | Explain mathematical proof by using derivatives.                                                    | К5 |
| 3.4 | Inverse function<br>theorem:                         | Prove inverse function theorem                                                                      | K4 |
| 3.5 | Darboux's theorem on derivatives.                    | Analyze the darboux's theorem                                                                       | K4 |
| IV  | Mean value theorems                                  |                                                                                                     |    |
| 4.1 | Rolle's theorem on derivatives                       | Estimate numerical remainder using Rolle's theorem.                                                 | К5 |
| 4.2 | Taylor's theorem with Remainder.                     | Determine remainder using<br>Taylor's theorem                                                       | К5 |
| 4.3 | Mean value theorems<br>on derivatives                | Evaluate numerical remainder<br>using Mean value theorem.                                           | К5 |
| 4.4 | Power series                                         | Interpret the power series of standard function                                                     | K5 |
| V   | <b>Riemann Integration</b>                           |                                                                                                     |    |
| 5.1 | Riemann Integration                                  | Simplify numerical solutions of Riemann Integration.                                                | K4 |
| 5.2 | Darboux's theorem<br>conditions for<br>Integrability | Explain Darboux's theorem<br>using Integrability definition.                                        | К5 |
| 5.3 | Integrability of continuous function                 | Inspect continuity and monotonic functions                                                          | K4 |
| 5.4 | Monotonic functions                                  | Understand the concept of monotonic function                                                        | K2 |
| 5.5 | Integral functions                                   | Analyze integral function                                                                           | K4 |

| 5.6 | Continuity and<br>derivability of integral<br>functions. | Examine the properties of<br>Riemann integrable functions.                    | K4 |
|-----|----------------------------------------------------------|-------------------------------------------------------------------------------|----|
| 5.7 | The first mean value theorem                             | Remember and apply the fundamental theorem of integration.                    | K3 |
| 5.8 | The fundamental theorem of calculus.                     | Interpret the proof of<br>fundamental theorem using by<br>integrable function | К2 |

| U21MA507 | 101 | P02 | FO3 | P04 | P05 | P06 | 704 | PO8 | 60d | PSO1 | PSO2 | EOS4 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Μ   | Μ   | L   | -   | Μ   | Μ   | Μ   | Μ   | L   | М    | L    | Μ    | L    |
| CO2      | L   | Μ   | Μ   | -   | L   | Μ   | Μ   | Η   | L   | М    | L    | Μ    | L    |
| CO3      | Μ   | Μ   | Μ   | L   | L   | L   | Μ   | Μ   | L   | М    | L    | Μ    | L    |
| CO4      | М   | Μ   | Μ   | L   | Н   | Μ   | Μ   | М   | -   | М    | М    | М    | -    |
| CO5      | М   | Μ   | L   | -   | L   | М   | Μ   | Н   | L   | Н    | М    | М    | -    |
| CO6      | Μ   | Μ   | Μ   | L   | Μ   | Μ   | Μ   | М   | -   | L    | L    | Μ    | -    |

# L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. K. Mariappa

#### **Core Course VIII: Mechanics**

#### Semester: V

# Course Code: U21MA508

Hours/Week: 6

#### Credits: 5

#### 1. COURSE OUTCOMES

After the successful completion of this course, the students will be able to

| CO. No.                                                | Course Outcomes                                                                                               | Level | Unit    |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|---------|
| <b>CO</b> 1                                            | know various methods of finding the resultant of a finite<br>number of forces and methods of resolving forces | К2    | Ι       |
| CO2                                                    | understand the effect of different types of forces acting at a point in equilibrium                           | К5    | п       |
| CO3                                                    | resolve a given force and find equation of catenary                                                           | K5    | II      |
| CO4                                                    | analyse the motion of a projectile                                                                            | К3    | III     |
| CO5                                                    | know the various properties of motion of a projectile, a simple harmonic motion and orbital motion            | K4    | III, IV |
| <b>CO6</b> analyse simple harmonic and orbital motions |                                                                                                               | K6    | V       |

#### 2A. SYLLABUS

#### **Unit I: Theorems on Statics**

Law of parallelogram of forces – Lami's theorem – Resolution of forces

#### Unit II: Moments

Like parallel forces – Unlike parallel forces – Moments – Varigon's theorem of moments – Generalized theorem of moments – Equation to common catenary – Tension at any point – Geometrical properties of common catenary.

#### Unit III: Projectiles in Dynamics

Projectiles – Path of a projectile – Time of flight – Horizontal range – Motion of a projectile up an inclined plane.

#### **Unit IV: Simple Harmonic Motion**

Definition of S.H.M. – Geometrical representation of S.H.M. – Composition of S.H.M. of the same period and in the same line – Composition of S.H.M's of the same period in two perpendicular directions.

#### **Unit V: Velocity and Acceleration**

Radial and transverse components of velocity and acceleration – Differential equation of a central orbit – Given the orbit to find the law of force – Given the law of force to find the orbit.

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                         | Web Links                                                                      |
|-----------|--------------------------------|--------------------------------------------------------------------------------|
| 1         | Law of parallelogram of forces | https://blog.oureducation.in/to-verify-<br>the-law-of-parallelogram-of-forces/ |
| 2         | Equation to common catenary    | https://www.math24.net/equation-<br>catenary/                                  |

#### (18 Hours)

(18 Hours)

# (18 Hours)

# (18 Hours)

#### (18 Hours)

# ...

| 3 | Projectiles             | https://en.wikipedia.org/wiki/Projectile                      |
|---|-------------------------|---------------------------------------------------------------|
| 4 | Simple Harmonic Motions | https://www.britannica.com/science/sim<br>ple-harmonic-motion |

#### C. TEXTBOOK(s):

- 1. M. K. Venkataraman, Statics, Agasthiar Publications, 2007 (Units I & II)
- 2. M. K. Venkataraman, Dynamics, Agasthiar Publications, 2009 (Units III, IV &V).

#### **D. REFERENCE BOOKS:**

- 1. K. ViswanathNaik, M. S. Kasi, Statics, Emerald Publishers, 2000.
- 2. K. ViswanathNaik, M. S. Kasi, Dynamics, Emerald Publishers, 2001.

#### E. WEB LINKS:

- 1. https://www.britannica.com/science/mechanics
- 2. https://www.dictionary.com/browse/mechanics

#### 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Unit/<br>Section | Course Content                                 | Learning outcomes                                                                    | Bloom's<br>Taxonomy<br>Level of<br>Transaction |
|------------------|------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|
| Ι                | Theorems on Statics                            |                                                                                      |                                                |
| 1.1              | Law of parallelogram of forces                 | Define Resultant and components of<br>forces using Law of parallelogram of<br>forces | K1                                             |
| 1.2              | Lami's theorem                                 | Analyse Lami's theorem and Solve related examples                                    | K4                                             |
| 1.3              | Resolution of forces                           | Apply the Theorem on resolved parts                                                  | K3                                             |
| II               | Moments                                        | •                                                                                    |                                                |
| 2.1              | Like parallel forces                           | Explain about Like parallel forces                                                   | K2                                             |
| 2.2              | Unlike parallel forces                         | K2                                                                                   |                                                |
| 2.3              | Moments                                        | Define Moments                                                                       | K1                                             |
| 2.4              | Varigon's theorem of moments                   | Explain about Varigon's theorem of moments                                           | K2                                             |
| 2.5              | Generalized theorem of moments                 | Explain about Generalized theorem of moments                                         | K2                                             |
| 2.6              | Equation to common catenary                    | Analyse the Geometrical properties of common catenary                                | K4                                             |
| III              | Projectiles                                    | •                                                                                    |                                                |
| 3.1              | Projectiles                                    | Define Projectiles                                                                   | K1                                             |
| 3.2              | Path of a projectile                           | Find Path of a projectile                                                            | K1                                             |
| 3.3              | Time of flight                                 | Construct the Time of flight                                                         | K3                                             |
| 3.4              | Horizontal range                               | Find Horizontal range                                                                | K1                                             |
| 3.5              | Motion of a projectile<br>up an inclined plane | Explain Motion of a projectile up an inclined plane                                  | K5                                             |
| IV               | Simple Harmonic Motic                          |                                                                                      |                                                |
| 4.1              | Definition of Simple<br>Harmonic Motion        | Define S.H.M.                                                                        | K1                                             |

| 4.2 | Geometrical<br>representation of<br>S.H.M.                                         | Define Geometrical representation of S.H.M.                                                 | K1 |
|-----|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|
| 4.3 | Composition of S.H.M.<br>of the same period and<br>in the same line                | Analyze the Composition of S.H.M. of<br>the same period and in the same line                | K4 |
| 4.4 | Composition of S.H.M's<br>of the same period in<br>two perpendicular<br>directions | Analyze the Composition of S.H.M's of<br>the same period in two perpendicular<br>directions | K4 |
| V   | Velocity and Accelerati                                                            | on                                                                                          |    |
| 5.1 | Radial and transverse<br>components of velocity<br>and acceleration                | Define Radial and transverse<br>components of velocity and<br>acceleration                  | K1 |
| 5.2 | Differential equation of a central orbit                                           | Construct the Differential equation of a central orbit                                      | K6 |
| 5.3 | Given the orbit to find<br>the law of force                                        | Develop the law of force when the orbit is given                                            | K3 |
| 5.4 | Given the law of force<br>to find the orbit                                        | Develop the orbit when the law of force is given                                            | K3 |

| U21MA508 | P01 | P02 | PO3 | P04 | P05 | 90d | P07 | 804 | 909 | 10S4 | PSO2 | PSO3 | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Η   | Η   | Μ   | -   | L   | Μ   | Μ   | L   | -   | Н    | М    | М    | L    |
| CO2      | Η   | Η   | Μ   | -   | L   | Μ   | Μ   | L   | -   | Н    | М    | М    | L    |
| CO3      | Μ   | Μ   | Μ   | -   | L   | Μ   | Μ   | L   | -   | М    | М    | М    | L    |
| CO4      | Η   | Н   | М   | -   | L   | М   | Μ   | L   | -   | Н    | М    | М    | L    |
| CO5      | Μ   | Μ   | Μ   | -   | L   | Μ   | Μ   | L   | -   | М    | М    | М    | L    |
| CO6      | Н   | Η   | М   | -   | L   | М   | Μ   | L   | -   | Н    | М    | М    | L    |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

## NAME OF THE COURSE COORDINATOR: Dr. M. Joseph Paramasivam

#### **Core Course IX: NUMERICAL METHODS**

#### Semester: V

#### Course Code: U21MA509

Hours/Week: 5

#### Credits: 4

#### **1. COURSE OUTCOMES:**

At the end of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                                                              | Level | Unit |
|------------|--------------------------------------------------------------------------------------------------------------|-------|------|
| C01        | Solve algebraic and transcendental equations using appropriate methods                                       | K3    | Ι    |
| CO2        | Determine the solution for system of algebraic equations by various methods                                  | K5    | II   |
| CO3        | Classify various interpolation methods                                                                       | K4    | III  |
| CO4        | Work out numerical differentiation and integration whenever and<br>wherever usual methods are not applicable | K4    | IV   |
| CO5        | Work numerically on the ordinary differential equations using different methods                              | K3    | V    |
| C06        | Evaluate derivative at a value using an appropriate numerical method                                         | K6    | V    |

#### 2A. SYLLABUS

#### Unit I: Introduction to numerical analysis

Introduction to numerical analysis -The solution of algebraic and transcendental equations -Bisection method - Iteration method - Regular Falsi method, Newton-Raphson method.

#### Unit II: Solution of simultaneous linear algebraic equations

Solution of simultaneous linear algebraic equations – Direct methods – Gauss elimination method - Gauss-Jordan method - Iterative methods - Jacobi method - Gauss-Seidal method.

#### **Unit III: Finite differences**

Finite differences - Differences of a polynomial - Factorial polynomial - Interpolation for equal intervals - Gregory-Newton interpolation formulae - Interpolation with unequal intervals -Lagrange's interpolation formula – Inverse interpolation.

#### Unit IV: Numerical differentiation and integration

Numerical differentiation and integration - Newton's formulae to compute the derivative -Numerical integration - A general quadrature formula - Trapezoidal rule - Simpson's one third rule - Simpson's three-eighth rule.

#### Unit V: Numerical solution of ordinary differential equation

Numerical solution of ordinary differential equation – Taylor series method – Euler's method - Runge-Kutta methods - Predictor corrector methods.

(15 Hours)

(15 Hours)

#### (15 Hours)

# (15 Hours)

(15 Hours)

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                          | Web Links                                                                                              |
|-----------|---------------------------------|--------------------------------------------------------------------------------------------------------|
| 1         | Liebmann's<br>iteration process | https://nptel.ac.in/courses/111/105/111105038/                                                         |
| 2         | Bender Schmidt<br>method        | http://numericalmethods.eng.usf.edu                                                                    |
| 3         | Crank<br>Nicholson's<br>Scheme  | https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/<br>2018/NumericalSolutionofPDE-Unit-3.pdf |
| 4.        | Explicit scheme                 | https://nptel.ac.in/courses/111/105/111105038/                                                         |

#### C. TEXTBOOKS

1. P. Kandasamy, K. Thilagavathy, K. Gunavathy, Numerical Methods, S. Chand & Company limited, New Delhi, Reprint 2009.

#### **D. REFERENCES**

- 1. Dr Perumal Mariappan, Numerical Methods for Scientific Solutions, New Century Book House, Pvt. Ltd, Chennai.
- 2. S. S. Sastry, Introducing Methods of Numerical Analysis, Prentice Hall of India Private Limited, New Delhi, 3<sup>rd</sup> Edition 2002.
- 3. M. K. Venkataraman, Numerical Methods in Science and Engineering, The National Publishing Company, Chennai, 2004.

#### E. WEB LINKS

- 1. https://nptel.ac.in/courses/111/107/111107105/
- 2. https://onlinecourses.swayam2.ac.in/cec20\_ma18/preview

#### 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Unit/<br>Section | Course Content                                                  | Learning outcomes                                    | Bloom's<br>Taxonomy<br>Level of<br>Transaction |
|------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| I                | Introduction to numeri                                          | cal analysis                                         |                                                |
| 1.1              | The solution of<br>Algebraic and<br>Transcendental<br>Equations | Summarize an algebraic and transcendental equations  | K1                                             |
| 1.2              | Bisection Method                                                | Inspect the method of bisection                      | K4                                             |
| 1.3              | Iteration Method                                                | Explain Iteration method                             |                                                |
| 1.4              | Regula Falsi Method                                             | Compute the solution by using<br>Regula Falsi method | K4                                             |
| 1.5              | Newton Raphson<br>Method                                        | Estimate the solution by Newton<br>Raphson method    | K5                                             |
| II               | Solution of simultaneou                                         | is linear algebraic equations                        |                                                |

| 2.1 | Introduction of<br>Simultaneous                                            | Recall simultaneous equations.                                                                                                         | K1 |  |  |
|-----|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|     | equations.                                                                 |                                                                                                                                        |    |  |  |
| 2.2 | Gauss Elimination<br>Method                                                | Solve the simultaneous equations by Gauss elimination method.                                                                          | K5 |  |  |
| 2.3 | Gauss- Jordan Method.                                                      | Evaluate the simultaneous equations by Gauss Jordan method.                                                                            | K5 |  |  |
| 2.4 | Gauss Jacobi method                                                        | Estimate the solution by using Gauss<br>Jacobi method in simultaneous<br>equations.                                                    | K5 |  |  |
| 2.5 | Gauss Seidel Method                                                        | Estimate the solution by using Gauss<br>Jacobi method in simultaneous<br>equations.                                                    | K5 |  |  |
| III | Finite differences                                                         | TT                                                                                                                                     |    |  |  |
| 3.1 | Finite differences.                                                        | Identify the basic idea of finite differences                                                                                          | K3 |  |  |
| 3.2 | Differences of a polynomial                                                | Inspect the polynomial by difference method                                                                                            | K4 |  |  |
| 3.3 | Factorial polynomial                                                       | Discover the solution of polynomial<br>by factorial method                                                                             | K4 |  |  |
| 3.4 | Newton's forward<br>interpolation Formula.                                 | Justify the solution of polynomial by<br>using Newton's forward<br>interpolation formula.                                              | K5 |  |  |
| 3.5 | Newton's backward<br>interpolation Formula                                 | Determine the solution of polynomial<br>by using Newton's forward<br>interpolation formula                                             | K5 |  |  |
| 3.6 | Lagrange's Interpolation<br>Formula.                                       | Inference the Lagrange's interpolation method                                                                                          | K4 |  |  |
| 3.7 | Inverse Interpolation<br>Formula                                           | Inspect the inverse interpolation formula                                                                                              | K4 |  |  |
| IV  | Numerical differentiation                                                  | on and integration                                                                                                                     |    |  |  |
| 4.1 | Newton's formula to compute the derivative                                 | Examine numerical differentiation<br>using either forward difference<br>formula or backward difference<br>formula.                     | K4 |  |  |
| 4.2 | A general quadrature formula                                               | Construct the solution of polynomial                                                                                                   | K3 |  |  |
| 4.3 | Trapezoidal Rule.                                                          | Evaluate the concept of numerical<br>integration of a definite integral for a<br>given function from a given set of<br>tabular values. | K5 |  |  |
| 4.4 | Simpson's One-Third<br>Rule                                                | Develop the solution of numerical integration                                                                                          | K3 |  |  |
| 4.5 | Simpson's three-eighth<br>Rule.                                            | Examine the solution of numerical integration                                                                                          | K4 |  |  |
| v   | Numerical solution of o                                                    | rdinary differential equation                                                                                                          |    |  |  |
| 5.1 | Taylor series methodSolve differential equation by Taylor<br>series method |                                                                                                                                        |    |  |  |

| 5.2 | Euler Method                   | Solve ordinary differential equations by Euler methods.                               | K4 |
|-----|--------------------------------|---------------------------------------------------------------------------------------|----|
| 5.3 | Runge Kutta Method             | Construct the solution of Differential equation using R-K Method                      | K6 |
| 5.4 | Predictor corrector<br>methods | Compare the solution of a given<br>problem and confirm it with its<br>corrector value | K4 |

| U21MA509 | P01 | P02 | PO3 | P04 | PO5 | P06 | P07 | P08 | 604 | PS01 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Η   | Η   | Μ   | Η   | Μ   | Η   | Η   | L   | -   | Н    | Н    | Н    | Н    |
| CO2      | Η   | Μ   | Η   | Η   | Μ   | Η   | Η   | L   | -   | Η    | Н    | Μ    | М    |
| CO3      | Η   | Μ   | Μ   | Η   | Μ   | Η   | М   | М   | -   | Н    | Η    | Μ    | М    |
| CO4      | Η   | Μ   | Μ   | Η   | Μ   | Η   | Μ   | L   | -   | Η    | Н    | Μ    | Н    |
| CO5      | Η   | Μ   | Μ   | Η   | Μ   | Η   | М   | L   | -   | Н    | Η    | Μ    | Н    |
| C06      | Η   | Η   | Μ   | Η   | Μ   | Μ   | Μ   | L   | -   | Н    | Н    | Μ    | Н    |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. K. Mariappa

**Core Project: PROJECT** 

Semester: V

Credits: 3

Course Code: U21MA5PJ

Hours/Week: 5

#### **Core Course X: COMPLEX ANALYSIS**

#### Semester: VI

#### Course Code: U21MA610

#### Credits: 6

#### **1. COURSE OUTCOMES:**

#### At the end of the course, the students will be able to

| CO.<br>No | Course Outcomes                                                                  | Level | Unit<br>Covered |
|-----------|----------------------------------------------------------------------------------|-------|-----------------|
| CO1       | Analyze the concept of analytic function on complex plane                        | K4    | Ι               |
| CO2       | Analyze the effect of bilinear transformation on complex plane.                  | K4    | II              |
| соз       | Evaluate complex integrals for entire functions using Cauchy's Integral Formula. | К5    | III             |
| CO4       | Express a complex function as a Taylor series, power series and Laurent series.  | К5    | IV              |
| CO5       | Classify the singularities of a complex function                                 | K4    | IV              |
| C06       | Evaluate Contour integrals using the Residue theorem                             | K5    | v               |

#### 2A. SYLLABUS

#### **Unit I: Analytic Functions**

Analytic functions – Continuous functions – Differentiability - Cauchy Riemann equations – Harmonic functions.

#### Unit II: Bilinear Transformation

Bilinear transformations – Cross ratio – Fixed points of a bilinear transformation – Some special bilinear transformations.

#### **Unit III: Complex Integration**

Complex integration - Definite Integral – Cauchy's theorem – Cauchy's integral formula – Higher derivatives.

#### **Unit IV: Series Expansions**

Series, Expansions – Taylor's series – Laurent's series – Zeros of an analytic function – Singularities.

#### **Unit V: Residues**

Calculus of residues – Cauchy residue theorem – Evaluation of definite integrals.

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                   | Web Links                                          |
|-----------|--------------------------|----------------------------------------------------|
| 1         | Conformal mappings       | https://www.youtube.com/watch?v=s2RJe<br>BfDaqw    |
| 2         | Stereographic Projection | https://nptel.ac.in/courses/111/103/111<br>103070/ |
| 3         | Power Series             | https://nptel.ac.in/courses/122/104/122<br>104017/ |

# (15 Hours)

(20 Hours)

#### (20 Hours)

#### (15 Hours)

(20 Hours)

Hours/Week: 6

|  | 4 | Wave fillection as a complex | https://ocw.mit.edu/courses/physics/8-<br>04-quantum-physics-i-spring-2016/video-<br>lectures/part-1/ |  |
|--|---|------------------------------|-------------------------------------------------------------------------------------------------------|--|
|--|---|------------------------------|-------------------------------------------------------------------------------------------------------|--|

#### C. TEXTBOOK

1. S. Arumugam, A. Thangapandi Issac, A. Somasundaram, Complex Analysis, New Gamma Publishing House, 5th Reprint, January 2006.

#### **D. REFERENCES BOOKS**

1. S. Narayanan, T. K. Manickavasagam Pillay, Complex Analysis, S. Viswanathan Printers & Publishers, 1989.

2. P. Duraipandian, Laxmi Duraipandian, D. Muhilan, Complex Analysis, Emerald Publishers, Revised Edition 2003.

3. Ruel V. Churchill, James Ward Brown, Complex Variables and Application, McGraw Hill Publishing Company, 5th Edition 1990.

#### E. WEB LINK:

- 1. https://nptel.ac.in/courses/111/103/111103070/
- 2. https://www.digimat.in/nptel/courses/video/111106084/L01.html

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/Section | Course Content                                | Learning Outcomes                                                                                             | Bloom's<br>Taxonomic<br>levels of<br>Transaction |
|--------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| I            | <b>Analytic Function</b>                      |                                                                                                               |                                                  |
| 1.1          | Continuous<br>functions                       | Explain the concept of continuous function in complex plane.                                                  | K2                                               |
| 1.2          | Differentiability                             | Examine the derivability of a given complex function                                                          | K4                                               |
| 1.3          | Cauchy-Riemann<br>Equations                   | Analyse the characteristics of C-R equation.                                                                  | K4                                               |
| 1.4          | Analytic functions                            | Examine the analyticity of the given function                                                                 | K4                                               |
| 1.5          | Harmonic<br>Functions                         | Determine harmonic conjugate<br>function by Milne-Thomson<br>method                                           | K5                                               |
| II           | <b>Bilinear Transform</b>                     | ation                                                                                                         |                                                  |
| 2.1          | Elementary<br>Transformations                 | Classify the elementary transformations.                                                                      | K4                                               |
| 2.2          | Bilinear<br>Transformations                   | Construct the bilinear<br>transformation that maps one<br>region to another region.                           | K3                                               |
| 2.3          | Cross Ratio                                   | Construct bilinear transformation through cross ratio                                                         | K3                                               |
| 2.4          | Fixed Points of<br>Bilinear<br>Transformation | Categorize the transformation<br>based on the fixed points of the<br>transformation                           | K5                                               |
| 2.5          | Some special<br>Bilinear<br>Transformation    | Determine the general form of the<br>transformations which maps the<br>real axis onto itself; the unit circle | К5                                               |

|     |                                     | onto itself; the real axis onto the                                                                  |    |
|-----|-------------------------------------|------------------------------------------------------------------------------------------------------|----|
|     |                                     | unit circle.                                                                                         |    |
| III | Complex Integration                 |                                                                                                      |    |
| 3.1 | Definite Integral                   | Evaluate the integral of a complex valued function.                                                  | КЗ |
| 3.2 | Cauchy's theorem                    | Explain the consequences of the Cauchy's theorem.                                                    | K5 |
| 3.3 | Cauchy's Integral<br>Formula        | Apply the integral formula for solving contour integrals.                                            | K3 |
| 3.4 | Higher derivatives                  | Prove that an analytic function has derivatives of all orders                                        | К5 |
| IV  | Series Expansions                   |                                                                                                      |    |
| 4.1 | Taylor's series                     | Express a complex valued function as a Taylor's series                                               | K4 |
| 4.2 | Laurent's Series                    | Express a complex valued function as a Taylor's series                                               | K4 |
| 4.3 | Zeros of an analytic function       | Illustrate zeros of an analytic function                                                             | K2 |
| 4.4 | Singularities                       | Categorize the types of singularities and poles.                                                     | K4 |
| v   | Calculus of Residue                 | S                                                                                                    |    |
| 5.1 | Residues                            | Determine the residue values for the given function                                                  | K5 |
| 5.2 | Cauchy's Residue<br>Theorem         | Apply residue theorem for<br>evaluating contour integrals<br>through the calculation of<br>residues. | K3 |
| 5.3 | Evaluation of<br>Definite Integrals | Evaluate certain types of real definite integrals using residues                                     | К5 |

| U21MA610 | 101 | P02 | F03 | P04 | PO5 | P06 | 704 | P08 | 60d | <b>FSO1</b> | PSO2 | EO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|------|-----|------|
| CO1      | L   | L   | Η   | I   | L   | -   | М   | Η   | -   | М           | Н    | L   | -    |
| CO2      | Μ   | Η   | Η   | -   | Μ   | -   | L   | Η   | -   | Μ           | Μ    | L   | -    |
| CO3      | М   | Μ   | Μ   | -   | Μ   | -   | L   | Η   | -   | L           | Μ    | L   | -    |
| CO4      | М   | -   | Μ   | I   | L   | -   | М   | Η   | -   | Μ           | Η    | L   | -    |
| CO5      | L   | -   | М   | -   | L   | -   | L   | М   | -   | L           | Н    | М   | -    |
| CO6      | М   | Μ   | Η   | -   | М   | -   | М   | М   | -   | М           | Н    | М   | -    |

L-Low M-Moderate

H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. M. Evangeline Jebaseeli

#### Core Course XI: DISCRETE MATHEMATICS

#### Semester: VI

#### Course Code: U21MA611

#### Credits: 5

#### **1. COURSE OUTCOMES:**

After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                 | Level | Unit |
|------------|-----------------------------------------------------------------|-------|------|
| CO1        | solve various types of recurrence relations                     | К3    | I    |
| CO2        | classify various types of recursive functions                   | K4    | II   |
| CO3        | analyze lattices as algebraic structures                        | K4    | III  |
| CO4        | simplify logical functions by using Karnaugh maps               | К5    | IV   |
| CO5        | explain the basics of information and coding theories           | K2    | v    |
| CO6        | explain the notion of information in a mathematically sound way | K2    | v    |

#### 2A. SYLLABUS

#### Unit I: Recurrence Relations and Solutions

Recurrence relations – Recurrence – An introduction, Polynomials, and their Evaluations -Recurrence Relations – Solution of finite order Homogeneous (linear) relations – Solution of Non-homogeneous Relations.

#### **Unit II: Generating Functions and Recursive Functions**

Generating functions – Some common Recurrence Relations – Primitive Recursive functions – Recursive and Partial Recursive functions.

#### **Unit III: Lattices**

Lattices - Some properties of Lattices - New Lattices - Modular and distributive Lattices.

#### Unit IV: Boolean Algebra

Boolean Algebra - Boolean Polynomials - Karnaugh Map.

#### Unit V: Coding Theory

Coding theory – Introduction - Hamming distance - Encoding a message – group codes - procedure for generating group codes - decoding and error correction - an example of a single error correcting code.

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                                                     | Web Links                              |
|-----------|------------------------------------------------------------|----------------------------------------|
| 1         | Introduction to Discrete<br>Structures in Computer Science | An Introduction to Discrete Structures |

# (17 Hours)

(18 Hours)

# (20 Hours)

(20 Hours)

### (15 Hours)

Hours/Week: 6

| 2 | Lattice Based Cryptography      | A Brief Book on Lattice Based Cryptography |
|---|---------------------------------|--------------------------------------------|
| 3 | Advanced Topics in Cryptography | An Overview of Cryptography                |

#### C. TEXTBOOK:

1. M. K. Venkatraman., N. Sridharan and N. Chandrasekaran, Discrete Mathematics, The National Publishing Company, September 2007.

#### **D. REFERENCE BOOKS:**

- 1. J. P. Trembly and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, McGraw-Hill book Company, 1997.
- 2. J. E. Hop Croft and J. D. Willman, Introduction to Automata Theory, Nicosia Publishing House, C. L. Liu, Elements of Discrete Mathematics, McGraw-Hill Book Company, 1986.
- 3. C. L. Liu, Elements of Discrete Mathematics, McGraw Hill Book Company, 1986.

#### E. WEB LINKS:

- 1. NPTEL: Course on Discrete Mathematics by Department of CSE, IIT Ropar
- 2. SWAYAM: Course on Discrete Mathematics offered by IIT Ropar, IIT Bhilai

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs):

| Unit/<br>Section | Course Contents                                            | Learning Outcomes                                                             | Bloom's<br>Taxonomic<br>Levels of<br>Transaction |
|------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|
| I                | Recurrence Relations and Solu                              |                                                                               |                                                  |
| 1.1              | Recurrence – An Introduction                               | Explain the concept of recursion                                              | K2                                               |
| 1.2              | Polynomials and their<br>Evaluations                       | Illustrate a polynomial in telescopic form                                    | K2                                               |
| 1.3              | Recurrence Relations                                       | Construct a recurrence<br>relation for a given function                       | K3                                               |
| 1.4              | Solution of finite order<br>homogeneous (linear) relations | Solve recurrence relation<br>using algorithms                                 | КЗ                                               |
| 1.5              | Solution of non-homogeneous relations                      | Solve the recurrence relation<br>using the given procedure                    | K3                                               |
| II               | <b>Generating Functions and Rec</b>                        |                                                                               |                                                  |
| 2.1              | Generating functions                                       | Find the generating function for a given relation                             | K3                                               |
| 2.2              | Primitive recursive function                               | Identify a primitive recursive function                                       | K3                                               |
| 2.3              | Recursive and partial recursive function                   | Identify a partial recursive function                                         | K3                                               |
| III              | Lattices                                                   | ·                                                                             | •                                                |
| 3.1              | Lattices                                                   | Analyze the conceptual<br>background needed to<br>identify discrete structure | K4                                               |
| 3.2              | Hasse diagrams                                             | Construct a diagram for a given poset                                         | K3                                               |
| 3.3              | Properties of Lattices                                     | Explain various properties of lattices                                        | K2                                               |
| 3.4              | Lattice through algebraic operation                        | Explain the discrete<br>structure using algebraic<br>operation                | К5                                               |

| 3.5                      | New lattices                                                                                                           | Construct new lattices using appropriate operations                                                                                                                                                                                                                             | K3             |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 3.6                      | Product of two lattices                                                                                                | Illustrate how two lattices can be multiplied                                                                                                                                                                                                                                   | K2             |  |  |  |  |  |
| 3.7                      | Modular and distributive lattices                                                                                      | Identify whether a given<br>lattice is modular or<br>distributive                                                                                                                                                                                                               | K3             |  |  |  |  |  |
| IV                       | Boolean Algebra                                                                                                        | Boolean Algebra                                                                                                                                                                                                                                                                 |                |  |  |  |  |  |
| 4.1                      | Boolean algebra                                                                                                        | Explain special type of lattice<br>which is involved in logical<br>operations                                                                                                                                                                                                   | K2             |  |  |  |  |  |
| 4.2                      | Boolean polynomials                                                                                                    | Construct Boolean<br>polynomials for a given<br>Boolean function                                                                                                                                                                                                                | K3             |  |  |  |  |  |
| 4.3                      | Karnaugh maps                                                                                                          | Build the pictorial method to<br>minimize the Boolean<br>expressions                                                                                                                                                                                                            | K3             |  |  |  |  |  |
|                          |                                                                                                                        |                                                                                                                                                                                                                                                                                 |                |  |  |  |  |  |
| v                        | Coding Theory                                                                                                          |                                                                                                                                                                                                                                                                                 |                |  |  |  |  |  |
| <b>v</b><br>5.1          | Coding Theory           Introduction to coding theory                                                                  | Explain how mathematics is involved in coding theory                                                                                                                                                                                                                            | K2             |  |  |  |  |  |
|                          |                                                                                                                        | 1                                                                                                                                                                                                                                                                               | K2<br>K2       |  |  |  |  |  |
| 5.1                      | Introduction to coding theory                                                                                          | involved in coding theory<br>Explain the basic ideas of                                                                                                                                                                                                                         |                |  |  |  |  |  |
| 5.1<br>5.2               | Introduction to coding theory Definition of hamming distance                                                           | involved in coding theory<br>Explain the basic ideas of<br>encryption<br>Define an encoding function<br>which is used to encrypt a                                                                                                                                              | К2             |  |  |  |  |  |
| 5.1<br>5.2<br>5.3        | Introduction to coding theoryDefinition of hamming distanceEncoding a message                                          | involved in coding theory<br>Explain the basic ideas of<br>encryption<br>Define an encoding function<br>which is used to encrypt a<br>message<br>Identify whether a encoding<br>function is group code or not<br>Demonstrate the general<br>procedure to create a group<br>code | K2<br>K2       |  |  |  |  |  |
| 5.1<br>5.2<br>5.3<br>5.4 | Introduction to coding theoryDefinition of hamming distanceEncoding a messageGroup codesProcedure for generating group | involved in coding theory<br>Explain the basic ideas of<br>encryption<br>Define an encoding function<br>which is used to encrypt a<br>message<br>Identify whether a encoding<br>function is group code or not<br>Demonstrate the general<br>procedure to create a group         | K2<br>K2<br>K3 |  |  |  |  |  |

| U21MA611 | P01 | P02 | PO3 | P04 | PO5 | 90d | P07 | P08 | 60d | 10S4 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Η   | Η   | Н   | L   | Μ   | Η   | L   | Η   | -   | Η    | Η    | Н    | L    |
| CO2      | Μ   | Η   | Н   | L   | Μ   | Η   | L   | Η   | -   | Η    | Η    | Μ    | L    |
| CO3      | Н   | Η   | Η   | L   | L   | Η   | Μ   | Η   | -   | Н    | Μ    | М    | L    |
| CO4      | Μ   | Η   | Η   | Μ   | L   | Η   | L   | Η   | -   | Н    | Μ    | М    | L    |
| CO5      | Η   | Η   | Μ   | Η   | Η   | Η   | Η   | Η   | -   | Η    | Η    | Η    | М    |
| CO6      | Н   | Η   | Н   | Н   | Н   | Н   | М   | М   | -   | М    | Н    | М    | М    |

L-Low

**M-Moderate** 

H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. F. Yoshva Genesis

#### CORE COURSE XII: ELEMENTARY NUMBER THEORY

#### Semester: VI

#### Course Code: U21MA612

(18 Hours)

#### Credits: 5

# Hours/Week: 6

#### **1. COURSE OUTCOMES:**

At the end of this course, the students will be able to

| CO.<br>No | Course Outcomes                                                                             | Level | Unit |
|-----------|---------------------------------------------------------------------------------------------|-------|------|
| CO1       | Recall absolute value, Divisibility of integers, GCD and LCM                                | K1    | Ι    |
| CO2       | Explain Division algorithm and Euclidean algorithm                                          | K2    | Ι    |
| CO3       | Apply Euclid's theorem and Unique factorization theorem                                     | К3    | II   |
| CO4       | Categorize the numbers as Perfect, Abundant, deficient, amicable, and Triangular of numbers | K4    | III  |
| CO5       | Interpret the complete residue system and linear congruency of integers                     | К5    | IV   |
| C06       | Discuss the Fermat's theorem, Wilson's theorem, and Lagrange's theorem                      | K6    | v    |

#### 2A. SYLLABUS

#### UNIT I: Division Algorithm and Euclidean Algorithm

# Absolute value-Divisibility of integers-Division Algorithms-Greatest common divisor-Euclidean algorithm-Least common multiple.

#### UNIT II: Unique Factorization Theorem and Arithmetic functions (18 Hours)

Prime and Composite numbers-The sieve of Eratosthenes-Euclid's theorem-Unique factorization theorem- positional representation of an integer-Divisors of an integer-Arithmetic functions-product of divisors.

#### UNIT III: Euclid's theorem and Euler Function, Greatest Integer Functions (18 Hours)

Perfect numbers-Euclid's theorem-Abundant, deficient and amicable numbers-Triangular number-Euler function-Greatest integer functions.

#### UNIT IV: Complete Residue System and Divisibility Test (18 Hours)

Congruence - Residues-Residue classes-complete residue system-Reduced residue system-Magic number- Divisibility tests-linear congruence.

#### UNIT V: Fermat's theorem, Wilson's theorem and Lagrange's theorem (18 Hours)

Introduction-Fermat's theorem-Euler's Extension of Fermat's theorem-Wilson's theorem-Lagrange's theorem.

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                               | Web Links                                                                     |
|-----------|--------------------------------------|-------------------------------------------------------------------------------|
| 1         | Integers                             | https://nptel.ac.in/content/storage2/111/1<br>01/111101137/MP4/mod01lec01.mp4 |
| 2         | Computing the GCD and Euclid's lemma | https://nptel.ac.in/content/storage2/111/1<br>01/111101137/MP4/mod01lec05.mp4 |

| 3 | <   | Fundamental Theorem of<br>Arithmetic | https://nptel.ac.in/content/storage2/111/1<br>01/111101137/MP4/mod02lec06.mp4 |
|---|-----|--------------------------------------|-------------------------------------------------------------------------------|
| 4 | + : | Residue Class Modulo n               | https://nptel.ac.in/content/storage2/111/1<br>01/111101137/MP4/mod02lec10.mp4 |

#### C. TEXTBOOK(s):

1. S. Kumaravelu and Susheela Kumaravelu, Elements of Number Theory, Nagarcoil, January 2002.

#### **D. REFERENCE BOOKS:**

- 1. David M. Burton, Elementary Number Theory, Allyn and Bacon, Inc., 1994.
- 2. Ivan Nivenand H. Zuckerman, An Introduction to Theory of Numbers, John Wiley & Sons; 5<sup>th</sup> edition, 1991.

#### E. WEB LINKS:

- 1. <u>https://swayam.gov.in/nd1\_noc19\_cs51</u>
- 2. https://nptel.ac.in/courses/111/103/111103020/

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/Section                                          | Course Contents                                                    | Learning Outcomes                                                                      | Bloom's<br>Taxonomy<br>Level of<br>Transactions |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| I                                                     | Division Algorithm and E                                           |                                                                                        |                                                 |  |  |
| 1.1                                                   | Absolute value,<br>Divisibility of integers                        | The student should be able<br>to<br>recall absolute value,<br>divisibility of integers | К1                                              |  |  |
| 1.2                                                   | Division Algorithm                                                 | illustrate the division<br>algorithm                                                   | K2                                              |  |  |
| 1.3                                                   | Euclidean algorithm                                                | apply the Euclid's<br>algorithm                                                        | K3                                              |  |  |
| 1.4                                                   | Greatest Common<br>Divisor, Least Common<br>Multiple               | К5                                                                                     |                                                 |  |  |
| II                                                    |                                                                    |                                                                                        |                                                 |  |  |
| 2.1                                                   | Euclid's theorem                                                   | explain the Euclid's theorem                                                           | K2                                              |  |  |
| 2.2                                                   | Unique factorization theorem                                       | apply the Unique<br>factorization theorem                                              | K3                                              |  |  |
| 2.3                                                   | Positional representation<br>of numbers, Divisors of<br>an integer | analyze the positional representation of integer                                       | K4                                              |  |  |
| 2.4                                                   | Arithmetic functions,<br>Product of divisors                       | explain the arithmetic function                                                        | K5                                              |  |  |
| III                                                   | Euclid's theorem and Eul                                           | r Functions                                                                            |                                                 |  |  |
| 3.1                                                   | Perfect numbers,<br>Abundant and Deficient                         | define the different types of numbers                                                  | K1                                              |  |  |
| 3.2                                                   | Amicable numbers and<br>Triangular numbers                         | classify the different types of numbers                                                | K4                                              |  |  |
| 3.3 Euler's function and<br>Greatest integer function |                                                                    | determine the Euler's<br>function and Greatest<br>integer function                     | К5                                              |  |  |

| IV  | Complete Residue System and Divisibility Test                                |                                                                                       |    |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| 4.1 | Congruence, Residues                                                         | demonstrate the<br>congruency and residues<br>among numbers                           | K2 |  |  |  |  |  |  |
| 4.2 | Residue classes,<br>Complete Residue System<br>and Reduced Residue<br>System | construct CRR and RRS                                                                 | КЗ |  |  |  |  |  |  |
| 4.3 | Magic numbers,<br>Divisibility tests, Linear<br>congruences                  | determine multiplicative<br>inverses, modulo n and use<br>to solve linear congruences | K5 |  |  |  |  |  |  |
| v   | Fermat's theorem, Wilson                                                     | heorem                                                                                |    |  |  |  |  |  |  |
| 5.1 | Fermat's theorem, Euler's<br>extension of Fermat'<br>theorem                 | Discuss Fermat's theorem<br>and Euler's Extension of<br>Fermat's theorem              | K2 |  |  |  |  |  |  |
| 5.2 | Wilson's theorem,<br>Lagrange's theorem                                      | Discuss the Wilson's<br>theorem and Lagrange's<br>theorem                             | K5 |  |  |  |  |  |  |

| U21MA612 | P01 | P02 | PO3 | P04 | P05 | 90d | 707 | 80d | 909 | 10S4 | PS02 | FO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|------|
| CO1      | L   | Μ   | Μ   | L   | L   | Μ   | Н   | Η   | -   | Η    | Η    | Η   | L    |
| CO2      | Μ   | Η   | Μ   | Μ   | L   | Μ   | Η   | Μ   | -   | Μ    | Μ    | Μ   | Μ    |
| CO3      | Μ   | Η   | Μ   | L   | L   | Μ   | Μ   | L   | -   | Μ    | Η    | Η   | Μ    |
| CO4      | Μ   | Η   | Μ   | L   | L   | Μ   | Η   | Μ   | -   | Μ    | Η    | Μ   | Μ    |
| CO5      | Η   | Η   | Η   | Μ   | Μ   | L   | Μ   | Μ   | -   | Η    | Η    | Μ   | L    |
| CO6      | Н   | Н   | М   | М   | М   | L   | М   | L   | -   | L    | Н    | Н   | М    |



# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. M. Muthuvel

#### **Elective II: MATHEMATICAL MODELLING**

#### Semester: VI

#### Course Code: U21MA6:2

(18 Hours)

#### Credits: 5

#### Hours/Week: 6

#### **1. COURSE OUTCOMES**

After the successful completion of this course the students will be able to

| CO.<br>No   | Course Outcomes                                                                                                                              | Level | Unit  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| <b>CO</b> 1 | Analyze the behavior of a dynamic system through mathematical models in terms of ordinary differential equations                             |       | I, II |
| CO2         | Discuss the problem of global stability in population Dynamics                                                                               | K6    | п     |
| CO3         | Discuss the motion of particles in space                                                                                                     | K6    | III   |
| CO4         | Construct mathematical modelling through difference equation for<br>the problem occur in mathematics, statistics and in actuarial<br>science | K6    | IV    |
| C05         | Solve typical problem situations which can be modelled through graphs                                                                        | K6    | v     |
| C06         | Understand the applications of differential equations, difference equations and graph theory in Mathematical modelling.                      | K2    | I - V |

#### 2A. SYLLABUS

#### UNIT I: Mathematical Modelling Through Ordinary Differential Equations of First Order (18 Hours)

Ordinary differential equation – Linear growth model – Growth of science and scientists – Non-linear growth and decay models – Diffusion of glucose or a medicine in the bloodstream.

# UNIT II: Mathematical Modelling Through Systems of Ordinary Differential Equations of First (18 Hours)

Modelling in population dynamics – Prey-predator models – Competition models – Multispecies models – Modelling of epidemics – Simple epidemic models – A model for diabeticmellitus.

#### UNIT III: Mathematical Modelling Through Ordinary Differential Equations of Second Order (18 Hours)

Modelling in second order O.D. E. – Modelling of planetary motion – Motion under central force – Circular motion – Elliptic motion of a satellites – Rectilinear motion.

#### UNIT IV: Mathematical Modelling Through Difference Equations (18 Hours)

Modelling through difference equations – Linear difference equation – Obtaining complementary function by use of matrices – Harrod model – cob-web model – Applications of Actuarial science

#### UNIT V : Mathematical Modelling Through Graphs

Modelling through graphs – seven bridge problem – representing results of tournament – Genetic graph – Food web – Communication network – Matrices associated with a directed graph – Detection of clique – Terms of signed graph.

#### **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                                                     | Web Links                                                                    |
|-----------|------------------------------------------------------------|------------------------------------------------------------------------------|
| 1         | Discrete Time Linear Models in<br>Population Dynamics - I  | https://nptel.ac.in/content/storage/111/<br>107/111107113/MP4/mod01lec02.mp4 |
| 2         | Discrete Time Linear Models in<br>Population Dynamics - II | https://nptel.ac.in/content/storage/111/<br>107/111107113/MP4/mod01lec03.mp4 |
| 3         | Discrete Time Linear Age Structured<br>Models              | https://nptel.ac.in/content/storage/111/<br>107/111107113/MP4/mod01lec04.mp4 |
| 4         | Continuous Time Models in<br>Population Dynamics - I       | https://nptel.ac.in/content/storage/111/<br>107/111107113/MP4/mod03lec13.mp4 |
| 5         | Continuous Time Models in<br>Population Dynamics - II      | https://nptel.ac.in/content/storage/111/<br>107/111107113/MP4/mod03lec14.mp4 |

#### C. TEXTBOOK(s):

- 1. J. N. Kapur, Mathematical Modelling, Wiley Eastern Limited, New Age International Pvt. Ltd., Reprint 2013.
  - **Unit I** Chapter 2 § 2.1 2.3, 2.4.2
  - **Unit II** Chapter 3 § 3.1.1 3.1.3, 3.2.1 & 3.5.1
  - **Unit III** Chapter 4 § 4.1.1 4.3.1
  - **Unit IV** Chapter 5 § 5.2.1 5.2.6, 5.3.1, 5.3.2 & 5.3.4
  - **Unit V** Chapter 7 § 7.1.2 7.3.1

#### **D. REFERENCE BOOKS:**

- 1. J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East-West Press, New Delhi, 1985.
- 2. R. Olink, Mathematical Models in Social and Life Sciences, 1978.

#### E. WEB LINKS:

- 1. <u>https://nptel.ac.in/courses/111/107/111107113/</u>
- 2. <u>https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ma18/</u>
- 3. http://www.digimat.in/nptel/courses/video/111107113/L12.html

#### 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Unit /<br>Section | Course Content                                                 | Learning outcomes                                                    | Bloom's<br>Taxonomy<br>Level of<br>Transaction |  |  |  |  |
|-------------------|----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|--|--|--|--|
| I                 | Mathematical Modelling Tl<br>Order                             | nematical Modelling Through Ordinary Differential Equations of First |                                                |  |  |  |  |
| 1.1               | Linear Growth and Decay<br>Models                              | Discuss the population growth and decay model                        | K6                                             |  |  |  |  |
| 1.2               | Growth of science and scientists                               | Apply the growth population in dynamic system                        | K3                                             |  |  |  |  |
| 1.3               | Effects of Immigration and<br>Emigration on population<br>size | Apply the growth of populations of bacteria and micro-organisms      | K3                                             |  |  |  |  |
| 1.4               | Radio-Active Decay                                             | Estimate the age of the solar system                                 | K6                                             |  |  |  |  |
| 1.5               | Decrease of Temperature                                        | Discover the model for<br>temperature decay                          | K4                                             |  |  |  |  |
| 1.6               | Change of Price of a<br>Commodity                              | Identifying the change of commodity price                            | K3                                             |  |  |  |  |

| 1.7 | Non-Linear growth and decay models                                                                   | Discuss about the logistic law of population growth                                                      | K6 |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| 1.8 | Rate of Dissolution                                                                                  | Compare the concentration of<br>solute and maximum<br>concentrate                                        | K4 |  |  |  |  |  |
| 1.9 | Diffusion of glucose or a<br>medicine in the<br>bloodstream                                          | Examine the distribution of drug<br>in human body                                                        | K4 |  |  |  |  |  |
| II  | Mathematical Modelling T<br>Equations of First Order                                                 | ential                                                                                                   |    |  |  |  |  |  |
| 2.1 | Prey-predator models                                                                                 | Discuss about the stability of the species                                                               | K6 |  |  |  |  |  |
| 2.2 | Competition models                                                                                   | Analyze the competition model<br>through system of differential<br>equations                             | K4 |  |  |  |  |  |
| 2.3 | Multi species models                                                                                 | Discuss the stability of a position of equilibrium                                                       | K6 |  |  |  |  |  |
| 2.4 | Simple epidemic models                                                                               | Discuss the role of epidemic<br>modelling in public health policy<br>and resource allocation             | K6 |  |  |  |  |  |
| 2.5 | A model for diabetic-<br>mellitus.                                                                   | Examine the compensation of<br>the glucose- insulin system in<br>health through differential<br>equation | K4 |  |  |  |  |  |
| III | Mathematical Modelling Through Ordinary Differential Equations of Second Order                       |                                                                                                          |    |  |  |  |  |  |
| 3.1 | Need for the Study of<br>Motion Under Central<br>Forces                                              | Explain the motion of the<br>particle moving under central<br>force                                      | K2 |  |  |  |  |  |
| 3.2 | Components of Velocity<br>and Acceleration Vectors<br>along Radial and<br>Transverse Directions      | Invent the Velocity and<br>Acceleration Vectors along<br>Radial and Transverse Directions                | K6 |  |  |  |  |  |
| 3.3 | Motion under a<br>central force                                                                      | Discuss the equation of the path<br>by a particle moving under a<br>central force                        | K6 |  |  |  |  |  |
| 3.4 | Motion Under the Inverse<br>Square Law                                                               | Construct the model for inverse square Law                                                               | K6 |  |  |  |  |  |
| 3.5 | Kepler's Laws of Planetary<br>Motions                                                                | Analyze the Kepler's law of<br>planetary motion through<br>ordinary differential equation                | K4 |  |  |  |  |  |
| 3.6 | Circular Motion                                                                                      | Discuss the motion of the<br>particle in a circular motion<br>through ordinary differential<br>equation  | K6 |  |  |  |  |  |
| 3.7 | Circular Motion of<br>Satellites                                                                     | Formulate artificial satellite motion                                                                    | K6 |  |  |  |  |  |
| 3.8 | Elliptic motion of Satellites                                                                        | Discuss the motion of the particle in elliptic motion                                                    | K6 |  |  |  |  |  |
| 3.9 | Propose the concepts of position       Rectilinear motion     distance travelled, velocity and speed |                                                                                                          |    |  |  |  |  |  |
| IV  | Mathematical Modelling T                                                                             | hrough Difference Equations                                                                              |    |  |  |  |  |  |
| 4.1 | Linear difference equation                                                                           | Explain the method of solving<br>linear difference equations                                             | K5 |  |  |  |  |  |
| 4.2 | Obtaining Complementary                                                                              | Solve the algebraic equations                                                                            | K6 |  |  |  |  |  |

| 4.3 | Solution of Linear<br>Difference Equations by<br>Using Laplace Transform | Build Laplace transform method to solve difference equation                    | K3 |
|-----|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|----|
| 4.4 | The Harrod model                                                         | Illustrate the role of savings and investment in the growth process            | K2 |
| 4.5 | The Cob-web model                                                        | Discuss the cobweb theory in economic model                                    | K6 |
| 4.6 | Applications to Actuarial<br>Science                                     | Relationship between the statistics and actuarial science                      | K4 |
| v   | Mathematical Modelling T                                                 | hrough Graphs                                                                  |    |
| 5.1 | Seven bridge problem                                                     | Discovered a technique for<br>solving many problems                            | K4 |
| 5.2 | Representing results of tournament                                       | Apply to real life problem                                                     | КЗ |
| 5.3 | Genetic graph                                                            | Apply the genetic model in scientific area                                     | КЗ |
| 5.4 | Senior Subordinate<br>Relationship                                       | Discuss the relationship of senior with subordinate                            | K6 |
| 5.5 | Food Web                                                                 | Explain the status of the species by food web model                            | K2 |
| 5.5 | Communication network                                                    | Explain the communication<br>network between the individuals<br>through graphs | K4 |
| 5.6 | Matrices Associated with a Directed Graph                                | Explain the matrix associated with graph                                       | K2 |
| 5.7 | Application of Directed<br>Graphs to Detection of<br>clique              | Apply the directed graph to find<br>the number of cliques                      | К3 |
| 5.8 | Balance of signed graphs                                                 | Determine the condition for a graph to be balanced                             | К5 |

# 4. MAPPING SCHEME (CO, PO, PSO)

| U21MA6:2 | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PSO1 | PSO2 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | Μ   | -   | Μ   | -   | М   | -   | -   | L   | М    | Μ    | Н    | L    |
| CO2      | Μ   | Μ   | -   | Μ   | Μ   | Μ   | -   | -   | L   | -    | М    | L    | L    |
| CO3      | М   | Μ   | -   | Μ   | Μ   | -   | Μ   | -   | Μ   | М    | L    | М    | L    |
| CO4      | М   | М   | L   | М   | -   | -   | М   | -   | L   | М    | М    | М    | Н    |
| CO5      | М   | Μ   | М   | Μ   | Μ   | -   | -   | -   | L   | М    | М    | М    | М    |
| CO6      | Μ   | Μ   | М   | Μ   | М   | -   | М   | -   | Μ   | М    | Μ    | Μ    | Μ    |

L-Low M-Moderate

H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. J. Maria Felicit

# **Elective Course III: Operations Research**

## Semester: VI

# Credits: 5

# **1. COURSE OUTCOMES**

After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                                                                                               | Level | Unit |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--|--|
| CO 1       | Understand the system of a business organization and<br>converting the given problem into Linear ProgrammingK2Problem, Transportation problem |       |      |  |  |
| CO 2       | Solve Linear Programming Problem using Simplex method, Big<br>M method and Two-Phase method.                                                  | КЗ    | п    |  |  |
| CO 3       | Solve Transportation problems which arises in industries /<br>business organizations in such a way that to reduce<br>transportation cost.     | КЗ    | III  |  |  |
| CO 4       | Analyze the given assignment problems and assign persons or<br>machines to complete tasks in such a way that to reduce man<br>hours or cost.  | K4    | III  |  |  |
| CO 5       | Determine the project duration using critical path and network diagram                                                                        | K5    | IV   |  |  |
| CO 6       | Estimate economic order quantity for given problems                                                                                           | K6    | v    |  |  |

# 2A. SYLLABUS

# **UNIT I: Linear Programming Problem**

Introduction - The history of Operations Research - The meaning of Operations Research -Models of Operations Research - Scope of Operations Research - Phases of Operations Research - Limitations of Operations Research - The Linear Programming Problem -Introduction - General Model of an LPP - Characteristics of a LPP - Assumptions of a LPP -Formulation of an LPP - Standard form of an LPP - Solution to an LPP - Types of possible Solution to an LPP - Convex Set and Extreme Points - Graphical Solution to an LPP.

# **UNIT II: Solution of LPP**

Simplex Method - Big M Method - Two Phase Method - The Duality Concept in a Linear Programming Problem - Dual Simplex Method.

# UNIT III: Transportation and Assignment Problem

Transportation Problem - Introduction - Conversion of TP into an Equivalent LPP form -Formulation of a Transportation Problem - Concepts of Feasibility Basicness, and degeneracy in the Solution – Methods used to find the solution to a TP – Description of various methods to find the initial basic feasible solution - Stepping Stone Method/ Modified Distributive Method - Assignment Problem - Introduction - General Model of the assignment problem -Conversion into an Equivalent LPP – Solution to the assignment problem.

# **UNIT IV: PERT and CPM**

PERT - CPM - Introduction - Method for Construction of a Network - Numbering the nodes - Critical Path Method - Project Evaluation review technique.

# (18 Hours)

# (18 Hours)

(18 Hours)

# Course Code: U21MA6:3

Hours/Week: 6

(18 Hours)

# **UNIT V: Inventory Control**

Inventory Control – Introduction – Variables related to Inventory Control – Merits and Demerits of Inventory – Classification of Inventory Models – Economic Order Quantity – General Notation used in the Inventory Control – Model I – Model II – Model III – Model IV – Model V – Model VI – Inventory Problems with uncertain demand – Inventory Problems with Price Breaks – Multi Item Deterministic Model – Probabilistic Inventory Model – Selective Inventory Management Technique.

# **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                       | Web Links                                                              |
|-----------|------------------------------|------------------------------------------------------------------------|
| 1         | Additional Simplex Algorithm | http://library.lol/main/E3AA251DD5BF0E<br>AF1D5005717559F374           |
| 2         | Post optimal Analysis        | http://library.lol/main/E3AA251DD5BF0E<br>AF1D5005717559F374           |
| 3         | Goal Programming             | https://www.youtube.com/watch?v=2e1dZ<br>pOk3Zc                        |
| 4         | Decision Making              | https://www.youtube.com/results?search_q<br>uery=decision+making++iit+ |

# C. TEXTBOOK(s):

1. P. Mariappan, "Operations Research Methods and Applications", New century Book House, 2002.

# **D. REFERENCE BOOKS:**

- 1. Hamdy M. Taha, Operations Research, Prentice Hall, New Delhi, 2000.
- 2. S. D. Sharma, Operations Research, Kedar Nath Ram Nath and Co., India, 1985.

# E. WEB LINKS:

1. <u>https://nptel.ac.in/courses/111/107/111107128/</u>

# 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Unit/<br>Section | Course Content                                    | Learning outcomes                                                                 | Bloom's<br>Taxonomy<br>Level of<br>Transaction |
|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| Ι                | INTRODUCTION TO LINEAR                            | PROGRAMMING PROBLEM                                                               |                                                |
| 1.1              | Introduction and History of<br>Operation Research | Understand the history of<br>operations research for<br>effective decision making | K2                                             |
| 1.2              | Models of Operations<br>Research                  | Explain the models of<br>Operations Research                                      | K2                                             |
| 1.3              | Scope of Operations Research                      | Explain the scope of<br>Operations Research                                       | K2                                             |
| 1.4              | Phases of Operations<br>Research                  | Understand the phases of operations research                                      | K2                                             |
| 1.5              | Limitations of Operations<br>Research             | Understand the limitations of operations research                                 | K2                                             |

| 1.6  | Introduction to the Linear<br>Programming Problem (LPP)                          | Explain the concept of LPP                                                                                                                 | K2 |
|------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.7  | Characteristics of a LPP                                                         | Describe the characteristics of L.P.P                                                                                                      | K1 |
| 1.8  | Assumptions of a LPP                                                             | List out the assumptions of LPP                                                                                                            | K1 |
| 1.9  | Formulation of a LPP                                                             | Formulate real world problems as LPP.                                                                                                      | K5 |
| 1.10 | Standard form of an LPP                                                          | Describe the standard form of LPP                                                                                                          | K1 |
| 1.11 | Solution to an LPP and Types<br>of possible solutions to an<br>LPP               | Understand the solution to a<br>L.P.P<br>and types of possible solutions.                                                                  | K2 |
| 1.12 | Convex set and Extreme points                                                    | To describe the basic concept<br>of convex set and extreme<br>points.                                                                      | K1 |
| 1.13 | Graphical solution to an LPP.                                                    | Determine the optimal solution<br>to LPP by using Graphical<br>method                                                                      | K6 |
| II   | SOLUTION TO LINEAR PROG                                                          |                                                                                                                                            |    |
| 2.1  | Simplex Method                                                                   | Determine the optimal solution<br>to LPP using Simplex Method                                                                              | K6 |
| 2.2  | Big M Method                                                                     | Determine the optimal solution<br>to LPP using Big–M method,                                                                               | K6 |
| 2.3  | Two Phase Method                                                                 | Determine the optimal solution<br>to LPP using Two phase<br>method                                                                         | К6 |
| 2.4  | Dual Simplex Method.                                                             | Determine the optimal solution<br>to LPP using Dual Simplex<br>Method.                                                                     | K6 |
| 2.5  | The Duality Concept in a<br>Linear Programming Problem                           | explain the relationship<br>between linear program and its<br>dual.                                                                        | K2 |
| III  | TRANSPORTATION PROBLEM                                                           | IS AND ASSIGNMENT PROBLEM                                                                                                                  | S  |
| 3.1  | Introduction to<br>Transportation problem                                        | Understand the concept of<br>Transportation Problem                                                                                        | K2 |
| 3.2  | Conversion of Transportation<br>Problem into an Equivalent<br>LPP form           | Converting a Transportation<br>Problem into an equivalent LPP<br>form                                                                      | K2 |
| 3.3  | Formulation of a<br>Transportation Problem                                       | Demonstrate real world<br>problem as a Transportation<br>problem                                                                           | K5 |
| 3.4  | Concepts of Feasibility<br>Basicness, and degeneracy in<br>the Solution          | Understand the concept of degeneracy in solution                                                                                           | K2 |
| 3.5  | Methods used to find the solution to a TP                                        | Determine the optimal solution<br>to Transportation Problem<br>using Stepping Stone<br>Method/Modified Distributive<br>Method              | K6 |
| 3.6  | Description of various<br>methods to find the initial<br>basic feasible solution | Describe the initial basic<br>feasible solution using(i) row<br>minima/column minima<br>method (ii) Vogal's<br>approximation Methods (iii) | K6 |

|      |                                                                                       | Least cost cell method (iv)<br>North west corner cell method                                                                |    |  |  |
|------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----|--|--|
| IV   | PERT-CPM METHODS                                                                      |                                                                                                                             |    |  |  |
| 4.1  | Introduction to Construction<br>of a Network and numbering<br>the nodes               | ork and numbering                                                                                                           |    |  |  |
| 4.2  | Critical Path Method (CPM)                                                            | Estimate the duration of a project.                                                                                         | K6 |  |  |
| 4.3  | PERT(Program Evaluation<br>Review Technique) Method                                   | Analyze a project schedule and<br>to explain the significance of<br>various kinds of floats involve<br>in a project network | K4 |  |  |
| V    | INVENTORY CONTROL                                                                     |                                                                                                                             |    |  |  |
| 5.1  | Introduction to Inventory<br>Control<br>and variables related to<br>inventory control | Explain the concept of inventory control.                                                                                   | K2 |  |  |
| 5.2  | Merits and Demerits of<br>Inventory                                                   | Understand the Merits and<br>Demerits of Inventory models                                                                   | K2 |  |  |
| 5.3  | Classification of Inventory<br>Models                                                 | Classify the inventory models                                                                                               | K2 |  |  |
| 5.4  | Economic Order Quantity for<br>Model I                                                | Determine the Economic Order<br>Quantity for the Inventory<br>Model-I                                                       | K6 |  |  |
| 5.5  | Economic Order Quantity for<br>Model II                                               | Determine the Economic Order<br>Quantity for the Inventory<br>Model-II                                                      | K6 |  |  |
| 5.6  | Economic Order Quantity for<br>Model III                                              | Determine the Economic Order<br>Quantity for the Inventory<br>Model-III                                                     | K6 |  |  |
| 5.7  | Economic Order Quantity for<br>Model IV                                               | Determine the Economic Order<br>Quantity for the Inventory<br>Model-IV                                                      | K6 |  |  |
| 5.8  | Economic Order Quantity for<br>Model V                                                | Determine the Economic Order<br>Quantity for the Inventory<br>Model-V                                                       | K6 |  |  |
| 5.9  | Economic Order Quantity for<br>Model VI                                               | Determine the Economic Order<br>Quantity for the Inventory<br>Model-VI                                                      | K6 |  |  |
| 5.10 | Inventory Problems with uncertain demand                                              | Solve inventory problems with uncertain demand                                                                              | КЗ |  |  |
| 5.11 | Inventory Problems with Price<br>Breaks                                               | Solve Inventory Problems with<br>Price Breaks                                                                               | K3 |  |  |
| 5.12 | Multi Item Deterministic<br>Model                                                     | Solve problems based on multi-<br>item Deterministic Model                                                                  | КЗ |  |  |
| 5.13 | Probabilistic Inventory Model                                                         | Determine the Economic Order<br>Quantity for the Probabilistic<br>Inventory Model                                           | K6 |  |  |
| 5.14 | Inventory Management<br>Technique                                                     | Understand the concept of<br>inventory management<br>technique.                                                             | K2 |  |  |

# 4. MAPPING SCHEME (COs, POs AND PSOs)

| U21MA6:3 | 101 | P02 | PO3 | P04 | PO5 | P06 | P07 | P08 | 909   | PS01   | PS02 | PSO3 | PSO4   |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-------|--------|------|------|--------|
| CO1      | L   | Η   | L   | М   | Η   | М   | М   | L   | М     | М      | М    | М    | Η      |
| CO2      | L   | Н   | L   | L   | Н   | М   | М   | L   | М     | L      | М    | М    | Η      |
| CO3      | М   | Н   | L   | L   | Н   | М   | М   | L   | М     | L      | М    | L    | Η      |
| CO4      | Μ   | Η   | L   | L   | Η   | L   | М   | L   | М     | L      | М    | L    | Η      |
| CO5      | М   | Н   | L   | М   | Н   | L   | М   | L   | М     | L      | М    | L    | Η      |
| CO6      | L   | Н   | L   | Μ   | Н   | L   | Μ   | L   | М     | L      | Μ    | L    | Η      |
|          |     |     |     |     |     | L-I | 20w | 1   | M-Moo | lerate |      | н    | - High |

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion,

Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. B. Venkatesh

# **Elective Course II** - Graph Theory

# Semester: VI

Course Code:

Hours/Week: 6

# Credits: 5

# General objectives:

On completion of this course, the learner will

1. be able to understand basic concepts of graph theory.

2. know the applications of graphs in other disciplines.

# Learning outcomes:

On completion of the course, the student will be able to

- 1. identify standard graphs and list their properties.
- 2. use standard graphs to model different networks and study the networks.

# Unit I

Graphs and Simple Graphs – Graph Isomorphism – The Incidence and Adjacency Matrices – Subgraphs – Vertex, Degrees – Paths and Connections – Cycles. Trees – Cut edges and bonds, Cut vertices, Cayley's formula.

# Unit II

Connectivity, Blocks, Euler Tours, Hamilton cycles.

# Unit III

Edge Chromatic number, Vizing's Theorem, Independent Sets, Ramsey's Theorem – Turan's Theorem.

# Unit IV

Chromatic number, Brook's theorem, Hajos conjucture, Chromatic Polynomials, Girth and Chromatic number, Plane and Planar Graphs, Dual Graphs – Euler's formula.

# Unit V

The Five Colour Theorem and Four Colour Conjecture, Directed Graphs, Directed Paths – Directed Cycles.

# Text Book

Bondy, J.A.& Murthy, U.S.R., Graph Theory with Applications, The Mac Millan Press Ltd., 1976.

Unit I Chapter 1 § 1.1 – 1.7 & Chapter 2 § 2.1 – 2.4 Unit II Chapter 3 § 3.1, 3.2 & Chapter 4 § 4.1 & 4.2 Unit III Chapter 6 § 6.1, 6.2 & Chapter 7 § 7.1 – 7.3 Unit IV Chapter 8 § 8.1 – 8.5 & Chapter 9 § 9.1 – 9.3 Unit V Chapter 9 § 9.6 & Chapter 10 § 10.1 - 10.3

# References

- 1. Harary, Graph Theory, Narosha Publishing House, New Delhi, 1988.
- 2. Arumugam, S & Ramachandran, S., Invitation to Graph Theory, New Gamma Publishing House, Palayamkottai, 1993.

# **Extra Credit Course II - Information Theory**

# Semester: VI

# Course Code: U21MA6:5

# Credits: 5

# Hours/Week: 6

# General objectives & Learning outcomes:

On completion of this course, the learner will

1. know the classification of channels and their information processes.

2. be able to understand the basic concepts of information theory and coding theory.

# Unit I

Measure of Information – Axioms for a measure of uncertainty. The Shannon entropy and its properties. Joint and conditional entropies. Transformation and its properties.

# Unit II

Noiseless coding – Ingredients of noiseless coding problem. Uniquely decipherable codes. Necessary and sufficient condition for the existence of instantaneous codes. Construction of optimal codes.

# Unit III

Discrete Memory less Channel-Classification of channels. Information processed by a channel. Calculation of channel capacity. Decoding schemes. The ideal observer. The fundamental theorem of information theory and its strong and weak converses.

# Unit IV

Continuous Channels – The time-discrete Gaussian channel. Uncertainty of an absolutely continuous random variable. The converse to the coding theorem for time-discrete Gaussian Channel. The time-continuous Gaussian channel. Band-limited channels.

# Unit V

Some imuitive properties of measure of entropy-Symmetry, normalization, expansibility, boundedness, recursivity maximality, stability, additivity, subadditivity, nonnegative, continuity, branching etc. and interconnections among them. Axiomatic characterization of Shannon entropy dur to Shannon and Fadeev.

# References

1. R.Ash, Information Theory, Inter science Publishers, New York, 1965.

2. F.M.Reza, An Introduction to Information Theory, McGraw-Hill Book Company Inc.,1961.

3. J.Aczel and Z.Daroczy, On Measures of Information and Their Characterization, Academic Press, New York, 1975.

# UG - Non-Major Elective Courses (NMEC)

| Sam  | Sem. Course Code Title |          | T:41-                                          | Hrs./   | Onedite | Marks |       |     |  |
|------|------------------------|----------|------------------------------------------------|---------|---------|-------|-------|-----|--|
| Sem. |                        |          | week                                           | Credits | CIA     | ESA   | TOTAL |     |  |
| III  | NMEC<br>- I            | U21MA3E1 | Mathematics for<br>Competitive<br>Examinations | 2       | 2       | 25    | 75    | 100 |  |
| IV   | NMEC<br>- II           | U21MAPE2 | Statistical<br>Applications<br>(Practical's)   | 2       | 2       | 40    | 60    | 100 |  |

# (Offered to Students of other Disciplines)

# NMEC Course I: MATHEMATICS FOR COMPETITIVE EXAMINATIONS

Semester: I

#### Course Code: U21MA3E1

# Credits: 2

# Hours/Week: 2

# **1. COURSE OUTCOMES**

# After the successful completion of this course, the students will be able to:

| CO.<br>No. | Course Outcomes                                          | Level | Unit |
|------------|----------------------------------------------------------|-------|------|
| CO1        | Find LCM and HCF for given numbers                       | K1    | Ι    |
| CO2        | Find Square roots and Cube roots                         | K2    | II   |
| CO3        | Solve problems on partnership                            | K2    | II   |
| CO4        | Solve the problems on profit and loss, Time and Distance | K2    | III  |
| CO5        | Solve the problems on trains, boats, and Streams         | K2    | IV   |
| CO6        | Find simple and compound interest problems               | K2    | v    |

# 2A. SYLLABUS

# Unit I

Numbers -HCF & LCM –Decimal Fractions –Simplification.

# Unit II

Square roots and Cube roots -Percentage -Average -Ratio and Proportion -Partnership.

# Unit III

Profit and Loss -Time and Work-Pipes and Cisterns -Time and Distance

# Unit IV

Problems on Trains –Problems on Boats and Streams -Problems on Numbers -Problems on ages.

# Unit V

Simple Interest –Compound Interest Area -Volume & Surface Areas.

# **B. TOPICS FOR SELF STUDY:**

| S.<br>No. | Topics              | Web Links                                                                                              |  |  |  |  |
|-----------|---------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1         | Number series       | https://careerdost.in/aptitude-<br>questions/number-series                                             |  |  |  |  |
| 2         | Probability         | https://www.youtube.com/watch?v=fTfIfkVifrs                                                            |  |  |  |  |
| 3         | Height and Distance | https://questionpaper.org/height-and-<br>distance/                                                     |  |  |  |  |
| 4         | Discount            | https://www.toppr.com/guides/quantitative-<br>aptitude/profit-and-loss/discounts-and-<br>marked-price/ |  |  |  |  |

# C. TEXTBOOK:

1. R.S. Aggarwal, Objective Arithmetic, S. Chand and Company Ltd., New Delhi, 2003.

# **D. WEB LINKS:**

- <u>https://sucessguru.com/objective-arithmetic-for-competitive-examinations-pdf/</u>
   <u>https://sscresult.in/tag/objective-arithmetic-by-rs-aggarwal-free-download-pdf/</u>

# 3. SPECIFIC LEARNING OUTCOMES (SLOs):

| Unit/Section | Course Content            | Learning Outcomes                                                                  | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |
|--------------|---------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| I            | Number System             |                                                                                    |                                                            |  |  |
| 1.1          | Numbers                   | Know about the number system                                                       | K1                                                         |  |  |
| 1.2          | LCM and HCF               | Find the LCM and HCF of given numbers                                              | K2                                                         |  |  |
| 1.3          | Decimal                   | Find the decimal value for fraction                                                | K2                                                         |  |  |
| 1.4          | Fractions                 | Find the fraction value for decimals                                               | К2                                                         |  |  |
| 1.5          | Simplification            | Find simplified format of numbers                                                  | К2                                                         |  |  |
| II           | Roots and Average         |                                                                                    |                                                            |  |  |
| 2.1          | Square root               | Find square root of the numbers                                                    | K1                                                         |  |  |
| 2.2          | Cube roots                | Find cube roots of the numbers                                                     | K1                                                         |  |  |
| 2.3          | Percentage                | Find the percentage for the given value                                            | K2                                                         |  |  |
| 2.4          | Average                   | Find the average of the distribution                                               | K2                                                         |  |  |
| 2.5          | Ratio and Proportions     | Find ratios and<br>Proportions of the<br>numbers                                   | K2                                                         |  |  |
| 2.6          | Partnership               | Find the shares for the partners in the business                                   | K2                                                         |  |  |
| III          | Profit and Loss, Time and | Distance                                                                           |                                                            |  |  |
| 3.1          | Profit and Loss           | Find profit or loss, profit<br>or loss percentage and<br>C.P or S.P of the product | K2                                                         |  |  |
| 3.2          | Time and work             | Find the time or work done by the persons.                                         | K2                                                         |  |  |
| 3.3          | Pipes and cisterns        | Solve the problem using<br>pipes and cisterns<br>concept                           | К2                                                         |  |  |
| 3.4          | Time and distance         | Find time and distance of the given problem                                        | f K2                                                       |  |  |
| IV           | Problems on Trains and ag |                                                                                    |                                                            |  |  |
| 4.1          | Train Problems            | Find length of the train or<br>platform and time taken<br>to cover the distance    | К2                                                         |  |  |

| 4.2 | Boat and Steams problems | Find the upstream and downstream of the boat                                                    | K2 |
|-----|--------------------------|-------------------------------------------------------------------------------------------------|----|
| 4.3 | Number problems          | Solve the number problems                                                                       | K2 |
| 4.4 | Age problems             | Find the age of any<br>person using the<br>information                                          | К2 |
| v   | Interest Problems        |                                                                                                 |    |
| 5.1 | Simple Interest          | Find the simple interest<br>or rate of interest and<br>principal amount or<br>number of years   | K2 |
| 5.2 | Compound Interest        | Find the Compound<br>interest or rate of interest<br>and principal amount or<br>number of years | K2 |
| 5.3 | Volumes                  | Find the volumes of different shapes                                                            | K2 |
| 5.4 | Areas                    | Find the Area of different shapes                                                               | К2 |

# 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA3E1 | P01 | P02 | PO3 | P04 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PS01 | PS02 | PSO3 | PSO 4 |
|----------|-----|-----|-----|-----|------|------|------|------|------|------|------|------|-------|
| C01      | Η   | Η   | М   | -   | Η    | Η    | Η    | -    | -    | Н    | Μ    | Н    | М     |
| CO2      | Н   | Н   | М   | -   | Η    | Η    | Η    | -    | -    | Η    | Μ    | Н    | Н     |
| CO3      | Н   | Н   | М   | -   | Η    | Η    | Η    | -    | -    | Η    | Μ    | Н    | Н     |
| CO4      | Η   | Η   | М   | -   | Η    | Η    | Η    | -    | -    | Η    | Μ    | Н    | Н     |
| CO5      | Η   | Η   | М   | -   | Η    | Η    | Η    | -    | -    | Н    | Μ    | Н    | Н     |
| C06      | Н   | Н   | М   | -   | Η    | Η    | Н    | -    | -    | Η    | М    | Η    | Η     |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion,

Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mrs. B. Abinaya

# NMEC – II – Statistical Applications (Practical)

# Sem. IV

# Credits: 2

# 1. COURSE OUTCOMES

After the successful completion of this course the students will be able to

| CO. No. | Course Outcomes                                                        | Level | UNIT |  |  |
|---------|------------------------------------------------------------------------|-------|------|--|--|
| CO 1    | Download and install R and R Studio K2                                 |       |      |  |  |
| CO 2    | Learn to apply R programming for data processing                       | K2    | Ι    |  |  |
| CO 3    | Develop codes using R for analyzing statistical data                   | К3    | II   |  |  |
| CO 4    | Produce data visualizations using packages                             | К3    | III  |  |  |
| CO 5    | Compute basic summary statistics                                       | КЗ    | IV   |  |  |
| CO 6    | Use different modules of R for different applications to analyse data. | K4    | v    |  |  |

# 2A. SYLLABUS

# List of Experiments:

- 1. Calculation of measures of central tendency
- 2. Calculation of measures of dispersion
- 3. Graphical display of data
- 4. Analyzing data using tables
- 5. Binomial, Normal and Poisson Distributions
- 6. Coefficient of variation
- 7. Measures of skewness
- 8. Calculation of correlation coefficient
- 9. Rank Correlation
- 10. Finding Regression lines

# **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                                                           | Web Links                                            |
|-----------|------------------------------------------------------------------|------------------------------------------------------|
| 1         | Data Management with<br>repeats, sorting, ordering<br>and lists. | https://onlinecourses.nptel.ac.in/noc21_ma75/preview |
| 2         | Robust error handling in R                                       | https://www.youtube.com/watch?v=WjtXc4OXZuk          |

# Course Code: U21MAPE2

Hours/Week: 2

| 2                      | Proper design of | http://home.iitk.ac.in/~shalab/swayamprabha/rswith |
|------------------------|------------------|----------------------------------------------------|
| <sup>3</sup> Functions | Functions        | sp-rsw-lect-8.pdf                                  |

# **C. REFERENCES**

- 1. Mark Gardener, Beginning R The Statistical Programming Language, Wiley Publications, 2015.
- 2. W. John Braun and Duncan J. Murdoch, A First Course in Statistical Programming with R, Cambridge University Press, 2007.

# **D. WEB LINKS:**

- 1. https://onlinecourses.nptel.ac.in/noc19\_ma33/preview
- 2. https://www.digimat.in/nptel/courses/video/111104100/L01.html
- 3. <u>https://cse.iitkgp.ac.in/~dsamanta/courses/da/resources/slides/04Programming</u> <u>%20with%20R.pptx</u>

# 3. SPECIFIC LEARNING OUTCOMES (SLO)

| S.<br>No. | Lab Exercises                                 | Learning outcomes                                                                                             | Bloom's<br>Taxonomy Level<br>of Transaction |
|-----------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1         | Calculation of measures of central tendency   | To construct data tables that<br>facilitate the calculation of<br>mean, median, mode, and<br>range            | K3                                          |
| 2         | Calculation of measures of dispersion         | To compute and explain the<br>range, the interquartile range,<br>the standard deviation and the<br>variance   | K3                                          |
| 3         | Graphical display of data                     | To understand the graphical<br>display of data like histogram,<br>pie chart etc                               | К2                                          |
| 4         | Analyzing data using tables                   | To analyze data using tables                                                                                  | K4                                          |
| 5         | Binomial, Normal and<br>Poisson Distributions | To distinguish Binomial,<br>Poisson and Normal<br>Distributions                                               | K4                                          |
| 6         | Coefficient of variation                      | To analyze Coefficient of variation                                                                           | K4                                          |
| 7         | Measures of skewness                          | To distinguish between a<br>symmetrical and a skewed<br>distribution and compute co-<br>efficient of kurtosis | K4                                          |
| 8         | Calculation of correlation coefficient        | To analyze correlation coefficient                                                                            | K4                                          |
| 9         | Rank Correlation                              | To analyze Rank correlation                                                                                   | K4                                          |
| 10        | Finding Regression lines                      | To compute Regression lines                                                                                   | КЗ                                          |

# 4. MAPPING SCHEME (COs, POs AND PSOs):

| U21MAPE2 | P01 | P02 | P03 | P04 | P05 | P06 | PO7  | P08 | 60d | PS01   | PS02 | PS03 | PS04    |
|----------|-----|-----|-----|-----|-----|-----|------|-----|-----|--------|------|------|---------|
| CO1      | L   | L   | L   | М   | L   | L   | L    | L   | L   | Μ      | L    | L    | L       |
| CO2      | М   | М   | Μ   | Η   | М   | М   | L    | -   | -   | Η      | Η    | L    | L       |
| CO3      | М   | Η   | Μ   | Η   | М   | Η   | М    | -   | -   | М      | Η    | М    | L       |
| CO4      | Μ   | Μ   | L   | Η   | Μ   | Η   | L    | -   | -   | М      | М    | М    | L       |
| CO5      | М   | Η   | Μ   | Η   | М   | М   | М    | L   | L   | М      | М    | Η    | М       |
| CO6      | L   | Η   | L   | М   | М   | М   | М    | L   | L   | М      | М    | М    | L       |
|          |     |     |     |     |     | L   | -Low |     | M-1 | Modera | ate  | F    | I- High |

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. M. Joseph Paramasivam

| Sem. | Course   | Code     | Title                                                  | Hrs./ | Credits |     | Marks | 5     |
|------|----------|----------|--------------------------------------------------------|-------|---------|-----|-------|-------|
| Sem. | Course   | Coue     | 1 Itle                                                 | week  |         | CIA | ESA   | Total |
| Ι    | SBEC I   | U21MA1S1 | Mathematics for<br>Competitive<br>Examinations         | 2     | 2       | 25  | 75    | 100   |
| III  | SBEC II  | U21MAPS2 | Introduction to<br>Scientific<br>Computing<br>(OCTAVE) | 2     | 2       | 40  | 60    | 100   |
| V    | SBEC III | U21MAPS3 | Programming in<br>C<br>(Linux OS)                      | 2     | 2       | 40  | 60    | 100   |

UG - Skill Based Elective Courses (SBEC)

# SBEC Course I: MATHEMATICS FOR COMPETITIVE EXAMINATIONS

# Semester: I

Credits: 2

Course Code: U21MA1S1 Hours/Week: 2

# **1. COURSE OUTCOMES**

After the successful completion of this course, the students will be able to:

| CO.<br>No. | Course Outcomes                                          | Level | Unit |  |  |
|------------|----------------------------------------------------------|-------|------|--|--|
| CO1        | Find LCM and HCF for given numbers                       | K1 I  |      |  |  |
| CO2        | Find Square roots and Cube roots                         | K2    | п    |  |  |
| CO3        | Solve problems on partnership K2                         |       |      |  |  |
| CO4        | Solve the problems on profit and loss, Time and Distance | K2    | III  |  |  |
| CO5        | Solve the problems on trains, boats, and Streams         | K2    | IV   |  |  |
| C06        | Find simple and compound interest problems               | K2    | v    |  |  |

# 2A. SYLLABUS

# Unit I

Numbers -HCF & LCM –Decimal Fractions –Simplification.

# Unit II

Square roots and Cube roots -Percentage -Average -Ratio and Proportion -Partnership.

# Unit III

Profit and Loss -Time and Work-Pipes and Cisterns -Time and Distance

# Unit IV

Problems on Trains –Problems on Boats and Streams -Problems on Numbers -Problems on ages.

# Unit V

Simple Interest –Compound Interest Area -Volume & Surface Areas.

# **B. TOPICS FOR SELF STUDY:**

| S.<br>No. | Topics              | Web Links                                                  |
|-----------|---------------------|------------------------------------------------------------|
| 1         | Number series       | https://careerdost.in/aptitude-<br>questions/number-series |
| 2         | Probability         | https://www.youtube.com/watch?v=fTfIfkVifrs                |
| 3         | Height and Distance | https://questionpaper.org/height-and-<br>distance/         |

| 4 | https://www.toppr.com/guides/quantitative-<br>aptitude/profit-and-loss/discounts-and- |
|---|---------------------------------------------------------------------------------------|
|   | marked-price/                                                                         |

# C. TEXTBOOK:

1. R.S. Aggarwal, Objective Arithmetic, S. Chand and Company Ltd., New Delhi, 2003.

# **D. WEB LINKS:**

- <u>https://sucessguru.com/objective-arithmetic-for-competitive-examinations-pdf/</u>
   <u>https://sscresult.in/tag/objective-arithmetic-by-rs-aggarwal-free-download-pdf/</u>

# 3. SPECIFIC LEARNING OUTCOMES (SLOs):

| Unit/Section | Course Content              | Learning Outcomes                                                                  | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |
|--------------|-----------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| I            | Number System               |                                                                                    |                                                            |  |
| 1.1          | Numbers                     | Know about the number system                                                       | K1                                                         |  |
| 1.2          | LCM and HCF                 | Find the LCM and HCF of given numbers                                              | K2                                                         |  |
| 1.3          | Decimal                     | Find the decimal value for fraction                                                | K2                                                         |  |
| 1.4          | Fractions                   | Find the fraction value for decimals                                               | K2                                                         |  |
| 1.5          | Simplification              | Find simplified format of numbers                                                  | K2                                                         |  |
| II           | Roots and Average           | ·                                                                                  |                                                            |  |
| 2.1          | Square root                 | Find square root of the numbers                                                    | K1                                                         |  |
| 2.2          | Cube roots                  | Find cube roots of the numbers                                                     | K1                                                         |  |
| 2.3          | Percentage                  | Find the percentage for the given value                                            | K2                                                         |  |
| 2.4          | Average                     | Find the average of the distribution                                               | K2                                                         |  |
| 2.5          | Ratio and Proportions       | Find ratios and<br>Proportions of the<br>numbers                                   | K2                                                         |  |
| 2.6          | Partnership                 | Find the shares for the partners in the business                                   | K2                                                         |  |
| III          | Profit and Loss, Time and I | Distance                                                                           |                                                            |  |
| 3.1          | Profit and Loss             | Find profit or loss, profit<br>or loss percentage and<br>C.P or S.P of the product | K2                                                         |  |
| 3.2          | Time and work               | Find the time or work<br>done by the persons.                                      | K2                                                         |  |
| 3.3          | Pipes and cisterns          | Solve the problem using<br>pipes and cisterns<br>concept                           | K2                                                         |  |
| 3.4          | Time and distance           | Find time and distance of the given problem                                        | K2                                                         |  |
| IV           | Problems on Trains and age  | es                                                                                 |                                                            |  |

| 4.1 | Train Problems           | Find length of the train or<br>platform and time taken<br>to cover the distance                 | K2 |
|-----|--------------------------|-------------------------------------------------------------------------------------------------|----|
| 4.2 | Boat and Steams problems | Find the upstream and downstream of the boat                                                    | K2 |
| 4.3 | Number problems          | Solve the number problems                                                                       | K2 |
| 4.4 | Age problems             | Find the age of any<br>person using the<br>information                                          | K2 |
| v   | Interest Problems        |                                                                                                 |    |
| 5.1 | Simple Interest          | Find the simple interest<br>or rate of interest and<br>principal amount or<br>number of years   | K2 |
| 5.2 | Compound Interest        | Find the Compound<br>interest or rate of interest<br>and principal amount or<br>number of years | K2 |
| 5.3 | Volumes                  | Find the volumes of different shapes                                                            | K2 |
| 5.4 | Areas                    | Find the Area of different shapes                                                               | K2 |

# 4. MAPPING SCHEME (POs, PSOs AND COs)

| U21MA1S1 | P01 | P02 | PO3 | P04 | PO 5 | PO 6 | 7 O4 | PO 8 | PO 9 | PSO1 | PSO2 | FOSA | PSO 4 |
|----------|-----|-----|-----|-----|------|------|------|------|------|------|------|------|-------|
| CO1      | Η   | Η   | М   | -   | Η    | Η    | Η    | -    | -    | Н    | Μ    | Н    | М     |
| CO2      | Н   | Н   | Μ   | -   | Η    | Η    | Η    | -    | -    | Н    | М    | Н    | Н     |
| CO3      | Η   | Н   | Μ   | -   | Η    | Η    | Η    | -    | -    | Н    | М    | Н    | Н     |
| CO4      | Н   | Н   | М   | -   | Η    | Η    | Η    | -    | -    | Н    | М    | Н    | Н     |
| CO5      | Η   | Н   | Μ   | -   | Η    | Η    | Η    | -    | -    | Н    | М    | Н    | Н     |
| CO6      | Η   | Η   | Μ   | -   | Η    | Η    | Η    | -    | -    | Н    | М    | Н    | Н     |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mrs. B. Abinaya

# SBEC Course II - Introduction to Scientific Computing (OCTAVE)

# Semester: III

# Course Code: U21MAPS2

# Credit: 2

# Hours/Week: 2

# 1. COURSE OUTCOMES

After the successful completion of this course, the students will be able to

| CO.<br>No.  | Course Outcomes                                                                                             | Level | Exercise<br>Covered |
|-------------|-------------------------------------------------------------------------------------------------------------|-------|---------------------|
| <b>CO</b> 1 | Create, initialize, and display simple variables and simple strings and use simple formatting for variable. | K6    | 1                   |
| CO2         | Evaluate basic operations on matrices.                                                                      | K5    | 1, 2                |
| CO3         | Classify different subplots from a given plot and colour plot data.                                         | K4    | 3                   |
| CO4         | Explain conditional statements and different type of loops based on simple examples.                        | K2    | 4, 5, 6, 7          |
| CO5         | Develop OCTAVE codes to solve algebraic equations.                                                          | K3    | 8, 9                |
| C06         | Illustrate using different modules of OCTAVE to solve algebraic differential equations.                     | K2    | 10, 11              |

# 2A. SYLLABUS

| Ex. No. | Exercise                                                                              |
|---------|---------------------------------------------------------------------------------------|
| 1       | Matrix manipulations such as multiplication, inverse, determinant, random, magic etc. |
| 2       | Solving system of linear equations.                                                   |
| 3       | To plot 2D and 3D graphs.                                                             |
| 4       | Solving quadratic equations.                                                          |
| 5       | Write an OCTAVE program to check the given string is palindrome or not.               |
| 6       | To find the binomial coefficients nCr                                                 |
| 7       | Program to generate Fibonacci numbers.                                                |
| 8       | Program to solve an algebraic equation using bisection method.                        |
| 9       | Program to solve an algebraic equation using Newton Raphson method.                   |
| 10      | Solving first order Ordinary Differential Equations                                   |
| 11      | Solving second order Ordinary Differential Equations                                  |

# **B. TOPICS FOR SELF-STUDY**

| Topics                                   | Weblinks                                       |
|------------------------------------------|------------------------------------------------|
| GNU Octave for computations and plotting | https://nptel.ac.in/courses/113/101/113101002/ |
| Numerical Integration                    | https://nptel.ac.in/courses/113/101/113101002/ |

| Graphics           | http://math.jacobs-<br>university.de/oliver/teaching/iub/resources/octave/octave-<br>intro/octave-intro.html#SECTION0005000000000000000000000000000000000 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control structures | http://math.jacobs-<br>university.de/oliver/teaching/iub/resources/octave/octave-<br>intro/octave-intro.html#SECTION0005000000000000000000000000000000000 |

# 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Ex.<br>No. | Lab Exercises                                                                                  | Learning Outcomes                                                                                                                                                                                | Highest Bloom's<br>Taxonomy Level<br>of Transaction |
|------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1          | Matrix manipulations<br>such as multiplication,<br>inverse, determinant,<br>random, magic etc. | Create single dimension / multi-<br>dimension arrays, and arrays with<br>specific values like array of all ones,<br>all zeros, array with random values<br>within a range, or a diagonal matrix. | K6                                                  |
| 2          | Solving system of linear equations.                                                            | Solve simple matrix operation to solve system of linear equations                                                                                                                                | K3                                                  |
| 3          | To plot 2D and 3D graphs.                                                                      | Create various type of plots/charts                                                                                                                                                              | K6                                                  |
| 4          | Solving quadratic equations.                                                                   | Explain coding to solve quadratic equations                                                                                                                                                      | K2                                                  |
| 5          | Write an OCTAVE<br>program to check the<br>given string is<br>palindrome or not.               | Construct coding on palindrome                                                                                                                                                                   | K6                                                  |
| 6          | To find the binomial coefficients nCr                                                          | Discuss conditional statement for finding binominal coefficient                                                                                                                                  | K6                                                  |
| 7          | Program to generate<br>Fibonacci numbers.                                                      | Build loops to generate Fibonacci<br>numbers                                                                                                                                                     | K3                                                  |
| 8          | Program to solve an<br>algebraic equation using<br>bisection method.                           | Develop coding for bisection method                                                                                                                                                              | K6                                                  |
| 9          | Program to solve an<br>algebraic equation using<br>Newton Raphson<br>method.                   | Develop coding for Newton Raphson method                                                                                                                                                         | K6                                                  |
| 10         | Solving first order<br>Ordinary Differential<br>Equations                                      | Explain coding for solving<br>differential equations of first order                                                                                                                              | K2                                                  |
| 11         | Solving second order<br>Ordinary Differential<br>Equations                                     | Explain coding for solving<br>differential equations of second<br>order                                                                                                                          | K2                                                  |

# 4. MAPPING SCHEME (COs, POs AND PSOs)

| U21MAPS2 | P01 | P02 | P03 | P04 | P05 | P06 | PO7 | P08 | P09 | PS01 | PS02 | PS03 | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | Н   | -   | Н   | L   | L   | L   | -   | -   | L    | М    | -    | -    |
| CO2      | Н   | Н   | L   | Н   | -   | Μ   | L   | -   | -   | М    | Н    | -    | -    |
| CO3      | Μ   | М   | -   | Н   | -   | -   | L   | -   | -   | L    | Н    | -    | -    |
| CO4      | Μ   | Н   | -   | Н   | -   | L   | Μ   | -   | -   | М    | Н    | L    | L    |

| CO5 | Η | Η | М | Η | М | М | М | - | - | Н | Н | М | М |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO6 | Н | Н | М | Н | М | Μ | М | - | - | Н | Н | М | М |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. M. Antony Raj

# SBEC Course III – Programming in C (Linux OS)

# Sem: V

# Course Code: U21MAPS3

# Credits: 2

# 1. COURSE OUTCOMES

After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                   | Level | Exercise |
|------------|-------------------------------------------------------------------|-------|----------|
| CO 1       | Describe the advantages of working in Linux Operating<br>System   | K2    | -        |
| CO 2       | Develop program for solving algebraic equations                   | К3    | 1,2      |
| CO 3       | Develop C coding for solving numerical integral problems          | К3    | 3,4      |
| CO 4       | Solve Initial Value Problems numerically using C programming      | К3    | 5,6      |
| CO 5       | Solve Boundary Value Problems numerically using C programming     | КЗ    | 7        |
| CO 6       | Construct programs using C for numerical computing in<br>Linux OS | K6    | -        |

# 2A. SYLLABUS

| Unit I                                                                          | (4 hours) |
|---------------------------------------------------------------------------------|-----------|
| Introduction to C programming in Linux Operating system.                        |           |
| Unit II                                                                         | (6 hours) |
| Solving Algebraic equation, by using Bisection and Newton-Raphson Method.       |           |
| Unit III                                                                        | (7 hours) |
| Numerical Integration by using Trapezoidal and Simpson's method.                |           |
| Unit IV                                                                         | (7 hours) |
| Solving initial value problem by using Euler method and RK fourth order method. |           |
| Unit V                                                                          | (6 hours) |

Solving boundary value problem by using finite difference method.

# **B. TOPICS FOR SELF-STUDY:**

| S.<br>No. | Topics                                                           | Web Links                                          |
|-----------|------------------------------------------------------------------|----------------------------------------------------|
| 1         | Programming in C: Nested loops                                   | http://www.nptelvideos.com/lecture.php<br>?id=6601 |
| 2         | Problem Solving through Programming<br>in C: 2-D Array Operation | https://nptel.ac.in/courses/106/105/10_6105171/    |
| 3         | Problem Solving through Programming<br>in C: Sorting Methods     | https://nptel.ac.in/courses/106/105/10<br>6105171/ |

# Hours/Week: 2

| 4 | Programming in C: Functions - | http://www.nptelvideos.com/lecture.php |
|---|-------------------------------|----------------------------------------|
| 4 | Introduction                  | <u>?id=6610</u>                        |

# C. TEXTBOOK

1. E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill Publishing Pvt.Ltd., second edition, 2nd reprint 2001.

# **D. REFERENCES**

- 1. Christopher Negus, Linux Bible, Wiley Publishing, Inc., 2005 Edition.
- 2. Samuel D. Conte, Carl de Boor, Elementary Numerical Analysis An Algorithmic Approach, International Student Edition, McGraw-Hill Book Company,2000.
- 3 T. Veerarajan and T. Ramachandran, Numerical Methods With Programs in C and C++, Tata McGraw-Hill Publishing Company Limited, 2004.

# E. WEB LINKS:

- 1. <u>https://nptel.ac.in/courses/106/105/106105171/</u>
- 2. https://nptel.ac.in/courses/106/105/106105171/
- 3. https://nptel.ac.in/courses/106/105/106105085/

# 3. SPECIFIC LEARNING OUTCOMES (SLO)

| S.<br>No. | Lab Exercises                                                      | Learning outcomes                                                             | Bloom's<br>Taxonomy Level<br>of Transaction |
|-----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|
| 1         | C programs in Linux OS                                             | To construct simple programs<br>in Linux OS                                   | K6                                          |
| 2         | Solving Algebraic equations<br>by Bisection method                 | To develop C coding for solving<br>algebraic equations by<br>Bisection method | КЗ                                          |
| 3.        | Solving Algebraic equations by Newton's method                     | To develop C coding for solving<br>algebraic equations by<br>Newton's method  | КЗ                                          |
| 4         | Solving Numerical<br>Integration Problems by<br>Trapezoidal method | To develop C coding for<br>Numerical integration                              | КЗ                                          |
| 5         | Solving Numerical<br>Integration Problems by<br>Simpson's Method   | To develop C coding for<br>Numerical integration                              | КЗ                                          |
| 6         | Initial Value Problems by<br>Euler method                          | to construct C programs for solving IVP by Euler method                       | K3                                          |
| 7         | Initial Value Problems by<br>RK method                             | to construct C programs for<br>solving IVP by RK 4 <sup>th</sup> order        | K3                                          |
| 8         | Boundary Value Problems                                            | To develop C coding for<br>Numerical integration                              | K3                                          |
| 9         | Finite Difference Method                                           | to construct C programs for<br>solving BVP by Finite<br>Difference Method     | K3                                          |

# 4. MAPPING SCHEME (CO, PO, PSOs)

| Mapping | P01 | P02 | P03 | P04 | P05 | P06 | P07   | P08 | P09 | PS01  | PS02 | PSO3 | PS04    |
|---------|-----|-----|-----|-----|-----|-----|-------|-----|-----|-------|------|------|---------|
| CO1     | L   | -   | -   | Η   | -   | -   | L     | -   | -   | L     | Н    | -    | L       |
| CO2     | Μ   | L   | -   | Η   | L   | -   | Μ     | -   | -   | L     | Н    | L    | М       |
| CO3     | Μ   | L   | -   | Η   | L   | -   | Μ     | -   | -   | L     | Η    | L    | М       |
| CO4     | Μ   | L   | -   | Η   | L   | -   | Μ     | -   | -   | L     | Н    | L    | М       |
| CO5     | Μ   | L   | -   | Η   | L   | -   | Μ     | -   | -   | L     | Н    | L    | М       |
| CO6     | L   | Μ   | -   | Η   | L   | -   | Μ     | -   | -   | L     | Н    | L    | М       |
|         |     |     |     |     |     |     | L-Low |     | м   | -Mode | rate | F    | I- High |

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

NAME OF THE COURSE COORDINATOR: Dr. M. Evangeline Jebaseeli

**Under-Graduate Programme** 

**Allied Mathematics Courses** 

(Physics)

# **Courses of Study, Schemes of Examinations**

& Syllabi

(Choice Based Credit System)



# THE DEPARTMENT OF MATHEMATICS

(DST – FIST sponsored)

# **BISHOP HEBER COLLEGE (Autonomous)**

(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC &

Identified as College of Excellence by the UGC)

DST – FIST Sponsored College &

DBT Star College

# TIRUCHIRAPPALLI – 620 017

TAMIL NADU, INDIA

2021 - 2022

# Allied Mathematics Courses offered to students of Undergraduate Programme in Physics

| Sem. | Course | Code     | Title                                                                  | Hrs./ | Credits |     | Mark | s     |
|------|--------|----------|------------------------------------------------------------------------|-------|---------|-----|------|-------|
| Sem. | Course | Code     | Title                                                                  | week  | creatts | CIA | ESA  | Total |
| I    | I      | U20MAY11 | Algebra, Calculus<br>and Analytical<br>Geometry of 3D                  | 5     | 4       | 25  | 75   | 100   |
| II   | II     | U20MAY22 | Vector Calculus<br>and Trigonometry                                    | 4     | 4       | 25  | 75   | 100   |
| п    | ш      | U20MAY23 | Differential<br>Equations, Laplace<br>Transforms and<br>Fourier Series | 4     | 4       | 25  | 75   | 100   |

# (For the candidates admitted from the year 2021 onwards)

# Allied Course - I ALGEBRA, CALCULUS AND ANALYTICAL GEOMETRY OF 3D

## Semester: I

# Course Code: U20MAY11

# Credits: 4

# **1. COURSE OUTCOMES:**

After the Successful Completion of this course, the students will be able to

| CO. No. | Course Outcomes                                             | Level | Unit |
|---------|-------------------------------------------------------------|-------|------|
| CO1     | Evaluate the Eigenvalues and Eigen vectors of the matrices. | K5    | Ι    |
| CO2     | Analyze functions using limit, Derivatives.                 | K4    | II   |
| CO3     | Estimate the curvature and radius of curvature.             | K5    | Π    |
| CO3     | Evaluate the definite integrals using properties.           | K5    | III  |
| CO4     | Analyze the Line, plane, circle and sphere                  | K4    | IV   |
| CO6     | Relationship between plane and sphere                       | K4    | v    |

# 2A. SYLLABUS

# Unit I: Algebra

Eigen Values and Eigen Vectors - Cayley - Hamilton Theorem - Diagonalisation of Matrices.

#### **Unit II: Calculus**

positive integer.

Leibnitz's formula for n<sup>th</sup> derivative of a product – Curvature and Radius of Curvature – Cartesian formula for Radius of Curvature.

# **Unit III: Definite Integrals**

# **Unit IV: Analytical Geometry Three Dimensions**

Straight Line – Equation of a Straight-Line Condition for a Straight Line to lie on a given Plane – condition for coplanarity – shortest distance between two straight lines.

# Unit V: Geometrical Representation of the circle and Sphere

Sphere – standard equation – length of the tangent from any point – Equation of a tangent Plane - condition for the plane to touch the Sphere - intersection of a Plane and a Sphere intersection of two spheres – Equation of Sphere passing through a given Circle.

# Hours/Week: 5

# (15 Hours)

(15 Hours)

(15 Hours)

# Properties of Definite Integrals - Reduction Formulae for $\int e^{ax} x^n dx$ , $\int \sin^n x dx$ , $\int \cos^n x dx$ , where n is a positive integer – Evaluation of $\int_0^\infty e^{-ax} x^n dx$ , $\int \sin^n x dx$ , $\int \cos^n x dx$ , where n is a

# (15 Hours)

# (15 Hours)

# **B. TOPICS FOR SELF STUDY**

| S.<br>No | Topics                            | Web Links                                    |
|----------|-----------------------------------|----------------------------------------------|
| 1.       | Eigen Values and Eigen Vectors of | https://math.mit.edu/~gs/linearalgebra/ila0  |
| 1.       | Matrices.                         | <u>601.pdf</u>                               |
| 2        | Cayley – Hamilton Theorem and     | https://freevideolectures.com/course/3382/li |
| 4        | Diagonalization of Matrices.      | near-algebra-i/29                            |
|          |                                   | https://www.askiitians.com/iit-study-        |
| 3        | Application of Integral Calculus  | material/iit-jee-mathematics/integral-       |
|          |                                   | <u>calculus/</u>                             |
| 4        | Analytical geometry in three      | https://learn.careers360.com/maths/three-    |
| 4        | dimensions                        | dimensional-geometry-chapter/                |

# C. TEXTBOOK(s)

1. Dr. P. Mariappan and others, Algebra, Calculus and Analytical Geometry of 3D,1<sup>st</sup> Edition, New Century Book House, Pvt. Ltd, Chennai.

# **D. REFERENCE BOOKS**

- 1. T.K. ManichavasagamPillai, T. Natarajan and K.S. Ganapathy, Algebra (Vol.II), S. ViswanathanPvt. Ltd, Reprint, 2004.
- 2. S. Narayanan and T.K. Manichavasagam Pillay, Calculus (Vol-I, II), S. Viswanathan Printers and Publishers, Reprint,2003
- 3. Vittal. P. R, Allied Mathematics, Margham Publications, Chennai, Reprint 2000.
- 4. M.K. Venkataraman, Engineering Mathematics, National Publishing Company, 1999.

# E. WEB LINKS

- 1. <u>https://nptel.ac.in/courses/111/106/111106051/</u>
- 2. <u>https://nptel.ac.in/courses/111/101/111101115</u>

# 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Sections | Course Content                                    | Course Content Learning Outcomes                        |    |  |  |
|-------------------|---------------------------------------------------|---------------------------------------------------------|----|--|--|
| I                 | Algebra                                           |                                                         |    |  |  |
| 1.1               | Eigen value and Eigen<br>vectors of Matrices.     | Define Eigen value and Eigen vectors.                   | K1 |  |  |
| 1.2               | Eigen values and eigen<br>vectors of the matrices | Find the eigen values and eigen vectors of the matrices | K1 |  |  |
| 1.3               | Cayley-Hamilton theorem                           | Justify the Cayley-Hamilton theorem                     | K5 |  |  |
| 1.4               | Integral power and inverse of the matrices.       | Find the integral power and inverse of the matrices.    | K1 |  |  |
| 1.5               | Diagonalization of matrices                       | Formulate the Diagonalization<br>of<br>matrices         | K6 |  |  |

| II  | Calculus                                         |                                                                         |    |
|-----|--------------------------------------------------|-------------------------------------------------------------------------|----|
| 2.1 | Leibnitz formula for n <sup>th</sup> derivative. | Analyze the higher<br>derivatives                                       | К5 |
| 2.2 | Higher Derivative                                | Find out the derivative of the given function.                          | K1 |
| 2.3 | Curvature and radius of curvature.               | Define curvature and radius of curvature.                               | K1 |
| 2.4 | Cartesian formula for radius of curvature        | Formulate the<br>Cartesian formula for<br>radius of curvature           | K6 |
| 2.5 | Curvature, and radius of curvature               | Estimate the curvature<br>and radius of<br>curvature.                   | К5 |
| III | Definite Integrals                               |                                                                         |    |
| 3.1 | Definite Integrals                               | Define the definite Integrals                                           | K1 |
| 3.2 | Properties of definite integrals                 | Prove the Properties of definite integrals                              | К5 |
| 3.3 | Properties of definite integrals                 | Evaluate the definite integrals                                         | К5 |
| 3.4 | Reduction Formula                                | Define Reduction Formula                                                | K1 |
| 3.5 | Reduction Formula                                | Evaluate the definite integral using reduction formula                  | K5 |
| IV  | Analytical Geometry of Three                     |                                                                         |    |
| 4.1 | Straight Line                                    | Find the Equation of a Straight Line.                                   | K1 |
| 4.2 | Condition for a Straight Line                    | Find the Condition for a<br>Straight Line to lie on a given<br>Plane    | K1 |
| 4.3 | Straight Line                                    | Discuss the condition for a<br>Straight Line to lie on a given<br>Plane | К5 |
| 4.4 | Coplanar                                         | State the Condition for coplanarity.                                    |    |
| 4.5 | Shortest distance between two<br>lines           | State the Condition for<br>Shortest distance between two<br>lines       | K1 |
| 4.6 | Shortest distance between two lines              | Find the Shortest distance between two lines                            | K1 |
| v   | Geometrical Representation of                    | f the circle and Sphere                                                 |    |
| 5.1 | Sphere                                           | Find the equation of the sphere                                         | K1 |
| 5.2 | Length of the tangent from any point.            | Find the Length of the tangent from any point.                          | K1 |
| 5.3 | Equation of a tangent plane                      | Find the Equation of a tangent plane                                    | K1 |
| 5.4 | Plane to touch a sphere                          | State the condition for a plane to touch a sphere                       | K2 |
| 5.5 | Intersection of a Plane and a sphere             | Test for intersection of a Plane<br>and a sphere                        | K1 |
| 5.6 | Great Circle.                                    | Find the equation of Sphere                                             | K1 |

|  |  | passing through a given<br>Circle. |  |
|--|--|------------------------------------|--|
|--|--|------------------------------------|--|

| U20MAY11 | P01 | P02 | P03 | P04 | P05 | P06 | 707 | 908 | P09 | PS01 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | Н   | М   | -   | М   | М   | I   | М   | -   | Н    | М    | М    | -    |
| CO2      | Н   | М   | М   | -   | Н   | М   | М   | Η   | -   | М    | М    | М    | L    |
| CO3      | Н   | М   | -   | -   | Н   | М   | М   | М   | -   | М    | М    | М    | L    |
| CO4      | Н   | М   | М   | -   | М   | -   | L   | М   | -   | М    | М    | М    | L    |
| CO5      | Н   | М   | L   | -   | -   | М   | М   | -   | -   | М    | М    | Н    | L    |
| CO6      | Н   | М   | М   | -   | М   | М   | М   | М   | -   | L    | М    | Н    | -    |

# 4. MAPPING SCHEME (POs, PSOs AND COs)

L-Low M-Moderate

H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. M. Suresh kumar

# Allied Course II: VECTOR CALCULUS AND TRIGONOMETRY

## Semester: II

#### Course Code: U20MAY22

Credits: 4

# **1. COURSE OUTCOMES**

# After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                                                                                        | Level | Unit |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Determine the maximum value of directional derivative                                                                                  | K5    | I    |
| CO2        | Evaluate the divergence and curl of vector functions                                                                                   | К5    | I    |
| CO3        | Evaluate the Line integral, Surface integral and Volume integral                                                                       | K5    | п    |
| CO4        | Apply Green's theorem, Stoke's theorem and the Divergence theorem to compute integrals                                                 | КЗ    | III  |
| CO5        | Simplify the expansion of various trigonometrical functions                                                                            | K4    | IV   |
| C06        | Relationship between the circular and hyperbolic functions<br>and separate into real and imaginary parts of trigonometric<br>functions | К4    | v    |

# 2A. SYLLABUS

# **Unit I: Vector Differentiation**

Scalar and Vector Point Functions - Direction and Magnitude of gradient - Maximum value of Directional derivative - Divergence and Curl - Definitions (Solenoidal and Irrotational Vectors) – Vector Identities – Formulainvolving Operator ⊽ twice.

# **Unit II: Vector Integration**

Vector integration – Line integration – Surface integral – Volume integral.

# **Unit III: Theorems On Integrals**

Verification of Gauss divergencetheorem - Stokes theorem - Green's theorem.

# **Unit IV: Trigonometry**

Expansions for sin  $n\theta$ , cos  $n\theta$ , when n is a positive integer tan  $n\theta$ when n is a positive integer – Expansion for  $\tan(\theta_1 + \theta_2 + \dots + \theta_n)$  – Expansions for  $\cos^n \theta$  and  $\sin^n \theta$  in terms of multiple of  $\theta$  – Expansions of  $\sin \theta$  ,  $\cos \theta$  and  $\tan \theta$  in terms of  $\theta$  .

# **Unit V: Hyperbolic Functions**

Euler's formula - Hyperbolic functions - Relation between the circular and hyperbolic functions – Inverse hyperbolic functions sinh<sup>-1</sup>x, cosh<sup>-1</sup>x and tanh<sup>-1</sup>x in terms of logarithmic functions – Separation into real and imaginary parts of sin(x+iy), cos(x+iy), tan(x+iy),  $\sinh(x+iy)$ ,  $\cosh(x+iy)$ ,  $\tanh(x+iy)$  and  $\tan^{-1}(x+iy)$ .

# (12 Hours)

(10 Hours)

(14 Hours)

# (10 Hours)

# Hours/Week: 4

(14 Hours)

# **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                                 | Web Links                                                                 |  |
|-----------|----------------------------------------|---------------------------------------------------------------------------|--|
| 1         | Chain Rule with more variables         | Vector and Multi-variable Calculus                                        |  |
| 2         | Two-Dimensional Flux                   | Double and Triple integrals, and Vector Calculus<br>in 2- and 3-space.    |  |
| 3         | Extended Greens Theorem                | <u>Multivariable-Calculus-theorem-boundaries-</u><br>with-multiple-pieces |  |
| 4         | Derivatives of Hyperbolic<br>Functions | https://tutorial.math.lamar.edu/classes/calci/D<br>iffHyperFcns.aspx      |  |

# C. TEXTBOOK(s)

1. Dr. P. Mariappan and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt. Ltd, Chennai.

# **D. REFERENCE BOOKS**

- 1. S. Narayanan and T.K. ManickavasagamPillai, Ancillary Mathematics, Vol. III, S. Viswanathan Pvt. Ltd., Reprint 1999.
- 2. S. Narayanan and T.K. ManickavasagamPillai, Trigonometry, S. Viswanathan Pvt. Ltd., Reprint 2004.
- 3. P. Duraipandian, LaxmiDuraipandian and Paramasivan, Trigonometry, Emerald Publishers, Reprint 1999.

# E. WEB LINKS

- 1. <u>Swayam: Vector Calculus By Prof. Hari Shankar Mahato | IIT Kharagpur</u>
- 2. Whitman.edu : Hyperbolic Functions

# 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                         | Learning outcomes                                 | Highest Bloom's<br>Taxonomic Level<br>of Transaction |
|------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------|
| I                | Vector Differentiation                 |                                                   |                                                      |
| 1.1              | Scalar and Vector Point<br>Functions   | Define Scalar and Vector<br>Point Functions       | K1                                                   |
| 1.2              | Gradient and Directional<br>Derivative | Evaluate the directional derivatives and gradient | К5                                                   |
| 1.3              | Divergence and Curl                    | Determine the Divergence<br>and Curl              | К5                                                   |
| 1.4              | Vector Identities                      | Explain the Vector Identities                     | K2                                                   |
| 1.5              | Formula involving Operator<br>∇twice   | Interpret the formula involving operator ∇ twice  | K2                                                   |
| II               | Vector Integration                     |                                                   |                                                      |
| 2.1              | Vector integration                     | Explain the concept of the vector integration     | K2                                                   |
| 2.2              | Line integral                          | Evaluate the line integral.                       | K5                                                   |
| 2.3              | Surface integral                       | Evaluate the Surface integral                     | К5                                                   |
| 2.4              | Volume integral                        | Evaluate the Volume integral                      | К5                                                   |
| III              | Theorems on Integrals                  |                                                   |                                                      |

|                   |                                                                                                                                                                                                                                                                                                                  | Apply Gauss Divergence                                                                                                                                                                                                                                                                |          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3.1               | Gauss divergence theorem                                                                                                                                                                                                                                                                                         | theorem to find the value of                                                                                                                                                                                                                                                          | K3       |
|                   | _                                                                                                                                                                                                                                                                                                                | the integrals                                                                                                                                                                                                                                                                         |          |
| 3.2               | Stokes theorem                                                                                                                                                                                                                                                                                                   | Apply Stokes theorem to find                                                                                                                                                                                                                                                          | K3       |
|                   |                                                                                                                                                                                                                                                                                                                  | the value of the integrals                                                                                                                                                                                                                                                            |          |
| 3.3               | Green's theorem                                                                                                                                                                                                                                                                                                  | Apply Green's theorem to find the value of the integrals                                                                                                                                                                                                                              | K3       |
| IV                | Trigonometry                                                                                                                                                                                                                                                                                                     | line the value of the integrats                                                                                                                                                                                                                                                       |          |
|                   |                                                                                                                                                                                                                                                                                                                  | Discuss expansion of                                                                                                                                                                                                                                                                  |          |
| 4.1               | Expansion of sin $n\theta$ and $\cos n\theta$                                                                                                                                                                                                                                                                    | circular functions sin $n	heta$ ,                                                                                                                                                                                                                                                     | K6       |
|                   |                                                                                                                                                                                                                                                                                                                  | $\cos n\theta$ as a series.                                                                                                                                                                                                                                                           |          |
|                   | Expansion of $\tan n\theta$ in                                                                                                                                                                                                                                                                                   | Discuss expansion of                                                                                                                                                                                                                                                                  |          |
| 4.2               | powers of $tan\theta$                                                                                                                                                                                                                                                                                            | circular function                                                                                                                                                                                                                                                                     | K6       |
|                   | -                                                                                                                                                                                                                                                                                                                | $\tan n\theta$ in powers of $\tan \theta$                                                                                                                                                                                                                                             |          |
| 4.3               | Expansions for $\cos^n \theta$                                                                                                                                                                                                                                                                                   | Discuss expansion of $\cos^n \theta$                                                                                                                                                                                                                                                  | K6       |
|                   | when n is a positive integer                                                                                                                                                                                                                                                                                     | when n is a positive integer                                                                                                                                                                                                                                                          |          |
|                   | Expansions for $\sin^n \theta$                                                                                                                                                                                                                                                                                   | Discuss expansion of $\sin^n	heta$                                                                                                                                                                                                                                                    |          |
| 4.4               | when n is a positive integer                                                                                                                                                                                                                                                                                     | when n is a positive integer                                                                                                                                                                                                                                                          | Кб       |
|                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |          |
| V                 |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |          |
| v                 | Hyperbolic Functions                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |          |
| <b>v</b><br>5.1   | <b>Hyperbolic Functions</b><br>Euler's formula and                                                                                                                                                                                                                                                               | Define Euler's formula and                                                                                                                                                                                                                                                            | K1       |
|                   | <b>Hyperbolic Functions</b><br>Euler's formula and<br>Hyperbolic functions                                                                                                                                                                                                                                       | Define Euler's formula and<br>Hyperbolic functions                                                                                                                                                                                                                                    | K1       |
| 5.1               | Hyperbolic FunctionsEuler'sformulaandHyperbolic functionsRelationbetweenthethethe                                                                                                                                                                                                                                | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between                                                                                                                                                                                                            | K1<br>K4 |
|                   | <b>Hyperbolic Functions</b><br>Euler's formula and<br>Hyperbolic functions                                                                                                                                                                                                                                       | Define Euler's formula and<br>Hyperbolic functions                                                                                                                                                                                                                                    |          |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInversehyperbolic                                                                                                                                                                     | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions                                                                                                                                                                    |          |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functions                                                                                                                                                       | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions<br>Identify the inverse                                                                                                                                            | K4       |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functions<br>sinh <sup>-1</sup> x, cosh <sup>-1</sup> x and tanh <sup>-1</sup> x                                                                                | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions<br>Identify the inverse                                                                                                                                            |          |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functionssinh <sup>-1</sup> x, cosh <sup>-1</sup> x and tanh <sup>-1</sup> x<br>in terms of logarithmic                                                         | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions<br>Identify the inverse<br>hyperbolic functions in                                                                                                                 | K4       |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functionsInverse hyperbolic<br>functionssinh <sup>-1</sup> x, cosh <sup>-1</sup> x and tanh <sup>-1</sup> x<br>in terms of logarithmic<br>functions             | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions<br>Identify the inverse<br>hyperbolic functions in<br>terms of logarithmic<br>functions.                                                                           | K4       |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functionssinh <sup>-1</sup> x, cosh <sup>-1</sup> x and tanh <sup>-1</sup> x<br>in terms of logarithmic                                                         | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions<br>Identify the inverse<br>hyperbolic functions in<br>terms of logarithmic<br>functions.                                                                           | K4       |
| 5.1               | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functionssinh-1x, cosh-1x and tanh-1x<br>in terms of logarithmic<br>functionsSeparation into real and<br>imaginary parts of sin(x+iy),<br>cos(x+iy), tan(x+iy), | Define Euler's formula and<br>Hyperbolic functionsRelationshipbetween<br>circular and hyperbolic<br>functionsIdentifythe inverse<br>hyperbolic<br>functions in<br>terms of logarithmic<br>functions.Categorize<br>imaginary parts of sin(x+iy),<br>cos(x+iy),tan(x+iy),<br>tan(x+iy), | K4       |
| 5.1<br>5.2<br>5.3 | Hyperbolic FunctionsEuler's formula and<br>Hyperbolic functionsRelation between the<br>circular and hyperbolic<br>functionsInverse hyperbolic<br>functionsinverse hyperbolic<br>functionssinh <sup>-1</sup> x, cosh <sup>-1</sup> x and tanh <sup>-1</sup> x<br>in terms of logarithmic<br>                      | Define Euler's formula and<br>Hyperbolic functions<br>Relationship between<br>circular and hyperbolic<br>functions<br>Identify the inverse<br>hyperbolic functions in<br>terms of logarithmic<br>functions.<br>Categorize the real and<br>imaginary parts of sin(x+iy),               | K4<br>K3 |

| U20MAY22 | P01 | P02 | P03 | P04 | PO5 | 90d | 704 | 904 | 60d | 10S4 | PSO2 | FO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|------|
| C01      | Н   | L   | М   | L   | -   | I   | L   | L   | I   | L    | L    | М   | L    |
| CO2      | Н   | L   | L   | L   | -   | -   | L   | L   | -   | L    | L    | М   | L    |
| CO3      | М   | L   | М   | -   | -   | -   | L   | L   | -   | L    | L    | М   | L    |
| CO4      | Н   | L   | L   | L   | -   | -   | L   | М   | -   | L    | L    | М   | L    |
| CO5      | М   | -   | L   | -   | -   | -   | L   | М   | -   | L    | L    | М   | L    |
| C06      | Н   | -   | L   | -   | -   | -   | L   | М   | -   | L    | L    | М   | L    |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. B. Sathish kumar

#### Allied Course: III Differential Equations, Laplace Transforms and Fourier Series

Semester: II

#### Course Code: U20MAY23

Credits: 4

Hours/Week: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course the students will be able to

| CO.<br>No. | Course Outcomes                                                              | Level | Unit |
|------------|------------------------------------------------------------------------------|-------|------|
| CO1        | Solve the First Order and Higher Degree Ordinary<br>Differential Equations   | КЗ    | I    |
| CO2        | Solve specific types of partial differential equations by Appropriate method | К3    | п    |
| CO3        | Discuss the properties and general theorems of the Laplace Transform.        | K6    | III  |
| CO4        | Solve differential and integral equations using Laplace transforms.          | КЗ    | III  |
| C05        | Apply Laplace Transform technique to solve initial value problems            | КЗ    | IV   |
| C06        | Express Fourier Series for a given periodic function.                        | K2    | v    |

#### 2A. SYLLABUS

#### Unit I: Ordinary Differential Equations

# Ordinary Differential Equations – First Order and Higher Degree – Equation solvable for $\frac{dy}{dt}$

dx - Equation solvable for y – Equation solvable for x (simple problems only) – Clairaut 's Form (simple case only).

#### **Unit II: Partial Differential Equations**

Derivation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions – classification of Integrals – some standard types of First Order Partial Differential Equations – Other standard forms.

#### Unit III: Laplace Transform

Definition - Condition for the existence of the Laplace Transforms-Properties of Laplace Transforms - Laplace Transform of some standard functions – Some general theorems.

#### Unit IV: Inverse Laplace Transform

The Inverse Laplace Transform – Shifting theorem for Inverse Transform – The method of partial fraction can be used to find the Inverse transform of certain functions – Related theorems – Special cases- Applications to solutions of Differential Equations.

#### **Unit V: Fourier Series**

Definition – To determine the values of  $a_0$ ,  $a_n$  and  $b_n$  – Bernoulli's Formula – Sufficient conditions for representing f(x) by Fourier Series – Even and Odd functions – Properties of Odd and Even functions – Fourier Series of even and odd functions – Half range Fourier Series.

#### (13 Hours)

(11 Hours)

#### (12 Hours)

# (12 Hours)

(12 Hours)

#### **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                                                                         | Web Links                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Parabolic, Elliptic and Hyperbolic<br>Differential Equations                   | SWAYAM: Course on Applications of ODE                                                                                                            |
| 2         | One Dimensional Wave and Heat<br>Equation                                      | <u>NPTEL: A course on mathematical methods</u><br><u>and its applications by Dr. P. N. Agrawal,</u><br><u>Department of mathematics, Roorkee</u> |
| 3         | Laplace transforms of Heaviside<br>unit step function, Dirac Delta<br>function | https://nptel.ac.in/courses/111/107/11110<br>7098/                                                                                               |
| 4         | Applications of Laplace transform                                              | <u>NPTEL: Applications in science and</u><br><u>technology of LT</u>                                                                             |

#### C. TEXTBOOK(s)

1. Dr. R. GethsiSharmila and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.

#### **D. REFERENCE BOOKS**

- 1. S. Narayanan and T.K. ManickavasagamPillai, Calculus (Vol. III), S. Viswanathan Printers and Publishers, Reprint 2004.
- 2. Vittal P.R., Allied Mathematics, Margham Publications, Chennai, Reprint 2000.

#### E. WEB LINKS

1. <u>SWAYAM: Course on Partial Differential Equations by Alaka Das, Jadavpur</u> <u>University</u>

2. NPTEL: Course on Laplace Transform by Department of Mathematics, IMSc

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                                                        | Learning outcomes                                                                         | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|
| I                | Ordinary Differential Equation                                        | ns                                                                                        |                                                            |
| 1.1              | Ordinary Differential<br>Equations – First Order and<br>Higher Degree | Solve first order and higher degree ordinary differential equations.                      | КЗ                                                         |
| 1.2              | Equation solvable for $\frac{dy}{dx}$                                 | Solve the differential equations<br>using equations solvable for<br>$\frac{dy}{dx}$       | K3                                                         |
| 1.3              | Equation solvable for x                                               | Determine the solution of the<br>differential equations using<br>equations solvable for x | K6                                                         |
| 1.4              | Equation solvable for y                                               | Determine the solution of the<br>differential equations using<br>equations solvable for y | K6                                                         |
| 1.5              | Clairaut's Form                                                       | Find the solution of the given differential equation                                      | K1                                                         |
| II               | Partial Differential Equations                                        | 5                                                                                         |                                                            |

|                                                                  | Derivation of Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Formulate the Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.1                                                              | Differential Equations by                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Differential Equation by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K6                                     |
| 4.1                                                              | elimination of arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | elimination of arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                    |
|                                                                  | constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | constants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                                                                  | Derivation of Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Formulate the Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 2.2                                                              | Differential Equations by                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Differential Equation by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K6                                     |
| 2.2                                                              | elimination of arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | elimination of arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO                                     |
|                                                                  | functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| 2.3                                                              | Classification of Integrals                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Classify the Integrals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K2                                     |
|                                                                  | Some standard types of First                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solve the partial differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 2.4                                                              | Order Partial Differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                | equations using appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K3                                     |
|                                                                  | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                                                  | Defutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solve the partial differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 2.5                                                              | Other standard forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | equations using appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K3                                     |
| 2.5                                                              | Other standard forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KJ                                     |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| III                                                              | Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| 3.1                                                              | Definition of Laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Define Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K1                                     |
|                                                                  | Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Discuss the conditions for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 3.2                                                              | Condition for the existence of                                                                                                                                                                                                                                                                                                                                                                                                                                                            | existence of the Laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K2                                     |
|                                                                  | the Laplace Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 2.2                                                              | Properties of Laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Discuss the basic properties of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K2                                     |
| 3.3                                                              | Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laplace Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KZ                                     |
|                                                                  | Some standard functions of                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solve the Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| 3.4                                                              | Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | using Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K3                                     |
|                                                                  | Some general theorems of                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Interpret the general theorems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 3.5                                                              | Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K5                                     |
|                                                                  | Evaluation of integrals using                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evaluate the integrals using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 3.6                                                              | Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K5                                     |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| IV                                                               | Inverse Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Define the Immers Legise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| <b>IV</b><br>4.1                                                 | Definition of Inverse Laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Define the Inverse Laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K1                                     |
|                                                                  | Definition of Inverse Laplace<br>Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K1                                     |
| 4.1                                                              | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse                                                                                                                                                                                                                                                                                                                                                                                                               | Transforms<br>Interpret the shifting theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                                                                  | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                          | Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K1<br>K2                               |
| 4.1                                                              | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can                                                                                                                                                                                                                                                                                                                                                        | Transforms<br>Interpret the shifting theorem<br>for inverse Laplace Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 4.1<br>4.2                                                       | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse                                                                                                                                                                                                                                                                                                                         | Transforms<br>Interpret the shifting theorem<br>for inverse Laplace Transforms<br>Determine the inverse transform                                                                                                                                                                                                                                                                                                                                                                                                                                       | K2                                     |
| 4.1                                                              | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain                                                                                                                                                                                                                                                                                         | Transforms<br>Interpret the shifting theorem<br>for inverse Laplace Transforms<br>Determine the inverse transform<br>of certain functions by using the                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| 4.1<br>4.2                                                       | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse                                                                                                                                                                                                                                                                                                                         | Transforms<br>Interpret the shifting theorem<br>for inverse Laplace Transforms<br>Determine the inverse transform                                                                                                                                                                                                                                                                                                                                                                                                                                       | K2                                     |
| 4.1<br>4.2                                                       | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain                                                                                                                                                                                                                                                                                         | Transforms<br>Interpret the shifting theorem<br>for inverse Laplace Transforms<br>Determine the inverse transform<br>of certain functions by using the                                                                                                                                                                                                                                                                                                                                                                                                  | K2                                     |
| 4.1<br>4.2                                                       | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain                                                                                                                                                                                                                                                                                         | Transforms<br>Interpret the shifting theorem<br>for inverse Laplace Transforms<br>Determine the inverse transform<br>of certain functions by using the<br>method of partial fraction.                                                                                                                                                                                                                                                                                                                                                                   | K2                                     |
| 4.1<br>4.2<br>4.3                                                | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions                                                                                                                                                                                                                                                                            | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of                                                                                                                                                                                                                                                                                                                                                | K2<br>K6                               |
| 4.1<br>4.2<br>4.3                                                | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases                                                                                                                                                                                                                                                | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.                                                                                                                                                                                                                                                                                                       | K2<br>K6                               |
| 4.1<br>4.2<br>4.3<br>4.4                                         | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of                                                                                                                                                                                                                | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.ApplyLaplace<br>transform                                                                                                                                                                                                                                                                              | K2<br>K6<br>K3                         |
| 4.1<br>4.2<br>4.3                                                | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases                                                                                                                                                                                                                                                | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.ApplyLaplace transform<br>technique to solve initial value                                                                                                                                                                                                                                             | K2<br>K6                               |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5                                  | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of<br>differential equations                                                                                                                                                                                      | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.ApplyLaplace<br>transform                                                                                                                                                                                                                                                                              | K2<br>K6<br>K3                         |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b>                      | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of<br>differential equations<br><b>Fourier Series</b>                                                                                                                                                             | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problems                                                                                                                                                                                                                                | K2<br>K6<br>K3<br>K3                   |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5                                  | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of<br>differential equations<br><b>Fourier Series</b><br>Fourier Series                                                                                                                                           | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier Series                                                                                                                                                                                                           | K2<br>K6<br>K3                         |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b>                      | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of<br>differential equations<br><b>Fourier Series</b><br>Fourier Series<br>To determine the values of                                                                                                             | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problems                                                                                                                                                                                                                                | K2<br>K6<br>K3<br>K3<br>K1             |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1               | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of<br>differential equations<br><b>Fourier Series</b><br>Fourier Series                                                                                                                                           | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the                                                                                                                                                                                | K2<br>K6<br>K3<br>K3                   |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b>                      | Definition of Inverse Laplace<br>Transforms<br>Shifting theorem for Inverse<br>Laplace Transform<br>Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions<br>Theorems – special cases<br>Applications to solutions of<br>differential equations<br><b>Fourier Series</b><br>Fourier Series<br>To determine the values of                                                                                                             | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier Series                                                                                                                                                                                                           | K2<br>K6<br>K3<br>K3<br>K1             |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1               | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems – special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formula                                                                                                         | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$                                                                                                                                            | K2<br>K6<br>K3<br>K3<br>K1             |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1<br>5.2        | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems – special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formulaFourier Series of even and odd                                                                           | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$ Determine the Fourier series                                                                                                               | K2<br>K6<br>K3<br>K3<br>K1             |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1               | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems – special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formula                                                                                                         | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$ Determine the Fourier series<br>expansion of a given even and                                                                              | K2<br>K6<br>K3<br>K3<br>K1<br>K6       |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1<br>5.2        | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems – special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formulaFourier Series of even and odd<br>functions                                                              | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$ Determine the Fourier series<br>expansion of a given even and<br>odd functions                                                             | K2<br>K6<br>K3<br>K3<br>K1<br>K6       |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1<br>5.2<br>5.3 | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems - special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formulaFourier Series of even and odd<br>functionsProperties of odd and even                                    | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$ Determine the Fourier series<br>expansion of a given even and<br>odd functionsDiscussthe properties of even                                | K2<br>K6<br>K3<br>K3<br>K1<br>K6<br>K6 |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1<br>5.2        | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems - special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formulaFourier Series of even and odd<br>functionsProperties of odd and even<br>functions and Fourier Series of | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$ Determine the Fourier series<br>expansion of a given even and<br>odd functionsDiscussthe properties of even<br>and odd functions and solve | K2<br>K6<br>K3<br>K3<br>K1<br>K6       |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br><b>V</b><br>5.1<br>5.2<br>5.3 | Definition of Inverse Laplace<br>TransformsShifting theorem for Inverse<br>Laplace TransformMethod of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functionsTheorems - special casesApplications to solutions of<br>differential equationsFourier Series<br>To determine the values of<br>$a_0, a_n$ and $b_n$ - Bernoulli's<br>formulaFourier Series of even and odd<br>functionsProperties of odd and even                                    | TransformsInterpret the shifting theorem<br>for inverse Laplace TransformsDetermine the inverse transform<br>of certain functions by using the<br>method of partial fraction.Solve some special types of<br>problems using Laplace<br>Transforms.Apply Laplace transform<br>technique to solve initial value<br>problemsDefine Fourier SeriesDetermine the values of the<br>constant $a_0$ , $a_n$ and $b_n$ Determine the Fourier series<br>expansion of a given even and<br>odd functionsDiscussthe properties of even                                | K2<br>K6<br>K3<br>K3<br>K1<br>K6<br>K6 |

| 5.6 | Development in cosine series | Develop the given function in cosine series | K3 |
|-----|------------------------------|---------------------------------------------|----|
| 5.7 | Development in sine series   | Develop the given function in sine series   | K3 |

| U20MAY23 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PS01 | PS02 | PSO3 | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | М   | М   | М   | Μ   | -   | М   | М   | -   | -   | М    | М    | Н    | М    |
| CO2      | М   | Н   | М   | М   | -   | -   | М   | -   | -   | Н    | Η    | М    | М    |
| CO3      | Н   | Н   | Н   | -   | -   | -   | -   | -   | -   | Н    | Η    | М    | -    |
| CO4      | Н   | Н   | М   | М   | -   | -   | -   | -   | -   | Н    | Η    | М    | -    |
| CO5      | Μ   | Н   | Н   | Μ   | -   | -   | -   | -   | -   | Н    | Η    | М    | -    |
| CO6      | Η   | Η   | М   | Μ   | -   | -   | -   | -   | -   | Н    | Η    | -    | -    |
|          | 11  | 11  | 1/1 | 1/1 | -   | -   | -   | -   | -   | 11   | п    | -    | -    |

L-Low M-Moderate

H- High

# 5. COURSE ASSESSMENT METHODS

### **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Ms. R. Praveena

Under-Graduate Programme

**Allied Mathematics Courses** 

(Chemistry)

#### Courses of Study, Schemes of Examinations

& Syllabi

(Choice Based Credit System)



#### THE DEPARTMENT OF MATHEMATICS

(DST – FIST sponsored)

### **BISHOP HEBER COLLEGE (Autonomous)**

(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC &

Identified as College of Excellence by the UGC)

DST – FIST Sponsored College &

DBT Star College

TIRUCHIRAPPALLI – 620 017

TAMIL NADU, INDIA

2021 - 2022

# Allied Mathematics Courses offered to students of Undergraduate Programme in Chemistry

| Sem. | Course | Code     | Title                                               | Hrs./ | Credits |     | Mark | s     |
|------|--------|----------|-----------------------------------------------------|-------|---------|-----|------|-------|
| Sem. | Course | Code     | The                                                 | week  | creatts | CIA | ESA  | Total |
| Ι    | Ι      | U20MAC11 | Algebra and<br>Calculus                             | 5     | 4       | 25  | 75   | 100   |
| II   | II     | U20MAC22 | Vector Calculus<br>and Trigonometry                 | 4     | 4       | 25  | 75   | 100   |
| II   | III    | U20MAC23 | Differential<br>Equations and<br>Laplace Transforms | 4     | 4       | 25  | 75   | 100   |

# (For the candidates admitted from the year 2021 onwards)

#### Allied Course I: Algebra and Calculus

#### Semester: I

# Hours/Week: 5

Course Code: U20MAC11

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After successful completion of the course, the students will be able to

| Co.<br>No. | Course Outcomes                                                                                                           | Level | Unit |
|------------|---------------------------------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Determine the Eigenvalues and Eigen vectors.                                                                              | K5    | I    |
| CO2        | Apply Cayley-Hamilton theorem and diagonalization process<br>to calculate the higher powers and inverse of a given matrix | КЗ    | I    |
| CO3        | Determine the n <sup>th</sup> derivative of a given function using Partial Fractions and De-Moivre's Theorem.             | К5    | II   |
| CO4        | Determine the curvature, evolutes and envelopes of certain curves.                                                        | К5    | III  |
| CO5        | Solve the integrals of polynomials and trigonometrical functions.                                                         | К3    | IV   |
| CO6        | Interpret the relationships between Beta and Gamma functions                                                              | К5    | v    |

#### 2A. SYLLABUS

#### **Unit I: Eigenvalues and Eigen vectors**

Eigen values and Eigen vectors - Cayley - Hamilton Theorem - Diagonalisation of matrices (problems only)

#### **Unit II: Successive Differentiation**

Differentiation - Definition - Rules for differentiation - Standard forms - Successive differentiation – n<sup>th</sup> derivatives – Standard forms – Use of Partial fractions – Application of De-Moivre's theorem – Trigonometrical transformations.

#### Unit III: Differential calculus - Curvature

Leibnitz's theorem (statement only) on the n<sup>th</sup> differential co-efficient of the product of two functions of x (problems only) - curvature and radius of curvature - cartesian formula for radius of curvature.

#### **Unit IV: Integration**

Introduction – Methods of Integration – Integrals of the functions involving  $a^2 \pm x^2$  - Integrals of functions of the form  $\int f(x)^n f'(x) dx$  – Definite Integrals – Properties of definite integrals -Reduction formulae for the three definite integrals :

# $\int_0^\infty e^{-ax} x^n dx, \int_0^{\frac{\pi}{2}} \sin nx \, dx \, \text{and} \int_0^{\frac{\pi}{2}} \cos nx \, dx \text{ where n is a positive integer. (Problems only)}$

#### **Unit V: The Beta and Gamma functions**

 $\Gamma(n)$ The Gamma and Beta functions - Gamma function - recurrence formulae for connection between gamma function and factorials - Beta function - relation between beta and gamma functions – applications of Beta and Gamma functions.

(15 Hours)

(15 Hours)

# (15 Hours)

(15 Hours)

### (15 Hours)

#### **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                              | Web Links                                      |
|-----------|-------------------------------------|------------------------------------------------|
| 1         | Quadratic forms                     | https://www.youtube.com/watch?v=yuE86XeGhEA    |
| 2         | Evolutes and Involutes              | https://www.youtube.com/watch?v=Yh1TQcS_byE    |
| 3         | Successive differentiation          | https://nptel.ac.in/courses/111/105/111105122/ |
| 4         | Differentiation under integral sign | https://nptel.ac.in/courses/111/105/111105122/ |

#### C. TEXTBOOK(s)

1. Dr P Mariappan and Others, Algebra, Calculus and Analytical Geometry of 3D, 1<sup>st</sup> Edition, New Century Book House, Pvt. Ltd, Chennai.

| Unit I             | Chapter 1 |
|--------------------|-----------|
| Unit II & Unit III | Chapter 2 |
| Unit IV            | Chapter 3 |
| Unit V             | Chapter 4 |

#### **D. REFERENCE BOOKS**

1. T. K. Manichavasagam Pillai, T. Natarajan & K. S. Ganapathy, Algebra (Vol.II),

S.Viswanathan Pvt. Ltd.Reprint 2004.

2. S. Narayanan and T. K. ManichavasagamPillai, Calculus (Vol. I, II) Viswanathan Printers

and Publishers, Reprint 2003.

3. M. K. Venkataraman, Engineering Mathematics, National Publishing Company, 1999.

#### E. WEB LINKS

- 1. <u>https://nptel.ac.in/courses/111/105/111105121/</u>
- 2. <u>https://nptel.ac.in/courses/111/105/111105122/</u>
- 3. <u>https://freevideolectures.com/course/4545/nptel-mechanics-materials/52</u>

### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/Section | Course contents                   |                                                                |    |  |  |  |
|--------------|-----------------------------------|----------------------------------------------------------------|----|--|--|--|
| 1            | Eigenvalues and Eiger             |                                                                |    |  |  |  |
| 1.1          | Eigen values and<br>Eigen vectors | Make use of the properties<br>of Eigen values, Eigen<br>vector | КЗ |  |  |  |
| 1.2          | Cayley-Hamilton<br>Theorem        | Evaluate the higher powers and inverse of a matrix.            | K5 |  |  |  |
| 1.3          | Diagonalisation of<br>matrices    | Compute the diagoalisation of a matrix                         | K5 |  |  |  |

| II       | Successive Different                            | iation                                                                          |     |  |
|----------|-------------------------------------------------|---------------------------------------------------------------------------------|-----|--|
| 2.1      | Differentiation -                               | Define the derivative                                                           | K1  |  |
| 2.1      | Definition                                      |                                                                                 | K1  |  |
| 2.2      | Rules for                                       | Explain the concept of Rules                                                    | K2  |  |
|          | differentiation                                 | for differentiation                                                             | 112 |  |
| 2.3      | Standard forms                                  | Determine the derivative of                                                     | K5  |  |
|          |                                                 | some standard functions                                                         |     |  |
|          | Successive                                      | D' 1 (1 th 1 ' (' '                                                             |     |  |
| 2.4      | differentiation –n <sup>th</sup>                | Find the n <sup>th</sup> derivative using                                       | K1  |  |
|          | derivative standard<br>forms                    | successive differentiation                                                      |     |  |
|          | Use of Partial                                  |                                                                                 |     |  |
|          | fractions,                                      | Estimate the derivative of some                                                 |     |  |
| 2.5      | Applilcation of De-                             | special functions using                                                         | K5  |  |
|          | Moivre's theorem                                | De-Moivre's theorem                                                             |     |  |
|          |                                                 |                                                                                 |     |  |
| 0.6      | Trigonometrical                                 | Make use of Trigonometrical                                                     | ИЭ  |  |
| 2.6      | transformations                                 | transformations                                                                 | КЗ  |  |
| III      | Differential calcu                              | ılus - Curvature                                                                |     |  |
|          | Leibnitz's theorem                              |                                                                                 |     |  |
|          | on the n <sup>th</sup>                          |                                                                                 |     |  |
| 3.1      | differential co-                                | Apply the Leibnitz formula to                                                   | K3  |  |
| 0.11     | efficient of the                                | find the higher derivative.                                                     | 110 |  |
|          | product of two                                  |                                                                                 |     |  |
| 2.0      | functions of x                                  | Encluste redine of currenture                                                   | К5  |  |
| 3.2      | Curvature                                       | Evaluate radius of curvature.<br>Caculate the radius curvature                  | КЭ  |  |
| 3.3      | Radius of curvature                             | of any curve                                                                    | K5  |  |
|          | Cartesian formula                               | Estimate the radius of                                                          |     |  |
| 3.4      | for radius of                                   | curvature in cartesian co-                                                      | K5  |  |
|          | curvature.                                      | ordinates.                                                                      | -   |  |
| IV       | Integration                                     | · · ·                                                                           |     |  |
|          | Introduction –                                  | Recall the methods of solving                                                   |     |  |
| 4.1      | Methods of                                      | integrals                                                                       | K2  |  |
|          | Integration                                     | integrais                                                                       |     |  |
|          | Integrals of the                                | Solve the integrals of the form                                                 |     |  |
| 4.2      | functions involving                             | $a^2 \pm x^2$                                                                   | КЗ  |  |
|          | $a^2 \pm x^2$                                   |                                                                                 |     |  |
| 4.3      | Integrals of<br>functions of the form           | Solve the integrals of the form                                                 | КЗ  |  |
| 4.0      | $\int f(x)^n f'(x) dx$                          | $\int f(x)^n f'(x) dx$                                                          | NO  |  |
|          | Definite Integrals                              |                                                                                 |     |  |
| 4.4      | -Properties of                                  | Recall the properties of definite                                               | K2  |  |
|          | definite integrals                              | integrals                                                                       |     |  |
|          | Reduction formulae                              | Apply reduction formerla to                                                     |     |  |
|          | for the three definite                          | Apply reduction formula to                                                      |     |  |
| 4.5      | integrals: ∫e <sup>-ax</sup> x <sup>n</sup> dx, | Calculate the integrals of the form $\int e^{-ax}x^n dx$ , $\int \sin^n x dx$ , | K3  |  |
| 4.0      | Jsin <sup>n</sup> x dx, Jcos <sup>n</sup> xdx,  | $\int \cos^n x dx$ using reduction                                              | RO  |  |
|          | where n is a positive                           | formula                                                                         |     |  |
|          | integer.                                        |                                                                                 |     |  |
| v        | The Beta and Gamm                               |                                                                                 |     |  |
| E 1      | The Gamma                                       | Explain the properties of                                                       | K2  |  |
| 5.1      | functions<br>Recurrence formulae                | Gamma functions<br>Summarize the Recurrence                                     |     |  |
| 5.2      | for Gamma $\Gamma(n)$                           | formulae for Gamma $\Gamma(n)$                                                  | K2  |  |
| <u> </u> | connection between                              |                                                                                 |     |  |
| 5.3      | gamma function and                              | Interpret relation between                                                      | K2  |  |
|          | factorials                                      | Gamma function and Factorials                                                   | 112 |  |
| [        |                                                 |                                                                                 |     |  |

| 5.4 | Beta function                                   | Explain the properties of Beta function                    | К2 |
|-----|-------------------------------------------------|------------------------------------------------------------|----|
| 5.5 | Relation between<br>beta and gamma<br>functions | Interpret relation between the<br>Beta and Gamma functions | К5 |
| 5.6 | Applications of Beta<br>and Gamma<br>functions  | Apply the properties of Beta<br>Gamma function             | КЗ |

| U20MAC11 | 104 | P02 | PO3 | P04 | P05 | P06 | 707 | 80d | 60d | 10SA | PS02 | £OSd | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Μ   | Η   | Μ   | L   | L   | Μ   | L   | М   | -   | Η    | М    | Η    | L    |
| CO2      | Μ   | Η   | Μ   | L   | L   | Μ   | L   | М   | -   | Н    | М    | Н    | L    |
| CO3      | Μ   | М   | Μ   | L   | L   | Μ   | -   | Μ   | -   | Η    | М    | Η    | L    |
| CO4      | Μ   | М   | L   | L   | L   | Μ   | -   | Μ   | -   | Η    | М    | Η    | L    |
| CO5      | Μ   | Η   | Μ   | L   | L   | Μ   | -   | Μ   | -   | Η    | М    | Н    | L    |
| CO6      | М   | М   | Μ   | L   | L   | Μ   | -   | Μ   | -   | Н    | М    | Н    | L    |

L-Low M-Moderate

H- High

# **5. COURSE ASSESSMENT METHODS**

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. N. Geetha

#### Allied Course II: VECTOR CALCULUS AND TRIGONOMETRY

#### Semester: II

#### Course Code: U20MAC22

#### Credits: 4

#### 1. COURSE OUTCOMES

After the successful completion of this course, the students will be able to

| Co.<br>No. | Course Outcomes                                                                                                                  | Level | Unit |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Determine the maximum value of directional derivative                                                                            | K5    | Ι    |
| CO2        | Evaluate the divergence and curl of vector functions                                                                             | K5    | Ι    |
| CO3        | Evaluate the Line integral, Surface integral and Volume integral                                                                 | K5    | II   |
| C04        | Apply Green's theorem, Stoke's theorem and the Divergence<br>theorem to compute integrals                                        | К3    | III  |
| CO5        | Simplify the expansion of various trigonometrical functions                                                                      | K4    | IV   |
| C06        | Relationship between the circular and hyperbolic functions and separate into real and imaginary parts of trigonometric functions | K4    | v    |

#### 2A. SYLLABUS

#### **Unit I: Vector Differentiation**

Scalar and Vector Point Functions – Direction and Magnitude of gradient – Maximum value of Directional derivative – Divergence and Curl – Definitions (Solenoidal and Irrotational Vectors) – Vector Identities – Formula involving Operator ⊽ twice.

#### **Unit II: Vector Integration**

Vector integration – Line integration – Surface integral – Volume integral.

#### **Unit III: Theorems On Integrals**

Verification of Gauss divergence theorem – Stokes theorem – Green's theorem.

#### Unit IV: Trigonometry

Expansions for  $\sin n\theta$ ,  $\cos n\theta$ , when n is a positive integer  $\tan n\theta$  when n is a positive integer – Expansion for  $\tan(\theta_1 + \theta_2 + \dots + \theta_n)$  – Expansions for  $\cos^n \theta$  and  $\sin^n \theta$  in terms of multiple of  $\theta$  – Expansions of  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$  in terms of  $\theta$ .

#### **Unit V: Hyperbolic Functions**

Euler's formula – Hyperbolic functions – Relation between the circular and hyperbolic functions – Inverse hyperbolic functions  $\sinh^{-1}x$ ,  $\cosh^{-1}x$  and  $\tanh^{-1}x$  in terms of logarithmic functions – Separation into real and imaginary parts of  $\sin(x+iy)$ ,  $\cos(x+iy)$ ,  $\tan(x+iy)$ ,  $\sinh(x+iy)$ ,  $\cosh(x+iy)$ ,  $\tanh(x+iy)$  and  $\tan^{-1}(x+iy)$ .

#### **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                         | Web Links                                                           |
|-----------|--------------------------------|---------------------------------------------------------------------|
| 1         | Chain Rule with more variables | Vector and Multi-variable Calculus                                  |
| 2         | Two-Dimensional Flux           | Double and Triple integrals, and Vector Calculus in 2- and 3-space. |

# (12 Hours)

# (10 Hours)

# (14 Hours)

#### (14 Hours)

#### (10 Hours)

# Hours/Week: 4

| 3 | Extended Greens Theorem                | <u>Multivariable-Calculus-theorem-boundaries-with-</u><br><u>multiple-pieces</u> |
|---|----------------------------------------|----------------------------------------------------------------------------------|
| 4 | Derivatives of Hyperbolic<br>Functions | https://tutorial.math.lamar.edu/classes/calci/DiffH<br>yperFcns.aspx             |

### C. TEXTBOOK(s)

1. Dr. P. Mariappan and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt. Ltd, Chennai.

#### **D. REFERENCE BOOKS**

- 1. S. Narayanan and T.K. ManickavasagamPillai, Ancillary Mathematics, Vol. III, S. Viswanathan Pvt. Ltd., Reprint 1999.
- 2. S. Narayanan and T.K. ManickavasagamPillai, Trigonometry, S. Viswanathan Pvt. Ltd., Reprint 2004.
- 3. P. Duraipandian, LaxmiDuraipandian and Paramasivan, Trigonometry, Emerald Publishers, Reprint 1999.

## E. WEB LINKS

- 1. SWAYAM: Vector Calculus By Prof. Hari Shankar Mahato | IIT Kharagpur
- 2. Whitman.edu :Hyperbolic Functions

#### 3. SPECIFIC LEARNING OUTCOMES (SLO)

| Unit/<br>Section | Course Content                       | Learning outcomes                                                       | Highest Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |
|------------------|--------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| I                | Vector Differentiation               |                                                                         |                                                         |  |  |
| 1.1              | Scalar and Vector Point<br>Functions | Define Scalar and Vector<br>Point Functions                             | K1                                                      |  |  |
| 1.2              | Gradient and Directional Derivative  | Evaluate the directional derivatives and gradient                       | K5                                                      |  |  |
| 1.3              | Divergence and Curl                  | Determine the Divergence<br>and Curl                                    | К5                                                      |  |  |
| 1.4              | Vector Identities                    | Explain the Vector<br>Identities                                        | K2                                                      |  |  |
| 1.5              | Formulainvolving Operator ∇<br>twice | Interpret the formula involving operator ∇ twice                        | K2                                                      |  |  |
| II               | Vector Integration                   |                                                                         |                                                         |  |  |
| 2.1              | Vector integration                   | Explain the concept of the vector integration                           | K2                                                      |  |  |
| 2.2              | Line integral                        | Evaluate the line integral.                                             | K5                                                      |  |  |
| 2.3              | Surface integral                     | Evaluate the Surface integral                                           | К5                                                      |  |  |
| 2.4              | Volume integral                      | Evaluate the Volume integral                                            | K5                                                      |  |  |
| III              | Theorems on Integrals                |                                                                         |                                                         |  |  |
| 3.1              | Gauss divergencetheorem              | Apply Gauss Divergence<br>theorem to find the value<br>of the integrals | K3                                                      |  |  |
| 3.2              | Stokes theorem                       | Apply Stokes theorem to<br>find the value of the<br>integrals           | КЗ                                                      |  |  |

| 3.3 | Green's theorem                                                                                                                                               | Apply Green's theorem to<br>find the value of the<br>integrals                                                                                                  | КЗ |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| IV  | Trigonometry                                                                                                                                                  |                                                                                                                                                                 |    |
| 4.1 | Expansion of $\sin n\theta$ and $\cos n\theta$                                                                                                                | Discuss expansion of circular functions $\sin n\theta$ , $\cos n\theta$ as a series.                                                                            | K6 |
| 4.2 | Expansion of $\tan n\theta$ in powers of $\tan \theta$                                                                                                        | Discuss expansion of circular function $\tan n\theta$ in powers of $\tan \theta$                                                                                | K6 |
| 4.3 | Expansions for $\cos^n 	heta$ when n is a positive integer                                                                                                    | Discuss expansion of $\cos^n \theta$ when n is a positive integer                                                                                               | K6 |
| 4.4 | Expansions for $\sin^n \theta$ when n is a positive integer                                                                                                   | Discuss expansion of $\sin^n \theta$ when n is a positive integer                                                                                               | K6 |
| v   | Hyperbolic Functions                                                                                                                                          |                                                                                                                                                                 |    |
| 5.1 | Euler's formula and<br>Hyperbolic functions                                                                                                                   | Define Euler's formula<br>and Hyperbolic functions                                                                                                              | K1 |
| 5.2 | Relation between the circular and hyperbolic functions                                                                                                        | Relationship between<br>circular and hyperbolic<br>functions                                                                                                    | K4 |
| 5.3 | Inverse hyperbolic functions<br>sinh <sup>-1</sup> x, cosh <sup>-1</sup> x and tanh <sup>-1</sup> x in<br>terms of logarithmic functions                      | Identify the inverse<br>hyperbolic functions in<br>terms of logarithmic<br>functions.                                                                           | K3 |
| 5.4 | Separation into real and<br>imaginary parts of $sin(x+iy)$ ,<br>cos(x+iy), $tan(x+iy)$ , $sinh(x+iy)$ ,<br>$cosh(x+iy)$ , $tanh(x+iy)$ and $tan^{-1}(x+iy)$ . | Categorize the real and<br>imaginary parts<br>of $sin(x+iy)$ , $cos(x+iy)$ ,<br>tan(x+iy), $sinh(x+iy)$ ,<br>cosh(x+iy), $tanh(x+iy)$ and<br>$tan^{-1}(x+iy)$ . | K4 |

| U20MAC22 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | 60d | PS01 | PS02 | PSO3 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Η   | L   | Μ   | L   | -   | -   | L   | L   | -   | L    | L    | Μ    | -    |
| CO2      | Η   | L   | L   | L   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| CO3      | М   | L   | М   | -   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| CO4      | Η   | L   | L   | L   | -   | -   | L   | М   | -   | L    | L    | М    | -    |
| CO5      | М   | -   | L   | -   | -   | -   | L   | М   | -   | L    | L    | М    | -    |
| CO6      | Η   | -   | L   | -   | -   | -   | L   | М   | -   | L    | L    | М    | -    |

L-Low M-Moderate H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. B. Sathish kumar

#### Allied Course III: DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

#### Semester: II

#### Course Code: U20MAC23

Credits: 4

# Hours/Week: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course the students will be able to

| Co.<br>No. | Course Outcomes                                                                                  | Level | Unit |
|------------|--------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Solve the First Order and Higher Degree Ordinary<br>Differential Equations                       | К3    | I    |
| CO2        | Formulate the Partial Differential Equations by elimination of arbitrary constants and functions | K6    | II   |
| CO3        | Solve the First Order Partial Differential Equations of some standard types                      | К3    | II   |
| C04        | Discuss the properties and general theorems of the Laplace<br>Transform                          | K6    | III  |
| CO5        | Solve ordinary differential equations using Laplace transforms                                   | К3    | IV   |
| CO6        | Determine the concept of Inverse Laplace transforms and its applications.                        | K5    | v    |

#### 2A. SYLLABUS

#### **Unit I: Ordinary Differential Equations**

Ordinary Differential Equations – First Order and Higher Degree–Equation solvable for  $\frac{dy}{dx}$ 

Equation solvable for y - Equation solvable for x (simple problems only) – Clairaut's Form.

#### **Unit II: Partial Differential Equations**

Derivation of Partial Differential Equations by elimination of arbitrary functions – Classification of Integrals–Some standard types of First Order Partial Differential Equations – Other standard forms.

#### Unit III: Laplace Transform

Definition – Condition for the existence of the Laplace Transforms – Properties of Laplace Transforms – Some general theorems.

#### **Unit IV: Inverse Laplace Transform**

The Inverse Laplace Transforms – Shifting theorem for Inverse Transform–The method of partial fraction can be used to find the inverse transform of certain functions – Related theorems.

#### **Unit V: Applications of Laplace Transform**

Special cases-Application to solutions of Differential Equations.

#### d.

(13 Hours)

# (12 Hours)

(13 Hours)

# (14 Hours)

#### (8 Hours)

#### **B. TOPICS FOR SELF STUDY**

| S. No. | Topics                                                       | Web Links                                                            |
|--------|--------------------------------------------------------------|----------------------------------------------------------------------|
| 1      | Fronius Series solution: An Advanced<br>Series Solution      | SWAYAM: Course on Applications of ODE                                |
| 2      | Parabolic, Elliptic and Hyperbolic<br>Differential Equations | SWAYAM: Course on Applications of PDE                                |
| 3      | One Dimensional Wave and Heat<br>Equation                    | SWAYAM: Method and Applications of DE                                |
| 4      | Applications of Laplace transform                            | <u>NPTEL: Applications in science and technology of</u><br><u>LT</u> |

#### C. TEXTBOOK(s)

1. Dr. R. Gethsi Sharmila and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.

#### **D. REFERENCE BOOKS**

- 1. S. Narayanan and T.K. ManickavasagamPillai, Calculus (Vol. III), S. Viswanathan Printers and Publishers, Reprint 2004.
- 2. Vittal P.R., Allied Mathematics, Margham Publications, Chennai, Reprint 2000.

### E. WEB LINKS

1. <u>SWAYAM: Ordinary and Partial Differential Equations and Applications By Prof. P. N.</u> <u>Agarwal, Prof. D. N. Pandey | IIT Roorkee</u>

2. <u>NPTEL: Laplace transforms By Prof. Indrava Roy, Department of Mathematics, IMSc.</u>

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                                                                              | Learning outcomes                                                         | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |  |  |
|------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| I                | Ordinary Differential Equation                                                              | ns                                                                        |                                                            |  |  |
| 1.1              | Ordinary Differential<br>Equations – First Order and<br>Higher Degree                       | Solve first order and higher degree ordinary differential equations.      | K3                                                         |  |  |
| 1.2              | Equation solvable for $\frac{dy}{dx}$                                                       | Discuss the solution of a differential equation.                          | K6                                                         |  |  |
| 1.3              | Equation solvable for x                                                                     | Discuss the solution of a differential equation.                          | K6                                                         |  |  |
| 1.4              | Equation solvable for y                                                                     | Discuss the solution of a differential equation.                          | K6                                                         |  |  |
| 1.5              | Clairaut's Form                                                                             | Discuss the solution of a differential equation.                          | K6                                                         |  |  |
| II               | <b>Partial Differential Equations</b>                                                       |                                                                           |                                                            |  |  |
| 2.1              | Derivation of Partial<br>Differential Equations by<br>elimination of arbitrary<br>constants | ConstructthePartialDifferentialEquationbyeliminationofarbitraryconstants. | КЗ                                                         |  |  |
| 2.2              | Derivation of Partial<br>Differential Equations by<br>elimination of arbitrary<br>functions | ConstructthePartialDifferentialEquationbyeliminationofarbitraryfunctions  | K3                                                         |  |  |

| 2.3 | Classification of Integrals                                                                                | Classify the Integrals                                                                                                                                                           | K2 |
|-----|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.4 | Some standard types of First<br>Order Partial Differential<br>Equations                                    | Solve the standard types of<br>First Order Partial Differential<br>Equations, reduce equations to<br>standard forms and hence<br>solve using Lagrange's and<br>Charpit's method. | K3 |
| 2.5 | Other standard forms                                                                                       | Analyze the other standard forms                                                                                                                                                 | K4 |
| III | Laplace Transform                                                                                          |                                                                                                                                                                                  |    |
| 3.1 | Definition of Laplace<br>Transforms                                                                        | Define the Laplace Transform                                                                                                                                                     | K1 |
| 3.2 | Condition for the existence of the Laplace Transforms                                                      | Understand the existence of the Laplace Transforms                                                                                                                               | K2 |
| 3.3 | Properties of Laplace<br>Transforms                                                                        | Infer the basic properties of<br>Laplace Transforms                                                                                                                              | K2 |
| 3.4 | Derivatives of Laplace<br>Transform                                                                        | Find the Derivatives of Laplace<br>Transform                                                                                                                                     | K1 |
| 3.5 | Some standard functions of<br>Laplace Transform                                                            | Solve the Differential<br>Equations by Laplace<br>Transform                                                                                                                      | K3 |
| 3.6 | Some general theorems of Laplace Transform                                                                 | Discuss the general theorems of Laplace Transform                                                                                                                                | K6 |
| 3.7 | Evaluation of integrals using<br>Laplace Transform                                                         | Evaluate the integrals using<br>Laplace Transform                                                                                                                                | K5 |
| IV  | Inverse Laplace Transform                                                                                  |                                                                                                                                                                                  |    |
| 4.1 | Definition of Inverse Laplace<br>Transforms                                                                | Define the Inverse Laplace<br>Transforms                                                                                                                                         | K6 |
| 4.2 | Shifting theorem for Inverse<br>Laplace Transform                                                          | Interpret the shifting theorem for inverse Laplace Transforms                                                                                                                    | K5 |
| 4.3 | Method of partial fraction can<br>be used to find the Inverse<br>Laplace Transform of certain<br>functions | Apply the partial fraction to<br>find the Inverse Laplace<br>Transform                                                                                                           | K3 |
| v   | Applications Of Laplace Trans                                                                              |                                                                                                                                                                                  |    |
| 5.1 | Special problems                                                                                           | Solve some special problems using Laplace Transforms.                                                                                                                            | K3 |
| 5.2 | Application to solutions of Differential Equations                                                         | Find the solutions of<br>Differential Equations                                                                                                                                  | K5 |
| 5.3 | Solving ordinary differential<br>equations using Laplace<br>Transform                                      | Evaluate differential equations using Laplace Transforms.                                                                                                                        | К5 |

| U20MAC23 | 10d | P02 | PO3 | P04 | 504 | P06 | P07 | P08 | 909 | PS01 | PSO2 | EOSA | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | L   | М   | L   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| CO2      | Н   | L   | М   | М   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| CO3      | М   | L   | М   | L   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| CO4      | Μ   | -   | L   | -   | -   | -   | L   | L   | -   | L    | L    | М    | -    |
| CO5      | М   | -   | L   | -   | -   | -   | L   | М   | -   | L    | L    | М    | -    |
| CO6      | М   | -   | L   | -   | -   | -   | L   | М   | -   | L    | L    | М    | -    |

L-Low M-Moderate

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. B. Sathish kumar

**Under-Graduate Programme** 

**Allied Mathematics Courses** 

(Computer Science / Computer Applications)

Courses of Study, Schemes of Examinations

& Syllabi

(Choice Based Credit System)



# THE DEPARTMENT OF MATHEMATICS

(DST – FIST sponsored)

## **BISHOP HEBER COLLEGE (Autonomous)**

(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC &

Identified as College of Excellence by the UGC)

DST – FIST Sponsored College &

DBT Star College

TIRUCHIRAPPALLI – 620 017

TAMIL NADU, INDIA

2021 - 2022

# Allied Mathematics Courses offered to students of Undergraduate Programme in Computer Science/Computer Applications

| Sem. | Course | Code                   | Title                       | Hrs./week   | Credite | Marks |     |       |  |
|------|--------|------------------------|-----------------------------|-------------|---------|-------|-----|-------|--|
| Sem. | Course | Coue                   | Title                       | 1115./ WCCK | cicuits | CIA   | ESA | TOTAL |  |
| Ι    | Ι      | U20MAZ11               | Operations<br>Research      | 5           | 4       | 25    | 75  | 100   |  |
| II   | II     | U20MAZ22 /<br>U20MAA22 | Numerical Methods           | 4           | 4       | 25    | 75  | 100   |  |
| II   | III    | U20MAZ23 /<br>U20MAA23 | Probability &<br>Statistics | 4           | 4       | 25    | 75  | 100   |  |

#### Allied Course I: OPERATIONS RESEARCH

Semester: I

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course the students will be able to

| CO.<br>No. | Course Outcomes                                                                                                                                                        | Level | Unit                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| <b>CO1</b> | Explain the meaning of Operations Research and how to use it                                                                                                           | K2    | I                    |
| CO2        | Solve a Linear Programming Problem using various method                                                                                                                | K6    | II                   |
| CO3        | Solve a Transportation Problem using various method                                                                                                                    | K6    | III                  |
| CO4        | Explain about Assignment Problems                                                                                                                                      | K5    | IV                   |
| CO5        | Analyse the Network Model                                                                                                                                              | K4    | v                    |
| C06        | Discuss the characteristics of different types of decision-<br>making environments and the appropriate decision-making<br>approaches and tools to be used in each type | K6    | I, II, III,<br>IV ,V |

#### **2A. SYLLABUS**

#### **UNIT I: Introduction to OR**

Introduction to Operations Research – Linear programming problem - Introduction – General model of theLPP – Characteristics of an LPP – Assumptions of Linear Programming – Formulation of an LPP- StandardForm of an LPP - Solution to an LPP – Types of possible solutions to an LPP – Convex set and Extreme points- Graphical solution to an LPP – Simplex methods.

#### UNIT II: Types of LPP

Big–M method – Two phase method.

#### **UNIT III: Transportation Problem**

Transportation Problem – Introduction – Conversion of a TP into an LPP Form – Formulation of a Transportation Problem - Concepts of Basicness, and Degeneracy in the solution – Methods used to find the solution to a Transportation Problem– Description of various methods to find the Initial Basic Feasible Solution – Stepping Stone Method/ Modified Distributive Method.

#### **UNIT IV: Assignment Problem**

Assignment Problem – Introduction – General Model of the Assignment Problem – Conversion into an Equivalent LPP – Solution to the Assignment Problem.

#### UNIT V: PERT & CPM

PERT - CPM - Introduction – Method for Construction of a Network – Numbering the nodes – Critical Path Method (CPM) – Project Evaluation Review Technique (PERT).

#### **B. TOPICS FOR SELF STUDY**

| S. No. | Topics                                           | Web Links                                           |
|--------|--------------------------------------------------|-----------------------------------------------------|
| 1      | Duality Concept in Linear<br>Programming Problem | https://nptel.ac.in/courses/111/102/111102<br>012/# |

#### (12 Hours)

(12 Hours)

#### (12 Hours)

#### (12 Hours) - Conversion

#### (12 Hours)

Course Code: U20MAZ11

Hours/Week: 5

| 2 | Sensitivity Analysis      | https://www.youtube.com/watch?v=St5zxHwe<br>zPI    |
|---|---------------------------|----------------------------------------------------|
| 3 | Sequencing and Scheduling | https://youtu.be/BSY3LvlQLNc                       |
| 4 | Game Theory               | https://nptel.ac.in/courses/109/103/109103<br>021/ |

#### C. TEXTBOOK(s)

1. Dr P. Mariappan, Operations Research – An Introduction, , Pearson; 1 edition (May 1, 2013), ISBN-10: 8131799344, ISBN-13: 978-8131799345, ASIN: B00FJVEVEQ

 $\begin{array}{l} Ch-2 \ [2.1 \ to \ 2.11] \\ Ch-2 \ [2.12, \ 2.13] \\ Ch-4 \ [4.1 \ to \ 4.7] \\ Ch-5 \ [5.1 \ to \ 5.4] \\ Ch-6 \ [6.1 \ to \ 6.7] \end{array}$ 

#### **D. REFERENCE BOOKS**

1. Kanti Swarup, Operations Research, Sultan Chand & Sons, 1980, ISBN: 8170142164, 9788170142164.

#### E. WEB LINKS

- 1. <u>https://nptel.ac.in/courses/110/106/110106062/</u>
- 2. <u>https://onlinecourses.swayam2.ac.in/cec20\_ma10/preview</u>

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                            | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |             |
|------------------|-------------------------------------------|------------------------------------------------------------|-------------|
| I                | Introduction to Ope<br>[LPP]              | erations Research and Linear Programm                      | ing Problem |
| 1.1              | Introduction to<br>Operations<br>Research | Recall the concepts of Operations research                 | K1          |
| 1.2              | General model of the LPP                  | Explain LPP's general structure                            | K2          |
| 1.3              | Characteristics of<br>an LPP              | Tell the Characteristics of an LPP                         | K1          |
| 1.4              | Assumptions of<br>Linear<br>Programming   | Illustrate the assumptions of LPP                          | K2          |
| 1.5              | Formulation of an<br>LPP                  | Develop LPP                                                | K3          |
| 1.6              | Standard Form of<br>an LPP                | Demonstrate the standard form of LPP                       | K2          |
| 1.7              | Solution to an LPP                        | Solve LPP                                                  | K3          |
| 1.8              | Types of possible<br>solutions to an LPP  | Identify various solutions of an LPP                       | K3          |
| 1.9              | Graphical solution<br>to an LPP           | Formulate LPP & Solve using Graphical<br>Method            | K6          |
| 1.10             | Simplex methods                           | Formulate LPP & Solve using Simplex<br>Method              | K6          |

| II  | Solving Methods for Linear Programming Problem [LPP]                                   |                                                          |    |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|----------------------------------------------------------|----|--|--|--|--|--|
| 2.1 | Big–M method                                                                           | Formulate LPP & Solve using Big M<br>Method              | K6 |  |  |  |  |  |
| 2.2 | Two-Phase method                                                                       | Formulate LPP & Solve using Two-<br>Phase Simplex Method | K6 |  |  |  |  |  |
| III | Transportation Problems [TP]                                                           |                                                          |    |  |  |  |  |  |
| 3.1 | Introduction to<br>Transportation<br>Problems                                          | Recall about Transportation Problem                      | K1 |  |  |  |  |  |
| 3.2 | Conversion of a TP<br>into an LPP Form                                                 | Explain the conversion of TP into LPP                    | K2 |  |  |  |  |  |
| 3.3 | Formulation of a<br>Transportation<br>Problem                                          | Construct Transportation Problem                         | КЗ |  |  |  |  |  |
| 3.4 | Concepts of<br>Basicness, and<br>Degeneracy in the<br>solution                         | Examine the various types of solutions of TP             | K4 |  |  |  |  |  |
| 3.5 | Methods used to<br>find the solution to<br>a Transportation<br>Problem                 | Solve TP                                                 | K6 |  |  |  |  |  |
| 3.6 | Description of<br>various methods to<br>find the Initial<br>Basic Feasible<br>Solution | Discuss various methods to solve TP                      | K6 |  |  |  |  |  |
| 3.7 | Stepping Stone<br>Method/ Modified<br>Distributive<br>Method.                          | Solve TP                                                 | К5 |  |  |  |  |  |
| IV  | Assignment Probler                                                                     | ns [AP]                                                  |    |  |  |  |  |  |
| 4.1 | Introduction to<br>Assignment<br>Problem                                               | Recall Assignment Problem                                | K1 |  |  |  |  |  |
| 4.2 | General Model of<br>the Assignment<br>Problem                                          | Explain the general structure of AP                      | K2 |  |  |  |  |  |
| 4.3 | Conversion into an<br>Equivalent LPP                                                   | Explain the conversion of AP into LPP                    | K2 |  |  |  |  |  |
| 4.4 | Solution to the<br>Assignment<br>Problem.                                              | Solve AP                                                 | K6 |  |  |  |  |  |
| v   | <b>Network Problems</b>                                                                |                                                          |    |  |  |  |  |  |
| 5.1 | Introduction to<br>Network Models                                                      | Demonstrate Network Model                                | K2 |  |  |  |  |  |
| 5.2 | Method for<br>Construction of a<br>Network                                             | Construct a Network                                      | K3 |  |  |  |  |  |
| 5.3 | Numbering the nodes                                                                    | Mark the numbers of each nodes                           | K5 |  |  |  |  |  |
| 5.4 | Critical Path<br>Method (CPM)                                                          | Formulate Network Problems & Solve<br>using CPM          | K6 |  |  |  |  |  |
| 5.5 | Project Evaluation<br>Review Technique<br>(PERT)                                       | Formulate Network Problems & Solve<br>using PERT         | K6 |  |  |  |  |  |

| U20MAZ11 | P01 | P02 | PO3 | P04 | PO5 | P06     | P07 | P08 | P09         | PS01   | PS02 | PSO3 | PS04    |
|----------|-----|-----|-----|-----|-----|---------|-----|-----|-------------|--------|------|------|---------|
| CO1      | М   | L   | -   | -   | L   | М       | М   | -   | -           | М      | М    | М    | L       |
| CO2      | Η   | Н   | М   | -   | М   | Н       | Н   | L   | -           | Н      | Н    | Н    | Η       |
| CO3      | Н   | Н   | М   | -   | Н   | Н       | Н   | L   | -           | Н      | Н    | Н    | Н       |
| CO4      | Η   | Н   | М   | -   | Н   | Н       | Н   | L   | -           | Н      | Н    | Н    | Η       |
| CO5      | Η   | Н   | М   | -   | Н   | Н       | Н   | L   | -           | Н      | Н    | Н    | Η       |
| CO6      | Н   | Н   | М   | -   | Н   | Н       | Н   | L   | L           | Н      | Н    | М    | М       |
|          |     |     |     |     |     | L-Low M |     |     | <b>M</b> -1 | Modera | ate  | H    | I- High |

#### 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. M. Antony Raj

#### Allied II: NUMERICAL METHODS

#### Semester: II

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                                                  | Level | Unit |
|------------|--------------------------------------------------------------------------------------------------|-------|------|
| CO1        | Solve algebraic and transcendental equation using an appropriate numerical method                | K6    | I    |
| CO2        | Determine the roots of an equation using numerical methods                                       | К5    | I    |
| CO3        | Solve linear system of equations using a suitable numerical method                               | K6    | II   |
| CO4        | Estimate an error analysis for a given numerical method                                          | K5    | III  |
| CO5        | Solve ordinary differential equations using numerical methods                                    | K6    | v    |
| C06        | Evaluate derivative at a value using an appropriate numerical method in various research problem | К5    | I-V  |

#### 2A. SYLLABUS

#### **UNIT I: The Solution of Numerical Algebraic and Transcendental**

#### equations

Introduction to Numerical Analysis-Solution of algebraic and transcendental equations -Bisection method -Iterative method - Regula Falsi method - Newton Raphson Method.

#### UNIT II: Solution of Simultaneous Linear Algebraic Equations

Solution of simultaneous linear algebraic equations – Direct method – Gauss Elimination method - Iterative methods - Gauss Seidel method.

#### **UNIT III: Interpolation**

Interpolation – Gregory Newton's forward and backward interpolation formulae – Lagrange's interpolation formula - Inverse interpolation formula.

#### **UNIT IV: Numerical Integration**

Numerical Integration - Trapezoidal rule, Simpson's one-third rule

#### **UNIT V: Numerical Solution of Ordinary Differential Equations** (12 Hours)

Numerical solution of ordinary differential equations – Euler's method – Modified Euler's method - Runge Kutta 2nd order - Runge Kutta 4th order (Problems only)

#### (12 Hours)

(12 Hours)

# (12 Hours)

#### (12 Hours)

#### Course Code: U20MAZ22

Hours/Week: 4

#### **B. TOPICS FOR SELF STUDY**

| S.  | Topics                     | Web Links                                      |
|-----|----------------------------|------------------------------------------------|
| No. |                            |                                                |
| 1   | Dufort Frankel Explicit    | https://nptel.ac.in/courses/111/107/111107063/ |
|     | Scheme                     |                                                |
| 2   | Neumann Method             | https://nptel.ac.in/courses/111/107/111107063/ |
| 3   | Crank-Nicholson Difference | https://nptel.ac.in/courses/111/107/111107063/ |
|     | Method                     |                                                |
| 4   | Explict Scheme             | https://nptel.ac.in/courses/111/107/111107063/ |

#### C. TEXTBOOK(s)

Dr Perumal Mariappan, Numerical Methods for Scientific Solutions, New Century Book House, Pvt. Ltd, Chennai

#### **D. REFERENCE BOOKS**

S. S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India Private Limited, 2005.

#### E. WEB LINKS

1. <u>https://nptel.ac.in/courses/127/106/127106019/</u>

- 2. <u>https://nptel.ac.in/courses/122/106/122106033/</u>
- 3. <u>https://nptel.ac.in/courses/111/107/111107107/</u>
- 4. <u>https://nptel.ac.in/courses/111/107/111107105/</u>

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Content                                     | Learning outcomes                                                                                                   | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1.1              | Solution of algebraic and transcendental equations | Develop the concept various<br>technical methods of finding<br>roots of a transcendental or<br>polynomial equations | K6                                                         |
| 1.2              | Bisection method                                   | Build the method for finding roots of a non-linear equation                                                         | K6                                                         |
| 1.3              | Iteration method                                   | Evaluate the approximate roots of non-linear equation                                                               | K5                                                         |
| 1.4              | Regula Falsi method                                | Estimate the bound for roots of non-linear equation                                                                 | K5                                                         |
| 1.5              | Newton Raphson Method.                             | Improve the accuracy of roots<br>using other methods                                                                | K6                                                         |
| II               | Solution of Simultaneous Li                        |                                                                                                                     |                                                            |
| 2.1              | Direct method                                      | Solve system of linear algebraic equations                                                                          | K6                                                         |
| 2.2              | Gauss elimination method                           | Solve system of algebraic linear equations using matrices.                                                          | K6                                                         |

| [   |                             | Douglage the chility to former late                             |     |  |  |  |  |
|-----|-----------------------------|-----------------------------------------------------------------|-----|--|--|--|--|
| 2.3 | Gauss Iterative method      | Develop the ability to formulate                                | K6  |  |  |  |  |
| 2.3 | Gauss iterative method      | and solve problems approximate                                  | KO  |  |  |  |  |
|     |                             | Improve the Gauss iterative                                     |     |  |  |  |  |
| 2.4 | Gauss-Seidal method         | method and find better                                          | K6  |  |  |  |  |
| 2.7 | Gauss-Sciuai Incuitou       | approximation                                                   | KO  |  |  |  |  |
| III | Interpolation               | approximation                                                   |     |  |  |  |  |
|     |                             | Construct a function which                                      |     |  |  |  |  |
|     |                             | closely fits given n- points in                                 |     |  |  |  |  |
| 3.1 | Interpolation               | the plane by using                                              | K6  |  |  |  |  |
|     |                             | interpolation method                                            |     |  |  |  |  |
|     |                             | Estimate the value of a                                         |     |  |  |  |  |
| • • | Gregory-Newton forward      | function for any intermediate                                   |     |  |  |  |  |
| 3.2 | interpolation formulae      | value of the independent                                        | K6  |  |  |  |  |
|     | -                           | variable                                                        |     |  |  |  |  |
| 3.3 | Gregory-Newton backward     | Build a method similar to                                       | V2  |  |  |  |  |
| 3.3 | interpolation formulae      | forward interpolation                                           | K3  |  |  |  |  |
|     |                             | Estimate the value of a                                         |     |  |  |  |  |
| 3.4 | Lagrange's interpolation    | mathematical function, for                                      | K6  |  |  |  |  |
| 5.4 | formula                     | any intermediate value of the                                   | KÜ  |  |  |  |  |
|     |                             | independent variable.                                           |     |  |  |  |  |
|     | Inverse interpolation       | Determine the value of the                                      |     |  |  |  |  |
| 3.5 | formulae.                   | independent variable for given                                  | K5  |  |  |  |  |
|     |                             | value of functions                                              |     |  |  |  |  |
| IV  | Numerical Integration       |                                                                 |     |  |  |  |  |
|     |                             | Determine the approximate                                       |     |  |  |  |  |
| 4.1 | Trapezoidal rule            | value of definite integral by                                   | K5  |  |  |  |  |
|     |                             | using trapezoidal rule                                          |     |  |  |  |  |
| 1.0 | Oinsurger in third up 1     | Formulate the method to find                                    |     |  |  |  |  |
| 4.2 | Simpson's one third rule    | Simpson's one third rule approximate value of definite integral |     |  |  |  |  |
| v   | Numerical Salution of Ordin |                                                                 |     |  |  |  |  |
| V   | Numerical Solution of Ordin | Determine the numerical                                         |     |  |  |  |  |
|     |                             | solution of ordinary differential                               |     |  |  |  |  |
| 5.1 | Euler's method              | equation with first order                                       | K5  |  |  |  |  |
|     |                             | convergence                                                     |     |  |  |  |  |
|     |                             | Solve ordinary differential                                     |     |  |  |  |  |
| 5.2 | Modified Euler's method     | equation using modified Euler                                   | K6  |  |  |  |  |
| 0.4 | mounica Datei S inculou     | method                                                          | 110 |  |  |  |  |
|     |                             | Make use of Taylor expansion                                    |     |  |  |  |  |
| 5.3 | Runge-Kutta 2 nd order      | ige-Kulla 2 nd order to find approximate solution of            |     |  |  |  |  |
| 0.0 | Runge-Kutta 4 th order      | ordinary differential equation                                  | K3  |  |  |  |  |
|     |                             | oraniary anterentian equation                                   |     |  |  |  |  |

| U20MAZ22 | 10d | P02 | FO3 | P04 | P05 | P06 | PO7 | PO8 | P09 | PS01 | PSO2 | FO23 | PSO4 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Η   | Н   | Μ   | -   | Μ   | Η   | Μ   | Н   | -   | Η    | Μ    | Μ    | -    |
| CO2      | Н   | Μ   | Μ   | -   | -   | Μ   | Μ   | -   | -   | Η    | Μ    | Н    | -    |
| CO3      | Η   | Μ   | Μ   | -   | -   | Μ   | -   | -   | -   | Η    | -    | Μ    | М    |
| CO4      | Μ   | Η   | -   | -   | Μ   | -   | -   | -   | -   | Μ    | -    | Μ    | -    |
| CO5      | Η   | Μ   | -   | Μ   | М   | -   | Μ   | -   | -   | Η    | -    | Μ    | -    |
| CO6      | Н   | Н   | -   | Μ   | Μ   | Μ   | -   | -   | L   | Μ    | Μ    | Μ    | L    |

L-Low

**M-Moderate** 

H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Dr. J. Maria Felicit

#### Allied Course III: PROBABILITY AND STATISTICS

#### Semester: II

#### **Course Code: U20MAZ23**

#### Hours/Week: 4

#### Credits: 4

#### **1. COURSE OUTCOMES**

#### After the successful completion of this course, the students will be able to

| CO.<br>No. | Course Outcomes                                                         | Level | Unit |
|------------|-------------------------------------------------------------------------|-------|------|
| CO1        | Evaluate the range, mean deviation and standard deviation.              | K5    | Ι    |
| CO2        | Analyze measures of Skewness based on moments and measures of kurtosis. | K4    | п    |
| CO3        | Evaluate correlation and regression co-efficient between two data sets. | K5    | III  |
| CO4        | Apply the basic theorem on probability and random variables             | K3    | IV   |
| C05        | Relationships between Binomial, Poisson and Normal distribution.        | K4    | v    |
| C06        | List the properties of Normal distribution and area of normal curve.    | K4    | v    |

#### 2A. SYLLABUS

#### **Unit I: Measures of Dispersion**

Range-The mean deviation-The standard deviation- difference between mean and standard deviation- calculation of standard deviation of variation.

#### Unit II: Measures of Skewness and Kurtosis

Skewness - (without derivations) - measure of skewness based on moments - kurtosismeasures of kurtosis.

#### **Unit III: Correlation and Regression**

Correlation: Karl Pearson's coefficient of correlation - Spearman's rank Correlation coefficient (formula alone)- correlation coefficient-Regression - regression equations of Y on X regression equations of X on Y.

#### **Unit IV: Probability and Random Variables**

Classical or a priori probability-axiomatic approach to probability- calculation of probability-Theorems of probability-conditional probability- Bayes' theorem - Mathematical expectation -Random variable and probability distribution.

#### **Unit V: Discrete and Continuous Distribution**

Binomial distribution- Poisson Distribution-definition- relation between Binomial, Poisson and Normal distribution-properties of normal distribution- Area under the Normal curve.

#### **B. TOPICS FOR SELF STUDY**

| S.<br>No. | Topics                                       | Web Links                                      |
|-----------|----------------------------------------------|------------------------------------------------|
| 1         | Special continuous probability distribution. | https://nptel.ac.in/courses/111/104/111104032/ |

(12 Hours)

(12 Hours)

#### (12 Hours)

# (12 Hours)

### (12 Hours)

| 2 | Two dimensional random variables. | https://nptel.ac.in/courses/111/104/111104032/ |
|---|-----------------------------------|------------------------------------------------|
| 3 | Testing hypothesis.               | https://nptel.ac.in/courses/103/106/103106120/ |
| 4 | Non-parametric test.              | https://nptel.ac.in/courses/111/102/111102143/ |

#### C. TEXTBOOK(s)

1. Perumal Mariappan, Statistics for Business, 1st Edition, CRC Press Taylor & Francis Group, Boca Raton London Newyork, 2019

#### **D. REFERENCE BOOKS**

1. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, fourteenth edition, (2004).

#### E. WEB LINKS

- 1. https://onlinecourses.swayam2.ac.in/cec20\_ma01/preview
- 2. https://nptel.ac.in/courses/111/105/111105041/

#### 3. SPECIFIC LEARNING OUTCOMES (SLOs)

| Unit/<br>Section | Course Contents                                   | Learning Outcomes                                      | Highest<br>Bloom's<br>Taxonomic<br>Level of<br>Transaction |
|------------------|---------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| I                | Measures of Dispersion                            |                                                        |                                                            |
| 1.1              | Range                                             | Define range.                                          | K1                                                         |
| 1.2              | Mean deviation                                    | Define mean deviation.                                 | K1                                                         |
| 1.3              | Standard deviation                                | Evaluate the standard deviation.                       | K5                                                         |
| 1.4              | Difference between Mean<br>and Standard deviation | Distinguish between Mean and Standard Deviation.       | K4                                                         |
| 1.5              | Calculation of Standard deviation of variation    | Evaluate the Standard deviation of variation           | K5                                                         |
| II               | Measures of Skewness and                          | Kurtosis                                               |                                                            |
| 2.1              | Skewness                                          | Define Skewness                                        | K1                                                         |
| 2.2              | Measures of Skewness<br>based on moments          | Measures of Skewness based on moments                  | К5                                                         |
| 2.3              | Kurtosis                                          | Define Kurtosis                                        | K1                                                         |
| 2.4              | Measures of kurtosis                              | Measures of Kurtosis                                   | K5                                                         |
| III              | Correlation and Regression                        |                                                        |                                                            |
| 3.1              | Correlation                                       | Define the correlation                                 | K1                                                         |
| 3.2              | Karl Pearson's coefficient of correlation         | Evaluate the Karl Pearson's coefficient of correlation | К5                                                         |
| 3.3              | Spearman's rank<br>correlation                    | Evaluate the spearman's rank correlation               | К5                                                         |
| 3.4              | Correlation coefficient                           | Determine the correlation<br>coefficient               | K5                                                         |
| 3.5              | Regression                                        | Define regression                                      | K1                                                         |
| 3.6              | Regression equations of Y<br>on X                 | Estimate the regression equations of Yon X             | К5                                                         |
| 3.7              | Regression equations of X<br>on Y                 | Estimate regression equations of X on Y                | К5                                                         |
| IV               | Probability and Random V                          | ariables                                               |                                                            |

| 4.1 | Axiomatic approach to probability                                 | Define axiomatic approach to probability                  | K1 |
|-----|-------------------------------------------------------------------|-----------------------------------------------------------|----|
| 4.2 | Classical or priori<br>probability                                | Define classical probability                              | K1 |
| 4.2 | Calculation of probability                                        | Evaluate the probability                                  | K5 |
| 4.3 | Theorems of probability                                           | Apply the basic theorems of probability                   | K3 |
| 4.4 | Conditional probability                                           | Evaluate the conditional probability                      | К5 |
| 4.5 | Baye's theorem                                                    | Apply Baye's theorem                                      | K3 |
| 4.6 | Mathematical expectation                                          | Define mathematical expectation                           | K1 |
| 4.7 | Random variable                                                   | Define two types of random<br>variables                   | K1 |
| 4.8 | Probability distribution                                          | Define two types of probability<br>distribution           | K1 |
| V   | Discrete and Continuous I                                         | Distribution                                              |    |
| 5.1 | Binomial distribution,                                            | Define binomial distribution                              | K1 |
| 5.2 | Poisson distribution                                              | Define Poisson distribution                               | K1 |
| 5.3 | Relation between<br>Binomial, Poisson and<br>Normal distributions | Compare the binomial and Poisson and normal distributions | K4 |
| 5.4 | Properties of normal distribution                                 | List the properties of normal distribution                | K4 |
| 5.5 | Area under the normal curve                                       | Determine area of normal curve                            | K5 |

| U20MAZ23 | P01 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PS01 | PS02 | PSO3 | PS04 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1      | Н   | Μ   | -   | L   | L   | М   | L   | -   | L   | М    | М    | М    | L    |
| CO2      | L   | Μ   | L   | Μ   | L   | L   | L   | L   | -   | М    | Н    | L    | L    |
| CO3      | Μ   | L   | L   | Μ   | L   | L   | L   | L   | L   | Η    | М    | L    | L    |
| CO4      | L   | Μ   | L   | L   | I   | L   | L   | L   | -   | М    | М    | L    | L    |
| CO5      | L   | L   | -   | М   | L   | L   | -   | -   | L   | L    | М    | L    | L    |
| CO6      | L   | М   | L   | М   | L   | L   | -   | L   | L   | Μ    | Μ    | L    | L    |

L-Low

**M-Moderate** 

H- High

# 5. COURSE ASSESSMENT METHODS

# **DIRECT:**

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

2. Open Book Test.

3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, Project Report, Seminar, Quiz (written).L

4. Pre-Semester & End Semester Theory Examination

# **INDIRECT**:

1. Course end survey (Feedback)

# NAME OF THE COURSE COORDINATOR: Mr. C. Madhubalan

#### UG – Extra Credit Courses

| Sam  | m. Course Code Title |         | <b>T</b> :41-                     | IIma    |     |     | Marks |     |  |  |
|------|----------------------|---------|-----------------------------------|---------|-----|-----|-------|-----|--|--|
| Sem. |                      |         | Hrs.                              | Credits | CIA | ESA | TOTAL |     |  |  |
| v    | Ι                    | UXMA5:1 | Data Structures and<br>Algorithms | -       | 2   | -   | 100   | 100 |  |  |
| v    | II                   | UXMA5:2 | Fourier Transforms                | -       | 2   | -   | 100   | 100 |  |  |
| VI   | III                  | UXMA6:1 | Fuzzy Mathematics                 | -       | 2   | -   | 100   | 100 |  |  |
| VI   | IV                   | UXMA6:2 | Simulation                        | _       | 2   | -   | 100   | 100 |  |  |

#### Extra Credit Course-I - Data Structures and Algorithms

#### Sem. V

#### Code: UXMA5:1

#### Credits: 2

#### General objective:

On completion of this course, the learner will be able to understand data structures and algorithms.

#### Learning outcome:

On completion of the course, the student will be able to analyse and create algorithms.

#### Unit I

Abstract data types and data structures, classes and objects Complexity of algorithms: worst case, average case and amoritized complexity

#### Unit II

Algorithm analysis, Algorithms Design Paradigms. Lists: stacks, queues, implementation, garbage collection.

#### Unit III

Dictionaries: Hash tables, Binary search trees, AVL trees, Red-Black trees, Splay trees, Skiplists, B-trees. Priority Queues.

#### Unit IV

Graphs: Shortest path algorithms, minimal spanning tree algorithms, depth – first and breadth –first search.

#### Unit V

Sorting: Advanced sorting methods and other analysis, lower bound on complexity, order statistics.

#### **TEXT BOOK**

A.V.Aho, J.E.Hopcroft, and J.D.Ullman, Data Structures and Algorithms, Addison Wesley, Reading Massachusetts, USA, 1983

#### REFERENCES

- 1. S.Sahni, Data Structures, Algorithms and Applications in C++, University press(India) Pvt.Ltd./Orient Longman Pvt.Ltd., 2<sup>nd</sup> edition, 2005.
- 2. Adam Drozdek, Data Structures, Algorithms and Applications in C++, Vikas Publishing House/ Thomson International Student Edition, Second Edition, 2001.

#### Extra Credit Course-II –Fourier transforms

#### Sem. V

#### Code: UXMA5:2

#### Credits: 2

#### General objective:

On completion of this course, the learner will know the definitions, properties and applications of Fourier transforms

#### Learning outcome:

On completion of the course, the student will be able to solve Partial Differential Equations using Fourier Transforms.

#### Unit I

Introduction – Fourier integral theorem - Definition of Fourier transforms - Alternative form of Fourier complex integral formula – Problems

#### Unit II

Properties of Fourier transform - Convolution theorem - Parseval's identity

#### Unit III

Inverse Fourier transform - Problems

#### Unit IV

Finite Fourier transform

#### Unit V

Solution of Partial Differential equations using Fourier transforms

#### **TEXT BOOK:**

T.Veerarajan, Engineering Mathematics, third edition, Tata McGraw Hill Publishing Company Limited, New Delhi (2005)

| Unit I             | : | Chapter 6:Sections 6.1 – 6.4 |
|--------------------|---|------------------------------|
| Unit II & Unit III | : | Chapter 6:Sections 6.6       |
| Unit IV & Unit V   | : | Chapter 6:Section 6.7        |

#### REFERENCE

J. K. Goyal and K. P. Gupta, Integral Transforms, K. K. Mittal for Pragati Prakashan, 7<sup>th</sup> edition (1995-96)

#### Extra Credit Course – III – Fuzzy Mathematics

#### Sem. VI

#### Code: UXMA6:1

#### Credits: 2

#### **General objectives:**

On completion of this course, the learner will

- 1. be able to understand fuzzy logic as a tool for quantifying uncertainty
- 2. know to include factors of uncertainty in modeling so as to derive realistic solutions.

#### Learning outcome:

On completion of the course, the student will be able to identify fuzzy sets and perform set operations on fuzzy sets.

#### Unit I

Crisp Sets – Fuzzy Sets - Basic Types – Basic Concepts – Characteristics and Significance of the Paradigm shift.

#### Unit II

Additional properties of  $\alpha$ -cuts-representations of fuzzy sets- Extension principle for fuzzy sets.

#### Unit III

Fuzzy set operations – Fuzzy complements – Fuzzy intersections: t-norms-Fuzzy Unions: tconorms-combination of operations- Aggregation operations.

#### Unit IV

Fuzzy Numbers - Linguistic Variables – Arithmetic operations on intervals- arithmetic operations on fuzzy numbers.

#### Unit V

Lattice of fuzzy numbers-Fuzzy Equations.

#### REFERENCES

- 1. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall of India, 2002, New Delhi.
- 2. George J. Klir, Tina. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall of India, 2003.

#### Extra Credit Course – IV – Simulation

#### Sem. VI

#### Code: UXMA6:2

#### Credits: 2

#### General objective:

On completion of this course the learner will be able to understand the theoretical aspects of simulation.

#### Learning outcome:

On completion of the course, the student will be able to model simple systems.

#### Unit I

Introduction to Simulation: Advantages and disadvantages, Area of application – systems and environmental components of a system – Discrete and continuous system – model of a system – types of models – Discrete – Event system simulation – steps in simulation study

#### Unit II

Simulation Examples: Simulation of Queuing systems – simulation of inventory systems – other examples.

#### Unit III

Random Number Generation – Properties of Random numbers – Techniques for Generating Random numbers – Generation of Pseudo-Random numbers – Tests for Random numbers – The Kolmogorov Smirnov test – The Chi-square test.

#### Unit IV

Random Variable Generation – Inverse transform techniques – Exponential distribution – Uniform distribution – Triangular distribution – Weibull distribution, Empirical continuous distribution, discrete distribution

#### Unit V

Direct transformation for the Normal and Lognormal distribution – convolution method – Acceptance – Rejection Technique

#### TEXT BOOK

Jerry Banks, John S.Carson, II, Barry L. Nelson, Davil M.NICOL, Discrete – Event System Simulation, Prentice-Hall of India Private Limited(2005)

Unit I Chapter 1 Sections 1.1 – 1.11
Unit II Chapter 2 Sections 2.1 – 2.3
Unit III Chapter 7 Sections 7.1, 7.2, 7.3, 7.4.1
Unit IV Chapter 8 Sections 8.1: 8.1.1 – 8.1.7
Unit V Chapter 8 Sections 8.2, 8.3, 8.4

# UG – Skill Based Courses (SBC)

| Sem. | Course | Code     | Title       | Hrs./ week | Credit | Marks |     |       |
|------|--------|----------|-------------|------------|--------|-------|-----|-------|
|      |        |          |             |            |        | CIA   | ESA | TOTAL |
| IV   | SBC-I  | U21LFS41 | Life Skills | 2          | 1      | 100   | -   | 100   |

#### LIFE SKILLS

#### Semester IV

#### Credit 1

#### Course code: U21LFS41

#### Hours/Week: 2

#### **General Objectives:**

- 1. To acquire skills and abilities for adaptive and positive behavior that helps to deal effectively with the demands and challenges of everyday life.
- 2. To develop creative, communicative and critical thinking skills necessary for employability

#### Learning outcome:

On completion of the course, the student will be able to face interviews with confidence.

#### Unit I Basics of Communication skills & Effective Communication

Features of Communication – Process of Communication Verbal, non-verbal, Body Language – Postures & Etiquette –Listening& speaking Skills- Communication Barriers – Listening & speaking Skills.

#### Unit II Personal Effectiveness

Maslow's theory – Self-esteem- Role Conflict – Intra & Inter personal Skills – Efficiency Vs effectiveness – Team Building – Emotional Intelligence & Quotient

#### Unit III Interview Skills

Types of Interviews – Resume Formats & preparation - Cover letters – Simple rules to face interviews – Dos &Don'ts in an Interview – Telephonic Interview and Etiquette - Group Discussions – Types – Methods – Ingredients and Tips for a Successful Group Discussion.

#### Unit IV Test of Reasoning & Numerical Ability

- A. Numerical Ability: Problems related to Average Percentage Profit /Loss Simple & Compound Interest- Time & Work Boats & Streams etc.
- B. Logical reasoning: Logical Detection Nonverbal reasoning Problems related to seating arrangements Relationship model Assertion & Reasoning etc.
- C. Online Tests: Aptitude Logical Reasoning Problem Solving –Time management in Online tests- Online tests on Language skills- Aptitude and technical rounds

#### Unit V Outbound Learning

Physical, Mental, and emotional exercises

#### **Texts for Reference:**

- 1. Barun.K.Mitra, Personality Development and Soft Skills, 6<sup>th</sup> edition, Oxford University press Noida 2012.
- 2. M.Sarada, The complete Guide to Resume Writing, Sterling Publishers Pvt Ltd, New Delhi 2012.
- 3. Gloria J.Galances& Katherine Adams, Effective Group Disscussions, Theory & practice, 12<sup>th</sup> Edition, Tata McGraw Hill pvt. Ltd. 2012.
- 4. Francis Soundararaj, Basics of Communication in English, Soft Skills for Listening Speaking, Reading& Writing, Macmillan Publishers India Ltd. 2013.

#### Scheme of Evaluation

| 1. | EQ test                     | 10 Marks  |
|----|-----------------------------|-----------|
| 2. | Resume                      | 10 Marks  |
| 3. | Numerical Ability Test      | 10 Marks  |
| 4. | Online test 1(aptitude)     | 10 Marks  |
| 5. | Group Discussion            | 10 Marks  |
| 6. | Team Work                   | 10 Marks  |
| 7. | OBL Observation / Work book | 40 Marks  |
|    | Total                       | 100 Marks |