B. Sc. PHYSICS SYLLABUS

(UNDER CHOICE BASED CREDIT SYSTEM)

Applicable to the candidates admitted from 2019 onwards

OUTCOME - BASED EDUCATION (OBE)

PG & RESEARCH DEPARTMENT OF PHYSICS

BISHOP HEBER COLLEGE (AUTONOMOUS)

AFFILIATED TO BHARATHIDASAN UNIVERSITY

(NATIONALLY REACCREDITED AT THE 'A' GRADE BY NAAC WITH A CGPA OF 3.58 OUT OF 4)

RECOGNIZED BY UGC AS 'COLLEGE WITH POTENTIAL FOR EXCELLENCE'

TIRUCHIRAPPALLI – 620 017

VISION

To ignite the young minds to achieve excellence in physics through whole personed ucation, to provide opportunities to explore the laws of nature and enable them to contribute to nation building.

MISSION

- Impartqualityeducation,endorsescientifictemperandcreateapassionforPhysicsthrough competitive curriculum and effective teaching.
- Explore the skills throughhands on experiences by providing state of art research facilities.
- Striveforholistic development by imbibing ethical and social values and build scientific, communicative and leadership competencies to face the global challenges.

B.Sc. PHYSICS

PROGRAMME OUTCOMES

On successful completion of the B.Sc. Physics Course, the graduates will be able to

KNOWLEDGE

PO1 - Demonstrate comprehensive knowledge of basic concepts, fundamental laws, principles and Conceptualize theories related to Physical phenomena and their applications in day to day life.

PO2 - Critically analyze physical science problems and develop appropriate methods to obtain precise solutions using latest techniques and models.

PO3 - Exhibit scientific and research outlook to analyze and develop creative solutions for socially and environmentally pressing problems.

SKILL

PO4 - Exhibit practical ability to handle scientific instruments and tools with skill and ease, acquire systematic data, analyze and interpret the results using mathematical and ICT tools.

PO5 - Analytically solve problems, evaluate the results rationally and arrive at objective conclusions.

PO6 - Exhibit intra and inter-personal skills including oral and written skills with scientific approach as an individual and with a team spirit working in core or multidisciplinary environment.

ATTITUDE

PO7 - Demonstrate self - directed and lifelong learning and contribute to diverse teams through scientific, constructive, innovative and collaborative skills.

ETHICAL AND SOCIAL VALUES

PO8 - Practice ethical, professional, environmental and social values in personal and social life and would contribute to build a cultured and civilized society.

PO9 - Recognize the potential impact of local and global issues including energy crisis and Sustenance and involve in constructive community service.

PROGRAMME SPECIFIC OUTCOMES

PSO1 - Comprehend the physical principles and relate the theory and applications in core domains such as Properties of matter, Mechanics, Optics, Thermodynamics, Electricity and magnetism, Atomic and Molecular, Nuclear, Solid state Physics and Electronics.

PSO2 - Determine the physical properties of materials, analyze and interpret the data using mathematical and computational techniques.

PSO3 - Evaluate mechanical, electrical and electronic systems and exhibit practical skills in solving real time problems

PSO4 - Relate theory and applications, harness new ideas related to physics and allied sectors and contribute to multidisciplinary and interdisciplinary domains.

B.Sc. Physics

Structure of the Curriculum (2019)

Parts of the curriculum	No. of Courses	Credits
Core	8	39
Elective	3	15
Project	1	5
Part I	4	12
Part II	4	12
NMEC	2	4
SBEC	3	6
Allied	5	19
Major Practical	6	18
Allied Practical	1	3
VLOC	1	2
Gender Studies	1	1
Env. Studies	1	2
Soft Skills	1	1
Extension Activities	1	1
Total	42	140

SYLLABUS STRUCTURE

Sem.	Part	Course	Course Title	Course	Hours	Credits	Marks			
Sem	Turt	course	course ride	Code	week	cicuits	CIA	ESE	Total	
	т	Tauril I /*	செய்யுள்,உரைநடை,	U18TM1L1	6	3	25	75	100	
	Ι	Tamil I /*	மொழிப்பயிற்சி	UI8IMILI	0				100	
	II	English I	English Communication Skills - I	U16EGPL1	6	3	40	60	100	
		Core I	Properties of Matter and Acoustics	U16PH101	6	5	25	75	100	
Ι	III	Core Prac. I	Major Practicals - I	U16PH1P1	3	3	40	60	100	
		Allied I	Algebra, Calculus and Analytical Geomentry of Three Dimensions	U16MAY11	5	4	25	75	100	
	IV	Env. Studies	Environmental Studies	U16EST11	2	2	25	75	100	
		Val. Edu.	Value Education (RI/MI)	U15VL1:1/ U15VL1:2	2	2	25	75	100	

				Sem. I C	Credits :	22			
	I	Tamil II /*	செய்யுள்,சிறுகதைத்திரட்டு, மொழிப்பயிற்சி	U18TM2L2	6	3	25	75	100
	II	English II	English Communication Skills - II	U16EGPL2	6	3	40	60	100
		Core II	Mechanics	U16PH202	5	4	25	75	100
п		Core Prac. II	Major Practicals - II	U16PH2P2	3	3	40	60	100
	III	Allied II	Vector Calculus and Trigonometry	U16MAY22	4	4	25	75	100
		Allied III	Differential Equations, Laplace Transforms and Fourier Series	U16MAY23	U16MAY23 4		25	75	100
		SBEC I	Bio Physics and Biomedical Instrumentation	U16PH2S1	2	2	25	75	100
				Sem. II C	Credits :	23		1	1
	Ι	Tamil III /*	செய்யுள், நாவல், மொழிப்பயிற்சி	U18TM3L3	6	3	25	75	100
	II	English III	English for Competitive Examinations	U16EGPL3	6	3	40	60	100
		Core III	Thermal Physics	U16PH303	6	5	25	75	100
ш	III	Core Prac. III	Major Practicals - III	U16PH3P3	3	3	40	60	100
		Allied IV	Allied Chemistry - I	U19CHY34	4	3	25	75	100
	IV	Allied Prac. I	Volumetric and Organic Analysis	U19CHYP1	3				
		NMEC I	Students have to opt from other major	-	2	2	25	75	100
	•			Sem. III C	Credits :	19			
	Ι	Tamil IV /*	செய்யுள், நாடகம், மொழிப்பியிற்சி	U18TM4L4	5	3	25	75	100
	II	English IV	English through Literature	U16EGPL4	5	3	40	60	100
		Core IV	Optics	U16PH404	6	5	25	75	100
	III	Core Prac. IV	Major Practicals - IV	U16PH4P4	3	3	40	60	100
IV		Allied V	Chemistry for Physicists	U19CHY45	4	4	25	75	100
		Allied Prac.I	Volumetric and Organic Analysis	U19CHYP1	3	3	40	60	100
		NMEC II	Students have to opt from other major	-	2	2	25	75	100
	IV	Soft Skills	Life Skills	U16LFS41	2	1			100
	V	Extension Activities	NSS, NCC, Rotaract, Leoclub, etc	U16ETA41		1			

				Sem. IV	Credits :	25						
		Core V	Electricity Magnetism and Electromagnetism	U16PH505	5	5	25	75	100			
		Core VI	Electronic Devices	U16PH506	5	5	25	75	100			
UII V	Core Prac. V	Major Practicals - V	U16PH5P5	6	3	40	60	100				
		Core Project	Project	U16PH5PJ	5	5			100			
		Elective I	Atomic Physics/ Communication System	U16PH5:1 / U16PH5:2	5	5	25	75	100			
	IV	SBEC II	U16PHPS2	2	2	40	60	100				
	IV	SBEC III	Web Designing (Theory and Practical)	U16PHPS3	2	2	40	60	100			
				Sem. V	Credits :	27						
	Core VII	Nuclear Physics, Wave Mechanics and Relativity	U16PH607	6 5		25	75	100				
		Core VIII	Solid State Physics	U16PH608	6	5	25	75	100			
	III	Core Prac. VI	Major Practicals - VI	U16PH6P6	6	3	40	60	100			
VI		Elective II	Digital Electronics / Crystal Growth and Thin Film Physics	U16PH6:1/ U16PH6:2	6	5	25	75	100			
						Elective III	Programming in C / Spectroscopy and Lasers	U16PH6:3 / U16PH6:4	6	5	25	75
	v	Gender Studies	Gender Studies	U16GST61		1			100			
				Sem. VI Cr	edits 24	1	 		1			
	: Skill I e Cour	Based Elective Ses	e Courses NMEC : Non Major	Total	Credits :	140						
* Ot	her La	nguages :	Hindi Sanskrit French		Hindi	Sa	anskrit	Fre	ench			
		Semester I:	U18HD1L1 U17SK1L1 U18FR1L1	Semester III :	U18HD3 U18FR3		17SK3L3					
		Semester II :	U18HD2L2 U17SK2L2 U18FR2L2	Semester IV :	U18HD4 U18FR4		17SK4L4					

Part I : 4	Core Theory : 8	Core Project :1	Allied Theory : 5	NMEC:2	Env. Studies : 1	
Part II : 4	Core Prac. : 6	Allied Prac.: 1	Elective : 3	SBEC: 3	Value Edu.: 1	Total: 42
Soft Skills	:1 Extension Activ	vities : 1 Gender S	Studies : 1			

NMEC offered by the Department:

1. Simple Appliances - U16PH3E1

2. Audio and Video Systems - U16PH4E2

CORE-I: PROPERTIES OF MATTER AND ACOUSTICS

SEMESTER: I

CODE: U16PH101

CREDITS: 5

NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Measure different kinds of moduli of elasticity.	K5	Ι
CO2	Interpret the concept and consequences of gravitation and its applications	K5	II
CO3	Classify the liquids based on viscous property.	K4	III
CO4	Estimate surface tension of liquids subjected to boundary conditions	K5	IV
CO5	Correlate the wave nature and analyze the laws of transverse vibrations	K4	V
CO6	Investigate the factors affecting the acoustics of buildings	К3	V

2. A. SYLLABUS

Unit-I: Elasticity

(15 Hours)

Stress–Strain – Hooke's law – Different moduli of elasticity – Young's modulus (E) – Rigidity modulus(G) – Bulk modulus(K) – Poisson's ratio – work done in linear, shearing and volume strain – Relation connecting elastic constants and Poisson's ratio – Twisting couple - work done in twisting a wire – Torsion – Torsional oscillations of a body – Rigidity modulus by Torsion pendulum – Bending of beams – Bending couple–Plane of bending – Neutral axis – Expression for bending moment – Cantilever depression and oscillation – Measurement of Young's modulus by non-uniform bending, uniform bending.

Unit-II: Gravitation

(15 Hours)

Newton's law of gravitation – Mass and density of earth – Inertial mass –Gravitational mass – Kepler's laws – Deduction of Newton's law from Kepler's laws – Boys method of finding G – Gravitational field – Intensity of gravitational field –Gravitational potential – Equipotential surface – Gravitational field and potential due to spherical shell – Gravitational field and potential due to solid sphere – Variation of

acceleration due to gravity with latitude, altitude and depth - Escape velocity - Orbital velocity -Geostationary orbit - Satellite communication (Basic ideas only).

Unit-III: Viscosity

Viscosity - Streamline flow and Turbulent flow - Critical velocity - Expression for critical velocity -Reynold's number and its significance – Poiseuille's formula for the flow of a liquid through a capillary tube - Poiseuille's method for the determination of co-efficient of viscosity of a liquid (variable pressure head) - Terminal velocity -Stoke's method for the co-efficient of viscosity of a viscous liquid - Variation of viscosity with temperature and pressure - Friction and Lubrication.

Unit-IV: Surface Tension

Surface tension – Molecular forces – Explanation of surface tension on the basis of kinetic theory – Work done in increasing the area of a surface – Angle of contact – Pressure difference across a liquid surface – Excess pressure inside a liquid drop, soap bubble and a curved liquid surface – Experimental determination of surface tension - Jaeger's method - Quincke's method - Drop weight method -Capillary rise method.

Unit-V: Acoustics

Composition of two simple harmonic motions along a straight line and at right angles to each other – Lissajou's figures – laws of transverse vibration – verification by sonometer and Melde's experiment.

Ultrasonic and Acoustics: Sound (types) - Production, properties and applications of Ultrasonics -Acoustics of buildings – Reverberation time – Sabine's formula – decibel – Intensity measurements and Doppler effect.

B. TOPICS FOR SELF STUDY

- 1. Applications of Elasticity https://www.youtube.com/watch?v=PRYtw9EQhug https://www.youtube.com/watch?v=YI9ke-cy_1g
- 2. Material Strength, Ductility and Toughness https://www.youtube.com/watch?v=WSRqJdT2COE
- 3. Satellite Communication https://www.tutorialspoint.com/satellite_communication/index.htm
- 4. Understanding Bernoulli's Equation https://www.youtube.com/watch?v=DW4rItB20h4

C. TEXT BOOKS

- 1. R. Murugeshan, Properties of Matter, S. Chand and Co., New Delhi, 2004.
- 2. N. Subrahmanyam and BrijLal, A Text Book of Sound, Vikas Publishing House Pvt. Ltd., New Delhi, 1999.

(15 Hours)

(15 Hours)

(15 Hours)

3. V. Rajendran and A. Marikani, Applied Physics, Tata Mcgraw Hill Publishing Co. Ltd, New Delhi, 2003.

D. REFERENCE BOOKS

- 1. BrijLal and N. Subrahmanyam, Properties of Matter, Eurasia Publishing House Ltd., New Delhi,1993.
- 2. R.L. Saigal, Text book of Sound, S.Chand and Co., New Delhi, 1990.
- 3. D. S. Mathur, Elements of Properties of Matter, S. Chand & Co., New Delhi,
- 2008.
- 4. R.P. Feynman, Feynman Lectures on Physics, Vol-I, Pearson, New Delhi, 2009.
- 5. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics 6e, John Wiley & Sons, 2006.
- 6. Paul A. Tipler and G. Mosca, Physics for Scientist and Engineers, W.H.Freeman, New York, 2003.

E. WEBLINKS

- 1. https://nptel.ac.in/courses/115/106/115106119/
- 2. https://physics.info/elasticity/
- 3. https://physics.info/viscosity/
- 4. https://www.tutorialspoint.com/physics_part1/physics_gravitation.htm

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of Transaction
I	Elasticity		
1.1	Stress–Strain	Define stress and strain.	K1
1.2	Hooke's law	State and recall Hooke's law.	K1
1.3	Different moduli of elasticity – Young's modulus (E) – Rigidity modulus(G) – Bulk modulus(K)	Explain different kinds of moduli of elasticity.	K2
1.4	Work done in linear, shearing and volume strain	Deduce work done in different kinds of strain.	К5
1.5	Relation connecting elastic constants and Poisson's ratio	Construct relations connecting different elastic constants.	К3
1.6	Twisting couple - work done in twisting a wire	Determine the expression for twisting couple and work done in twisting a wire.	K5

1.7	Torsion – Torsional oscillations of a body – Rigidity modulus by Torsion pendulum	Illustrate torsional oscillations of a body and determine rigidity modulus by using torsion pendulum.	К5
1.8	Bending of beams – Bending couple–Plane of bending – Neutral axis	Define beam, bending couple, plane of bending and neutral axis	K1
1.9	Expression for bending moment – Cantilever depression and oscillation	Derive the expression for bending moment in Cantilever depression and oscillation	K4
1.10	Measurement of Young's modulus by non-uniform bending, uniform bending.	Estimate the Young's modulus expression for non-uniform bending and uniform bending.	K5
II	Gravitation	<u> </u>	
2.1	Newton's law of gravitation	Recall Newton's law of gravitation.	K1
2.2	Mass and density of earth – Inertial mass –Gravitational mass	State gravitational constant G and outline the expression for mass and density of earth.	K2
2.3	Kepler's laws – Deduction of Newton's law from Kepler's laws	State and recall Kepler's laws of motion and retrieve Newton's law from Kepler's law.	K3
2.4	Boy's Method of finding G	Determine G by using Boy's experiment.	K5
2.5	Gravitational field – Intensity of gravitational field – Gravitational potential	Define gravitational field, intensity and potential.	K1
2.6	Equipotential surface	Explain equipotential surface.	K2
2.7	Gravitational field and potential due to spherical shell – Gravitational field and potential due to solid sphere	Evaluate gravitational field and potential for the case of spherical shell and solid sphere.	K5
2.8	Variation of acceleration due to gravity with latitude, altitude and depth	Determine the expression of acceleration due to gravity with variation in latitude, altitude and depth.	К5
2.9	Escape velocity – Orbital velocity	Define escape and orbital velocity. Deduce the expression for escape and orbital velocity.	К5

2.10	Geostationary orbit – Satellite communication (Basic ideas only).	Define Geostationary orbit. Explain the basic ideas of satellite communication.	K2
III	Viscosity	1	
3.1	Viscosity – Streamline flow and Turbulent flow	Define viscosity and coefficient of viscosity. List different types of liquid flow.	K1
3.2	Critical velocity Expression for critical velocity – Reynold's number and its significance	Define critical velocity and deduce the expression for critical velocity to demonstrate the distinction between stream line flow and turbulent flow.	К5
3.4	Poiseuille's formula for the flow of a liquid through a capillary tube	Construct Poiseulle's equation for volume of liquid flow through a capillary tube.	К3
3.5	Poiseuille's method for the determination of co-efficient of viscosity of a liquid (variable pressure head)	Explain Poiseuille's method of measuring co-efficient of viscosity of a liquid.	K2
3.6	Terminal velocity - Stoke's method for the co-efficient of viscosity of a viscous liquid	Derive Stoke's formula for terminal velocity and the co-efficient of viscosity of a liquid.	K4
3.7	Variation of viscosity with temperature and pressure	Illustrate the variation of viscosity with temperature and pressure	K2
3.8	Friction and Lubrication.	Define Friction and Lubrication.	K1
IV	Surface tension	1	
4.1	Surface tension – Molecular forces.	Define surface tension of a liquid and recall types of molecular forces.	K1
4.2	Explanation of surface tension on the basis of kinetic theory.	Illustrate the concept of surface tension of a liquid based on kinetic theory.	К2
4.3	Work done in increasing the area of a surface	Deduce the expression for work done in increasing the surface area of a liquid.	К5
4.4	Angle of contact	Define Angle of contact	K1

4.5	Pressure difference across a liquid surface – Excess pressure inside a liquid drop, soap bubble and a curved liquid surface	Determine the expression for excess of pressure inside different liquid surfaces.	К5
4.6	Experimental determination of surface tension – Jaeger's method – Quincke's method – Drop weight method – Capillary rise method.	Discuss different experimental methods of measuring surface tension of a liquid.	K5
V	Acoustics		
5.1	Composition of two simple harmonic motions along a straight line and at right angles to each other	Define simple harmonic motions Derive the expression of resultant wave form of composition of two simple harmonic waves along a straight line and at right angles to each other.	K4
5.2	Lissajou's figures	Illustrate Lissajou's figures with examples.	K2
5.3	Laws of transverse vibration	State the laws of transverse vibration	K1
5.4	Verification by sonometer and Melde's experiment.	Explain the method of verifying the laws of transverse vibration by sonometer and Melde's experiment.	K2
5.5	Ultrasonics and Acoustics: Sound (types)	Define and recall ultrasonics	K1
5.6	Production of Ultrasonics	Explain the methods of producing ultrasonic waves.	K2
5.7	Properties and applications of Ultrasonics	Discuss the properties and applications of ultrasonic waves.	K5
5.8	Acoustics of buildings Reverberation time	Define Reverberation time.	K1
5.9	Sabine's formula	Derive the expression of Sabine's reverberation time formula.	K4

Decibel–Intensity measurements and Doppler	Define and recall Decibel.	K1
effect.	State and recall Doppler effect.	

4. MAPPING SCHEME (PO, PSO & CO)

U16PH10					PO						PS	5 0	
1	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 8	PSO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	L	Н	Н	L	М	L	L	Н	Н	М	Н
CO2	Η	М	L	Η	М	L	М	L	М	Н	М	М	М
CO3	Н	Н	М	Н	М	L	М	L	L	Н	М	М	М
CO4	Η	М	М	Η	Н	М	L	L	L	Н	Н	Н	М
CO5	Η	М	М	L	М	М	М	М	L	Н	М	М	М
CO6	Н	Н	М	М	Н	L	М	L	L	Н	Н	М	М

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Internal Assessment Test I & II
- 2. Open book test, learning report, Assignment, Seminar and Problem solving.
- 3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Dr.D.Giridharan

CORE - II: MECHANICS

SEMESTER: II

COURSE CODE: U16PH202

CREDITS: 4

NO OF HOURS/WEEK: 5

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO.NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the concept of centre of gravity, friction and Equilibrium of a body in the presence and absence of external force.	K2	Ι
CO2	Estimate the physical parameters involved in projectile motion using Newton's equation of motion.	К5	II
CO 3	Calculate moment of inertia of regular geometric structures using parallel and perpendicular axes theorem.	K5	III
CO4	Determine the value of 'g' using different pendulums (Compound, Kater's) and explain the theory of oscillation.	K5	IV
CO5	Explain certain static and dynamic properties of fluids.	K2	v
CO6	Outline the applications of Bernoulli's and Torricelli's theorem.	K2	

2. A. SYLLABUS

Unit-I: Statics

(15 hours)

Center of gravity – C.G. of solid hemisphere; hollow hemisphere; tetrahedron hollow cone and solid cone.Friction – laws of friction – cone of friction – angle of friction – static and dynamic friction – equilibrium of a body on a rough inclined plane with and without the application of external force – friction clutch.

Projectile – Horizontal projection – Oblique projection – Path of a projectile – Resultant velocity – Time of flight – Vertical height – Range – Impulse and Impact – Laws of Impact – Direct and Oblique impact – Loss of kinetic energy due to direct impact – Motion of two interacting bodies- reduced mass.

Unit- III: Dynamics of Rigid Bodies

Moment of Inertia – Kinetic energy of rotating body and Angular momentum – Parallel and Perpendicular axes theorems – Moment of inertia of a rod, rectangular lamina, sphere, shell, cylinder and fly wheel – Kinetic energy of rolling body – body rolling down an inclined plane

Unit- IV: Simple Harmonic Motion

Definition – Theory of free vibrations -damped vibrations - forced vibrations – sharpness of resonance – Power dissipation and quality factor – Compound pendulum – reversibility of centres of oscillation and suspension – Determination of 'g' and radius of gyration of a compound pendulum – Kater's pendulum– Bessel's Modification formula.

Unit- V: Hydrostatics and Hydrodynamics

Fluid pressure and its properties – Thrust on plane and curved surfaces – Centre of pressure – Centre of pressure of irregular , rectangular and circular lamina – Equations of continuity of flow – Euler's equation for unidirectional flow –Bernoulli's theorem – Venturimeter- Pitot's tube - Torricelli's theorem.

B. TOPICS FOR SELF STUDY

- 1. Basic of Statics
- 2. Rigid Body Systems
- 3. Basic Terminology in Vibrations
- 4. Pendulum Theory & Modelling Oscillations Fluid mechanics and its Application.

C. TEXT BOOKS

- RM.Narayanamoorthy and N.Nagaratnam, Dynamics, The National Publishing Company, Chennai, 2002 (UNITS I,II,III& IV).
- 2. M.Narayanamoorthy and N.Nagarathnam, Statics, Hydrostatics and Hydrodynamics, the National Publishing Company, Chennai, 1989 (UNIT V).
- 3. D.S. Mathur, Mechanics, S.Chand and Co., Ltd., New Delhi, 2000

D. REFERENCE BOOKS

- 1. R.P. Feynman, Feynman Lectures on Physics, Vol I, 2008.
- 2. Halliday, Resnick and Walker, Fundamentals of Physics, VI Edition, John Wiley& Sons, Inc, 2006.

(15 hours)

(15 hours)

(15 hours)

3. Mechanics (In SI Units) : Berkeley Physics, Kittel . C, Knight. W.ET.AL Published by McGraw Hill India (2012)

E. WEBLINKS

1. Advanced statics - https://nptel.ac.in/courses/112/106/112106180/

2. Advanced Dynamics - https://nptel.ac.in/courses/112/105/112105304/

3. Engineering Mechanics – https://onlinecourses.nptel.ac.in/noc21_me70/preview

4. Applications of Equations of motion and mechanical Energy -

https://nptel.ac.in/content/storage2/courses/112104118/lecture-16/16-1a_hydro_static_pressure.htm

Unit/ Section	CourseContent	Learning Outcomes	HighestBloom'sTaxonomicLevelof Transaction
Ι	Statics		
1.1	Introductionto center of gravity	Define Center of gravity	K1
	C.G of Solid hemisphere C.G of Hollow hemisphere C.G of Tetrahedron, C.G of hollow Cone and Solid Cone	Determine the position of center of gravity of different geometric objects (Solid hemisphere, hollow hemisphere etc)	К5
1.2	Friction	Definefriction	K1
	Laws of friction	Explain laws of friction	К2
	Cone of friction and Angle of friction.	Define Cone of friction and Angle of friction	K1
	Types of friction (Static and Dynamic)	Classify the types of friction	К4
	Equilibrium of a body on a rough inclined plane with and without the application of external force	Illustrate friction on an inclined plane with and without application of external force.	К2
	Friction Clutch	Explain the function of friction clutch	K2
II	Dynamics	· · · · · · · · · · · · · · · · · · ·	

3. SPECIFIC LEARNING OUTCOMES (SLO)

2.1	Projectile	Define a projectile	K1
	Horizontal projection, Oblique projection, Path of a projectile. Resultant velocity, Time of flight – Vertical height – Range	Explain horizontal and Oblique projection and Time of flight – Vertical height	К5
	Impulse and Impact	Define impulse and impact	K1
	Laws of Impact	Explain laws of impact	K2
2.2	Direct and Oblique impact	Classify different types of impact	К4
	Loss of kinetic energy due to direct impact	Obtain expression for kinetic energy and its loss due to impact.	К3
	Motion of two interacting bodies, reduced mass.	Explain the motion of interacting bodies and reduced mass.	K2
III	Dynamics of rigid bodies		
3.1	Moment of Inertia	Define moment of inertia	K1
	Moment of inertia of a rod, rectangular lamina, sphere, shell, cylinder and fly wheel	Obtain expression for Moment of inertia of different objects.	К3
3.2	Kinetic Energy	Define kinetic energy	K1
	Kinetic energy of rotating body and Angular momentum	Explain kinetic energy and angular momentum of a rotating body.	К5
	Kinetic energy of rolling body, body rolling down and inclined plane	Calculate kinetic energy of rolling body down and inclined plane.	К5
3.3	Parallel and Perpendicular axes theorems	Explain the theorems on moment of inertia.	K2
IV	Simple harmonic motion		
4.1	Theory of Vibrations	Define simple harmonic motion	K 1
	Free vibrations -damped vibrations - forced vibrations	Compare the different types of vibrations.	K2
	Sharpness of resonance – Power dissipation and quality factor	Explain the concept of resonance and its quality factor	К5
	Reversibility of centers of oscillation and suspension	Infer the suspension and reversibility of different pendulums	К4

4.2	Determination of 'g' and radius of gyration	Define gravity and radius of gyration	K1
	compound pendulum and	Determine'g' using different pendulums	K5
	Kater's pendulum	Determine 'I' for different pendulums	K5
4.3	Bessel's Modification formula	Outline the modifications in kater's pendulum using Bessel's modification formula.	K2
v	Hydrostatics and hydrod	lynamics	
5.1	Centre of pressure	Define center of pressure	K1
	Fluid pressure and its properties	Explain fluid pressure and its properties.	K2
	Thrust on plane and curved surfaces	Explain thrust on solid surfaces.	K2
	Centre of pressure of irregular, rectangular and circular lamina	Interpret the center of pressure for different objects.	K2
5.2	Equations of continuity of flow	Explain the equation of continuity of flow of fluids	K2
	Euler's equation for unidirectional flow	Explain the Euler's equation of flow	К2
	–Bernoulli's theorem	Explain Bernoulli's Theorem and Torricelli's theorem	K2
	Venturimeter- Pitot's tube - Torricelli's theorem	Apply Bernoulli's Theorem to construct Venturimeter, Pitot's tube.	K3

4. MAPPING SCHEME (PO, PSO & CO)

		РО								PSO			
U16PH202	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	Н	Н	М	М	М	М	L	L	L	Н	Н	Н	L
CO 2	Н	Н	Н	М	М	М	L	L	L	Η	Н	Н	L
CO 3	Н	Н	Н	М	М	М	L	L	L	Н	Н	Н	L
CO 4	Н	Н	Н	Н	Н	М	М	L	L	Н	Н	Н	М
CO 5	Н	Н	Н	М	М	М	L	L	L	Н	Н	Н	Н
CO 6	Η	Н	Η	М	М	М	L	L	L	Η	Н	Η	Н

L – Low M – Moderate

H – High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Internal Assessment Test I & II
- 2. Open book test, learning report, Assignment, Seminar and Problem solving.
- 3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator :Mr.N.Raja

CORE- III: THERMAL PHYSICS

SEMESTER: III

COURSE CODE: U16PH303

CREDITS: 5

NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES(CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Recall the fundamental laws of thermodynamics, radiation and statistical mechanics and their importance	K2	I, III, V
CO2	Summarize the theories related to low temperature, radiation and specific heat of solid, liquid and gas.	K2	П, Ш, IV
CO3	Model internal combustion engine, different experimental methods for production of low temperature, measurement of high temperature and specific heats of solid, liquid, gas.	K3	I, II, III, IV
CO4	Analyze the distribution of energy in black body spectrum, system of boson and fermions, variation of specific heat of solids and gases with respect to temperature.	K4	III, IV, V
CO5	Evaluate specific heat capacity of solid, liquid and gas theoretically.	К5	III, IV, V
CO6	Estimate the energy distribution in black body radiation, system of bosons and fermions.	K6	III, V

2. A. SYLLABUS

Unit- I: Thermodynamics

(15 Hours)

Thermodynamic system - Zeroth law - Concept of heat and work - Internal energy - First law of thermodynamics - Applications - Gas equation during adiabatic process - Work done during an isothermal process - Work done during an adiabatic process - Reversible process - Irreversible process - Second law of thermodynamics - Carnot's theorem - Internal Combustion engine (Petrol Engine) -

Concept of entropy - Change of entropy in reversible process - Irreversible process - Third law of thermodynamics - Temperature entropy diagram.

Unit- II: Low Temperature Physics

Joule Thompson (Kelvin) effect - Production of low temperature - Theory of Porous plug experiment -Liquefaction of gases - Linde's air liquefier - Adiabatic expansion process - adiabatic demagnetization -Liquefaction of Helium and Hydrogen - Practical application of low temperature - Refrigeration machine - Electrolux refrigerator - Air conditioning machines.

Unit- III: Radiation

Radiation - Stefan's Boltzmann law - Experimental determination of Stefan's constant - Blackbody radiation - Distribution of energy in Blackbody spectrum - Rayleigh Jean's law - Wien's Displacement Law - Planck's law derivation – Bolometer - Disappearing filament optical Pyrometer - Solar constant - Angstrom's Pyrheliometer.

Unit- IV: Specific Heat

Specific heat of solids - Dulong and Petit's law - Einstein's theory of specific heat - Debye's theory - Specific heat of gases - Determination of C_P by Ragnault's method - Variation of specific heat of diatomic gases with temperature - Newton's law of cooling – specific heat of liquid - Joule's method.

Unit- V: Statistical Mechanics

Phase space - Microstates - Macrostates - Statistical Equilibrium - Probability theorems in statistical thermodynamics - Maxwell-Boltzmann distribution - Ideal gas - Fermi-Dirac distribution - Electron gas - Bose-Einstein distribution – Photon gas.

B. TOPICS FOR SELF STUDY

1. Kinetic theory of matter

https://courses.lumenlearning.com/introchem/chapter/the-kinetic-molecular-theory-of-matter/

https://youtu.be/XgfOVwmlS1g

2. Transport phenomena

https://youtu.be/4NKMjOcN6R0

https://youtu.be/lYfdvjb65Qc

3. Thermodynamic functions

https://youtu.be/4xjtvw0NPzQ

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

https://youtu.be/SRz29HpyFZ8

4. Applications of Thermodynamics.

https://youtu.be/tZYsVKUjn9E

https://youtu.be/AKyJwI5jkjs

C. TEXT BOOKS

1. BrijLal, N. Subrahmanyam and P.S. Hemne, Heat, Thermodynamics and Statistical Physics, S.Chand and Co., New Delhi, 2016.

D. REFERENCE BOOKS

- 1. D.S. Mathur, Heat and Thermodynamics, S. Chand and Co., New Delhi, 2008.
- 2. SathyaPrakash and J.P. Agarwal, Statistical Mechanics, KedarnathRamnath& Co., Meerut, 2019.
- 3. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics 11th Edition, John Wiley & Sons, 2018.

E. WEBLINKS

- 1. https://onlinecourses.nptel.ac.in/noc20_ce27/preview
- 2. https://onlinecourses.swayam2.ac.in/noU16_me01/preview

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Course Contents	Learning Outcomes	Highest Blooms Taxonomic Level of Transaction
Ι	Thermodynamics		
1.1	Introduction to Thermodynamic system	Define a Thermodynamic system	K1
1.2	Zeroth law	State Zeroth law	K1
1.3	Concept of heat and work	Explain the relation between heat and work	К2
1.4	Internal energy	Define and explain Internal energy	K2
1.5	First law of thermodynamics	State First law of thermodynamics	K1
1.6	Applications – Gas	Analyze the gas equation for an adiabatic process	K4

	equation during adiabatic process		
1.7	Work done during an isothermal process	Explain the work done by an ideal gas during Isothermal process	K5
1.8	Work done during an adiabatic process	Explain the work done by an ideal gas during Adiabatic process	K5
1.9	Reversible process – Irreversible process	Estimate the work done by ideal gas in a areversible and irreversible process	K5
1.10	Second law of thermodynamics	State Second law of thermodynamics	K1
1.11	Carnot's theorem	Estimate efficiency of engines using Carnot's theorem	K5
1.12	Internal Combustion engine (Petrol Engine)-	Demonstrate the function of Internal combustion engine	K3
1.13	Concept of entropy	Explain the Concept of entropy	K2
1.14	Change of entropy in reversible process – Irreversible process	Explain the change of entropy in reversible process and Irreversible process	K5
1.15	Third law of thermodynamics	State Third law of thermodynamics	K1
1.16	Temperature entropy diagram	Construct temperature entropy diagram and assess entropy	K5
II	Low Temperature Physic	cs	
2.1	Joule Thompson Effect	Describe Joule Thompson experiment and discuss its result	K2
2.2	Production of low temperature	Summarize the methods of producing low temperatures. Freezing Mixture, Evaporation under reduced pressure, Adiabatic expansion of Gas, Joule Thompson effect, Regenerative cooling and Adiabatic demagnetization.	K2
2.3	Porous plug experiment.	Analyze the behavior of gases under very high pressure and define Boyle's Temperature	K4
2.4	Boyle's temperature, temperature of inversion	Relate Boyle's temperature, temperature of inversion and critical temperature	K2

2.5	Theory of Porous plugs experiment.	Correlate the initial temperature of the gas and the effect it produces when it undergoes throttled expansion.	K4
2.6	Linde's air liquefier	Explain in detail the procedure of liquefying air using Linde's apparatus with schematic diagram	K2
2.7	Liquefaction of Hydrogen	Construct a set to liquefy hydrogen and explain its with schematic diagram	К3
2.8	Liquefaction of Helium	Construct a set up to liquefy helium and explain its working with schematic diagram	K3
2.9	AdiabaticExpress the favorable conditions for producing very low temperature by adiabaticdemagnetizationadiabatic paramagnetic salt. (Theory of adiabatic demagnetization)		К6
2.9.1	Lowest temperatures produced by adiabatic demagnetization.	States the names of the Salts and the low temperatures produced by them.	K1
3.10	Practical applications of low temperature.	Discuss the various applications, Peculiar properties of Helium at very low temperature and its applicability	K2
3.11	Refrigeration Machines.	Definition of refrigerants and their properties.Examples. Large- and small-scale refrigeration.	K1
3.12	Electrolux refrigerators	Construct the Electrolux refrigerator and explain its working.	К3
3.13	Air conditioning Machines	Comfort chart. Definition of Air conditioning.	K1
3.13.1	Air conditioning Machines	Design hot and cold air conditioner and explain its working with schematic diagram.	K6
III	Radiation		
3.1	Radiation – Stefan's Boltzmann law	Explain Radiation and Relate radiant energy to absolute temperature	K2
3.2	Experimental determination of Stefan's constant	Determine Stefan's constant	K5
3.3	Blackbody radiation, Distribution of energy in Black body spectrum	Explain Blackbody Radiation	K2
3.4	Rayleigh Jean's lawDetermine expression for the distribution of energy with varying wavelengths.		K2

3.5	Wien's Displacement Law	Infer that the temperature rise shifts the emitted radiations to shorter wavelengths.	K2
3.6	Planck's law derivation	Derive Planck's law using Planck's quantum postulates and analyze black body radiation	K4
3.7	Bolometer	Elaborate the construction and working of Bolometer	K2
3.8	Disappearing filament optical Pyrometer	Analyze the construction and working of optical pyrometer	K2
3.9	Solar constant	Define Solar constant	K2
3.10	Angstrom's Pyrheliometer.	Elaborate the construction and working of pyrheliometer	K2
IV	Specific Heat		
4.1	Specific heat of solids	Define Specific heat	K2
4.2	Dulong and Petit's law	State Dulong and Petit's law	K1
4.3	Einstein's theory of specific heat	Explain specific heat of solids a low temperature.	K4
4.4	Debye's theory	Explain specific heat of solids and discuss Limitations over Debye's theory	K4
4.5	Determination of C _P by Ragnault's method	Describe Regnault's method to determine Cp	K5
4.6	Variation of specific heat of diatomic gases with temperature	Analyze specific heat of diatomic gases	K4
4.7	Newton's law of cooling	Explain specific heat of liquids by cooling.	K5
4.8	Specific heat of liquid - Joule's method.	Demonstrate specific heat of liquids	К3
V	Statistical Mechanics		
5.1	Phase space	Explain the concept of Phase space	K2
5.2	Microstates, Macrostates	Define and classify Microstates and Macrostates	K2
5.3	Statistical equilibrium	Explain the nature of Statistical equilibrium	K2
5.4	Probability theorems in statistical thermodynamics	Apply probability in statistical thermodynamics	К3
5.5	Maxwell-Boltzmann distribution, Ideal gas	Deduce Maxwell-Boltzmann distribution apply it to ideal gas	К3

5.6	Fermi-Dirac distribution, Electron gas	Deduce Fermi-Dirac distribution apply it to electron gas	K3
5.7	Bose-Einstein distribution, Photon gas	Deduce Bose-Einstein distribution apply it toPhoton gas	К3

4. MAPPING SCHEME (PO, PSO & CO)

U16PH30		РО									PSO			
3	РО	PO	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	1	2	3	4	
CO1	Н	М	L	М	L	М	-	L	М	М	-	-	-	
CO2	Н	L	L	L	М	L	-	М	-	М	L	-	М	
CO3	Н	L	Н	М	L	L	-	L	М	М	L	М	L	
CO4	М	Н	-	L	Н	L	L	L	-	М	М	-	L	
CO5	М	L	-	L	М	-	L	L	-	М	L	М	-	
CO6	-	L	L	-	L	L	-	-	L	М	-	-	L	

L-Low M-Moderate H-High

4. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I, II
- 2. Openbooktest,Assignment,Seminar,GroupPresentation, Project report, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co-ordinator: Dr.I.Devadoss

CORE - IV: OPTICS

SEMESTER IV

CREDITS: 5

COURSE CODE:U16PH404 NO OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

Afterthesuccessful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Develop the theory of interference for various optical waves	K3	Ι
CO2	Determine the wavelength and thickness of transparent film using different interferometer	K5	Ι
CO3	Apply the phenomenon of diffraction of light in analyzing pulse dynamics in optical media	K3	Π
CO4	Analyze the polarization evolution in optical systems	K4	III
CO4	Classify the types of aberrations in lens	K2	IV
CO6	Determine the resolving and dispersive power of various optical instruments.	K5	V

2. A. SYLLABUS

Unit- I: Interference

(17 hours)

Principle of Superposition – Interference – Theory of interference - Young's Double slit experiments – Fresnel biprism – Experimental arrangement – Determination of wavelength of light - plane parallel film - Interference due to reflected light - Variable thickness film (Air wedge) - Theory of Newton's Rings - Michelson interferometer and its applications – Determination of wavelength and thickness of thin transparent sheet – Fabry-Perot interferometer - Determination of wavelength and difference in wavelength.

Unit- II: Diffraction

Huygen – Fresnel's theory - Half period zones – Types of diffraction - Fresnel's diffraction – Diffraction at a circular aperture - straight edge – Fraunhofer diffraction at a single slit (calculus method) – Double slit – Missing order in a double slit - diffraction pattern – N slits (calculus method)- Plane diffraction grating with theory- Standardization of the grating and Determination of wavelength.

Unit- III: Polarization

Polarization - Plane of polarization and vibration-Superposition of linearly polarized waves at right angles - Types of polarization - Double refraction – Huygen's explanation – Nicol prism – Double image polarizing prism - Production and Detection of plane, partially, elliptically and circularly polarized lights – Quarter wave plate – Half wave plate – Babinet's compensator – Optical activity – Laurents half shade polarimeter – Specific rotatory power.

Unit- IV: Lens Aberrations

Aberrations - First order theory - Types of Aberrations – Spherical aberration–Methods of reducing spherical aberration - Coma – Aplanatic points – Astigmatism – Curvature of the field – Meniscus lens – Distortion – Chromatic aberration – Gradient index lens (GRIN).

Unit- V: Optical Instruments

Objective and Eye piece - Huygens's eyepiece - Ramsden's eyepiece - Resolving power – Rayleigh's criterion of resolution – Resolving power of a telescope, microscope, prism – Dispersive power and resolving power of a grating – the Echelon grating.

(13 hours)

(13 hours)

(15 hours)

(17 hours)

B. TOPICS FOR SELF STUDY

- Properties of optical materials https://www.newport.com/n/optical-material-properties https://www.rp-photonics.com/optical_materials.html
- Nonlinear Optics Nonlinear Polarization Second Harmonic Generation Self Phase Modulation

https://www.nature.com/subjects/nonlinear-optics

https://www.youtube.com/watch?v=5Rx2_GxlNvg

3. Fibre Optics

https://www.synopsys.com/optical-solutions/learn/gentle-intro-to-optical-design.html https://www.youtube.com/watch?v=F7H0KJP6_is

4. Lens Design

https://www.synopsys.com/optical-solutions/learn/gentle-intro-to-optical-design.html https://www.youtube.com/watch?v=nZdp3hU9ZF0

C. TEXT BOOKS

- 1. BrijLal, Avadhanulu and N. Subrahmanyam, A Text Book of Optics, S. Chand and Co., New Delhi, 2012.
- 2. AjoyGhatak, Optics 5e, Mcgraw Hill Education, New Delhi, 2012.

D. REFERENCE BOOKS

- 1. Singh Devraj, Fundamentals of Optics, Prentice Hall India, New Delhi, 2010.
- 2. E. Hecht, Optics 4e, Addison Wesley Publishing, CA, 2016.

E. WEBLINKS

- 1. https://www.classcentral.com/course/swayam-optical-engineering-17714
- 2. https://onlinecourses.nptel.ac.in/noc20_ph07/preview

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of Transaction					
I	Interference	Interference						
1.1	Principle of Superposition	Recollect the basic concepts of superposition and interference	K1					
1.2	Interference - Theory of interference	Define the interference of light (K1) State the fundamental conditions for the production of interference fringes (K2) Explain the theory of interference (K2)	K2					

1.3	Young's Double slit experiments	K2	
1.4	Fresnel biprism - Experimental arrangement - Determination of wavelength of light	Determine the wavelength of light using Fresnel Biprism	K3
1.5	Plane parallel film - Interference due to reflected light - Variable thickness film (Air wedge)	Explain the formation of interference due to reflected light in plane parallel film (K2) Deduce the condition for maxima and minima by forming interference pattern in plane parallel film (K4) Apply the concept of interference to find the thickness of a thin sheet using an air – wedge arrangement (K3)	К3
1.6	Theory of Newton's Rings	Explain how Newton's Rings are formed (K2) Bring out the condition for the formation of Newton's bright and dark fringes. (K3) Determine the wavelength of light by forming Newton's rings (K4)	K4
1.7	Michelson interferometer and its applications – Determination of wavelength and thickness of thin transparent sheet	Explain the principle and working of Michelson Interferometer (K2) Determine the wavelength and thickness of thin sheet using Michelson Interferometer (K5)	K5
1.8	Fabry-Perot interferometer - Determination of wavelength and difference in wavelength.	Explain the principle and working of Fabry-Perot Interferometer (K2) Determine the wavelength of light by forming fringes using Fabry – Perot Interferometer and identify the difference in wavelengths (K5)	K5
II	Diffraction		
2.1	Huygen – Fresnel's theory - Half period zones	Define diffraction (K1) Explain the Huygen – Fresnel's theory of diffraction (K2) What are half period zones (K1)	K2

2.2	Types of diffraction -	Classify the types of diffraction (K2)	K2
	Fresnel's diffraction –	Explain Fresnel's diffraction (K2)	
	Diffraction at a circular	Explain the phenomenon of diffraction	
	aperture - straight edge –	due to a circular aperture / straight edge (K2)	
2.3	Fraunhoffer diffraction at a	Explain Fraunhoffer diffraction	K2
	single slit (calculus method) – Double slit – Missing order in a double slit - diffraction pattern –	Explain the Fraunhoffer pattern obtained with a narrow at a single slit / double slits (K2) Elucidate the intensity distribution in Fraunhoffer diffraction pattern formed	
	N slits (calculus method)-	due to a single slit (K2) Compare Fresnel and Fraunhoffer	
		diffraction (K2)	
2.4	Plane diffraction grating with theory-	Explain the theory of plane diffraction grating (K2)	К3
	Standardization of the grating and Determination	Apply the theory of transmission grating to the wavelength of the spectral lines using plane transmission grating (K3)	
	of wavelength		
III	Polarization		
	Polarization - Plane of	Define polarization (K1)	
3.1	polarization and vibration-	Define plane of polarization (K1)	K2
	Superposition of linearly polarized waves at right	Classify polarized and unpolarised light (K2)	
	angles	Explain the superposition of linearly polarized waves at right angles (K2)	
3.2	Types of polarization -	List the types of polarization (K2)	K2
3.3	Double refraction – Huygen's explanation	Explain Hygen's explanation on double refraction	
	Nicol prism – Double image polarizing prism	Outline the construction of a Nicol prism (K2)	K4
		Explain the role Nicol prism as polarizer and analyser (K4)	
3.4	Production andDetectionofplane,partially,	Classify different types of polarized waves (K2)	K2
		1	
	elliptically and circularly polarized lights - Quarter	Explain the production and detection of elliptically / circularly polarized lights using quarter wave plate (K2)	

	plate	be rotated using half wave plate (K2)			
3.5	Optical activity – Laurent's half shade polarimeter – Specific rotatory power.	Define optical activity (K1) Describe the construction and working of Laurent's half shade polarimeter (K2) Determine the specific rotatory power of a solution using Laurent's half shade polarimeter (K4)	K4		
IV	Lens Aberrations				
4.1	Aberrations- First ordertheory- TypesAberrations	Define aberrations (K1) Explain first order theory and categorize the types of aberrations (K2)	K2		
4.2	AberrationsExplain how spherical aberrations are produced by a lens (K1)Spherical aberration -Explain the methods to reduce the spherical aberration in lenses (K2)				
4.3	Coma – Aplanatic points – Astigmatism – Curvature of the field – Meniscus lens – Distortion	Explain the defects coma, astigmatism curvature and distortion	K2		
4.4	Chromatic aberration – Gradient index lens (GRIN).	Explain how chromatic aberrations are produced in lenses (K2) Outline the advantages of GRIN over spherical lenses (K2)	K2		
V	Optical Instruments				
5.1	Objective and Eye piece	Explain the function of objective and eyepiece	K2		
5.2	Huygens's eyepiece	Explain the construction and working of Huygen's eyepiece	K2		
5.3	Ramsden's eyepiece	Explain the construction and working of Ramsden's eyepiece (K2) Compare Ramsden eyepiece with Huygen's eyepiece (K4)	K4		
5.4	Resolvingpower-Rayleigh'scriterionofresolution-Resolvingpowerofatelescope,microscope, prism	Define resolving power (K1) Explain Rayleigh's criterion of resolution (K2) Estimate the resolving power of telescope / microscope / prism (K5)	K5		

5.5	Dispersive power and	Define dispersive power (K1)	K5
	resolving power of a grating – the Echelon grating.	Determine the dispersive power and resolving power of grating (K5)	

4. MAPPING SCHEME (PO, PSO & CO)

U16PH40 4		РО							PSO				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	М	-	Н	М	-	М	L	L	Н	М	-	L
CO2	Н	Н	L	М	L	L	-	L	L	Н	Н	L	-
CO3	Н	Н	L	М	L	Н	L	L	L	М	L	-	-
CO4	Н	Н	М	М	L	М	-	L	L	Н	Н	Н	М
CO5	Н	М	М	Н	М	L	-	L	L	Н	М	М	L
CO6	Н	М	М	Н	М	М	М	L	L	Н	М	М	М

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I,II
- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,GroupPresentation, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co – ordinator: Ms. K.C. Mercy Gnana Malar

CORE-V: ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM

SEMESTER : V

CODE : U16PH505

CREDITS : 5

NO OFHOURS/WEEK :5

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the fundamental laws of Electrostatics, Magnetostatics and electromagnetism.	K2	I, II, III & V
CO2	Explain the principles behind the electric and magnetic instruments.	K2	I, II & III
CO3	Organize experiments to determine the absolute values of inductance, Figure of merit of Galvanometer, Q factor and power factor of LCR circuits.	К3	II, III & IV
CO4	Analyse the behavior of circuits containing Inductance, Capacitance and Resistance connected in different combinations.	K4	IV
CO5	Evaluate the electric, magnetic and electromagnetic fields due to different electric structures and current circuits.	K5	I, II & III
CO6	Estimate the energy involved in sharing of charges, Magnetization and in electromagnetic waves.	K6	I, III & V

2. A. SYLLABUS

Unit-I: Electrostatics

(15 Hours)

Coulomb's inverse square law – Gauss theorem & its applications - intensity at a point due to a charged sphere and cylinder – Principle of a capacitor – Capacity of spherical and cylindrical capacitors – Parallel plate capacitor – Effect of introduction of a dielectric - Energy stored in a capacitor – Loss of energy due to sharing of charges.

Unit-II: Magnetic effect of Current

Magnetic flux, magnetic induction – relation – Ampere's force law – BiotSavart's law – direction of magnetic field – magnetic induction on the axis of a circular coil carrying current – magnetic field inside a long solenoid, toroid – Lorentz force on a moving charge – direction of force – torque on a current loop in a uniform magnetic field – moving coil Ballistic Galvanometer (BG) – theory – experiment to find the figure of merit

(15 Hours)

Unit-III: Electromagnetic Induction

Laws of electromagnetic induction – self-induction – self-induction of a solenoid – determination of self-inductance - Anderson's method - mutual induction- coefficient of coupling - determination of mutual inductance using B.G –Magnetisation – permeability and susceptibility – relation between M, B and H – Theory of Hysteresis – B–H curve by Ballistic method – Energy dissipation.

Unit-IV: AC Circuits

AC – average and rms value – AC through L and R in series vector diagram method – AC through C and R in series vector diagram method – AC through L and C in series vector diagram method – LCR series and parallel circuit – sharpness of resonance – Q factor, Power factor, choke coil.

Unit-V: Maxwell's equations and Electromagnetic waves (15 Hours)

Fundamentals of electromagnetism - Modification of Ampere's circuital law - The concept of displacement current - Maxwell's equations - Electromagnetic wave equation in free space and dielectric - Plane wave solutions - Energy in electromagnetic waves - Poynting vector - Energy transport.

B. TOPICS FOR SELF STUDY

- 1. Types of capacitors https://www.electronics-tutorials.ws/
- 2. Secondary cells http://www.chem.libretexts.org/
- 3. Three phase AC generators https://www.toppr.com/
- 4. The method of electrical images. https://web.mit.edu/

C. TEXT BOOKS

- 1. R. Murugeshan, Electricity and Magnetism, S. Chand and Co., New Delhi, 2017.(UNIT I,II,IV and V)
- 2. BrijLal and N. Subrahmanyam, Electricity and Magnetism, RatanPrakashanMandir, Agra, 2000.(UNIT III)

D. REFERENCE BOOKS

- 1. D. N. Vasudeva, Fundamentals of Magnetism and Electricity, S. Chand & Co, 2013.
- 2. N.K. Sehgal, K.L. Chopra and D.L. Sehgal, Electricity and Magnetism, Sultan Chand and Sons, New Delhi, 2014.
- 3. K.K. Tiwari, Electricity and Magnetism, S. Chand and Company, New Delhi, 2018.
- 4. David J. Griffith, Introduction to Electrodynamics, Prentice Hall of India, 2015.
- 5. Paul A. Tipler and G. Mosca, Physics for Scientist and Engineers, W.H.Freeman, New York, 2003.

(15 Hours)

(15 Hours)

E. WEBLINKS

- 1. https://www.edx.org/course/electricity-and-magnetism
- 2. https://nptel.ac.in/courses/115/106/115106122/

Unit/ Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
Ι	Electrostatics		
1.1	Coulomb's Inverse square Law	Explain Coulomb's Inverse square Law	K2
1.2	Gauss theorem	Explain Gauss theorem	K2
1.3	Applications of Gauss's theorem	Deduce an expression for electric field intensity at a point due to a charged sphere and cylinder	К3
1.4	Principle of a capacitor	Outline the principle of a capacitor	K2
1.5	Capacity of spherical capacitor	Deduce an expression for Capacity of spherical capacitor	K5
1.6	Capacity of cylindrical capacitor	Deduce an expression for Capacity of cylindrical capacitor	K5
1.7	Parallel plate capacitor	Deduce an expression for Capacity of Parallel plate capacitor	К5
1.8	Effect of introduction of a dielectric	Examine the effect of introduction of a dielectric in Parallel plate capacitor	К3
1.9	Energy stored in a capacitor	Deduce an expression for energy stored in a capacitor	К5
1.10	Loss of Energy due to sharing of charges	Estimate loss of energy due to sharing of charges	K6
II	Magnetic effect of Curre	ent	L
2.1	Magnetic flux, magnetic induction – relation	Define and relate Magnetic flux and magnetic induction	K1
2.2	Ampere's force law –	Outline the Ampere's force law	K2
2.3	BiotSavart's law –	Make use of Ampere's force law to obtain the BiotSavart's law	К3
2.4	Direction of magnetic field	Find the direction of magnetic field	K1
2.5	Magnetic induction on	Deduce an expression for magnetic	K5

	the axis of a circular coil carrying current	induction on the axis of a circular coil using BiotSavart's law	
2.6	Magnetic induction on the axis of a inside a long solenoid, toroid	Apply BiotSavart's law to find magnetic induction at any point on the axis of long solenoid and toroid	К3
2.7	Lorentz force on a moving charge – direction of force	Outline Lorentz force Law on a moving charge	K2
2.8	Torque on a current loop in a uniform magnetic field	Apply Lorentz force Law to find torque on a current loop in a uniform magnetic field	К3
2.9	Moving coil Ballistic Galvanometer (BG)- Theory	Explain the theory of BG	K5
2.10	Experiment to find the figure of merit	Organize a circuit to calculate the figure of merit using BG	K3
III	Electromagnetic Inducti	on	
3.1	Laws of electromagnetic induction	Illustrate Laws of electromagnetic induction	K2
3.2	Self-induction	Define self induction	K1
3.3	self induction of a solenoid	Deduce an expression for self inductance of a solenoid	К5
3.4	Determination of self inductance – Anderson's method	Deduce an expression to determine self inductance using Anderson's method	K5
3.5	Mutual induction	Define mutual induction	K1
3.6	Coefficient of coupling	Deduce an expression for coefficient of coupling	K5
3.7	Determination of mutual inductance using B.G	Determine mutual inductance between two circuits or coils using B.G	K5
3.8	Magnetisation – permeability and susceptibility – relation between M, B and H	Define and relate magnetization, permeability and susceptibility	K1
3.9	Theory of Hysteresis - B–H curve by Ballistic method	Organize an experiment to draw to draw B-H curve using ballistic method	К3
3.10	Energy dissipation	Estimate energy dissipation using B-H curve	K6

IV	AC Circuits		
4.1	Average and rms value	Define average and rms value	K1
4.2	AC through L and R in series vector diagram method	Apply vector diagram method to find emf in LR series circuit	К3
4.3	AC through C and R in series vector diagram method	Apply vector diagram method to find emf in CR series circuit	K3
4.4	AC through L and C in series vector diagram method	Apply vector diagram method to find emf in LC series circuit	K3
4.5	LCR series circuit – sharpness of resonance – Q factor	Combine L, R and C in series to find the emf in LCR circuit & Calculate sharpness of resonance and Q factor	K5
4.6	LCR parallel circuit – sharpness of resonance – Q factor	Combine L, R and C in parallel to find the emf in LCR circuit & Calculate sharpness of resonance and Q factor	K5
4.7	Power factor	Deduce an expression for power factor	K5
4.8	Choke coil	Explain the function of choke coil	K5
V	Maxwell's equations and	l Electromagnetic waves	
5.1	Fundamentals of electromagnetism	Explain the fundamentals of electromagnetic waves	K2
5.2	Modification of Ampere's circuital law	Modify Ampere's law	К3
5.3	The concept of displacement current	Interpret the of concept displacement current in modified Ampere's law	K5
5.4	Maxwell's equations	Explain Maxwell's equations	K2
5.5	Electromagnetic wave equation in free space and dielectric - Plane wave solutions	Rewrite Maxwell's equations for free space and dielectric medium and construct their respective wave equations	K5
5.6	Energy in electromagnetic waves	Explain the energy carried by electromagnetic waves	K2
5.7	Poynting vector - Energy transport.	Solve electromagnetic wave equations to obtain the Poynting vector and interpret find energy transport	K5

4. MAPPING SCHEME (PO, PSO & CO)

U16P	РО								PSO				
H505	PO	PSO	PSO	PSO	PSO								
11303	1	2	3	4	5	6	7	8	9	1	2	3	4
CO 1	Η	М	L	-	Μ	L	Μ	-	Μ	Н	М	М	М
CO 2	Μ	-	Μ	Н	-	-	-	Μ	-	М	Н	М	-
CO 3	Μ	М	-	Η	Μ	Μ	L	L	Μ	Μ	Η	Η	L
CO 4	Μ	-	Μ	Μ	Μ	М	L	-	L	М	-	М	L
CO 5	-	Н	L	-	Η	Μ	L	-	Μ	Μ	-	М	-
CO 6	Μ	-	Μ	-	Μ	Μ	-	L	Μ	Μ	L	-	Μ

L-Low M-Moderate H- High

5. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I,II
- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,GroupPresentation, Project report, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co – ordinator: Mr.K.Karthikeyan

CORE - VI: ELECTRONIC DEVICES

SEMESTER : V

COURSE CODE: U16PH506

CREDITS: 5 NO. OF HOURS/WEEK: 5

1. COURSE OUTCOMES(CO)

After the completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Analyze the physical operation and applications of semiconductor devices like diodes, rectifiers and filters	K4	Ι
CO2	Explain the basic operations of BJT and FET in various configuration	K2	П
CO3	Categorize the different power amplifier circuits, their design and use in electronics and communication circuits	K4	III
CO4	Infer the characteristics of feedback amplifier circuits	K4	IV
CO5	Analyze different oscillator circuits for various range of frequencies	K4	IV
CO6	Construct circuits for various mathematical operations using operational amplifier	K6	V

2. A. SYLLABUS

Unit-I: Semiconductors and Diodes

Metals, Insulators and semiconductors – Intrinsic and Extrinsic semiconductors – PN Junction – Junction theory – V-I characteristics of a PN Junction diode – Use of Diode – Half wave – full wave and Bridge Rectifier – Performance of Half wave and full wave rectifier – filter – Shunt capacitor filter – π filter – LC filter.

Unit-II: Transistor (BJT & FET)

Junction transistor structure – Action of a transistor – working of a transistor – Three configuration of transistors (CB, CE and CC) - CE amplifier circuit – Biasing and DC load line – JFET – Structure – Characteristics – Parameters.

(15 hours)

Unit-III: Small – Single Amplifiers and Power Amplifiers (BJT)

Single stage transistor Amplifier – Graphical Method - Equivalent Circuit Method - Need for Power Amplifier – Voltage Amplifier Vs. Power Amplifier - Power loss – Classification of amplifiers - Push Pull Amplifier – Distortion – Advantages.

Unit-IV: Feedback in Amplifier and Oscillator (BJT)

Feed back in Amplifier – types of feedback – Voltage feedback Amplifier – Barkhausen criterion -Negative feedback – RC Coupled Amplifier – classification of oscillators - positive feedback - amplifier as an oscillator – LC, Tuned collector, Hartley, Colpitt's , Phase shift and Wien bridge Oscillators.

Unit-V: Operational Amplifier

Operational amplifier characteristics - concept of virtual ground – Inverting – Non Inverting Amplifiers – Scalar – Adder – Subtractor – Integrator – differentiator – Comparator – D/A Conversion – Binary weighted and R-2R Ladder Method - A/D Successive Approximation Method – Active Filters - First order low pass and high pass filters.

B. TOPICS FOR SELF STUDY

1. Characteristics, Working and Applications of LED

https://www.youtube.com/watch?v=IEju3AT1olk

2. MOSFET structure and characteristics

https://www.youtube.com/watch?v=l9LBIy9Ioxo

C. TEXT BOOKS

- 1. N.N. Bhargava, D.C. Kulshreshtha and S.C. Gupta, Basic Electronics and Linear Circuits, McGraw Hill Education (India) Private Limited, New Delhi, 2015.
- 2. V.K. Mehta, Rohit Mehta, Principles of Electronics 7e, S. Chand, New Delhi, 2005.

D. REFERENCES BOOKS

- 1. M.C. Gupta, Principles of Electronics, DhanpatRai and Sons, New Delhi, 1997.
- 2. T. L. Floyd, Electronic Devices, Pearson Education, New York, 2004.
- 3. David A. Bell, Electronic Devices and Circuits, Oxford University Press, New Delhi, 2008.

E. WEBLINKS

- 1. https://www.electronics-tutorials.ws/diode/diode_8.html
- 2. https://nptel.ac.in/courses/115/102/115102103/
- 3. https://nptel.ac.in/courses/115/102/115102103/#watch
- 4. https://nptel.ac.in/courses/115/102/115102014/#watch
- 5. https://nptel.ac.in/courses/115/102/115102014/#watch
- 6. https://www.coursera.org/learn/freeform-electronics

(15 hours)

(15 hours)

Unit/Section	Course	Learning Outcomes	Highest Blooms Taxonomic level				
	Content	of transaction					
Ι	Semiconductors and Diodes	Semiconductors and Diodes					
1.1	Metals, Insulators and semiconductors	Recollect the basic concepts of solid materials	K2				
1.2	Intrinsic and Extrinsic semiconductors	Explain the two types of semiconductors	K5				
1.3	PN Junction – Junction theory	Explain the operation principle of diode	K2				
1.4	V-I characteristics of a PN Junction diode	Illustrate the operational characteristics of a PN Junction diode	K5				
1.5	Use of Diode	Explain the applications of junction diode	K2				
1.6	Half wave – full wave and Bridge Rectifier	Categorize the functions of rectifiers	K4				
1.7	Performance of Half wave and full wave rectifier	Estimate the efficiency of rectifiers	K5				
1.8	Filter – Shunt capacitor filter – π filter – LC filter.	Analyze the operations of filters	K4				
II	Transistor (BJT & FET)						
2.1	Junction transistor structure – Action of a transistor	Explain the basic design and action of a transistor	K2				
2.2	Working of a transistor	Explain the function of a transistor	K2				
2.3	Three configuration of transistors (CB, CE and CC)	Analyze the working of transistors in various configuration modes (CB, CC, CE)	K4				
2.4	CE amplifier circuit	Explain the amplification in CE amplifier circuits with transistors.	К2				
2.5	Biasing and DC load line	Analyze the transistor dc biasing using load line	K4				
2.6	JFET – Structure	Show the basic structure of Junction field effect transistor	K2				

2.7	JFET- Characteristics	Interpret the output	K4
		characteristics of JFET Explain the JFET parameters	
2.8	JFET- Parameters.	and establish the relation between them	K2
III	Small – Single Amplifiers and	Power Amplifiers (BJT)	
3.1	Single stage transistor Amplifier	Summarize the working of single stage transistor amplifier	К3
3.2	Graphical Method	Interpret the graphical method of analysis of single stage transistor amplifier	K5
3.3	Equivalent Circuit Method	Analyze the DC and AC equivalent circuits of single stage transistor amplifier	K4
3.3	Equivalent Circuit Method	Interpret the load line analysis of DC and AC equivalent circuits	К5
3.4	Need for Power Amplifier	Outline the importance of power amplifier	K2
3.5	Voltage Amplifier Vs. Power Amplifier	Compare the Voltage Amplifier with Power Amplifier	K2
3.6	Power loss	Infer the power loss in amplifiers	K2
3.7	Classification of amplifiers	Categorize the types of amplifiers	K4
3.8	Push Pull Amplifier	Explain the operation of Push Pull Amplifier circuit	К2
3.9	Push Pull Amplifier - Distortion – Advantages.	Explain the distortion and advantages in Push Pull Amplifier	K2
IV	Feedback in Amplifier and O	scillator (BJT)	
4.1	Feed back in amplifier – types of feedback	Classify the types of feedback	K2
4.2	Voltage feedback amplifier	Illustrate the working of voltage feedback amplifier	K2
4.3	Barkhausen criterion	Calculate the Barkhausen criterion	К3
4.4	Negative feedback – RC Coupled Amplifier –	Construct the negative feedback RC coupled amplifier	К3
4.5	Classification of oscillators	Classify the types of Oscillators	K2

4.6	Positive feedback	Illustrate the positive feedback circuit	K2
4.7	Amplifier as an oscillator	Illustrate the functioning of amplifier as an oscillator	K2
4.8	LC, Tuned collector, Hartley, Colpitt's, Phase shift and Wien bridge Oscillators.	Examine the performance of various oscillator circuits	K4
V	Operational Amplifier		
5.1	Operational amplifier characteristics - concept of virtual ground	Describe the basic characteristics of operational amplifier circuits	K2
5.2	Inverting Amplifiers	Explain the inverting amplifier circuit	K2
5.3	Non Inverting Amplifiers	Explain the non-inverting amplifier circuit	K2
5.4	Scalar – Adder – Subtractor	Construct the circuits using operational amplifier to perform mathematical operation of addition and subtraction	К3
5.5	Integrator – differentiator	Construct the circuits using operational amplifier to perform mathematical operation of integrator and differentiator	К3
5.6	Comparator	Utilize operational amplifier to compare the two input voltages	К3
5.7	D/A Conversion – Binary weighted and R-2R Ladder Method	Perform digital to analog conversion using operational amplifiers	К3
5.8	A/D Successive Approximation Method	Perform analog to digital conversion using operational amplifiers	К3
5.9	Active Filters	Outline the use of active filters	K2
5.10	First order low pass and high pass filters.	Inspect the working of low pass and high pass filters	K4

4. MAPPING SCHEME (PO, PSO& CO)

U16PH506	РО							PSO					
010111300	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	М	Н	Н	М	М	L	L	М	Н	М	Н	L
CO2	Η	М	Н	Н	L	L	L	М	L	Н	L	Н	М
CO3	Н	М	М	Н	L	L	М	М	L	Н	L	М	L
CO4	Н	М	L	М	L	L	L	L	М	М	L	Н	L
CO5	Н	М	L	М	М	L	L	М	М	Н	L	М	L
CO6	Н	М	Н	М	L	L	L	М	М	Н	М	Н	L

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

- 1. Continuous Internal AssessmentTests I & II
- 2. Model Exam
- 3. Openbooktest, Assignment, Quiz, Seminar, GroupPresentation, Poster preparation, Problem solving etc.
- 4. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co-ordinator: Mrs. R. Vidhya

CORE - VII: NUCLEAR PHYSICS, WAVE MECHANICS AND RELATIVITY

SEMESTER: VI

CODE: U16PH607

CREDITS: 5

NO. OF HOURS/ WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the basic properties of nuclei, postulates of wave mechanics and relativity.	K2	I, IV, V
CO2	Explain the limitations of Newton's law of motion and black body radiation from Planck's hypothesis	K2	III, V
CO3	Identify the elementary particles based on the quantum numbers, select suitable method of detection for various nuclear radiations and model nuclear reactors, atom bomb, Electron microscope.	К3	Ι, ΙΙ
CO4	Analyze various experiments that reveal the dual nature of matter and theories related to nuclear reactions.	K4	П, Ш
CO5	Assess relativistic variation in mass, velocity, time and position, binding energy of nucleus and the energy released in nuclear reactions.	K5	I, II, V
CO6	Formulate Schrödinger equation for simple quantum mechanical systems and solve it to find the wave function and energy.	K6	IV

2. A. SYLLABUS

Unit-I: Properties of nucleus and elementary particles

(15 Hours)

Basic properties of nucleus – Classification of nuclei - Properties of nuclei - Binding energy – Stability of nuclei - GM counter – Wilson's cloud chamber - Photographic emulsion techniques - Classification of subatomic particles – Antiparticles – Strangeness – Isospin – Hypercharge - quarks and their quantum numbers.

Unit-II: Nuclear models and energy

Liquid drop model– Shell model – Magic numbers - Nuclear reaction– Types of nuclear reaction – Nuclear fission – Bohr and Wheeler's theory of nuclear fission – Energy released in fission – Q value – Nuclear reactor (basic ideas only) – Atom bomb – Nuclear fusion - Thermonuclear reactions – Source of stellar energy.

Unit-III: Dual nature of matter

Planck's hypothesis – Derivation of Planck's law of radiation – de–Broglie waves (Duality) – Wave packet, phase and group velocities – Davisson and Germer experiment – G.P. Thomson experiment – Uncertainty principle – Gamma ray microscope – Electron microscope.

Unit-IV: Schrödinger equation and its applications

Postulates of wave mechanics – Derivation of Schrödinger wave equation (time dependent and time independent forms) – Significance of wave function – conservation of total probability - Particle in an infinite one dimensional square well potential –One dimensional harmonic oscillator – Zero point energy.

Unit-V: Relativity

Newton's laws and their limitations – Concept of space, time and mass - Inertial frames – Galilean transformations – Michelson-Morley experiment and its importance – Einstein's postulates – Lorentz transformations – Addition of velocities - Length contraction – Time dilation - Variation of mass with velocity – Einstein's mass energy relation.

B. TOPICS FOR SELF STUDY

- 1. The standard model https://theoreticalminimum.com/courses/particle-physics-2-standard-model/2010/winter
- 2. Particle accelerators https://home.cern/science/physics
- Application of quantum mechanics https://phys.libretexts.org/Bookshelves/University_Physics

(15 Hours)

(15 hours)

(15 hours)

4. General theory of relativity.

https://ocw.mit.edu/courses/physics/8-962-general-relativity-spring-2020/index.htm

C. TEXT BOOKS

- 1. R. Murugeshan and KiruthigaSivaprasath, Modern Physics, S. Chand & Co. Ltd, New Delhi, 2016.
- 2. Arthur Beiser, ShobitMahajan and S RaiChoudhury, Concepts of Modern Physics, Tata McGraw Hill, 2017.

D. REFERENCE BOOKS

- 1. J. B. Rajam, Modern Physics, S. Chand & Co. Ltd, New Delhi, 1967.
- 2. D.C. Tayal, Nuclear Physics, Himalaya Publication, Mumbai, 2015.
- 3. P.M. Mathews and K. Venkatesan, Quantum Mechanics, Tata McGraw Hill, 2017.
- 4. Paul A. Tipler and G. Mosca, Physics for Scientist and Engineers, W.H. Freeman, New York, 2003.

E. WEBLINKS

- 1. https://nptel.ac.in/courses/115/104/115104043/
- 2. https://nptel.ac.in/courses/115/103/115103101/
- 3. https://nptel.ac.in/courses/115/104/115104096/
- 4. https://nptel.ac.in/courses/115/106/115106066/
- 5. https://nptel.ac.in/courses/115/101/115101011/

Unit/ Section	Course content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
Ι	Properties of Nucleus and Elemen		
1.1	Basic properties of nucleus - Classification of nuclei	Classify the different types of nuclei	K4
1.2	Properties of nuclei	Explain the basic properties of nuclei.	K2
1.3	Binding energy	Explain the concept of binding energy. Evaluate the binding energy of	K5
		nucleus.	
1.4	Stability of nuclei	Analyze the stability of nuclei	K4
1.5	GM counter	Illustrate the method of detection of nuclear radiation using GM counter	K2
1.6	Wilson's cloud chamber	Explain the method of detection of nuclear radiation using Wilson's cloud chamber	K2
1.7	Photographic emulsion techniques	Explain the method of detection of nuclear radiation using Photographic emulsion technique	K2
1.8	Classification of subatomic particles	List the different types of subatomic particles	K1
1.9	Antiparticles	Define the antiparticles	K1
1.10	Strangeness – Isospin – Hypercharge	Categorize the elementary particles on the basis of quantum numbers	K4
1.11	quarks and their quantum numbers.	Explain the concept of quarks and their quantum numbers	K2
II	Nuclear Models and Energy		
2.1	Liquid drop model	Analyze the similarity between an atomic nucleus and a liquid drop.	K4
2.2	Shell model - Magic numbers	Analyze the similarity between energy structure of the nucleus and electron shells in atom	K4
		Define the magic numbers	170
2.3	Nuclear reaction - Types of nuclear reaction	Explain the different types of nuclear reactions	K2
2.4	Nuclear fission	Illustrate the nuclear fission reaction	K2
2.5	Bohr and Wheeler's theory of nuclear fission	Make use of the features of liquid drop model to explain nuclear fission reaction	К3
2.6	Energy released in fission - Q value	Evaluate the Q value for the nuclear reactions	K5
2.7	Nuclear reactor (basic ideas only)	Outline the basic structure of a	K2

		nuclear reactor	
2.8	Atom bomb	Discuss the principle behind an atom bomb	K2
2.9	Nuclear fusion	Define the nuclear fusion	K1
2.10	Thermonuclear reactions	Analyze the factors responsible for controlled thermonuclear reactions.	К4
2.11	Source of stellar energy	Explain the nuclear fusion reaction in stars	K2
III	Dual Nature of Matter		
3.1	Planck's hypothesis	State the Planck's hypothesis	K1
3.2	Derivation of Planck's law of radiation	Apply hypothesis to derive Planck's law of radiation	К3
3.3	de–Broglie waves (Duality)	Outline the de Broglie's theory of matter waves.	K2
3.4	Wave packet, phase and group velocities	Distinguish between phase velocity and group velocity in wave motion.	K4
3.5	Davisson and Germer experiment	Justify the wave nature of matter using Davisson and Germer experiment	K5
3.6	G.P. Thomson experiment	Analyse the wave nature of electron using G.P. Thomson experiment	K4
3.7	Uncertainty principle	State the uncertainty principle	K1
3.8	Gamma ray microscope	Support the principle of uncertainty using Gamma ray microscope	К5
3.9	Electron microscope	Explain the function of Electron microscope	K2
IV	Schrödinger Equation and Its Ap	plications	
4.1	Postulates of wave mechanics	List the postulates of wave mechanics	K 1
4.2	Derivation of Schrödinger wave equation (time dependent and time independent forms)	Develop the time dependent and time independent form of Schrodinger equation	K5
4.3	Significance of wave function	Interpret the nature of wave function	K5
4.4	Conservation of total probability	Illustrate that the total probability is conserved	K2
4.5	Particle in an infinite one- dimensional square well potential	Formulate Schrodinger equation for particle in a box and solve it to find its energy value and wave function.	К6
4.6	One dimensional harmonic oscillator - Zero-point energy	Formulate Schrodinger equation for one dimensional harmonic oscillator and solve it to find its energy value and wave function.	К6
\mathbf{V}	Relativity		
5.1	Newton's laws and their limitations	Discuss the limitations of Newton's laws	K2
5.2	Concept of space, time and mass	Interpret the concept of space, time and mass	K2

5.3	Inertial frames -	Explain the different frames of	K2
	Galilean transformations	reference and the transformation	
		equations between two inertial	
		frames	
5.4	Michelson-Morley experiment and	Explain the Michelson-Morley	K5
	its importance	experiment	
5.5	Einstein's postulates	Summarize postulates of special	K2
	-	theory of relativity	
5.6	Lorentz transformations	Develop the transformation	K3
		equation with the concept of the	
		invariance of light velocity in free	
		space.	
5.7	Addition of velocities	Prove that the velocity of light is	K5
		the maximum attainable velocity.	
5.8	Length contraction	Explain the concept of length	K2
		contraction	
5.9	Time dilation	Explain the concept of Time	K2
		dilation	
5.10	Variation of mass with velocity	Develop the relativistic formula	K3
		for the variation of mass with	
		velocity	
5.11	Einstein's mass energy relation.	Deduce mass energy relation	K5

4. MAPPING SCHEME (PO, PSO& CO)

	PO				PO				PSO				
U16PH607	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	Н	М	L	-	-	L	L	-	L	Н	L	L	М
CO 2	Н	Н	М	L	L	-	L	L	-	Н	L	L	М
CO 3	Н	Н	Н	Н	М	L	L	L	М	Н	L	М	М
CO 4	Н	Н	М	М	М	-	L	-	М	Н	L	М	М
CO 5	М	Н	L	L	Н	L	L	L	-	Н	L	М	L
CO 6	Н	М	М	L	Н	-	L	-	L	Н	L	L	L

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I, II
- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,GroupPresentation, Project report, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

CORE- VIII: SOLID STATE PHYSICS

SEMESTER: VI

CREDITS: 5

CODE : U16PH608 NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the basics of crystal structure	K2	Ι
CO2	Compare the types of bonding in solids	K4	II
CO3	Analyze electrical and thermal properties of metals	K4	III
CO4	Interpret electrical conductivity of semiconductors	K5	IV
CO5	Explain the theories and properties of semiconductors and superconductors	K5	IV, V
CO6	Categorize the superconductors based on their properties	K4	V

2. A. SYLLABUS

Unit-I: Crystal Structure

Crystalline and amorphous solids – Basis and crystal structure–Crystal translation vectors – Symmetry operations – Unit cell and primitive lattice cell – Symmetry elements – Point groups and space groups – Bravais lattices – Miller indices – Number of atoms per unit cell – Coordination number – Atomic packing – Atomic radius – Simple cubic structure – Body centred cubic structure – Face centred cubic structure – Hexagonal closely packed structure–Structure of NaCl and Diamond.

Unit-II: Bonding in Solids

Force and potential between two atoms – cohesive energy – types of bonds - Ionic bond – bond energy of NaCl molecule – lattice energy of ionic crystals – Madelung constant – Born-Haber cycle – properties of ionic crystals – covalent bond – properties of covalent crystals – metallic bond – properties of metallic crystals – inter molecular bonds – van der Waal's bond – dispersion bond – dipole bond – hydrogen bond – comparison between bonds.

(15 hours)

Unit-III: Electron Theory of Metals

Free electron theory – Effect of impurity and temperature on electrical resistivity – Limitations of the free electron model - Fermi – Dirac distribution - Fermion – Free electron gas - Drude – Lorentz electron theory – density of energy states – Fermi surface – Electrical conductivity – Thermal conductivity – Wiedemann-Franz law – Electrical resistivity versus temperature – Sommerfeld model.

Unit-IV: Semiconductors

Energy band diagram – direct and indirect band gap semiconductors – Chemical bonds in semiconductors – valence band, conduction band, Forbidden energy gap – Intrinsic and extrinsic semiconductors – donor and acceptor levels – carrier concentration for intrinsic and extrinsic semiconductors – Fermi level – Mechanism of current flow - Mobility – drift velocity – Conductivity in semiconductors – Drift and diffusion current – Hall effect.

Unit-V: Superconductivity

Introduction – Properties of superconductors – Critical temperature and critical field – Meissner effect – Type – I and Type – II superconductors – Thermodynamic properties (Qualitative study) – isotopic effect – Energy gap – London equations – BCS theory – AC and DC Josephson effects (definitions only) – High temperature superconductors – Applications of superconductors.

B. TOPICS FOR SELF STUDY

1. Quasi crystals

https://www.youtube.com/watch?v=lmr4kETnwi0 http://home.iitk.ac.in/~anandh/presentations/Quasicrystals_Nobel.pdf

2. Advanced Magnetoresistive Materials: Giant Magnetoresistance, Magneto Tunnel https://www.routledge.com/rsc/downloads/ch_2_9781315119595.pdf https://www.youtube.com/watch?v=7qHbv9QFoC0 https://www.youtube.com/watch?v=hCcb-w58IY0

3. Synthesis of High temperature superconductors

https://physlab.org/wp-content/uploads/2016/04/Superconductor_manual1.pdf https://www.youtube.com/watch?v=RdlCCxOXcoM

C. TEXT BOOKS:

- 1. S.L. Gupta and V.Kumar, Solid State Physics, K.Nath& Co., Meerut, 2013.
- 2. S.O. Pillai, Solid State Physics 8thedition, New Age International, 2018.
- 3. M.A. Wahab, Solid State Physics, 2011, Narosa Publications

D. REFERENCE BOOKS:

- 1. Charles Kittel, Introduction to Solid State Physics 8e, Wiley India Pvt. Ltd., New Delhi, 2012.
- 2. R.L. Singhal, Solid State Physics, KedarNath Ram Nath& Co., Meerut, 2012.

(15 hours)

(14 hours)

3. Neil W. Ashcroft and N. David Mermin, Basic Solid State Physics, Brooks/Cole Publishing Company, CA, USA, 1976.

4. A.Raychaudhuri, Basic Solid State Physics, Sarat Book House, Kolkata, 2014.

5. V. Rajendran and A. Marikani, Applied Physics, Tata Mcgraw Hill Publishing Co. Ltd, New Delhi, 2003.

6. S. O. Kasap, Principles of Electronic Materials and Devices, Mcgraw-Hill Education, Dubuque, 2017.

E. WEBLINKS

1. https://nptel.ac.in/courses/115/104/115104109/

2. https://nptel.ac.in/courses/115/105/115105099/

Unit/ Secti on	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
Ι	Crystal Structure		
1.1	Crystalline and amorphous solids	Classify crystalline and non crystalline materials	K2
		Contrast basis and crystal structure	
1.2	Basis and crystal structure	Relate basis and crystal structure	K2
1.3	Crystal translation vectors	Outline the role of translation vectors in constructing crystal systems	K2
1.4	Symmetry operations	Explain various symmetry operations	K2
1.5	Unit cell and primitive lattice cell	Relate Unit and Primitive cells	K2
1.6	Symmetry elements	Illustrate symmetry elements	K2
1.7	Point groups and space groups	Identify Point and Space groups for the crystal structure	К3
1.8	Bravais lattices	Explain Bravais lattices	K2
1.9	Miller indices	Infer miller indices for crystal plane	K4
1.10	Number of atoms per unit cell – Coordination number – Atomic packing – Atomic radius	Explain unit cell properties	K2
1.11	Simple cubic structure (SC) - Body centered cubic structure (BCC) - Face centered cubic structure (FC)	Evaluate packing factor value of SC, BCC and FC	K5

1.12	Hexagonal closely packed structure	Estimate Packing factor value for hexagonal closely packed structure	K6
		incorporating all the unit cell parameters Determine the axial ratio for hexagonal closely packed structure	K5
1.13	Structure of NaCl and Diamond	Explain the structure of NaCl	K2
		Obtain the packing factor value of	
		Diamond	
II	Bonding in Solids		
2.1	Force and potential between two atoms	Discuss the force and potential variation	K5
	– cohesive energy	with atomic distance and estimate	
		cohesive energy	
2.2	Types of bonds	Categorize the types of bonds	K4
2.3	Ionic Bond	Explain bonding mechanism in	K2
		materials	
		Label the potential energy diagram of	
		ionic crystals	
2.4	Bond energy of NaClmolecule	Calculate the bond energy NaCl	К3
2.5	lattice energy of ionic crystals -	Evaluate the lattice energy of ionic	K5
	Madelung constant	crystals and Madelung constant	
2.6	Born Haber cycle	Evaluate the enthalpy of formation of	K5
		NaCl	
2.7	Properties of ionic crystals	List out the properties of ionic crystals	K4
2.8	Covalent bond -properties covalent	Explain the covalent bond mechanism	K2
	crystals	List the properties of covalent crystals	
2.9	Metallic bond –properties of metallic	Explain the metallic bond mechanism	K2
	crystals	List the properties of metallic crystals	
2.10	Intermolecular bonds –	Classify the intermolecular bonds	K4
2.11	Van der Waal's bond - dispersion bond	Explain van der Waal's bond -	K2
	– dipole bond – hydrogen bond	dispersion bond – dipole bond –	
		hydrogen bond	
2.12	Comparison between bonds	Compare the properties of various	K5
		bonds in solids	
III	Electron Theory of Metals	I	
3.1	Classical Free electron (CFE) theory	Explain free electron theory with	K2
		conventional flow of current	

		Discuss the limitations of free electron	K2
		model	
		Explain CFE theory	
3.2	Effect of impurity and temperature on	Inspect the effect of temperature on	K4
	electrical resistivity	electrical resistivity	
3.3	Limitations of the free electron model	Justify that the free electron theory	K5
		needs to be amended	
3.4	Fermi-Dirac distribution -	Explain Fermi – Dirac distribution	K5
3.5	Fermion	Define: Fermion	K1
3.6	Free electron gas	Explain free electron gas model	K2
3.7	Drude-Lorentz electron theory	Explain Drude-Lorentz theory	K2
3.8	density of energy states	Evaluate the density of energy states	K5
3.9	Fermi surface	Define Fermi surface	K1
3.10	Electrical conductivity	Define: Electrical conductivity	K2
		Derive the expression for electrical	K5
		conductivity of metals	
3.11	Thermal conductivity	Define: Thermal conductivity	K1
		Derive the expression for thermal	K4
		conductivity of metals	
3.12	Wiedemann - Franz law	Apply Wiedemann - Franz law to	К3
		obtain Lorentz number	
3.13	Electrical resistivity versus	Explain the variations in electrical	K5
	temperature	resistivity with respect to temperature	
3.14	Bohr's theory	Explain Bohr's atomic model	K5
3.15	Sommerfeld model	Explain Sommerfeld atomic model and	K5
		compare this model with other	
		proposed atomic models	
IV	Semiconductors		
4.1	Energy band diagram	Illustrate the energy band diagrams of	K2
		conductors, semiconductors and	
		superconductors	
4.2	Direct and indirect band gap	Compare direct and indirect band gap	K4
	semiconductors	semiconductors	
4.3	Chemical bonds in semiconductors	Explain chemical bonds in	K2
		semiconductor	

4.4	Valence band, conduction band,	Explain valence band, conduction	K2
	Forbidden energy gap	band and Forbidden energy gap	
4.5	Intrinsic and extrinsic semiconductors	Distinguish Intrinsic and Extrinsic	K4
		semiconductors	
4.6	Carrier concentration for intrinsic and	Estimate carrier concentration of	K5
	extrinsic semiconductors	intrinsic, n-type and p-type	
		semiconductors	
		Define: Fermi level	K1
4.7	Fermi level	Calculate the probability of electron	K5
		occupancy in energy levels at T<0, T=0	
		and T>0	
4.8	Mechanism of current flow	outline the mechanism of current flow	K2
		in semiconductors	
4.9	Mobility - drift velocity	Derive the expression for mobility and	K5
		drift velocity of the charge carriers in	
		semiconductors	
4.10	Conductivity in semiconductors	Explain conductivity in semiconductors	K5
4.11	Hall Effect	Outline Hall effect and estimate Hall	K5
		coefficient	
V	Superconductivity		
5.1	Introduction	Summarize the history of	K2
		superconductors	
5.2	Properties of superconductors	Explain the properties of	K5
		superconductors in detail	
5.3	Critical temperature and critical field	Define critical temperature and	K1
		Critical field for superconductor	
5.4	Meissner effect	Explain Meissner effect	K2
5.5	Type-I and Type-II superconductors	Classify Type – I and Type – II	K4
		superconductors	
5.6	Thermodynamic properties	Explain the thermodynamic properties	K5
	(Qualitative study)	of superconductors	
5.7	Isotopic effect - Energy gap	Outline the isotopic effect in	K2
		superconductors and energy gap	
5.8	London equations	Deduce London equation	К5
		Explain the drawbacks of London	K2
		equations	

5.9	BCS theory	Explain BCS theory	K5
5.10	AC and DC Josephson effects (definitions only)	Define AC and DC Josephson effects	K2
5.11	High temperature superconductors	Discuss on high temperature superconductors	K2
5.12	Applications of superconductors	Summarize the applications of superconductors	K2

4. MAPPING SCHEME (PO, PSO & CO)

U16PH60	РО								PSO				
8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	М	М	М	L	М	Н	L	L	L	L	L	L	М
CO2	L	М	Η	М	L	Μ	М	L	L	Н	М	М	L
CO3	М	L	М	М	М	L	L	L	L	L	L	Η	М
CO4	М	Н	М	Н	М	Н	М	L	L	Н	М	L	L
CO5	Н	М	М	М	Η	М	М	L	L	Н	М	М	М
CO6	М	М	Н	L	L	L	Η	L	L	М	L	М	Н

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I & II
- 2. Assignment, Group Discussion, Quiz, Slip test, Seminar and End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator :Mr.John Samuel

ELECTIVE - I: ATOMIC PHYSICS

SEMESTER: V

CREDITS: 5

COURSE CODE: U16PH5:1 NO. OF HOURS / WEEK: 5

1. COURSE OUTCOMES (CO)

After the completion of this course the student will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
C01	Explain the basic properties of positive rays, models of atoms, atomic spectra, photo-electricity, X-rays and classify elements.	K2	I - V
CO2	Make use of atom models to explain the spectral behavior of atoms when they are free and under the influence of external magnetic fields and model photovoltaic cells.	К3	II & V
CO3	Organize experiments to determine e/m of positive rays, critical potential, Planck's constant and structure of crystals and to prove Vector atom model.	К3	I, II, III & V
CO4	Analyze the interactions of electromagnetic waves with matter	K4	IV & V
CO5	Evaluate Zeeman shift, Lande's g-factor, magnetic dipole moment of electron, structure of crystals.	K5	II, III & V
CO6	Construct a basic photovoltaic cell.	K6	IV

2. A. SYLLABUS

Unit-I: Positive ray analysis

Properties – e/m of positive rays – Thomson's parabola method – Aston's Mass spectrograph, Bain bridge mass spectrograph – Excitation and Ionisation Potential – Atomic Excitation – Experimental Determination of critical potential – Frank and Hertz experiment.

(13 Hours)

Unit-II: Atom models

Bohr's atom model – Hydrogen spectra – Sommerfeld's relativistic atom model – Elliptical orbits – Relativistic variation of electronic mass – Vector atom model – Spatial quantization – Spinning electron hypothesis – Quantum numbers – electronic configuration and classification of elements – Magnetic dipole moment of electron – Stern and Gerlach experiment.

Unit-III: Fine structure and spectral lines

Spectral terms and notation – selection rules – fine structure of D lines – explanation for splitting of D_1 and D_2 lines – alkali spectra – fine structure – Zeeman effect – Larmor's theorem – Debye's quantum mechanical explanation of normal Zeeman effect – Anomalous Zeeman effect – theoretical explanation – Lande's g factor – Paschen Back effect.

Unit-IV: Photo electricity

Photo electric effect – Lenard's experiment – Richardson and Compton experiment – Einstein's photoelectric equation – Verification by Millikan's experiment – Determination of Planck's constant – Photo voltaic cells – Photo conductive cells – Photo emissive cells – Photo multiplier – Applications.

Unit-V: X–Rays

X-ray Spectra – Continuous and characteristic X-ray spectrum – Moseley's law and its importance – Bragg's law – Bragg's X–ray diffractometer – Powder crystal method – Laue Method – Rotating Crystal Method – Compton effect – Derivation of expression for change in wavelength – Experimental verification.

B. TOPICS FOR SELF STUDY

 The development of the atomic model https://www.wired.com/2009/09/the-development-of-the-atomic-model/
 Theory, experiment and fine structure https://physicsworld.com/a/theory-experiment-and-fine-structure/
 Photoelectric effect questions and answers https://study.com/learn/photoelectric-effect-questions-and-answers.html
 Basics of X-ray powder diffraction http://prism.mit.edu/xray/Basics% 20of% 20X-Ray% 20Powder% 20Diffraction.pdf
 Advances in atomic physics https://www.science.gov/topicpages/a/a-z+atomic+physics https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563599/?tool=pmcentrez

C. TEXT BOOKS

- 1. R. Murugesan, Modern Physics, S. Chand & Co. Ltd., New Delhi, 2003. (Unit-1 to Unit-5)
- Arthur Beiser and ShobitMahajan, Concepts of Modern Physics, Tata McGraw Hill, 2009.(Unit-2 & Unit-3)

(13 Hours)

(13 Hours)

(13 Hours)

(13 Hours)

D. REFERENCE BOOKS

- 1. BrijLal, N. Subrahmanyam and JivanSeshan, Atomic and Nuclear Physics, S. Chand, New Delhi, 2006.
- 2. J.B. Rajam, Atomic Physics 7e, S. Chand and Co., New Delhi, 2004.
- 3. Mark Fox, A Student's Guide to Atomic Physics, Cambridge University Press, 2018.
- 4. Paul Ewart, Atomic Physics, IOP Concise Physics, 2019.

E. WEBLINKS

- 1. https://nptel.ac.in/courses/115/105/115105100/
- 2. https://nptel.ac.in/courses/115/106/115106057/
- 3. https://nptel.ac.in/courses/115/101/115101003/

Unit/ Section	Course content	content Learning Outcomes		
Ι	Positive ray analysis			
1.1	Properties of positive rays	Explain the characteristics of positive rays	K2	
1.2	e/m of positive rays	Explain the specific charge of an electron	K2	
1.3	Thomson's parabola method	Organize an experiment to determine the e/m of ions	К3	
1.4	Aston's Mass spectrograph	Organize an experiment to determine the e/m of ions with improved traces intensity	К3	
1.5	Bain bridge mass spectrograph	Organize an experiment to determine the e/m of ions with higher accuracy	К3	
1.6	Excitation and ionization potential	Define ionisation and excitation potentials	K2	
1.7	Atomic Excitation	Explain the two methods of exciting an atom	K2	
1.8	Experimental Determination of critical potential - Franck and Hertz's experiment	Understand the experimental determination of critical potentials	К3	

II	Atom models		
2.1	Bohr's atom model	Explain the atom model proposed by Bohr	К5
2.2	Hydrogen spectra	Interpret the spectral lines of hydrogen atom	К5
2.3	Sommerfeld's relativistic atom model	Explain the improved atom model by Sommerfeld's with relativistic approach	К5
2.4	Elliptical orbits	Deduce the condition that determines the allowed elliptical orbits	K5
2.5	Relativistic variation of electronic mass	Explain the variation of mass of the electron with velocity	К3
2.6	Vector atom model	Explain the complex spectra of atoms and their relation to atomic structure	К5
2.7	Spatial quantization	Explain the fact that the projections of the quantised orbits on the field direction must themselves be quantised	К3
2.8	Spinning electron hypothesis	Explain the concept of spinning electron	К3
2.9	Quantum numbers	Summarize the various quantum numbers associated with vector atom model	К2
2.10	Electronic Configuration and Classification of Elements	Explain the distribution of electrons in various sub shells around the nucleus of the atom and the arrangement of different elements that exist in nature based on their chemical properties and atomic numbers	К3
2.11	Magnetic dipole moment of electron	Explain the magnetic dipole moment due to orbital motion and spin of the electron	К3
2.12	Stern and Gerlach experiment	Explain the direct evidence for the existence of magnetic moments of atoms and their space quantisation	К5
III	Fine structure and spectral lines		
3.1	Spectral terms and notation	Compare the atoms based on the valence electrons they have and distinguish the states of the atoms	K2
3.2	Selection rules	Apply the rules that satisfies a transition of an electron between two levels	К3

3.3	Fine structure of D lines	Identify the doublet fine structure of Sodium D lines	К3
3.4	Explanation for splitting of D ₁ and D ₂ lines	Explain the splitting of spectral lines	K2
3.5	Alkali spectra	Explain the one electron spectra of the alkali metals	K2
3.6	Fine structure	Identify the fine structure associated with the alkaline spectrum	K3
3.7	Zeeman effect	Explain the effect of magnetic field on the line spectrum of a light source	K5
3.8	Larmor's theorem	Apply Larmor's theorem to explain Larmor's precession	K3
3.9	Debye's quantum mechanical explanation of normal Zeeman effect	Explain the normal Zeeman effect without the concept of electron spin based on quantum	K3
3.10	Anomalous Zeeman effect	Explain the splitting of a spectral line into more than three components in ordinary	K2
3.11	Busck meanatic field Theoretical explanation Explain the anomalous Zeeman effect with the concept of electron spin based on quantum mechanics		К5
3.12	Lande's g factor	Explain the scale of splitting	K2
3.13	Paschen Back effect	Explain the transition phenomenon of anomalous into normal Zeeman effect	K2
IV	Photo electricity		
4.1	Photo electric effect	Outline the process of emission of photoelectrons	K2
4.2	Lenard's experiment	Analyse the e/m of photoelectrons	K4
4.3	Richardson and Compton experiment Examine the photoelectric effect		K4
4.4	Einstein's photoelectric equation	ric equation Illustrate the photoelectric equation proposed by Einstein	
4.5	Verification by Millikan's experiment	Analyse the Einstein's photoelectric equation experimentally	K4
4.6	Determination of Planck's constant	Explain the experimental determination of Planck's constant	K2

4.7	Photo voltaic cells	Construct a basic photo voltaic cell	K6
4.8	Photo conductive cells	Explain photo conductive cell	K2
4.9	Photo emissive cells	Explain photo emissive cell	K2
4.10	Photo multiplier	Explain photo multipliers	K2
4.11	Applications	Outline the applications of photo cells	K2
V	X-rays		
5.1	X-ray Spectra	Analyse the X-ray beam	K4
5.2	Continuous and characteristic X–ray spectrum	Examine the salient features of X-ray spectra	K4
5.3	Moseley's law and its importance	Illustrate the importance of Moseley's law	K2
5.4	Bragg's law	Outline the law that explains X-ray diffraction	K2
5.5	Bragg's X–ray diffractometer	Analyse the construction and working of X-ray spectrometer	K4
5.4	Powder crystal method	Estimate the structure of the crystal	K5
5.6	Laue Method	Inspect the crystal for solid state experiments	K4
5.7	Rotating Crystal Method	Identify the interplanar spacing of a single crystal	K3
5.8	Compton effect	Explain Compton scattering	K2
5.9	Derivation of expression for change in wavelength	Deduce Compton wavelength	K5
5.10	Experimental verification	Organize an experiment to verify Compton effect	K3

4. MAPPING SCHEME (PO, PSO & CO)

		РО									PSO			
U16PH5:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
CO1	М	L	М	-	-	L	L	-	L	Н	М	L	М	
CO2	М	Н	М	М	М	L	L	L	L	Н	М	L	М	
CO3	М	-	М	Н	М	М	L	-	-	М	М	L	-	
CO4	М	М	М	Н	Н	М	М	L	М	Н	-	-	М	
CO5	М	М	М	М	М	L	L	-	L	М	L	-	L	
CO6	М	L	М	L	-	L	L	L	L	М	-	L	-	

L-Low M-Moderate H-High

5. COURSE ASSESMENT METHODS

Direct

- 1. Surprise Class tests and Quizzes
- 2. Continuous Assessments (Two Internal Tests)
- 3. Group Discussions and Seminar Presentations
- 4. End Semester Examinations

Indirect

- 1. Assignments and Industry/Field visits
- 2. Course end survey/Feedbacks

Course Co-ordinator:Dr.S.Franklin

ELECTIVE - I : COMMUNICATION SYSTEM

SEMESTER : V

CODE : U16PH5:2

CREDITS:5

NO. OF HOURS/WEEK : 5

1. COURSE OUTCOMES (CO)

After the completion of this course the student will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Outline the basics of noise in communication	K2	Ι
CO2	Classify the modulations on the basis of frequency	K3	II
CO3	Apply the concept of different type of pulse modulation in communication	К3	III
CO4	Analyze the network and controls in data communication	K4	IV
CO5	Utilize the analog and digital modulation schemes in fiber optical communication	К3	V
CO6	Explain the emitter design and detector design in fiber optical communication	K4	V

2. A. SYLLABUS

Unit- I: Basics of Communication

Communication systems – modulation - need for modulation - bandwidth requirements- noise - thermal noise - noise calculations - signal to noise Ratio - noise figure - calculation of noise figure - measurement of noise figure.

Unit-II: Analog Communication

Amplitude modulation - frequency spectrum of AM wave - power relations in the AM wave - frequency modulation - mathematical representation of FM - frequency spectrum - phase modulation - comparisons: frequency and phase modulation, frequency and amplitude modulations.

(15 hours)

(10 110415)

Unit- III: Pulse Communication

Importance of pulses in Digital communication – Pulse communication – pulse modulation types: pulse amplitude modulation – pulse width modulation – pulse position modulation – pulse code modulation – telegraphy - telemetry.

Unit- IV: Data Communication

Data communication systems - data transmission circuits - error detection and correction - interconnection requirements - modern classification- network and control considerations.

Unit- V: Fiber Optical Communication

Optical fiber cables – types - losses in fibers - measurements of fiber characteristics - analog and digital modulation schemes - fiber optical communication systems - operating wavelength - emitter design - detector design - fiber choice.

B. TOPICS FOR SELF STUDY

Fibre optic communication system - Techniques - Telecommunication

https://nptel.ac.in/courses/108/104/108104113/

Digital modulation – frequency - correction

https://nptel.ac.in/courses/117/101/117101051/

C. TEXT BOOK

- 1. George Kennedy, Electronic Communication System, McGraw-Hill International Editions, 1987.
- G. Jose Robin and A. Ubald Raj, Communication Electronics, Indira Publications, Martandam, 2002.

D. REFERENCES BOOKS

- 1. John Gowar, Optical Communication Systems, Prentice Hall India, New Delhi, 1993.
- 2. Gerd Keiser, Optical Fiber Communications, McGraw Hill, Singapore, 2000.
- 3. Joseph C. Palais, Fiber Optic Communications, Prentice Hall International, USA, 2001.
- 4. B. P. Lathi, Communication systems, Wiley Eastern Ltd, New Delhi, 1968.
- 5. J.F.B. Hawkes, Optoelectronics: An Introduction, J. Wilson, Prentice Hall of India, 1992.

(15 hours)

(15 hours)

E. WEBLINKS

1.https://www.tutorialspoint.com/principles_of_communication/principles_of_optical_fiber_commun ications.htm

<u>2.</u>https://www.tutorialspoint.com/principles_of_communication/principles_of_communication_pulse _modulation.htm

3. https://byjus.com/jee/communication-systems/

4.https://www.tutorialspoint.com/data_communication_computer_network/data_communication_computer_network_tutorial.pdf

5. https://en.wikipedia.org/wiki/Fiber-optic_cable

Unit/ Secti on	Course Content	ourse Content Learning Outcomes				
Ι	Basics of Communication					
1.1	Communication systems - modulation	Define modulation	KK2			
1.2	Bandwidth requirements	Utilize the concept of modulation	К3			
1.3	Noise - Thermal noise	Describe thermal noise	К3			
1.4	Noise calculation	Explain noise calculation	K4			
1.5	Signal to noise ratio	Analyze the signal to noise ratio	K4			
1.6	Calculation of noise figure	Analyze the calculation of noise figure	K4			
1.7	Measurement of noise figure	Outline measurement of noise figure	К3			
II	Analog Communication					
2.1	Amplitude modulation - frequency spectrum of AM wave	Illustrate amplitude modulation. Outline frequency spectrum of AM wave.	K2 K2			
2.2	Power relations in the AM wave	Construct the power relations in AM wave	K3			

2.3	frequency modulation - mathematical representation of FM	Analyze the importance of frequency modulation and mathematical representation of FM	K4		
2.4	frequency spectrum	Analyze the frequency spectrum in analog communication	K4		
2.5	phase modulation	Describe phase modulation in analog communication	К3		
III	Pulse Communication				
3.1	Importance of pulses in Digital communication	Analyze the importance of pulses in digital communication.	K4		
3.2	Pulse communication Analyze pulse communication				
3.3	pulse modulation	Examine the types of pulse modulation	K4		
	types:pulseamplitude modulation	Outline pulseamplitude modulation	K2		
3.4	Pulse width modulation	Compare pulse width modulation and pulseamplitude modulation	К3		
3.5	Pulse position modulation	Utilize the pulse position modulation in pulse communication	К3		
3.6	pulse code modulation	Summarize the pulse code modulation	K2		
3.7	telegraphy	Describe telegraphy in pulse communication	K2		
3.8	telemetry	Illustrate telemetry	K2		
IV	Data Communication				
4.1	Data communication system	Explain the data communication system	K2		
4.2	Data transmission circuits	Outline the data transmission circuits	K2		
4.3	error detection and correction	Categorize the error detection and coreection in data communication	K4		
4.4	Interconnection	Describe interconnection in data communication	К3		
4.5	modern classification network	Categorize the modern classification network	K4		

4.6	control considerations	Outline the control system in data communication	K4
V	Fiber Optical Communicat	tion	
5.1	Optical fiber cables – types	Classify the types of optical fiber cables	K2
5.2	losses in fibers	Outline the loses in fibers	K2
5.3	measurements of fiber characteristics	Describe the measurements of fiber characteristics	К3
5.4	analog and digital modulation schemes	Analyze the analog and digital modulation schemes	K4
5.5	fiber optical communication systems	Explain the fiber optical communication systems	К2
5.6	operating wavelength	Discuss the operating wavelength in fiber optical communication	К3
5.7	emitter design - detector design	Analyze the emitter design and detector design	K4
5.8	fiber choice	Summarize fiber choice in fiber optical communication	K2

4. MAPPING SCHEME (PO, PSO & CO)

U16PH5:2	РО									PSO				
	PO	PSO	PSO	PSO	PSO4									
	1	2	3	4	5	6	7	8	9	1	2	3		
CO1	М	Н	Н	Н	Н	Μ	Μ	L	L	Μ	Н	Н	Н	
CO2	М	Н	Н	Н	М	Μ	Μ	L	L	Μ	М	Μ	Μ	
CO3	М	Μ	Μ	М	М	Μ	L	L	L	L	М	Μ	L	
CO4	М	L	Μ	М	М	L	L	L	L	Μ	М	Μ	L	
CO5	М	Μ	L	М	М	Μ	L	М	L	Μ	М	Н	L	
CO6	L	Μ	L	L	L	Μ	L	L	L	L	L	L	М	

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

1. ContinuousAssessmentTest(ModelExams) I,II

- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,GroupPresentation, etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

ELECTIVE - II: DIGITAL ELECTRONICS

SEMESTER: VI

COURSE CODE: U16PH6:1

CREDITS: 5

NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

Afterthesuccessful completion of this course the students will be able to:

CO.NO.	Course outcome	Level	Unit Covered
CO1	Classify and convert the different types of number systems used in digital communication	K2	I
CO2	Apply Boolean laws and Karnaugh map to construct most simplified digital circuits	К3	Ι, Π
CO3	Analyze different types of digital circuits using logical tools	K4	III
CO4	Asses the various sequential logical circuits for particular operation	K5	IV
CO5	Explain the architecture, organization and operation of the 8085 microprocessor.	K5	V
CO6	Develop assembly language programme to perform mathematical operations in 8085 microprocessor	K6	V

2. A. SYLLABUS

Unit- I: Number System and Logic Gates

(14 hours)

Binary, octal, decimal and hexadecimal number system – conversion from one number system to another–BCD code – Excess 3 code – Gray code – subtraction by 1's and 2's complement. Boolean algebra – Basic laws of Boolean algebra – Duality theorem - De Morgan's theorem – Basic logic gates – NAND & NOR as universal gates.

Unit- II: Simplification of Boolean Expressions

Introduction to combinational logic circuits – SOP and POS forms of expressions – Minterms and Maxterms - Reducing Boolean expressions using Boolean laws – Karnaugh map – pairs, quads, octets – 2,3 and 4 variables – sum of products method – product of sum methods.

Unit- III : Combinational Logic System

Half adder – Full adder – Half subtractor – Full subtractor – BCD adder – BCD subtractor - Encoder – 8 line to 3 line encoder – 16 line to 4 line encoder Decoder – 3 line to 8 line decoder – 4 line to 16 line decoder - Multiplexer – 4 input data multiplexer – 8 input data multiplexer – Demultiplexer – 1 line to 2 line demultiplexer – 1 line to 4 line demultiplexer.

Unit- IV: Sequential Logic System

R-S flip-flop using universal gates – Clocked R-S flip-flop - D flip-flop – T flip-flop – J-K flip flop -Master-Slave J-K flip-flop - 3 bit register using flip-flop – Controlled Shift Register – Counters – Up Counters – Down Counters – Ring Counters – Mod-10 Counters.

Unit- V: Microprocessors

8085 Microprocessor – architecture – Register – ALU – Instruction set – Addressing modes – Type of instruction – Assembly language programming – Programs for 8-bit addition, subtraction, multiplication, division, biggest and smallest from a given list – sum of N numbers – ascending and descending order.

B. TOPICS FOR SELF STUDY

1. 555 timer

https://www.iitr.ac.in/departments/PH/uploads/Teaching%20Laboratory/Electronics/8.%20Timer%205 55_manual.pdf

2. Microcontroller, Arduino.

https://electronics.howstuffworks.com/microcontroller1.htm https://www.arduino.cc/en/guide/introduction

C. TEXT BOOKS:

- 1. Digital principle and Application, Malvino and Leach, Tata McGraw Hill, New Delhi, 1991
- 2. Digital Electronics, William H. Gothmann, Prentice Hall of India, New Delhi, 2006.
- 3. Microprocessor, B.Ram, DhanpatRai, New Delhi, 2007, Edn 2007.
- Introduction to Integrated Electronics, Digital &Analog, V.Vijayendran, S.Viswnathan (Printers & Publishers) PVT., LTD. 2008.

D. REFERENCE BOOKS:

 Microprocessor Architecture Programming and Application with 8085/8085 A, Gaonkar, Wiley Eastern Ltd, London. 2000.

(14 hours)

(15 hours)

(15 hours)

- 2. Digital Logic and Computer Design, Morris and Mano, Prentice-Hall, New Delhi, 1999.
- 3. Digital Computer Electronics, Albert Paul Malvino, McGraw Hill, New Delhi, 2000.

E. WEBLINKS:

- 1. https://youtu.be/EGmreVQ-yNM
- 2. https://youtu.be/iXSXIJn_Xwc?list=PLm_MSClsnwm9hEIDpFfDnOEu-6kVnF4ug
- 3. https://youtu.be/zJ-LqeX_fLU
- 4. https://freevideolectures.com/course/4238/nptel-digital-electronic-circuits
- 5. https://nptel.ac.in/courses/108/105/108105132/
- 6. https://nptel.ac.in/courses/108/105/108105102/

Unit/Section	CourseContent	LearningOutcomes	Highest BloomsTaxonomiclevelsof transaction
I	Number System and Log	gic Gates	
1.1	Binary, octal, decimal and hexadecimal number system – conversion from one number system to	What are number systems? List the different types of number systems Convert one number system to another	K2
1.2	BCD code – Excess 3 code – Gray code	Explain the BCD / Excess 3 / Gray Code with examples	K2
1.3	Subtraction by 1's and 2's complement.	Subtract two numbers using 1's / 2's complement method	K2
1.4	Boolean algebra – Basic laws of Boolean algebra	What is Boolean algebra Explain the basic laws of Boolean algebra with truth tables	K2
1.5	Duality theorem - De Morgan's theorem	State and Prove Duality / De – Morgan's theorem	K2
1.6	Basic logic gates – NAND & NOR as universal gates.	Explain the various basic logic gates with their truth tables What is the speciality of	K3

		universal gate	
		Show that NAND / NOR is a universal gate	
		Construct basic logic gates using NAND / NOR gate	
II	Simplification of Boolea	n Expressions	
2.1	Introductiontocombinationallogiccircuits – SOP and POSforms of expressions –Minterms and Maxterms	What is a combinational circuit? Explain SOP / POS Compare SOP and POS	K2
2.2	Reducing Boolean expressions using Boolean laws	What is Boolean algebra? Simplification of expressions using Boolean Laws	К3
2.3	Karnaugh map – pairs, quads, octets – 2,3 and 4 variables	What do you understand by don't care condition Explain Karnaugh map method of solving expressions Simplification of Boolean expressions using K – map	К3
2.4	sum of products method – product of sum methods.	Describe sum of products / product of sum methods	K2
ш	Combinational Logic Sy	stem	
3.1	Half adder – Full adder	Design a half adder using basic logic gates / universal gates What is a full adder? Explain how a full adder is built using two half adder with a neat circuit diagram	К3

		Design of 100 14	
		Design a half Subtractor using basic logic gates / universal gates	
3.2	Half subtractor – Full subtractor	What is a full subtractor?	К3
		Explain how a full subtracter is built using two half subtractorwith a neat circuit diagram	
3.3	BCD adder - BCD subtractor	Describe the condtruction and working of BCD adder / subtractor	K4
		What is an encoder?	
	Encoder - 8 line to 3	Construct 8 line to 3	
3.4	line encoder – 16 line to	line encoder /16 line to	К3
	4 line encoder	4 line encoder with a	
		neat circuit diagram	
		What is an decoder?	
		Construct 3 line to 8	
	Decoder – 3 line to 8	line / 4 line to 16 line	
3.5	line decoder – 4 line to	decoder with a neat	К4
	16 line decoder	circuit diagram	
		Distinguish between	
		encoder and decoder	
	Multiplexer – 4 input	What is the role of multiplexer in a computer?	
3.6	data multiplexer – 8 input data multiplexer	Explain the working of a 4 input data / 8 input data multiplexer	K2
		What is the role of demultiplexer in a computer?	
3.7	Demultiplexer – 1 line to 2 line demultiplexer – 1 line to 4 line demultiplexer	Explain the working of a 4 input data / 8 input data demultiplexer	К4
		Explain the difference between a demultiplexer and a decoder	

IV	Sequential Logic System	l	
4.1	R-Sflip-flopusinguniversalgates-Clocked R-Sflip-flop	Define flip flops Explain the working of RS flip flop / clocked RS flip flop	К2
4.2	D flip-flop	Construct a D flip-flop and discuss its working Differentiate between D latch and D flip flop	K4
4.3	T flip-flop	Explain the working of T flip-flop and give the truth table	K2
4.4	J-K flip flop - Master- Slave J-K flip-flop	Explain the working of RS flip flop / clocked RS flip flop What is racing in JK flip flop ? Explain how it is solved in master slave flip flop	К5
4.5	3 bit register using flip- flop	Construct a 3 bit register using flip flop	К3
4.6	Controlled Shift Register	What are shift registers? List down the uses of a shift register Explain the working of a shift register using JK flip flop	K2
4.7	Counters – Up Counters – Down Counters – Ring Counters – Mod-10 Counters	Differentiate between asynchronous and synchronous counter Draw the circuit of a Up / Down / Ring counter and explain its working	K5
V	Microprocessor		
5.1	8085 Microprocessor – architecture – Register – ALU	Explain the architecture of 8085 microprocessor Describe the different types of registersbuit in 8085 microprocessor Write short notes on Arithemetic and Logic Unit (ALU)	K2

5.2	Instruction set – Addressing modes – Type of instruction	What is instruction set? Classify the different types of addressing modes of 8085 microprocessor Explain the types of instructions used in 8085 microprocessor	К2
5.3	Assembly language programming – Programs for 8-bit addition, subtraction, multiplication, division, biggest and smallest from a given list – sum of N numbers – ascending and descending order	Develop an assembly language program for 8- bit addition / subtraction, multiplication / division Develop an assembly language program to find the biggest and smallest number from a given list Develop an assembly language program to find the sum of N numbers Develop an assembly language program to arrange the numbers in ascending and descending order	K6

4. MAPPING SCHEME (PO, PSO& CO)

U16PH6:1					PO						PS	50	
0101110.1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	М	Н	М	-	L	L	L	Н	Н	М	М
CO2	Н	Н	М	Н	М	L	-	L	L	Н	Н	М	L
CO3	Н	Н	Н	М	-	L	-	L	L	Н	М	-	L
CO4	Н	Н	М	Н	Н	L	М	L	L	Н	Н	Н	-
CO5	Н	М	Н	-	L	-	М	L	L	Н	L	М	-
CO6	Н	М	М	М	Н	-	L	L	L	Н	Н	М	М
L-Low N					Ν	I-Modeı	rate	H- 1	High				

5. COURSEASSESSMENTMETHODS

Direct

1. ContinuousAssessmentTest(ModelExams I,II)

- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,GroupPresentation, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1. Course-endsurvey

Course Co-ordinator : Dr. D.Arivukarasan

ELECTIVE - II: CRYSTAL GROWTH AND THIN FILM PHYSICS

SEMESTER : IV

CREDITS : 5

NO. OF HOURS/WEEK : 6

CODE : U16PH6:2

1. COURSE OUTCOMES (CO)

Afterthesuccessful completion of this course the students will be able to:

CO. NO.	Course Outcome	Level	Unit Covered
CO1	Summarize the theory of nucleation and crystal growth.	K2	Ι
CO2	Discuss the significance of single crystals and list their applications	K4	Ι
CO3	Classify the different crystal growth techniques outline their principles and infer the advantages and disadvantages.	K4	11,111
CO4	Contrast different thin film coating techniques.	K4	IV
CO5	Explain thermodynamics and kinetics of thin film deposition process	K2	V
CO6	List the various applications of Thin films in different areas of physics.	K4	V

2. A. SYLLABUS

Unit- I: Basics of Crystal Growth

Types of crystals - Nucleation – Different types of nucleation - Concept of formation of critical nuclei – Significance of single crystals – Oxide materials and its applications – Semiconducting materials and its applications – nonlinear materials and their applications

Unit- II: Crystal Growth Techniques

Low Temperature solution growth technique

Solution - Solubility and super solubility - Expression of super saturation - Miers T-C diagram -Constant temperature bath and crystallizer - Seed preparation and mounting - Slow cooling and solvent evaporation methods (Basic concept only).

Gel Growth Technique:

Principle - Various types - Structure of gel (SMS: sodium metasilicate) - Importance of Gel -Experimental procedure – Advantages of gel method.

Unit -III: Other Crystal Growth Techniques

Melt technique:

Bridgman technique - Basic process - Various crucibles design - Czochralski technique - Experimental arrangement – Growth process.

Vapourtechnique:

PhysicalVapourDeposition – ChemicalVapourDeposition (CVD) –ChemicalVapour Transport (Basic concept only).

Unit- IV: Thin Film Deposition Techniques

Introduction to Thin Film Deposition Techniques - Classification - Physical Methods - Electron Beam Evaporation - Reactive Sputtering – pulsed laser deposition - Chemical Methods – Chemical bath deposition - Spray Pyrolysis - Electro Deposition.

Unit- V: Applications

Thin film - Thermodynamics and nucleation - Growth Kinetics of Thin Films - Crystal Growth process in thin films – Epitaxial growth of thin films (Basic concepts only) – Applications – Discrete resistive components - Resistors - Carbon thin films - Oxide and Nitride films - metal films -

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

thermistor – strain gauge element – capacitor – Hall probe element – Active devices – micro electronics – Integrated circuits and other applications.

B. TOPICS FOR SELF STUDY

- 1. Types of nucleation in thin films https://nptel.ac.in/courses/113/104/113104075/
- 2. Molecular beam epitaxyhttps://nptel.ac.in/content/storage2/courses/115103039/module16/lec38/5.html
- 3. Applications of crystals and thin films <u>https://nptel.ac.in/courses/104/106/104106093/</u> <u>https://nptel.ac.in/courses/118/102/118102003/</u>

C. TEXT BOOKS

- 1. P. SanthanaRaghavan and P. Ramasamy, Crystal Growth Processes and Methods, KRV Publication, Kumbakonam, 2001.
- 2. A. Goswami, Thin Film Fundamentals, New Age international (P) Ltd., New Delhi, 2013

D. REFERENCE BOOKS

- 1. G. Dhanraj, K. Byrappa, V. Prasad, Michael Dudley (Eds.), Handbook of Crystal Growth, Springer Heidelberg Dordrecht London New York, 2010.
- 2. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986)
- 3. M. Ohring, Materials Science of Thin Films: Deposition and Structure, 2e, Academic Press (An Imprint of Elsevier), 2002.
- 4. K. L. Chopra, Thin Film Phenomena, McGraw Hill, New York, 1990.

E. WEBLINKS

- 1. https://nptel.ac.in/content/storage2/courses/112108092/module2/lec08.pdf
- 2. https://nptel.ac.in/content/storage2/courses/103104045/pdf_version/lecture19.pdf
- 3. https://nptel.ac.in/courses/118/102/118102003/
- 4. <u>https://nptel.ac.in/content/storage2/courses/118102003/downloads/module1.pdf</u>

Unit/Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of Transaction
--------------	----------------	----------------------	---

Ι	Basics of Crystal Growth		
1.1	Nucleation	Recall the process of nucleation	K1
1.2	Different kinds of nucleation	Classify nucleation	K2
1.3	Formation of crystal nucleus	Examine the formation of nucleus	K4
1.4	Significance of single crystals	Infer the properties of single crystals	K2
1.5	Oxide materials and its applications	Discuss the properties of oxide materials and its applications	K2
1.6	Semiconducting materials and its applications	List the applications of semiconducting materials	K3
1.7	Nonlinear materials and their applications	Distinguish between linear and non linear materials and discuss their applications	K4
II	Crystal Growth Techniques		
Low Temp	perature solution growth technique		
2.1	Classification of crystal growth methods -	classify crystal growth methods	K2
2.2	Growth from low temperature solutions	List low temperature solution growth methods	K4
2.3	Solution - Solubility and super solubility –	Define solution, solubility and super solubility and differentiate between them	K2
2.4	Expression of super saturation	Derive the expression for super saturation	K3

2.5	Meir's T-C diagram	Analyze Meir's solubility diagram	K4
2.6	Constant temperature bath and crystallizer - Seed preparation and mounting -	Explain the constructional details and the working of Constant temperature bath	K4
2.7	Slow cooling and solvent evaporation methods.	Discuss slow cooling and solvent evaporation methods of crystal growth	K2
Gel Growt	h Technique:	i i	
2.8	Principle, Various types	Explain the principle and various types of gel growth technique	K1
2.9	Structure of gel (SMS: sodium metasilicate) –	Discuss the structure of gel	K2
2.10	Importance of Gel – Experimental procedure – Advantages of gel method.	Explain the experimental procedure to grow crystals by gel growth technique List the importance and advantages of gel method	K4
III	Other Crystal Growth Techniques		
	Melt technique:		
3.1	Bridgman technique - Basic process, Various crucibles design.	Explain the constructional details of Bridgman technique along with the various crucible design	K4

3.2	Czochralski technique - Experimental arrangement, Growth process.	Explain the experimental arrangement and growth process of Czochralski method	К5
	Vapourtechnique:		
3.3	PhysicalVapourDepositionChemicalVapourDeposition (CVD)	Compare the experimental design, growth process, advantages and limitations of physical and chemical vapour deposition methods	K5
3.4	ChemicalVapour Transport	Outline the process of chemical vapour transport	K2
IV	Thin Film Deposition Techniques		
4.1	Thin films	Define and classify thin films	K1
4.2	Introduction to vacuum technology method.	Illustrate the method of vacuum technology	K2
4.3	Deposition techniques	Categorize various deposition techniques under physical and chemical methods	K4
4.4	Physical methods: Electron Beam Evaporation, Reactive Sputtering and pulsed laser deposition.	Interpret the experimental design, coating process, advantages and limitations of various physical deposition methods	К5

4.5	Chemical Methods: Chemical bath deposition, Spray Pyrolysis and Electro Deposition.	Compare the experimental design, coating process, advantages and limitations of various physical deposition methods	К5
V	Applications		
5.1	Thin films	Define Thin Films	K1
5.2	Thermodynamics of nucleation	Identify the steps involved in nucleation	K3
5.3	Growth kinetics of Thin film	Interpret the film growth process in thin films	K5
5.4	Crystal growth process in thin films	Explain the crystal growth of thin films	K5
5.5	Applications : Discrete resistive components, Resistors, Carbon thin films, Oxide and Nitride films, metal films, thermistor, strain gauge element, capacitor, Hall probe element, Active devices, micro electronics, Integrated circuits and other applications.	List the various applications of Thin films in different areas of physics.	K4

4. MAPPING SCHEME (PO, PSO & CO)

U16PH6:		РО									PSO			
2	PO	PSO	PSO	PSO	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	1	2	3	4	
C01	М	-	-	L	-	L	-	М	-	Н	М	L	-	
CO2	М	L	М	М	М	М	-	L	М	М	Н	L	М	
CO3	Η	Η	М	Η	М	Η	М	М	L	Η	М	М	М	
CO4	Н	Η	М	Η	М	Η	М	L	-	Η	М	М	М	
CO5	М	-	-	L	-	L	-	М	L	М	М	L	-	
CO6	Н	Η	Η	Н	М	Η	L	М	Н	Н	Н	М	М	

L-Low M-Moderate H- High

5. COURSEASSESSMENTMETHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperativelearningreport,Assignment,Seminar,GroupPresentation, Project report, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co-ordinator : Mrs. H. Sirajnisha

ELECTIVE - III: PROGRAMMING IN C

CODE: U16PH6:3

SEMESTER: VI CREDITS: 5

NO OF HOURS/WEEK :6

1. COURSE OUTCOMES (CO)

After the completion of this course the student will be able to:

CO.NO.	Course outcomes	Level	Unit Covered
CO1	Recall the basic structure of C program using constants, variables, datatypes and operators	K1	Ι
CO2	Demonstrate the conditional and looping statements to understand the concept of programming language	K2	II
CO3	Apply the concept of arrays, structures and union in solving problems	K3	III
CO4	Analyze and classify the different categories of user defined function in C	K4	IV
CO5	Explain the importance of pointer variables and variousfile operations	K5	V
CO6	Design and develop programs by applying all learned concepts to solve real time problems	K6	V

2. A. SYLLABUS

Unit- I: Introduction to C

(15 hours)

Importance of C – Basic structure of C Program – Character set, Keywords and Identifiers – Constants

- Variables - Data Types - Declarations of Variables - Assigning values to variables.

Operators and Expressions: Arithmetic, Relational, Logical, Assignment, Increment and Decrement, Conditional, Bitwise, Comma Operators – Arithmetic expressions – Precedence and Associativity.

Unit- II: Control Structures

Input Output Operator: getchar, putchar, formatted output (printf) and formatted input (scanf). **Control Structure**: Simple if statement – if else – Nesting of if else – if else ladder– switch - the break and continue statements – goto – while statement – do-while statement – for statement – Nesting of for statement – Jump in loops.

Unit- III: Arrays and Structures

Introduction – one dimensional array – two dimensional arrays – declaring arrays, storing arrays in memory – initializing arrays.

Structure definition – structure initialization – arrays within structure – structure within structure – structures and functions – unions.

Unit- IV: Functions

Introduction– need for function–form of function– return values and their types – calling a function– category of functions– No argument no return values – arguments but no return values – arguments with return values - Nesting of functions– recursion – function with arrays.

Unit- V: Files and Programs

Introduction to pointers – declaring pointer variables – initialization of pointer variables. Files – definition, opening and closing of files -input/ output operations on files.

To write C programs for the following:

- 1. Arranging words in Alphabetical order
- 2. Percentage of marks for five subjects.
- 3. Conversion of Fahrenheit to Celsius.
- 4. Solving quadratic equation.
- 5. Finding factorial using recursion.
- 6. Addition / Multiplication / Subtraction of two matrices.
- 7. Smallest and largest element in an array.
- 8. Sorting a set of numbers in ascending/descending order.

B. TOPICS FOR SELF STUDY

Symbolic constants – Multidimensional arrays – String handling functions – Pointer to functions and array of pointers

(15 hours)

(15 hours)

(15 hours)

(15 hours)

C. TEXT BOOK

1. E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill, New Delhi, 2016.

D. REFERENCES BOOKS

- 1. Byron S. Gottifried, Schaum's Outline of Theory and Problems of Programming with C, McGraw Hill, New Delhi, 2010.
- 2. Kr. VenugopalndSudeep R. Prasath, Programming with C, Tata McGraw Hill Publishing, New Delhi, 2016.

E. WEBLINKS

- 1. https://www.tutorialspoint.com/cprogramming/c_operators.htm
- 2. https://www.tutorialspoint.com/cprogramming/index.htm
- 3. https://www3.ntu.edu.sg/home/ehchua/programming/cpp/c1_Basics.html
- 4. https://beginnersbook.com/2014/01/c-tutorial-for-beginners-with-examples/
- 5. https://www.unf.edu/~wkloster/2220/ppts/cprogramming_tutorial.pdf

Unit/ Secti on	Course Content	Course Content Learning Outcomes				
Ι	Introduction to C					
1.1	Importance of C – Basic structure of C Program	Construct the structure of C program	К3			
1.2	Character set, Keywords and Identifiers	Recall Character set, Keywords and Identifier	К2			
1.3	Constants	Analyze the different types of Constants	K4			
1.4	Declarations of Variables -	Define variable	K1			
	Assigning values to variables	Explain the declaration / assigning values to variables	K2			
1.5	Data Types	Categorize the types of datatypes.	K4			

1.6	Arithmetic, Relational, Logical, Assignment, Increment and Decrement, Conditional, Bitwise, Comma Operators.	Discuss the types of C Operators with illustration.	K6		
1.7	Arithmetic expressions – Precedence and Associativity.	Apply the rules of precedence and associativity in arithmetic expression.	К3		
II	Control Structures				
2.1	Input Output Operator: getchar, putchar,	Illustrate getchar and putchar function	K2		
2.2	Formatted output (printf)	Construct the printf statement in C program.	K3		
2.3	Formatted input (scanf)	Analyze the importance of scanf statement with illustration	K4		
2.4	Control Structure: Simple if statement – if else – Nesting of if else – if else ladder	Discuss the syntax and flowchart for all conditional if-statements with example.	K6		
2.5	Switch statement	Defend the importance of break statement in switch statement with program	K5		
2.6	break and continue statements - goto statement	Outline break and continue statement Explain goto statement	K2 K2		
2.7	while statement – do-while statement	Distinguish the while and do-while loop in its syntax, flowchart and program	K4		
2.8	for statement	Analyze the importance of for-loop statement with a program	K4		
2.9	nesting of for statement	Explain the nesting-of-for statement	K2		
III	Arrays and Structures				
3.1	Arrays:Introduction - one dimensional array	Define array	K1		
	children and g	Construct one dimensional array with declaration, storing arrays in memory and initialization.	K6		

3.2	Two dimensional array	Explain the storing of arrays and initialization in two dimensional array with example.	K5
3.3	Structure - Introduction	Define structure	K1
		Compare array and structure	K2
3.4	Structure definition - Structure initialization	Outline the structure definition and structure initialization	K2
3.5	arrays within structure	Apply arrays within structure	К3
3.6	Structure within structure	Examine the different forms of structure within structure	K4
3.7	Structures and functions	Describe structure and functions	K2
3.8	Union	Define union	K1
		Analyze the need of union in C programming	K4
IV	Functions		
4.1	Introduction – need for	Recall function	K1
	function	Discuss the need for function	K2
4.2	form of function	Outline the form of function	K2
4.3	Return values and their types	Categorize the types of return values	K4
4.4	Calling a function	Summarize function call	K2
4.5	Category of functions– No argument no return values – arguments but no return values – arguments with return values	Explain the categories of function depending on arguments	K5
4.6	Nesting of functions	Describe the nesting of function	К3
4.7	Recursion	Analyze the recursion function	K4
4.8	Function with arrays	Explain passing of arrays to function	K2

V	Files and Programs		
5.1	Introduction to pointers	Define pointer	K1
	 declaring pointer variables initialization of pointer variables. 	Explain the declaration and initialization of pointer variables.	K2
5.2	Files – definition, opening and closing of	Define file	K1
	files - input/output operations on files	Explain the input and output operations along with opening and closing of files	K5
5.3	Programs 1. Arranging words in Alphabetical order	Create a program to arrange words in Alphabetical order	K6
5.4	2. Percentage of marks for five subjects.	Develop a C program to find the percentage of marks for five subjects	К3
	3. Conversion of Fahrenheit to Celsius.	Construct a program to convert Fahrenheit to Celsius	К3
	4. Solving quadratic equation.	Develop a C program to solve quadratic equation	К3
	5. Finding factorial using recursion	Construct a program to find factorial using recursion	К3
5.5	_	Create a program to find Addition / Multiplication / Subtraction of two matrices	K6
5.6	7. Smallest and largest element in an array.	Develop a C program to find the smallest and largest element in an array	К6
5.7	8. Sorting a set of numbers in ascending/descending order.	Design a C program to sort a set of numbers in ascending/descending order	K6

4. MAPPING (PO, PSO& CO)

U16PH6					PO					PSO			
:3	PO	PSO	PSO	PSO	PSO4								
	1	2	3	4	5	6	7	8	9	1	2	3	
CO1	Μ	Н	Μ	Н	Н	Н	М	М	L	М	Н	Н	Н
CO2	Μ	Н	М	Н	Η	Н	М	М	L	Μ	Н	Н	Н
CO3	Μ	Н	Н	Н	Η	Н	М	М	М	L	Н	Н	Н
CO4	Μ	Н	М	Н	Η	Н	М	М	L	L	Н	Н	Н
CO5	М	М	Н	Н	Н	Н	М	М	L	L	Н	Н	Н
CO6	Μ	Н	Μ	Н	Н	Н	Н	Н	Н	М	Н	Н	Н

5. COURSEASSESSMENTMETHODS

Direct

- 1. Continuous Assessment Test (Model Exams I, II)
- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,GroupPresentation, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1. Course-endsurvey

Course Co-ordinator: Dr. C. Indumathi

ELECTIVE- III:SPECTROSCOPY AND LASERS

SEMESTER: VI CREDITS: 5

CODE: U16PH6:4 NO. OF HOURS / WEEK: 6

1. COURSE OUTCOMES (CO)

After the completion of this course the student will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the basic concept of spectroscopy and its types which includes Microwave, IR and Raman.	K2	I - III
CO2	Explain the fundamentals of lasers and its types.	К2	IV & V
CO3	Identify the characteristics of EM radiation and its application in the spectroscopic studies	К3	I, II & III
CO4	Identify the applications and levels of laser	K3	IV & V
CO5	Analyze the models of SHM and Rigid Rotor to study the rotation and vibration of molecules using IR and Raman spectroscopy and the energy levels for laser action in some selected types	K4	II, III, IV & V
CO6	Evaluate the energy of the vibrating and rotating molecules using IR and Raman spectroscopy and Einstein Coefficients for laser action and wavelength of the laser emitted in some selected types	K5	I to V

2. A. SYLLABUS

Unit-I: Introduction to Spectroscopy & MW Spectroscopy

Electromagnetic spectrum - Characteristics of electromagnetic radiation - Basic elements of practical spectroscopy – Width of spectral lines – Intensity of spectral lines – Rotation of molecules – Rotational Spectra - The rigid diatomic molecule - The intensities of spectral lines - Techniques and Instrumentation (outline) – Chemical analysis by microwave spectroscopy.

Unit-II: Infrared spectroscopy

The energy of a diatomic molecule – The simple harmonic oscillator – The diatomic vibrating rotator – The vibration – rotation spectrum of CO and CO2 – The interaction of rotations and vibrations – Techniques and instrumentation (outline) – Double and single beam operation.

Unit-III: Raman Spectroscopy

(13 Hours)

(13 Hours)

(13 Hours)

Raman effect – molecular polarizability – Pure rotational Raman spectra of linear molecules – Vibrational Raman spectra – Structure determination from Raman and IR spectroscopy – Techniques and instrumentation (outline).

Unit-IV: Fundamentals of Laser

Basics of laser – Importance of Energy levels – Absorption and emission of light – Einstein's coefficients – Population inversion – Pumping methods – Active medium – Metastable states – Two and three level lasers – optical amplifier and resonator.

Unit-V: Types of lasers and applications

He-Ne Laser – Carbon-di-oxide Laser – Excimer lasers – ND: YAG laser – Semiconductor lasers – Holography (construction and deconstruction) – Fibre optics.

B. TOPICS FOR SELF STUDY

 Spectroscopy in everyday life https://www.chemedx.org/activity/spectroscopy-everyday-life
 IR Spectroscopy – A level home learning https://www.tes.com/teaching-resource/infrared-ir-spectroscopy-a-level-home-learning-self-study-12315096
 IR Spectroscopy of Biological Applications: An Overview https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470027318.a0208.pub2
 Spectroscopy applications https://www.news-medical.net/life-sciences/Spectroscopy-Applications.aspx
 Practical applications of spectroscopy

https://reality-movement.org/some-practical-applications-of-spectroscopy-you-might-want-to-know/

C. TEXT BOOKS

- 1. C.N. Banwell, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill, New Delhi, 1993. (Unit-1 to Unit-3)
- 2. A. K. Ghatak and K. Thyagarajan, Lasers Theory and Applications, Macmillan, Chennai, 1981. (Unit-4 & Unit-5)

D. REFERENCE BOOKS

- 1. William T. Silfvast, Laser Fundamentals 2e, Cambridge University Press, London, 2004.
- Donald LP, Gary ML, George SK, & James AV, Introduction to Spectroscopy, 5th Edition, Cengage Learning India Private Limited, 2015.
- 3. Banwell CN, &Mc Cash EM, Fundamentals of Molecular Spectroscopy, 4th Edition, McGraw Hill Education, 2017.
- Thiyagarajan K, &AjoyGhatak, Lasers: Fundamentals and Applications (Graduate Text in Physics), 2nd Edition, Springer, 2011.
- 5. Sawhney GS, Laser systems and applications, 1st Edition, JBC Press, 2015.

E. WEBLINKS

(13 Hours)

(13 Hours)

- https://onlinecourses.nptel.ac.in/noc20_cy08/preview
 https://nptel.ac.in/courses/104/106/104106075/
 https://nptel.ac.in/courses/104/104/104104085/

- 4. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cy13/

Unit/ Section	Course Contents	Learning Outcomes	Highest Bloom's Taxonomy Level Of Transactio n
Ι	Introduction to Spectroscopy and Mi	crowave Spectroscopy	
1.1	Electromagnetic spectrum	Explain the various components of EM spectrum	К2
1.2	Characteristics of electromagnetic radiation	Identify the characteristics of EM radiation	К3
1.3	Basic elements of practical spectroscopy	Outline the elements of practical spectroscopy	K2
1.4	Width of spectral lines	Explain the width of spectral lines	K2
1.5	Intensity of spectral lines	Explain the intensity of spectral lines	K2
1.6	Rotation of molecules	Explain the rotation of molecules	K2
1.7	Rotational Spectra	Explain the rotational spectra	К5
1.8	The rigid diatomic molecule	Explain the rotation in a diatomic molecule bound together	К5
1.9	The intensities of spectral lines	Identify the intensities of spectral lines	К3
2.0	Techniques and Instrumentation (outline)	Outline the instrumentation techniques related to spectroscopy	K2
2.1	Chemical analysis by microwave spectroscopy	Explain the chemical analysis	K2
II	Infrared spectroscopy		
2.1	The energy of a diatomic molecule	Deduce the energy of diatomic molecule	К5
2.2	The simple harmonic oscillator	Analyze the SHM as the model for molecular vibration	K4

2.3	The diatomic vibrating rotator	Explain the rigid rotor model	К5
2.4	The vibration-rotation spectrum of CO and CO ₂	Analyze the diatomic and simple polyatomic molecule	K4
2.5	The interaction of rotations and vibrations	Explain the rotation and vibration	K2
2.6	Techniques and instrumentation (outline)	Outline the instrumentation techniques related to IR spectroscopy	K2
2.7	Double and single beam operation	Identify the double and single beam operation	K3
ш	Raman Spectroscopy		
3.1	Raman effect	Explain Raman effect	K2
3.2	Molecular polarizability	Explain the response of electron distribution to an externally applied field	К5
3.3	Pure rotational Raman spectra of linear molecules	Identify the scattering involving a change in the rotational quantum state	K3
3.4	Vibrational Raman spectra	Analyze the vibrational Raman spectra	K4
3.5	Structure determination from Raman and IR spectroscopy	Deduce the structure using Raman and IR Spectra	К5
3.6	Techniques and instrumentation (outline)	Outline the instrumentation techniques related to Raman spectroscopy	K2
IV	Fundamentals of Laser		
4.1	Basics of laser	Explain laser	K2
4.2	Importance of Energy levels	Analyse the energy levels	K4
4.3	Absorption and emission of light	Examine the absorption and emission of light	K4
4.4	Einstein's coefficients	Deduce the Einstein's coefficients	К5

4.5	Population inversion	Explain population inversion	K2
4.6	Pumping methods	Identify the methods to achieve population inversion	K2
4.7	Active medium	Explain the various mediums used in which population inversion is achieved	K2
4.8	Metastable states	Explain metastable state	K2
4.9	Two and three level lasers	Identify two and three level lasers	К3
4.10	Optical amplifier	Explain optical amplifier	K2
4.11	Optical resonator	Explain optical resonator	K2
v	Types of lasers and applications		
5.1	He-Ne Laser	Explain Helium-Neon laser	К5
5.2	Carbon-di-oxide Laser	Explain carbon di oxide laser	K5
5.3	Excimer lasers	Analyze excimer laser	K4
5.4	ND: YAG laser	Explain ND:YAG laser	K5
5.5	Semiconductor lasers	Analyze semiconductor laser	K4
5.4	Holography (construction and deconstruction)	Identify the application of laser in holography	К3
5.6	Fibre optics	Identify the application of laser in fiber optic communication	К3

4. MAPPING SCHEME (PO, PSO & CO)

		РО								PSO			
U16PH6:4	PO1 PO2 PO3 PO4				PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	М	L	М	-	-	L	L	-	L	Н	М	L	М
CO2	М	Н	М	М	М	L	L	L	L	Н	М	L	М
CO3	М	-	М	Н	М	М	L	-	-	М	М	L	-
CO4	М	М	М	Н	Н	М	М	L	М	Н	-	-	М
CO5	М	М	М	М	М	L	L	-	L	М	L	-	L
CO6	М	L	М	L	-	L	L	L	L	М	-	L	-

L-Low M-Moderate H-High

5. COURSE ASSESMENT METHODS

Direct

- 1. Surprise Class tests and Quizzes
- 2. Continuous Assessments (Two Internal Tests)
- 3. Group Discussions and Seminar Presentations
- 4. End Semester Examinations

In-Direct

- 5. Assignments and Industry/Field visits
- 6. Course end survey/Feedbacks

Course Co-ordinator:Dr. S. Franklin

SBEC - I: BIOPHYSICS AND BIOMEDICAL INSTRUMENTATION

SEMESTER: II

CODE: U16PH2S1

CREDITS: 2 NO. OF HOURS/WEEK: 2

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Infer the structure of amino acids, proteins, DNA and their types.	K4	I
CO2	Apply the concepts of electrical and electronics to design electrodes and transducers.	К3	II
CO3	Categorize various pre-amplifiers and different types of electrodes to analyze bio- signals.	K4	III
CO4	Analyze the working of various Bio-potential recorders.	K4	IV
CO5	Analyze the origin and acquisition of bio potentials and bioelectric signals such as ECG, EEG etc.,	K4	IV
CO6	Discuss the operation principles of pacemaker, defibrillator, nerve stimulators, kidney machines.	K4	v

2. A. SYLLABUS

Unit- I: Introduction to Biophysics

Macromolecules: Introduction – Nucleic acid and chemical structure – Conformational possibilities of monomers and polymers – The double helical structure of DNA – Polymorphism of DNA – Amino acids and primary structures of proteins – The peptide bond and secondary structure of proteins

Unit- II: Bio-potential Sensors (Electrodes and Transducers)

Basic design of medical instruments - Components of biomedical instrument system - Electrodes - Transducers

Unit- III: Biosignal Acquisition

Introduction – Physiological signal amplifier – Isolation amplifier – Medical amplifier – Bridge amplifier – Current amplifier – Chopper amplifier – Biosignal analysis – Signal analysis and data

(5 Hours)

(5 Hours)

(5 Hours)

acquisition

Unit- IV: Bio-potential Recorders

Introduction - Characteristic of recording system - ECG, EEG, EMG, ERG, and EOG - block diagram, construction, working, application and limitations - Accuracy and analysis of medical instruments

Unit- V: Physiological assist devices

Introduction – Pacemaker - Artificial heart valves – Defibrillators – Nerves and muscular stimulators – Heart- lung machine - Kidney machines

B. TOPICS FOR SELF STUDY

1. Double Helical Structure of DNA

(https://www.youtube.com/watch?v=4gFF1-VHHmk&t=15s)

2. Characteristics of transducers

(https://www.youtube.com/watch?v=3c_uDCnnBXc)

3. Electrooculography

(https://www.youtube.com/watch?v=AKz5ADkqONY)

4. Types of dialysis

https://www.youtube.com/watch?v=LAS9dC-E6mM)

C. TEXT BOOKS

- VasanthaPattabhi and N. Gautham, Biophysics, Kluwer Academic Publishers, New York, 2002.
 (UNIT-I)
- M. Arumugam, Biomedical Instrumentation, Anuradha Publications, 2006. (UNIT-II, III, IV, V)

D. REFERENCE BOOKS

- Joseph J. Carr and John M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education, 2001.
- Thomas E. Creighton, Proteins: Structures and Molecular properties, W.H. Freeman Publisher, 1993.
- 3. D. Kipke, Biomedical Instrumentation and Design Winter (Revised from M.O'Donnell), 2002.
- 4. Leonard Banaszak, Foundations of Structural Biology, Academic Press, 2000.

E. WEBLINKS

- 1. https://nptel.ac.in/courses/108/105/108105101/
- 2. https://onlinecourses.nptel.ac.in/noc21_ee17/preview

(5 Hours)

(5 Hours)

Unit/	Course Content	Learning Outcomes	Highest
Section			Bloom's
			Taxonomic
			Level of
			transaction
I	Introduction to Biophysics		
1.1	Macromolecules: Nucleic	Classify the type of nucleic acids	
	acid structure the chemical	on the basis of chemical structures	K4
	structure of nucleic acids.	on the busis of chemical structures	
	subclure of nucleic acids.		
1.2	Conformational possibilities	Analyze the different structures of	K4
	of monomers and polymers	monomers and polymers in DNA	
1.3	The double helical structure	Analyze the double helical	
	of DNA	structure of DNA	K4
1.4	Polymorphism of DNA	Illustrate the properties of DNA	V2
		based on the its different	K2
		polymorphs	
1.5	DNA supercoiling and	Outline the unusual and	
	unusual DNA structures, the structure of transfer RNA	supercoiling structure of DNA Explain the structure of transfer	K2
	subclure of transfer KIVA	RNA	
1.6	Protein structure - Amino	Interpret the primary structure of	K2
	acids and the primary	proteins	
	structure of proteins.		
1.7	The peptide bond and	Explain the peptide and secondary	
1.7	secondary structure of	structure of proteins	K2
		structure of proteins	114
TT	proteins.		
II	Bio-potential Sensors		
2.1	Basic design of medical	Illustrate the components of bio	
	instruments - components of the bio medical instrument	medical instrument system	K2
	system.		
2.2	Electrodes - Half cell	Define the concept of half-cell	
	potential, purpose of	potential Explain the purpose of electrode	K2
	electrode paste.	paste	
2.3	Characteristics of electrode	Categorize the characteristics of	K4

	material	electrode material	
2.4	Types of electrodes: microelectrodes, depth and needle electrodes, surface electrodes.	Classify the different types of electrodes on the basis of operation	K4
2.5	Transducers -Active and Passive transducers	Distinguish active and passive transducers	K4
2.6	Characteristics of transducers	Explain the characteristics of transducers	K2
2.7	Types of transducers	Compare the types of transducers based on their working principle	
III	Biosignal Acquisition		
3.1	Bio-signal acquisition.	Outline the parameters involved in bio-signal acquisition	K2
3.2	Physiological signal amplifiers	Explain the importance of Physiological signal amplifiers	K2
3.3	Types of amplifier-Isolation amplifier, Medical amplifier.	Compare and contrast the merits and limitations in various types of bio-signal amplifiers	
3.4	Bridge amplifier, Current amplifier.	Illustrate the working of bridge and current amplifiers	K2
3.5	Chopper amplifier.	Explain the functions of the chopper amplifiers	
3.6	Bio-signal analysis- Analog and digital methods, signal analysis.	Classify analog and digital method analysis	K4
3.7	Fourier methods on frequency analysis	Make use of Fourier methods on frequency analysis of biosignals	К3
3.8	Analysis of random signals, signal recovery and data acquisition.	Explain signal recovery and data acquisition	K2
IV	Biopotential Recorders		
4.1	Bio-potential recorders	Explain biopotential recorder	K 1
4.2	Characteristics of the recording system,	Summarize the characteristics of the recording system	K2

4.3	Writer and pen damping	Illustrate writer and pen damping	K2	
	systems.	systems		
4.4	Types of Bio-potential	Elaborate the construction and	K4	
	recorders: Block diagram,	working of bio-potential recorders		
	construction, working and	List the applications of bio- potential		
	applications.	recorders		
4.5	Accuracy and analysis of	Identify the limitations and accuracy	K3	
	medical instruments	of biopotential recorders		
V	Physiological assist devices			
5.1	Physiological assist devices-	Analyze the energy requirements of	K4	
	Pacemaker: energy	pacemakers		
	requirements, methods of			
	simulation			
5.2	Different modes of operation.	Discuss the different modes of	K4	
		operation in pacemakers		
5.3	Artificial heart valves: Types,	Interpret artificial heart valves and	K2	
	requirements, problems.	their types and requirements		
5.4	Defibrillators: Types	Classify the types of Defibrillators	K2	
5.5	Defibrillators: construction	Explain the construction and	K2	
	and working.	working of Defibrillators.		
5.6	Nerve and Muscle	Analyze the different types of	K4	
	Stimulators- Different types	waveforms in nerve and muscular		
	of waveforms.	stimulators		
5.7	Heart lung machine: Structure	Explain the working of Heart and	K2	
	and Function of heart.	Lung Machine		
5.8	Components of	Analyze the components of modern	K4	
	Extracorporeal circulation in	cardiac surgery.		
	modern cardiac surgery.			
5.9	Oxygenator and Gas	Explain gas exchange function in	K2	
	exchange function in	artificial lungs.		
	Artificial lungs.			
5.10	Kidney machine: Causes of	List the causes of renal failure.	K4	
	Renal failure.	Discuss the principle and working		
		of a dialysis machine		
		Classify the types of dialysis		

4. MAPPING SCHEME (PO,PSO & CO)

	РО								PSO				
U16PH2S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	L	L	М	L	М	L	L	L	L	L	L	L
CO2	Н	М	М	Н	L	М	L	L	L	Н	L	М	L
CO3	М	L	М	М	L	М	L	L	L	Н	Н	L	L
CO4	М	М	L	Н	L	М	L	L	L	М	Н	М	L
CO5	М	L	L	М	L	М	L	М	L	L	L	L	Н
CO6	Н	Н	М	L	М	М	L	М	L	L	L	М	Н

L-Low M-Moderate H-High

5.COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Exams) I,II

2.Open book test; Assignment, Seminar, etc.,

3.End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Dr. R. Venkatesh

SBEC-II: CONCEPTS THROUGH ANIMATIONS

(THEORY AND PRACTICAL)

SEMESTER : V

CODE: U16PHPS2

CREDITS: 2 NO. OF HOURS/WEEK: 2

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Apply the basic tools of Flash, Photoshop and Adobe Premier softwares.	K3	I, III, V
CO2	Develop action scripts and record audio for the E- content	K5	II, V
CO3	Organize a new photoshop and video files with multiple layer adjustments such as exploring, deleting and merging etc.	K3	III, V
CO4	Synchronize audio and video files as per the desired timeline.	K5	I, II, V
CO5	Edit audio and video files using appropriate tools	K5	I, II, III, IV, V
CO6	Create scientific content with essential animations using appropriate tools	K6	I, II, V

2. A. SYLLABUS

Unit-I: Animations with Flash

(5 Hours)

Creating a new animation file – insertion of content in frames – add and delete frames and key frames – creating frame by frame animation – preview and testing of animation – create motion and path animations – usage of layers.

Unit II: Enhancing animations

Recording a sound file – editing a sound file – importing sound into an animation program – adding sound and text to animation – animating text - adding buttons to animation – action scripts to control an animation.

Unit- III: Introducing Photoshop 7.0

Introduction – opening and finding images – creating a new file – the tool box – options bar - Layers -Exploring layers - creating layers - deleting layers - renaming layers - linking layers - adjustment and merging layers – creating a type layer

Unit- IV: Creating images for web page with Photoshop (4 Hours)

Image dimensions – converting images – rotating and flipping the canvas – cropping using marquee -Drawing and Painting – Fore and background colour – lifting – using shape and line tools – using brush tool – using pencil tool – using paint bucket tool – using eraser tool.

Unit- V: Working with video using premier (4 Hours)

Capturing video from a camera – importing video from other digital sources – editing a video – adding effects – adding transitions – adding titles – adding audio tracks.

Unit- VI: Animation in Photoshop

Recent advancement in the course - only for discussion – Unit 6 will not be included for examination

B. TOPICS FOR SELF-STUDY

- 1. Animation https://www.youtube.com/watch?v=HpiVYB-T7j4
- 2. Exploring 3D Photoshop https://www.youtube.com/watch?v=u5crxEaZHkY 3. Motion Capture
- https://www.voutube.com/watch?v=H6NaNvdNAEc
- 4. Printing in Photoshop https://www.youtube.com/watch?v=2GaLODO7cGA

(5 Hours)

(5 Hours)

(2 Hours)

C. TEXT BOOKS

1. Daven Brown and et.al., Adobe - Web Development for the Designer, Macmillan, 1997.

2. S. Weixel, J. Fulton, K. Barkslade, C. B. Morse and B. Morse, Multimedia Basics, Eswar Press, Chennai, 2004.

3. Brigitta Hosea, Macromedia Flash 8, Focal press Elsevier, USA

D. WEBLINKS

- 1. https://www.education.ne.gov/wp-content/uploads/2017/07/basicanimationwithfash.pdf
- 2. https://helpx.adobe.com/in/animate/how-to/import-video.html
- 3. https://www.youtube.com/watch?v=wujHrMtCnp8
- 4. https://www.youtube.com/watch?v=Q3Wa09eZW3w
- 5. https://www.youtube.com/watch?v=EJjmxxJrMxI
- 6. https://www.youtube.com/watch?v=n9fwiNyDHLI
- 7. https://www.youtube.com/watch?v=epkIPcVGxFo

Unit/ Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomy Levels of Transaction
Ι	Animations with Flash		
	Creating a new animation file,	Outline the procedure for animation	K2
1.1	insertion of content in frames, add and delete frames and key frames, creating frame by frame animation	-	K3
		Create frame by frame animations	K6
		Outline the procedue for testing	K1
1.2	Preview and testing of animation,	Make use of multiple layers of images to obtain animated GIF files	К3
		Create motion and path animations	K6

II	Enhancing Animations			
	Recording a sound file, editing a sound file, importing sound into an	Outline the procedure to edit a sound track	K2	
2.1	animation program, adding sound and text to animation	Outline the method of mixing an audio track with a video	K2	
		Compile an animated audio and video files	K6	
2.2	Adding buttons to animation, action	Explain the procedue to label buttons on an animated video	K2	
2.2	scripts to control an animation.	Develop an action script for animation control	K6	
III	Introducing Photoshop			
3.1	Photoshop Introduction, Opening and finding images, creating a new file, tool box, option bar,	Explain the procedure for finding and importing image files in Photoshop software	K2	
3.2	Exporting layers, creating layers, deleting layers, renaming layers, linking layers, adjustment and merging layers, creating A type layer.	Classify exporting, creating, deleting, renaming, linking, merging and A type layers	К6	
IV	Creating images for web page with F	Photoshop		
	Image dimensions, converting images, rotating and flipping the canvas, cropping using marquee, drawing and painting, fore and background colour,	Create designs using image editing tools like rotate, flip, canvas, cropping etc	К6	
4.1	lifting – using shaping and line tools – using brush tool, using pencil tool, using paint bucket tool, using eraser tool			
V	Working with video using premier			
	Capturing, importing and editing	Summarize the steps to capture a quality video	К4	
5.1	video. Adding effects, transitions, titles and audio tracking.	Create E-content using video editing tools and adding effects and transitions	K6	

4. MAPPING SCHEME (PO, PSO& CO)

U16PHPS2		РО									PSO			
010111102	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
CO1	Н	Н	-	L	L	-	L	L	-	L	М	Н	L	
CO2	L	L	L	М	L	М	М	L	L	L	L	L	L	
CO3	Μ	L	L	М	-	L	L	L	-	М	L	L	L	
CO4	L	L	L	L	L	L	М	-	L	L	М	L	L	
CO5	М	L	L	М	-	L	М	L	-	L	L	М	L	
CO6	Μ	L	L	L	L	L	L	L	L	L	L	L	L	

L – Low M – Moderate H – High

5. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I, II
- 2. Presentation, Project report, Poster preparation etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course co-ordinator:Dr. RanjithDevInbaseelan

SBEC III: WEB DESIGNING (THEORY AND PRACTICAL)

SEMESTER: VI

CODE: U16PHPS3 NO. OF HOURS/WEEK: 2

CREDITS : 2

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Develop HTML coding for webpage	K2	Ι
CO2	Demonstrate and display HTML web site folders.	K3	Π
CO3	Design graphics and hyperlinks in web pages	К3	III
CO4	Implement other softwares within the webpage using various methods.	K6	IV
CO5	Create HTML functions to link different web pages	K6	V
CO6	Create, edit, delete and manage different forms and fields in a website	K6	V

2. A. SYLLABUS

Unit- I: Creating a Webpage

Web organization – finding websites and webpages – display HTML source code – create HTML web site folders – view a webpage – modify a webpage – format text with HTML tags 2.8

Unit- II: Formatting and Linking Website Pages

Structure of website – centre text – add horizontal line to a webpage - changing font face – create hyperlinks on webpages – create a bulleted list – create a numbered list – create multi pages for a website

Unit- III: Animating Webpages

Change text colour – change background colour – experiment with website colours – change hyperlink colours – acquire and insert graphics – allign graphics relative to text – format a graphic as a hyperlink – change graphic border.

Unit- IV: Working in a Website Programme

Exploring the interface of website design and management software – design a new website – view a website – add pages to website – format web pages – link pages in a linear structure.

(5 hours)

(5 hours)

(5 hours)

(5 hours)

Unit- V: Publishing the Website

(5 hours)

Presentation, interaction and information design – change background graphics and other properties of pages in a website – create a random axes navigation system – test hyperlinks and page properties – prepare and publish website.

Practical: Physics based experiments will be given on which the practical have to be done.

- 1. HTML program to print the detail of solar system using tables.
- 2. Webpage for form filling
- 3. Webpage to explain concepts using hyperlinks.
- 4. Webpage to explain concepts using animated picture, movie and sound.

B. TOPICS FOR SELF STUDY

- 1. Structure text and image content for the web using HTML5. https://www.youtube.com/watch?v=u7aE3WAoIcg
- 2. Create hyperlinks to link to other pages https://www.youtube.com/watch?v=GmzUr4Tdeb0
- 3. Preparation of conference event web page https://www.youtube.com/watch?v=IYIj9MM5EHc

C. TEXT BOOKS

- 1. C. Xavier, World Wide Web Design with HTML, McGraw Hill, 2001.
- 2. C. Xavier, Web Technology and Design, New Age International, 2007

D. REFERENCE BOOKS

- 1. Terry A. Morris, Basics of Web Design: HTML5 & CSS, 3 Addison-Wesley, 2012.
- 2. Jennifer T. Campbell, Web Design: Introductory, Cengage Learning, 2017.

E. WEBLINKS

https://nptel.ac.in/courses/106/105/106105084/

Unit/Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomy Level of Transaction
Ι	Creating a Webpage		
1.1	Web organization - Finding websites and webpages	Define and illustrate the organization of Website and web page.	K2
1.2	Display HTML source code	Recall and Relate the HTML source code for given web page.	K2
1.3	Creating HTML website folders,	Develop and Construct HTML folders	K6
1.4	View a webpage	Experiment with Web pages using HTML	K4
1.5	Modify a webpage	Experiment with Web pages using HTML	K4
1.6	Format text with different HTML tags	Build HTML code to Format text in a web page	K6
II	Formatting and Linking Webs	ite Pages	
2.1	Structure of a website	Summarize the contents of a website	K2
2.2	Centre text – add horizontal line to a webpage	Construct and Inspect the text using HTML Tags.	K4
2.3	Changing font face	Make use of HTML Tags to change font face of a text in a web page	K4
2.4	Create hyperlinks on webpages	Build hyperlinks on web pages using HTML	K6
2.5	Create a bulleted list - Create a numbered list - Create multi pages for a website	Design and Develop HTML codes for creating bullet, numbered and multi pages for a websites.	K6
III	Animating Webpages		
3.1	Change text colour- Change background colour- Change hyperlink colours	Modify the text, background and hyperlink colors in a web page.	K6

3.2	Acquire and insert graphics- Align graphics relative to text	Utilize the HTML tags to insert and align graphics in a web page.	K6
3.3	Format a graphic as a hyperlink-	Outline the de Broglie's theory of matter waves.	K6
	Change graphic border		
IV	Working in a Website Program	nme	
4.1	Exploring the interface of website	Classify and explain website interface and management	K2
	Design and management of software	software's	
4.2	Designing a new website	Construct a website	K6
4.3	View a website and add pages to	Choose suitable HTML codes to add pages to a website	K6
	website		
4.4	Format web pages -	Identify suitable commands to	K6
	Link pages in a linear structure	modify and link web pages	
V	Publishing the Website		
5.1	Presentation, interaction and information design	Explain the way to express information and interaction in a website	K2
5.2	Change background graphics and other properties of pages in a website	Compile HTML codes to change background graphics in a website	K6
5.3	Create a random access navigation system	Make up suitable codes to create tabs for random access in a website	K6
5.4	Test hyperlinks and page properties	Formulate HTML codes to test hyperlinks and webpage properties	K6
5.5	Prepare and publish website.	Design a website for:	K6
		• HTML program to print the	
		detail of solar system using	
		tables.	
		• Webpage for form filling	
		• Webpage to explain concepts	
		using hyperlinks.	
		• Webpage to explain concepts	
		using animated picture, movie	

	and sound.	

U16PH	РО								PSO				
PS3	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	Н	Н	М	М	L	Н	М	L	L	М	Н	L	М
CO 2	М	Н	L	Н	L	М	М	L	L	L	L	М	Н
CO 3	М	L	L	Н	L	М	L	L	L	М	L	Н	Н
CO 4	Н	Н	М	М	L	Н	М	L	L	М	Н	М	Н
CO 5	М	L	М	Н	L	Н	L	L	L	М	М	Н	Н
CO 6	Н	М	L	Н	L	Н	L	L	L	М	М	Н	Н

4. MAPPING SCHEME (PO, PSO & CO)

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

1. ContinuousAssessmentTest(ModelExams) I,II

2. Openbooktest; Cooperativelearningreport, Assignment, Seminar, GroupPresentation, Project

report, Poster preparation, Problem solving etc.

3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co- ordinator: Dr. Sasikumar

NMEC-I: SIMPLE APPLIANCES

SEMESTER: III

CREDITS: 2

CODE: U16PH3E1

NO. OF HOURS/WEEK: 2

1. COURSEOUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Recall the basics of electricity	K1	I
CO2	Outline the risk factors and precautionary steps to avoid electric shock.	K2	I
CO3	Explain the types of electrical wiring & various heating appliances	K2	п
CO4	Outline the principles & working of moving coil instruments	K2	III
CO5	Explain the functioning of several home appliances	K4	IV
CO6	Apply electromagnetic theory to day to day electrical appliances.	К3	v

2. A. SYLLABUS

Unit-I: Safety Precaution

(5 Hours)

(5 Hours)

Electricity – Basic principles - Practical unit of electricity - International system (S.I) of units – Electric shock – Precautions to avoid electric shock – Rescue steps in electric Shock – methods of resuscitation - Electric Line Circuit Breaker (ELCB).

Unit- II: Wiring

Wiring system – Electric supply to house and factories – Types of wiring – ISI Rules – Megger testing – Earthing.

Electricity in house: Design for heating element – Electric iron, Table heater, Hot plate and Room heater.

Unit- III: Electrical Measuring Instruments

Moving coil instruments - Voltmeter - Ammeter - Wattmeter - Kilowatt meter - Frequency meter -Multimeter.

Unit- IV: Electrical Appliances

Cooling appliances – Electric fan – Refrigerator – Air Conditioner – Air cooler.

Other electrical appliances: Electric bell – Buzzer – Incandescent lamp – Fluorescent lamp – LED lamp

- Halogen lamp - Reverse osmosis purifier - Washing machine - Solar powered street lights.

Unit- V: Electromagnetic application

Basics of Electromagnetic theory - Solenoid - Electric motor (AC& DC) - Electric generator transformer – Backup power suppliers (UPS, Invertors) - Induction stove.

B. TOPICS FOR SELF STUDY

- 1. Electricity and basic principle https://www.anixter.com/en_us/resources/literature/technical-references/the-basic-principles-ofelectricity.html
- 2. Types of wiring https://www.dfliq.net/blog/electrical-house-wiring/
- 3. Reverse osmosis purifier https://www.freshwatersystems.com/blogs/blog/what-is-reverseosmosis 4. Transformer
- https://circuitglobe.com/what-is-a-transformer.html

C. TEXT BOOKS

- 1. M.L. Anwani, Basic Electrical Engineering, DhanpatRaiCo. Ltd., Delhi, 2014. (Unit 1-2)
- 2. William D. Cooper, Electrical Instruments and Measurement Techniques, Prentice Hall India, New Delhi, 1997. (Unit 3-5)

D. REFERENCE BOOKS

- 1. S.P. Bali, Consumer Electronics, Pearson Education, New Delhi, 2008.
- 2. B. L. Theraja and A. K. Theraja, A Textbook of Electrical Technology, S. Chand & Co., 2014.

E. WEBLINKS

https://www.esabna.com/euweb/mig_handbook/592mig6_2.htm

https://www.constellation.com/energy-101/electrical-safety-tips.html

https://nptel.ac.in/courses/112/105/112105129/

(5 Hours)

(5 Hours)

(5 Hours)

Unit/ Sectio n I	Course Content Safety Precaution	Learning outcomes	Highest Bloom's Taxonomic level of transaction
1.1	Electricity – Basic principles	Explain basic principles of electricity	K2
1.2	Practical unit of electricity - International system (S.I) of units	List the practical unit of electricity and International system (S.I) units	K1
1.3	Electric shock -Precautions to avoid electric shock	Analyze the causes for electric shock & precaution to avoid electric shock	К4
1.4	Rescue steps in electric Shock	Explain the rescue steps in electric shock & the measure to avoid it	К2
1.5	Methods of resuscitation	Explain the methods of resuscitations	К2
1.6	Electric Line Circuit Breaker (ELCB)	Summarize the working of Electric Line Circuit Breaker (ELCB) as a rescue measure from electric shock	K2
II	Wiring		
2.1	Wiring system – Electric supply to house and factories	Illustrate the wiring system and electric supply to house and factories	K2
2.2	Types of wiring	List the types of wiring	K1
	ISI Rules	Explain ISI rules for wiring	K2
2.3	Megger testing – Earthing	Make use of Megger testing to verify Earthing	К3
2.4	Electricity in house: Design for heating element	Illustrate the design of heating element	K2
2.5	Electric iron, Table heater, Hot plate and Room heater.	Explain the Electric iron, table heater and hot plate and room heater.	K2
III	Electrical Measuring Instrument	S	
3.1	Moving coil instruments – Voltmeter – Ammeter	Outline the construction of moving coil instruments (K2) Examine how a moving coil instrument serves as voltmeter & ammeter (K4)	К4
3.2	Wattmeter – Kilowatt meter – Frequency meter – Multimeter	Explain the principle & working of wattmeter/ kilowatt meter/ frequency meter / multimeter	K2

IV	Electrical Appliances		
4.1	Cooling appliances – Electric fan – Refrigerator – Air Conditioner – Air cooler.	Elaborate on the construction & functioning of cooling appliances/ electric fan/ Refrigerator/ Air Conditioner / Air cooler.	K2
4.2	Other electrical appliances: Electric bell – Buzzer – Incandescent lamp	Describe the functioning of electric bell/ Buzzer/ Incandescent lamp.	K6
4.3	Fluorescent lamp – LED lamp – Halogen lamp – Reverse osmosis purifier – Washing machine – Solar powered street lights	Analyze the role of choke in Fluorescent lamp/ LED lamp / Halogen lamp (K4) Outline the working of Reverse osmosis purifier / Washing machine / Solar powered street lights (K2)	К4
V	Electromagnetic Application		
5.1	Basics of Electromagnetic theory	Define electromotive force Explain electromagnetic induction	K2
5.2	Solenoid	Outline the theory of solenoid	K2
5.3	Electric motor (AC& DC) – Electric generator	Distinguish between ac & dc current (K4) Outline the principle of generator (K2) Examine the working of AC & DC motor and AC & DC generator (K4)	K4
5.4	Transformer	Explain principle of transformer (K2) Distinguish between step up & step down transformer (K4)	K4
5.5	Backup power suppliers (UPS, Invertors) - Induction stove.	Outline the principle of heating in induction stove	K2

	РО								PSO				
U16PH3E1	PO1 PO2 PO3			PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	М	L	L	L	-	-	L	-	-	М	-	Μ	L
CO2	L	-	-	L	-	L	L	-	-	Н	L	М	Н
CO3	L	L	L	М	L	L	L	М	М	М	-	L	L
CO4	М	-	-	L	-	L	L	L	L	М	L	М	L
CO5	L	L	-	L	-	-	L	-	L	L	-	L	L
CO6	М	L	L	М	L	L	_	L	_	L	-	L	L

4. MAPPING SCHEME (PO, PSO& CO)

L – Low

M – Moderate H - High

5. COURSEASSESSMENTMETHODS

Direct

1. ContinuousAssessmentTest(ModelExams) I,II

2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,etc.

3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course co – ordinator:DR. A. Judith Jayarani

NMEC II: AUDIO AND VIDEO SYSTEMS

SEMESTER: IV CREDITS: 2

CODE: U16PH4E2 NO. OF HOURS/WEEK: 2

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Outline the nature and production of sound waves	K2	Ι
CO2	Classify the different types of microphones and loudspeakers	K2	II
CO3	Compare the functioning of monochrome and colour television	K4	III
CO4	Explain the transmission and reception of digital signals in the communication system	K3	IV
CO5	Explain the operating principles of electronic display devices (LCD & LED)	K2	V
CO6	Outline the principle, instrumentation, working of audio and video system	K4	II - V

2. A. SYLLABUS

Unit - I Characteristics of Sound

Nature of sound – Pressure and intensities of sound waves – Sensitivity of human ear for sound – Loudness and Phon – Frequency of sound waves – Pitch – Production of audio waveforms.

Unit - II Audio System

Microphones: Characteristics of microphones – Requisites of a good microphone – Types of microphones – Moving coil microphone – Crystal microphone – Carbon microphone – Special microphone.

Loudspeakers: Characteristics of loudspeakers – Types of loudspeakers – Moving coil cone loudspeaker – Electrodynamic loudspeaker – Horn type loudspeaker – Multi-Way speaker system (Woofers and Tweeters).

(15 hours)

(15 hours)

Monochrome Television: Introduction to television – Basic monochrome television system – Transmitter – Receiver – Television systems and standards – Television camera tubes – Videocon camera tube.

ColourTelevision:Colour Transmission and Reception – Colour combination – Three colour theory – Colour TV transmitter and receiver – Colour picture tube – CCTV.

Unit – IV Digital Communication

Digital Television-Transmission and Reception: Digital system hardware, Signal quantizing and encoding, digital satellite television, Direct –To – Home (DTH) satellite television, Digital TV receiver, Merits of digital TV receivers, Digital Terrestrial Television (DTT).

Unit – V Liquid Crystal Screen Television

LCD technology - LCD matrix types and operation - LCD screens for television - LED TV - Edge LEDs, Differences between LED and LCD displays.

B. TOPICS FOR SELF STUDY

1. Using audio and video for educational purposes

https://www.deakin.edu.au_data/assets/pdf_file/0003/179013/Modules_1-

4_Using_audio_and_video_for_educational_purposes-2014-02-28.pdf

2. Audio System Engineering

https://www.youtube.com/watch?v=Qim3K57Th20&t=91s

3. The Setup: Building a Great Home Entertainment System

https://www.popularmechanics.com/technology/audio/a21987781/how-to-build-a-home-entertainment-system/

C. TEXT BOOKS

- R. G. Gupta, Audio and Video Systems (Principles, Maintenance and Troubleshooting), Tata McGraw-Hill Publishing Company Limited, New Delhi, 2002 (UNIT-I, II, III).
- 2. George Kennedy, Bernard Davis and S.R.M. Prasanna, Electronic Communication Systems, Tata McGraw Hill Publishing Company Limited, New Delhi, 2012 (UNIT-IV).
- R.R. Gulati, Colour Television: Principles & Practice, New Age International Publisher, 2007 (UNIT-V).

(15 hours)

(15 hours)

D. REFERENCES BOOKS

- 1. R.R. Gulati, Modern Television Practice, New Age International Publishers, 2007.
- 2. A.M. Dhake, Television and Video Engineering 2e, McGraw Hill education Limited, 1999.
- **3.** S.P. Bali and R. Bali, Audio Video Systems Principles, Practices and Troubleshooting, Khanna Publishing Company, 2014.
- 4. S.P. Bali, Consumer Electronics, Pearson Education, 2007.

E. WEBLINKS

1.https://www.udemy.com/course/acoustics-101-speaker-design-basics-and-enclosure-design/ 2.https://www.udemy.com/course/portable-speaker-design-make-you-own-bluetooth-speaker/

Unit/ Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
Ι	Characteristics of Sound		
1.1	Nature of sound – Pressure and intensities of sound waves	Explain the parameters related to sound	K2
1.2	Sensitivity of human ear for sound	Explain the sensitivity of human ear for sound (K2) Classify pleasant and unpleasant sounds (K2)	K2
1.3	Loudness and Phon – Frequency of sound waves – Pitch	Define loudness and Phon (K1) Explain the role of pitch in sound waves (K2)	K2
1.4	Production of audio waveforms.	Explain the production of audio waveforms	К2

II	Audio System		
2.1	Microphones: Characteristics of microphones	Explain the characteristics of microphone	K2
2.2	Requisites of a good microphone –	Outline the requisites of a good microphone	K2
2.3	Types of microphones – Moving coil microphone – Crystal microphone – Carbon microphone – Special microphone.	Classify the different types of microphones (K2) Explain the construction and working of Crystal / Carbon /Special Microphones (K2)	K2
2.4	Loudspeakers: Characteristics of loudspeakers	Explain the characteristics of loudspeakers	K2
2.5	Types of loudspeakers – Moving coil cone loudspeaker – Electrodynamic loudspeaker – Horn type loudspeaker – Multi-Way speaker system (Woofers and Tweeters)	Explain the construction and working of moving coil /Electrodynamic / Horn type / Multi-way loudspeakers (K2) Categorize the different types of loudspeakers (K4)	K4
III	Television	II	
3.1	Monochrome Television: Introduction to television	Outline the fundamentals of television	K2

3.2	BasicmonochrometelevisionsystemTransmitter– ReceiverTelevisionsystemsstandards–Televisioncamera tubes	Explainthebasicmonochrometelevisionsystem (K2)Summarizetheoperatingprinciplesofmonochrometransmitterandreceiver (K2)Describetheconstructionand	K2 K2
	– Videocon camera tube.	working of Videocon camera tubes	
3.4	ColourTelevision:ColourTransmissionandReception	Outline the fundamentals of colour television reception and transmission	К2
3.5	Colour combination – Three colour theory –	Explain the three colour theory (K2) Examine the additive and subtractive mixing of colours (K4)	К4
3.6	Colour TV transmitter and receiver –	Explain the working of colour television receiver and transmitter	K2
3.7	Colour picture tube –	Construct a colour picture tube based on three colour theory	К3
3.8	CCTV.	Explain the functioning of CCTV (K2) Utilize CCTV for varied applications (k3)	К3
IV	Digital Communication	1 1	
4.1	DigitalTelevision-TransmissionandReception	Outline the fundamentals of transmission and reception in digital television	K1
4.2	Digital system hardware, Signal quantizing and	Explain the working of Digital system hardware, Signal quantizing and	K2

	encoding, digital satellite television,	encoding, digital satellite television	
4.3	Direct –To – Home (DTH) satellite television,	Demonstrate the functioning of Direct –To – Home (DTH) satellite television,	K2
4.4	Digital TV receiver, Merits of digital TV receivers,	Illustrate the advantages of digital TV receiver	K2
4.5	DigitalTerrestrialTelevision (DTT).	Explain transmission and reception in Digital Terrestrial television	К3
V	Liquid Crystal Screen Tel	evision	
V 5.1	Liquid Crystal Screen TelLCD technology - LCDmatrixtypesandoperation - LCD screensfor television	evision Explain the LCD technology (K2) Describe the construction and working of LCD (K2)	K2
	LCD technology - LCD matrix types operation - LCD screens	Explain the LCD technology (K2) Describe the construction and	K2 K2

4. MAPPING SCHEME (PO, PSO & CO)

		РО										PSO				
U16PH4E2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO2	PSO3	PSO4			
C01	Η	М	L	L	L	Н	Н	L	L	Н	Н	Н	М			
CO2	Н	Н	М	L	L	L	L	L	Н	Н	М	Н	L			
CO3	Η	М	L	L	L	L	L	L	L	Н	Н	М	L			
CO4	Н	Н	L	L	L	L	L	L	L	Н	Н	М	М			
CO5	Н	Н	L	L	L	L	L	L	L	Н	Н	М	М			
CO6	Н	Н	L	L	L	L	М	L	L	Н	Н	L	М			

5. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I,II
- 2. Openbooktest, Assignment, Quiz, Seminar, GroupPresentation, Poster preparation, Problem solving etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co – ordinator: Dr. S. David Jereil

ALLIED PHYSICS I (FOR I B. Sc. MATHS) MECHANICS, SOUND, THERMAL PHYSICS AND OPTICS

SEMESTER:I

CODE: U18PHY01

CREDITS: 4

NO. OFHOURS/WEEK: 4

1. COURSE OUTCOMES (CO)

After the successful completion of this course the student will be able to:

CO.NO.	Course Outcomes	Level	Unit Covered
CO1	Deduce Centre of Gravity for different geometrical	K4	Ι
	structures		
CO2	Measure the metacentric height of a ship with the	K5	Ι
	knowledge of stability of floating bodies		
CO3	Investigate the acoustics of buildings and Simple	K4	II
	Harmonic Motion (SHM)		
CO4	Determine the various elastic modulii of materials	K5	III
CO5	Estimate the thermal properties of solids and fluids.	K5	IV
CO6	Explain the principles of spectroscopy and the	K5	V
	importance of fibre optic communication systems.		

2. A. SYLLABUS

Unit- I: Mechanics

Centre of gravity – General formula- centre of gravity of a solid hemisphere – hollow hemisphere – solid cone – tetrahedron - stability of floating bodies – Meta centre – metacentric height – determination of metacentric height of a ship.

Unit- II: Sound, Ultrasonic and Acoustics

Simple harmonic motion – composition of two simple harmonic motions along a straight line and at right angles to each other – Lissajou's figures and their applications.

Ultrasonic – production – Magnetostriction oscillator- properties– applications– Acoustics of buildings – Reverberation and Reverberation time - Sabine's formula – Factors affecting the acoustics of buildings.

(12 Hours)

Unit- III: Properties of Matter

Stress – Strain – Hooke's law – Different moduli of elasticity – Young's modulus (E) – Rigidity modulus(G) – Bulk modulus(K) – Poisson's ratio – work done in linear, shearing and volume strain – Relation connecting elastic constants and Poisson's ratio – Bending of beams-bending Moment-Measurement of Young's modulus by non-uniform bending and Rigidity modulus by static torsion (Searle's apparatus) scale and telescope method.

Unit- IV: Thermal Physics

Newton's law of cooling – verification of Newton's law of cooling – specific heat capacity of a liquid by cooling – Bomb calorimeter – Conduction – coefficient of thermal conductivity – good and bad conductors – Lee's disc method for bad conductors – Stefan's law of radiation – Solar constant – Angstrom's Pyrheliometer – Temperature of the Sun.

Unit- V: Optics and Spectroscopy

Electromagnetic spectrum – spectral response to human eye – UV and IR Spectroscopy – Raman Effect – Explanation on the basis of quantum theory – Experimental arrangement – application of Raman Effect – Fibre Optic Communication– Introduction– optical fibre – numerical aperture – coherent bundle – fibre optic communication systems and their advantages.

B. TOPICS FOR SELF-STUDY

1. Moments of inertia of plane and circular disc area.:

https://www.youtube.com/watch?v=nahs3iDvboY

2. Moment of force about a point and about an axis.

https://nptel.ac.in/courses/105/104/105104160/

3. Fiber bend losses

https://onlinecourses-archive.nptel.ac.in/noc17_ph01/preview

4. Thermodynamic laws.

https://nptel.ac.in/courses/112/105/112105220/

C. TEXT BOOKS

- 1. R. Murugeshan, Properties of Matter, S. Chand and Co., New Delhi, 2004.
- 2. A. Sundaravelusamy, Allied Physics Paper I, Priya Publications, 2012.

D. REFERENCES BOOKS

1. R. Murugeshan, Mechanics and Mathematical Methods, S. Chand & Co., 2014.

E. WEBLINKS

- 1. http://www.brainkart.com/article/Types-of-Moduli-of-Elasticity_6850/
- 2. https://nptel.ac.in/courses/115/107/115107095/

(12 Hours)

- 3.https://www.tutorialspoint.com/electronic_measuring_instruments/electronic_measuring_instruments_lissajous_figures.htm
 - 4. https://ncert.nic.in/ncerts/l/kelm107.pdf

Unit/Section	tion Course Content Learning Outcomes		Highest Blooms Taxonomic level of Transaction	
Ι	Mechanics			
1.1	Centre of Gravity	Define Centre of Gravity	K1	
1.2	General formula for Solid hemisphere, Hollow	Identify the Centre of Gravity for different geometrical shapes.(K3)		
	hemisphere,Solid Cone and Tetrahedron	Explain the Centre of gravity of solid hemisphere and hollow hemisphere. (K2)	K3	
		Derive the expression for Centre of gravity of a solid cone and tetrahedron (K3)		
1.3	Stability of floating bodies	Explain Stability of floating bodies	K2	
1.4	Meta Centre and metacentric height	Outline meta Centre and metacentric height.	K2	
1.5	Determination of metacentric height of a ship	Measure the metacentric height of a ship	K5	
II	Sound, Ultrasonics and Acou	stics		
2.1	Simple Harmonic Motion (SHM)	Define Simple Harmonic Motion (K1) Explain Simple Harmonic Motion (K2)	K2	
2.2	Composition of two simple harmonic motions along a straight line and at right angles to each other	Evaluate the composition of two	K5	
2.2	Lissajiou's figures and their	Outline Lissajiou's figure (K2)	K2	
2.3	applications	List the application of Lissajou's figures (K1)	Ν2	
• <i>i</i>		Define Ultrasonics (K1)		
2.4 Ultrasonics, Production		Summarize the methods of ultrasonic waves production (K2)	K2	

2.5	Magnetostriction oscillator	Explain Magnetostriction oscillator	K2
2.6	Ultrasonic Properties, Applications	List the properties of Ultrasonic waves (K1)	
		Discuss the applications of Ultrasonic waves (K2)	K2
2.7	Acoustics of buildings, Reverberation and Reverberation time	Outline the reverberation and reverberation time	K2
2.8	Sabine's formula	Derive the Sabine's formula	K3
2.9	Factors affecting the acoustics of buildings	Inspect the parameters affecting the acoustics of buildings	K4
III	Properties of Matter		
3.1	Stress – Strain	Interpret Stress and Strain variation	K2
3.2	Hooke's law	Explain Hooke's Law	K2
3.3	Different moduli of elasticity Young's modulus, Rigidity	Classify different types of moduli of elasticity	
	modulus, Bulk modulus	Deduce the relation between different types of elastic modulii	K4
3.4	Poisson's ratio	Define Poisson's ratio	K1
3.5	Work done in linear, shearing and volume strain	Estimate the work done in linear, shear and volume strain	K5
3.6	Relation connecting elastic constants and Poisson's ratio	Derive the relation between elastic constants and Poisson's ratio	K4
3.7	Bending of beams	Explain neutral axis and bending moment (K2)	
		Estimate the bending moment of a beam (K5)	К5
3.8	Measurement of Young's modulus by non-uniform bending	Determine the Young's modulus of a material by non-uniform bending	K5
3.9	Rigidity modulus by static torsion (Searle's apparatus) scale and telescope method	Determine the Rigidity modulus by static torsion setup	K5
IV	Thermal Physics	L	

4.1	Newton's law of cooling	Outline Newton's law of cooling	K2
4.2	Verification of Newton's law of cooling	Justify Experimentally the verification of Newton's law of cooling	K5
4.3	Specific heat capacity	Explain specific heat capacity at constant volume and constant pressure	K2
4.4	Specific heat capacity of a liquid by cooling -Bomb calorimeter	Determine the specific heat capacity of a liquid using Bomb calorimeter	K5
4.5	Conductors, Good and bad conductors	Distinguish between Good & bad conductors	K4
4.6	Lee's disc method for bad	Estimate the co-efficient of thermal conductivity of bad conductors by Lee's disc method	K5
4.7	Radiation, Stefan's law of radiation	Summarize Stefan's law of radiation	К2
4.8	Solar constant	Calculate the value of solar constant	К3
4.9	Angstrom's Pyrheliometer, Temperature of the Sun	Estimate the temperature of the Sun using Angstrom's Pyrheliometer	K5
V	Optics and Spectroscopy		
5.1	Electromagnetic spectrum	Describe electromagnetic spectrum	K2
5.2	Spectral response to human eye	Discuss the Spectral response to human eye	K2
5.3	UV and IR Spectroscopy	Distinguish between UV and IR Spectroscopy	K4
5.4	Raman effectexplanation on the basis of quantum theory	Explain Raman effect on the basis of quantum theory	K2
5.5	Experimental arrangement	Sketch out the experimental arrangement to Raman effect study	K2
5.6	Application of Raman Effect	Utilize Raman effect to characterize different samples	К3
5.7	Fibre Optic communicationIntroduction	Outline the principle of fibre optic communication	K2

5.8	Optical fibre, numerical aperture, coherent bundle	Explain the construction of optical fibre (K2)	
		Deduce an expression for numerical aperture (K4)	K4
5.9	Fibre optic communication systems and their advantages	Summarize fibre optic communication systems and their advantages	K2

4. MAPPING SCHEME (PO, PSO & CO)

U18PHY0		РО									PSO			
1	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4	
CO1	Η	М	М	L	L	L	М	L	L	Н	Н	Н	Н	
CO2	Η	М	М	М	М	L	L	L	L	Н	Н	М	М	
CO3	М	М	Н	Н	М	L	М	L	L	Н	Н	Н	М	
CO4	Н	Н	Н	М	М	L	М	L	L	Н	Н	Н	М	
CO5	Н	Н	Н	Н	М	М	Н	М	М	Н	Н	М	М	
CO6	Н	М	Н	Н	М	L	Н	М	М	Н	Н	М	Н	

L-Low M-Moderate H-High

5.COURSEASSESSMENTMETHODS Direct

- 1. ContinuousAssessmentTest(ModelExams) I, II
- 2. Openbooktest; Cooperative learning report, Assignment, Seminar, Group Presentation,

Problem solving etc.

3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co-ordinator:Mr. A. Krishnamoorthy

ALLIED PHYSICS I (FOR II B. Sc. CHEMISTRY)

MECHANICS, SOUND, THERMAL PHYSICS AND OPTICS

SEMESTER:III

CODE:U18PHY33

CREDITS :3

NO. OFHOURS/WEEK: 4

1. COURSE OUTCOMES (CO)

After the successful completion of this course the student will be able to:

CO.NO.	Course Outcomes	Level	Unit Covered
CO1	Deduce Centre of Gravity for different geometrical structures	K4	I
CO2	Measure the metacentric height of a ship with the knowledge of stability of floating bodies	К5	Ι
CO3	Investigate the acoustics of buildings and Simple Harmonic Motion (SHM)	K4	П
CO4	Determine the various elastic modulii of materials	K5	III
CO5	Estimate the thermal properties of solids and fluids.	K5	IV
CO6	Explain the principles of spectroscopy and the importance of fibre optic communication systems.	К5	V

2. A. SYLLABUS

Unit- I: Mechanics

Centre of gravity – General formula- centre of gravity of a solid hemisphere – hollow hemisphere – solid cone – tetrahedron - stability of floating bodies – Meta centre – metacentric height – determination of metacentric height of a ship.

Unit- II: Sound, Ultrasonic and Acoustics

Simple harmonic motion – composition of two simple harmonic motions along a straight line and at right angles to each other – Lissajou's figures and their applications.

Ultrasonic – production – Magnetostriction oscillator- properties– applications– Acoustics of buildings – Reverberation and Reverberation time - Sabine's formula – Factors affecting the acoustics of buildings.

(12 Hours)

Unit- III: Properties of Matter

Stress – Strain – Hooke's law – Different moduli of elasticity – Young's modulus (E) – Rigidity modulus(G) – Bulk modulus(K) – Poisson's ratio – work done in linear, shearing and volume strain – Relation connecting elastic constants and Poisson's ratio – Bending of beams-bending Moment-Measurement of Young's modulus by non-uniform bending and Rigidity modulus by static torsion (Searle's apparatus) scale and telescope method.

Unit- IV: Thermal Physics

Newton's law of cooling – verification of Newton's law of cooling – specific heat capacity of a liquid by cooling – Bomb calorimeter – Conduction – coefficient of thermal conductivity – good and bad conductors – Lee's disc method for bad conductors – Stefan's law of radiation – Solar constant – Angstrom's Pyrheliometer – Temperature of the Sun.

Unit- V: Optics and Spectroscopy

Electromagnetic spectrum – spectral response to human eye – UV and IR Spectroscopy – Raman Effect – Explanation on the basis of quantum theory – Experimental arrangement – application of Raman Effect – Fibre Optic Communication– Introduction– optical fibre – numerical aperture – coherent bundle – fibre optic communication systems and their advantages.

B. TOPICS FOR SELF-STUDY

1. Moments of inertia of plane and circular disc area.:

https://www.youtube.com/watch?v=nahs3iDvboY

2. Moment of force about a point and about an axis.

https://nptel.ac.in/courses/105/104/105104160/

3. Fiber bend losses

https://onlinecourses-archive.nptel.ac.in/noc17_ph01/preview

4. Thermodynamic laws.

https://nptel.ac.in/courses/112/105/112105220/

C. TEXT BOOKS

1. R. Murugeshan, Properties of Matter, S. Chand and Co., New Delhi, 2004.

2. A. Sundaravelusamy, Allied Physics Paper – I, Priya Publications, 2012.

D. REFERENCES BOOKS

1. R. Murugeshan, Mechanics and Mathematical Methods, S. Chand & Co., 2014.

E. WEBLINKS

- 1. http://www.brainkart.com/article/Types-of-Moduli-of-Elasticity_6850/
- 2. https://nptel.ac.in/courses/115/107/115107095/

(12 Hours)

- 3. https://www.tutorialspoint.com/electronic_measuring_instruments/electronic_measuring __instruments_lissajous_figures.htm
- 4. https://ncert.nic.in/ncerts/l/kelm107.pdf

Unit/Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of Transaction		
Ι	Mechanics				
1.1	Centre of Gravity	Define Centre of Gravity	K1		
1.2	General formula for Solid hemisphere, Hollow	Identify the Centre of Gravity for different geometrical shapes.(K3)			
	hemisphere,Solid Cone and Tetrahedron	Explain the Centre of gravity of solid hemisphere and hollow hemisphere. (K2)	К3		
		Derive the expression for Centre of gravity of a solid cone and tetrahedron (K3)			
1.3	Stability of floating bodies	К2			
1.4	Meta Centre and metacentric height	Outline meta Centre and metacentric height.	K2		
1.5	Determination of metacentric height of a ship	Measure the metacentric height of a ship	К5		
II	Sound, Ultrasonics and Acou	stics			
2.1	Simple Harmonic Motion	Define Simple Harmonic Motion (K1)			
2.1	(SHM)	Explain Simple Harmonic Motion (K2)	К2		
2.2	Composition of two simple harmonic motions along a straight line and at right angles to each other	Evaluate the composition of two SHM along a straight line and at right angles to each other	К5		
2.3	Lissajiou's figures and their applications	Outline Lissajiou's figure (K2) List the application of Lissajou's figures (K1)	K2		
2.4	Ultrasonics, Production	Define Ultrasonics (K1)			

		Summarize the methods of ultrasonic waves production (K2)	K2
2.5	Magnetostriction oscillator	Explain Magnetostriction oscillator	K2
2.6	Ultrasonic Properties, Applications	List the properties of Ultrasonic waves (K1)	
		Discuss the applications of Ultrasonic waves (K2)	K2
2.7	Acoustics of buildings, Reverberation and Reverberation time	Outline the reverberation and reverberation time	K2
2.8	Sabine's formula	Derive the Sabine's formula	K3
2.9	Factors affecting the acoustics of buildings	Inspect the parameters affecting the acoustics of buildings	K4
III	Properties of Matter		
3.1	Stress – Strain	Interpret Stress and Strain variation	K2
3.2	Hooke's law	Explain Hooke's Law	K2
3.3	Different moduli of elasticity Young's modulus, Rigidity	Classify different types of moduli of elasticity	
	modulus, Bulk modulus	Deduce the relation between different types of elastic modulii	K4
3.4	Poisson's ratio	Define Poisson's ratio	K1
3.5	Work done in linear, shearing and volume strain	Estimate the work done in linear, shear and volume strain	K5
3.6	Relation connecting elastic constants and Poisson's ratio	Derive the relation between elastic constants and Poisson's ratio	K4
3.7	Bending of beams	Explain neutral axis and bending moment (K2)	
		Estimate the bending moment of a beam (K5)	K5
3.8	Measurement of Young's modulus by non-uniform bending	Determine the Young's modulus of a material by non-uniform bending	K5
3.9	Rigidity modulus by static torsion (Searle's apparatus) scale and telescope method	Determine the Rigidity modulus by static torsion setup	К5
IV	Thermal Physics		

4.1	Newton's law of cooling	Outline Newton's law of cooling	K2
4.2	Verification of Newton's law of cooling	Justify Experimentally the verification of Newton's law of cooling	K5
4.3	Specific heat capacity	Explain specific heat capacity at constant volume and constant pressure	K2
4.4	Specific heat capacity of a liquid by cooling -Bomb calorimeter	Determine the specific heat capacity of a liquid using Bomb calorimeter	K5
4.5	Conductors, Good and bad conductors	Distinguish between Good & bad conductors	K4
4.6	Lee's disc method for bad	Estimate the co-efficient of thermal conductivity of bad conductors by Lee's disc method	K5
4.7	Radiation, Stefan's law of radiation	Summarize Stefan's law of radiation	K2
4.8	Solar constant	Calculate the value of solar constant	K3
4.9	Angstrom's Pyrheliometer, Temperature of the Sun	Estimate the temperature of the Sun using Angstrom's Pyrheliometer	K5
V	Optics and Spectroscopy		
5.1	Electromagnetic spectrum	Describe electromagnetic spectrum	K2
5.2	Spectral response to human eye	Discuss the Spectral response to human eye	K2
5.3	UV and IR Spectroscopy	Distinguish between UV and IR Spectroscopy	K4
5.4	Raman effectexplanation on the basis of quantum theory	Explain Raman effect on the basis of quantum theory	K2
5.5	Experimental arrangement	Sketch out the experimental arrangement to Raman effect study	K2
5.6	Application of Raman Effect	Utilize Raman effect to characterize different samples	K3
5.7	Fibre Optic communicationIntroduction	Outline the principle of fibre optic communication	K2
5.8	Optical fibre, numerical aperture, coherent bundle	Explain the construction of optical fibre (K2)	
		Deduce an expression for numerical aperture (K4)	K4

5.9 5.9 Systems and their advantages communication systems and their advantages K2	5.9	systems and their advantages		K2
---	-----	------------------------------	--	----

4. MAPPING SCHEME (PO, PSO & CO)

U18PHY3		РО								PSO				
3	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4	
CO1	Η	М	М	L	L	L	М	L	L	Н	Н	Н	Н	
CO2	Н	М	М	М	М	L	L	L	L	Н	Н	М	М	
CO3	М	М	Н	Н	М	L	М	L	L	Н	Н	Н	М	
CO4	Η	Н	Н	М	М	L	М	L	L	Н	Н	Н	М	
CO5	Η	Н	Н	Н	М	М	Н	М	М	Н	Н	М	М	
CO6	Н	М	Н	Н	М	L	Н	М	М	Н	Н	М	Н	

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

1. ContinuousAssessmentTest(ModelExams) I, II

2. Openbooktest; Cooperativelearningreport, Assignment, Seminar, GroupPresentation,

Problem solving etc.

3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co-ordinator: Mr. A. Krishnamoorthy

ALLIED PHYSICS II (FOR I B. Sc.MATHS)

ELECTRICITY, ATOMIC, NUCLEAR PHYSICS AND ELECTRONICS

SEMESTER: IV

COURSE CODE: U18PHY02

CREDITS: 4

NO. OF HOURS/WEEK: 4

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO.NO.	Course Outcomes	Level	Unit Covered
CO1	Explain Coloumb's theorem and the principle of capacitors.	К2	Ι
CO2	Assess effective current and voltage in electrical circuits using kirchoff's law and self and mutual inductance of the coils using principle of electromagnetic induction.	К5	П
СО3	Utilize X-ray diffraction technique to characterize the samples and identify the Quantum numbers based on vector atom model.	К3	ш
CO4	Explain various nuclear models and the principle of particle detectors.	K2	IV
CO5	Classify solids based on band theory and categorize the semiconductors.	K4	V
CO6	Evaluate numerical equivalence between different number systems and simplified Boolean expression.	К5	V

2. A. SYLLABUS

Unit-I: Electrostatics

Coloumb's theorem– Mechanical force on the surface of a charged conductor– Capacitors– Expression for capacitance of a capacitor–Principle of a capacitor– Energy of a charged capacitor– Loss of energy due to sharing of charges-Cylindrical capacitor-Spherical capacitor.

Unit-II: Electricity

Kirchoff's Laws - Wheatstone bridge - Carey Foster's bridge – Determination of specific resistance – Laws of electromagnetic induction – expression for induced emf – self and mutual induction – Rayleigh's method of finding self inductance of a coil – Determination of mutual inductance using BG -Coefficient of coupling – Eddy currents and its applications.

(12 Hours)

Unit-III: Atomic Physics

Vector atom model – Pauli's exclusion principle– various quantum numbers – quantization of orbits -X–rays – continuous and characteristic X–rays–Moseley's law and its importance - Bragg's Law -Miller indices – Estimation of cell dimension using Laue method.

Unit-IV: Nuclear Physics

Basic concepts - Binding energy-nucleus size, charge, mass, spin – nuclear models– liquid drop model– shell model - Particle detectors – cloud chamber – Bubble chamber – Photographic emulsion technique.

Unit- V: Electronics and Digital Electronics

Band theory of solids-Types of Semiconductor-Intrinsic and Extrinsic-P-N junction diode-Biasing-Zener diode

Basic logic gates– AND, OR, NOT, NOR and NAND gates– Boolean algebra – Laws of Boolean algebra– De–Morgan's theorems– Verification using truth tables-Decimal, Binary, Octal, Hexadecimal number systems and their mutual conversion.

B.TOPICS FOR SELF STUDY

1. Applications of Capacitors

https://www.elprocus.com/capacitors-types-applications

2. Principle of Transformer

https://byjus.com/jee/transformer

- 3. Production of X-Ray https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/production-of-x-rays
- 4. Magic Numbers https://www.science.gov/topicpages/m/magic+numbers
- 5. Characteristics of P-N Junction diode

https://byjus.com/physics/p-n-junction

C. TEXT BOOKS

- 1. BrijLal and N. Subrahmanyam, Electricity and Magnetism, Palaniyappa, Chennai, 1974.
- 2. R. Murugeshan and KiruthigaSivaprasath, Modern Physics 18e, S. Chand and Co., 2014.
- 3. V.K. Mehta and RohitMehta, Principles of Electronics 7e, S. Chand, New Delhi, 2005.

(12 Hours)

(12 Hours)

D. REFERENCE BOOKS

- 1. S.L. Gupta and V. Kumar, Hand Book of Electronics, PragatiPrakashan, Meerut, 1970.
- 2. R.P. Jain, Modern Digital Electronics, Tata McGraw Hill, New Delhi, 1984.

E. WEBLINKS

- 1. https://en.wikipedia.org/wiki/Nuclear_physics
- 2. https://www.eia.gov/energyexplained/electricity/the-science-of-electricity.php
- 3. https://www.osti.gov/biblio/4379156-introduction-atomic-nuclear-physics-fifth-edition

Unit/Section	Course Content	Course Content Learning Outcomes						
Ι	Electro Statics							
1.1	Coloumb's theorem	Explain Coloumb's theorem	K2					
1.2	Mechanical force on the surface of a charged conductor	Derive the mechanical force on the surface of a charged conductor	K3					
1.3	Capacitors	Recall Capacitors	K1					
1.4	Expression for capacitance of a capacitor.	Derive the capacitance of a capacitor	K3					
1.5	Principle of a capacitor	Explain the principle of a capacitor	K2					
1.6	Energy of a charged capacitor	Determine the energy of a charged capacitor	K5					
1.7	Loss of energy due to sharing of charges.	Determine the loss of energy due to sharing of charges.	K5					
1.8	Cylindrical capacitors, Spherical capacitors	Determine the capacitance of cylindrical & Spherical capacitors	K5					
II	Electricity							
2.1	Kirchoff's laws	State Kirchoff's laws	K1					
2.2	Wheat stone bridge	Explain Wheat stones bridge	K2					
2.3	Carey Foster's bridge	Explain Carey Foster's bridge	K5					
2.4	Determination of specific resistance	Evaluate determination of specific resistance	K5					
2.5	Laws of electromagnetic induction	State the laws of electromagnetic induction	K1					
2.6	Expression for induced emf	Derive the expression for induced emf	K1					
2.7	Self and mutual induction	Derive the expression for self induction and mutual	K4					

		induction				
2.8	Rayleigh's method of	Explain Rayleigh's method of				
	finding self inductance of	1 0 0	K2			
	a coil	coil				
2.9	Determination of mutual					
2.7	inductance using BG	inductance using BG	К5			
2.9.1		Derive the expression for				
2.7.1	Coefficient of coupling	coefficient of coupling	K2			
202	Edder arments and its					
2.9.2	Eddy currents and its	Explain Eddy currents and its	K5			
	applications	applications				
III	Atomic Physics					
3.1	Vector atom model	Explain Vector atom model	K2			
3.2	Pauli's exclusion	State Devili's evolution mineral	V1			
	principle	State Pauli's exclusion principle	K 1			
3.3	Various quantum	Classify Various quantum				
	numbers	numbers	K2			
3.4		Outline the Quantization of				
5.7	Quantization of orbits	orbits	K5			
3.5	X_rave	Recall X-rays	K1			
<u> </u>	X-rays Continuous and		<u>NI</u>			
3.0		Explain Continuous and	K5			
	characteristic x-rays	characteristic x-rays				
3.7	Moseley's law and its	Explain Moseley's law and its	K2			
	importance	importance				
3.8	Bragg's law	State Bragg's law	K1			
	Miller indices	Explain Miller indices	K2			
3.9	Estimation of cell					
	dimension using Laue	Estimate the cell dimension	К5			
	method	using Laue method	IX.			
IV	Nuclear Physics					
4.1	Nucleus basic concepts	Explain the basic concepts of	K2			
		nucleus				
4.2	Binding energy	Define Binding energy	K1			
4.3	Nucleus size, charge,	Recall Nucleus size, charge,	K1			
	mass, spin	mass, spin	K1			
4.4	Nuclear models -					
	Liquid drop model,	Explain - Liquid drop model/	К2			
	shell model	shell model	114			
4.5	Particle detectors	Compare Particle datastars	K2			
		Compare Particle detectors				
4.6	Cloud chamber	Explain Cloud chamber	<u>K5</u>			
4.7	Bubble chamber	Explain Bubble chamber	K5			
4.8	Photographic emulsion	Analyze Photographic emulsion	K4			
	technique	technique	**T			
V	Electronics and Digital	Electronics				
5.1	Band theory of solids	Explain Band theory of solids	K2			
5.2	Types of	· · · · ·				
5.2	semiconductor -	Classify the types of semi-	K2			
	intrinsic and extrinsic	conductor	114			
5 2		Evaloin the bigging of D.M.				
5.3	P-N junction diode -	Explain the biasing of P-N	K2			
	Biasing	junction diode				
		Discuss the Zener diode K				
5.4	Zener diode					
5.4 5.5	Zener diode Basic logic gates	Classify Basic logic gates	K3 K2			

5.7	Boolean algebra	Apply Boolean algebra to solve logic problems	К3
5.8	Laws of Boolean algebra	Illustrate the laws of Boolean algebra	К2
5.9	De-Morgon's theorems - verification using truth tables	Make use of De-Morgon's theorems to verify truth tables	К3
5.9.1	Decimal, binary, octal, Hexadecimal numbers systems and their mutual conversion	Analyze the mutual conversion of Decimal, binary, octal and hexa decimal number systems and their mutual conversion	K4

4. MAPPING SCHEME (PO, PSO& CO)

U18PHY02		РО								PSO			
U10F ff 1 U2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	L	М	L	Н	М	L	-	-	Н	L	L	М
CO2	Н	Η	Н	L	Н	М	М	-	-	Н	L	L	М
CO3	Η	Μ	М	L	М	L	L	-	-	М	L	L	L
CO4	Η	Μ	М	L	L	L	L	-	-	Н	L	L	М
CO5	Н	L	L	L	L	L	L	-	-	М	L	L	L
CO6	Н	М	Н	Н	Н	М	М	-	-	Н	Н	Н	Н
	1	L-Low					M-Moderate				<u> </u>	H-High	

5. COURSE ASSESMENT METHODS

Direct

- 1. Continuous Assessment Test (Model exams) I,II
- 2. Open book test; Cooperative learning report, assignment, seminar, group presentation, Project report, poster preparation, Problem solving etc.

Indirect

1. Course-end survey

Course Co-ordinator: Mr. T. Yesudoss

ALLIED PHYSICS II (FOR II B. Sc.CHEMISTRY)

ELECTRICITY, ATOMIC, NUCLEAR PHYSICS AND ELECTRONICS

SEMESTER: IV

CODE: U18PHY44 NO. OF HOURS/WEEK: 4

CREDITS: 4

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO.NO.	Course Outcomes	Level	Unit Covered
C01	Explain Coloumb's theorem and the principle of capacitors.	K2	Ι
CO2	Assess effective current and voltage in electrical circuits using kirchoff's law and self and mutual inductance of the coils using principle of electromagnetic induction.	K5	п
CO3	Utilize X-ray diffraction technique to characterize the samples and identify the Quantum numbers based on vector atom model.	К3	Ш
CO4	Explain various nuclear models and the principle of particle detectors.	K2	IV
CO5	Classify solids based on band theory and categorize the semiconductors.	K4	V
CO6	Evaluate numerical equivalence between different number systems and simplified Boolean expression.	К5	V

2. A. SYLLABUS

Unit-I : Electrostatics

Coloumb's theorem– Mechanical force on the surface of a charged conductor– Capacitors– Expression for capacitance of a capacitor–Principle of a capacitor– Energy of a charged capacitor– Loss of energy due to sharing of charges-Cylindrical capacitor-Spherical capacitor.

Unit-II: Electricity

Kirchoff's Laws - Wheatstone bridge - Carey Foster's bridge – Determination of specific resistance – Laws of electromagnetic induction – expression for induced emf – self and mutual induction – Rayleigh's method of finding self inductance of a coil – Determination of mutual inductance using BG -Coefficient of coupling – Eddy currents and its applications.

(12 Hours)

(12 Hours)

Unit- III: Atomic Physics

Vector atom model – Pauli's exclusion principle– various quantum numbers – quantization of orbits - X–rays – continuous and characteristic X–rays–Moseley's law and its importance - Bragg's Law - Miller indices – Estimation of cell dimension using Laue method.

Unit- IV: Nuclear Physics

Basic concepts - Binding energy-nucleus size, charge, mass, spin – nuclear models– liquid drop model– shell model - Particle detectors – cloud chamber – Bubble chamber – Photographic emulsion technique.

Unit- V: Electronics and Digital Electronics

Band theory of solids-Types of Semiconductor-Intrinsic and Extrinsic-P-N junction diode-Biasing-Zener diode

Basic logic gates– AND, OR, NOT, NOR and NAND gates– Boolean algebra – Laws of Boolean algebra– De–Morgan's theorems– Verification using truth tables-Decimal, Binary, Octal, Hexadecimal number systems and their mutual conversion.

B.TOPICS FOR SELF STUDY

- 1. Applications of Capacitors https://www.elprocus.com/capacitors-types-applications
- 2. Principle of Transformer https://byjus.com/jee/transformer
- 3. Production of X-Ray https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/production-of-x-rays
- 4. Magic Numbers https://www.science.gov/topicpages/m/magic+numbers
- 5. Characteristics of P-N Junction diode https://byjus.com/physics/p-n-junction

C. TEXT BOOKS

- 1. BrijLal and N. Subrahmanyam, Electricity and Magnetism, Palaniyappa, Chennai, 1974.
- 2. R. Murugeshan and KiruthigaSivaprasath, Modern Physics 18e, S. Chand and Co., 2014.
- 3.V.K. Mehta and RohitMehta, Principles of Electronics 7e, S. Chand, New Delhi, 2005.

(12 Hours)

(12 Hours)

(12 Hours)

D. REFERENCE BOOKS

- 1. S.L. Gupta and V. Kumar, Hand Book of Electronics, PragatiPrakashan, Meerut, 1970.
- 2. R.P. Jain, Modern Digital Electronics, Tata McGraw Hill, New Delhi, 1984.

E. WEBLINKS

- 1. https://en.wikipedia.org/wiki/Nuclear_physics
- 2. https://www.eia.gov/energyexplained/electricity/the-science-of-electricity.php
- 3. https://www.osti.gov/biblio/4379156-introduction-atomic-nuclear-physics-fifth-edition

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Content	ourse Content Learning Outcomes					
I	Electro Statics						
1.1	Coloumb's theorem	Explain Coloumb's theorem	K2				
1.2	Mechanical force on the surface of a charged conductor	Derive the mechanical force on the surface of a charged conductor	K3				
1.3	Capacitors	Recall Capacitors	K1				
1.4	Expression for capacitance of a capacitor.	Derive the capacitance of a capacitor	K3				
1.5	Principle of a capacitor	Explain the principle of a capacitor	K2				
1.6	Energy of a charged capacitor	Determine the energy of a charged capacitor	K5				
1.7	Loss of energy due to sharing of charges.	Determine the loss of energy due to sharing of charges.	К5				
1.8	Cylindrical capacitors, Spherical capacitors	Determine the capacitance of cylindrical & Spherical capacitors	K5				
II	Electricity						
2.1	Kirchoff's laws	State Kirchoff's laws	K1				
2.2	Wheat stone bridge	Explain Wheat stones bridge	K2				
2.3	Carey Foster's bridge	Explain Carey Foster's bridge	K5				
2.4	Determination of specific resistance	Evaluate determination of specific resistance	К5				
2.5	Laws of electromagnetic induction	State the laws of electromagnetic induction	K1				
2.6	Expression for induced emf	Derive the expression for induced emf	K1				
2.7	Self and mutual induction	Derive the expression for self induction and mutual induction	K4				
2.8	Rayleigh's method of	Explain Rayleigh's method of	K2				

	finding self inductance o a coil	f finding self inductance of a coil	
2.9	Determination of mutual		K5
2.9.1	inductance using BG Coefficient of coupling	inductance using BGDerive the expression for coefficient of coupling	K2
2.9.2	Eddy currents and its applications	Explain Eddy currents and its applications	K5
III	Atomic Physics	approations	
3.1	Vector atom model	Explain Vector atom model	K2
3.2	Pauli's exclusion		
	principle	State Pauli's exclusion principle	K1
3.3	Various quantum numbers	Classify Various quantum numbers	K2
3.4	Quantization of orbits	Outline the Quantization of orbits	K5
3.5	X-rays	Recall X-rays	K1
3.6	Continuous and	Explain Continuous and characteristic x-rays	K5
3.7	characteristic x-rays Moseley's law and its importance	Explain Moseley's law and its importance	K2
3.8	Bragg's law	State Bragg's law	K1
2.0	Miller indices	Explain Miller indices	K1 K2
3.9	Estimation of cell dimension using Laue method	Estimate the cell dimension using Laue method	K5
IV	Nuclear Physics		
4.1	Nucleus basic concepts	Explain the basic concepts of nucleus	K2
4.2	Binding energy	Define Binding energy	K1
4.3	Nucleus size, charge, mass, spin	Recall Nucleus size, charge, mass, spin	K1
4.4	Nuclear models - Liquid drop model, shell model	Explain - Liquid drop model/ shell model	K2
4.5	Particle detectors	Compare Particle detectors	K2
4.6	Cloud chamber	Explain Cloud chamber	K5
4.7	Bubble chamber	Explain Bubble chamber	K5
4.8	Photographic emulsion technique	Analyze Photographic emulsion technique	K4
V	Electronics and Digital	Electronics	
5.1	Band theory of solids	Explain Band theory of solids	K2
5.2	Types of semiconductor - intrinsic and extrinsic	Classify the types of semi- conductor	K2
5.3	P-N junction diode - Biasing	Explain the biasing of P-N junction diode	K2
5.4	Zener diode	Discuss the Zener diode	K3
5.5	Basic logic gates	Classify Basic logic gates	K2
5.6	AND, OR, NOT, NOR, and NAND gates	Compare AND, OR, NOT, NOR, and NAND gates	K4
5.7	Boolean algebra	Apply Boolean algebra to solve logic problems	K3

5.8	Laws of Boolean algebra	Illustrate the laws of Boolean algebra	K2
5.9	De-Morgon's theorems - verification using truth tables	Make use of De-Morgon's theorems to verify truth tables	К3
5.9.1	Decimal, binary, octal, Hexadecimal numbers systems and their mutual conversion	Analyze the mutual conversion of Decimal, binary, octal and hexa decimal number systems and their mutual conversion	K4

4. MAPPING SCHEME (PO, PSO& CO)

U18PHY44		РО								PSO			
010111144	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	L	М	L	Н	М	L	-	-	Н	L	L	М
CO2	Η	Η	Н	L	Н	М	М	-	-	Н	L	L	М
CO3	Η	М	М	L	Μ	L	L	-	-	М	L	L	L
CO4	Η	М	М	L	L	L	L	-	-	Н	L	L	М
CO5	Η	L	L	L	L	L	L	-	-	М	L	L	L
CO6	Η	М	Η	Η	Η	М	М	-	-	Н	Н	Н	Н

L-Low

M-Moderate

H-High

5. COURSE ASSESMENT METHODS

Direct

1. Continuous Assessment Test (Model exams) I,II

2. Open book test; Cooperative learning report, assignment, seminar, group presentation, Project report, poster

preparation, Problem solving etc.

Indirect

1. Course-end survey

Course Co-Ordinator: Mr. T. Yesudoss

APPLIED PHYSICS I (FOR II B. Sc.COMPUTER SCIENCE)

ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM

SEMESTER: III

CODE: U13PHZ34

CREDITS: 3

NO. OF HOURS/ WEEK: 4

1. COURSE OUTCOMES (CO)

After the Completion of the Course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the principle of Electrostatics	K2	I
CO2	Estimate the capacity of Spherical and cylindrical capacitors	K5	Ι
CO3	Classify materials based on its magnetic properties	K3	II
CO4	Measure current and resistance in electrical circuits using Kirchhoff's laws and Wheatstone's principle	К5	Ш
CO5	Analyze self-inductance and Mutual inductance using Faraday's laws of Electromagnetic induction	K4	IV
CO6	Examine current and impedance in Single, double and tri component	K4	V

2. A. SYLLABUS

Unit- I: Electrostatics

Fundamentals of electrostatics – Gauss theorem - Applications – Intensity at a point between two charged parallel plane conductors – Intensity at a point due to uniformly charged cylinder – Action of points – Capacitance – Principle of a capacitor – Spherical and cylindrical capacitors – Energy of a charged capacitor – Energy loss due to sharing of charges – Types of capacitors.

Unit- II: Magnetostatics

Magnetic field – Magnetic flux density – Magnetization – Intensity of magnetization – Permeability – Susceptibility – Relation – Magnetic materials – Properties of dia, para and ferro magnetic materials – Hysteresis – Magnetometer method – Finding coercivity, retentivity and energy loss from hysteresis loop (BH Curve).

Unit- III: Current Electricity

Current – Definition of Ampere – Units of voltage and resistance – Ohm's law – Kirchoff's law – Wheatstone's bridge – Carey Foster's bridge – Potentiometer – Measurement of current and resistance – Force between two parallel conductors carrying current – Fleming's left hand rule – Theory of ballistic galvanometer – conversion of galvanometer into an ammeter and voltmeter.

(12 hours)

(12 hours)

(12 hours)

Unit- IV: Electromagnetic Induction

Laws of electromagnetic induction – Self-induction - Determination of self-inductance by Anderson's method – Mutual induction – Determination of mutual inductance by absolute method - Relation between induced emf and mutual inductance –Coefficient of coupling - Eddy current and its applications.

Unit- V: Alternating Current

AC Circuits with single components – Double components – Measurement of current and voltage – Power in AC Circuit – Power factor derivation – Wattless current – Choke-series and parallel resonance circuits – Impedance – Q factor – Selectivity and Sharpness of resonance – Oscillatory discharge of a condenser.

B. TOPICS FOR SELF STUDY

1. Basic laws of Electricity and Magnetism

https://www.amherst.edu > system > files > media

2. Electric field due to system of charges

https://www.brainkart.com/article/Electric-field-due-to-the-system-of-point-charges_38361/

3. Basics of AC circuits

C. TEXT BOOKS :

- BrijLal and N. Subrahmanyam, Electricity and Magnetism, RatanPrakashanMandir, New Delhi, 1995(unit 1 to 5)
- 2. R. Murugeshan, Electricity and Magnetism 10e, S.Chand and Company Ltd, 2017

D. REFERENCE BOOKS :

- 1. D.N .Vasudeva, Fundamentals of Magnetism and Electricity, S.Chand& co, 2007
- N.K.Sehgal , K.L Chopra and D.L. Sehgal , Electricity and magnetism 6e, Sultan chand and sons , 2004

E. WEBLINKS

- 1. https://byjus.com/physics/electricity-and-magnetism/
- 2. https://www.thoughtco.com/introduction-electricity-and-magnetism-4172372

(12 hours)

(12 hours)

3. SPECIFIC LEARNING OUTCOME (SLO)

Unit/ Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic Levels of Transaction
Ι	Electrostatics		
1.1	Electrostatics	Explain the fundamental of electrostatics	K2
1.2	Gauss theorem	Explain Gauss theorem	K2
1.3	Intensity at a point between two plane parallel conductor	Apply Gauss theorem to calculate intensity at a point between two plane parallel conductor	К3
1.4	Intensity at a point due to uniformly charged cylinder	Apply Gauss theorem to calculate intensity at a point due to uniformly charged cylinder	К3
1.5	Action of Points	Explain Action of points	K2
1.6	Capacitance	Explain capacitance of a capacitor	K2
1.7	Principle of a capacitor,	Explain the Principle of a capacitor	K2
1.8	Spherical Capacitor	Estimate the capacitance of a spherical capacitor	K5
1.9	cylindrical capacitor	Determine the capacitance of a cylindrical capacitor	К5
1.10	Energy of a charged capacitor,	Relate energy equation of a charged capacitor	K2
1.11	Energy loss due to sharing of charges	Estimate the loss of energy due to sharing of charges	K3
1.12	Types of Capacitors	Classify the various types of capacitor	K4
II	Magnetostatics		
2.1	Magnetic field ,Magnetic flux density	Recall Magnetic field and Magnetic flux density	K1
2.2	Magnetization, Intensity of magnetization	Explain Magnetization and Intensity of magnetization	K2
2.3	Permeability-	Relate Permeability and	K2

	Susceptibility Relation	Susceptibility	
2.4	Magnetic materials	Classify magnetic materials	K2
2.5	Properties of dia, para and a ferro magnetic materials	Compare the three types of magnetic materials	K4
2.6	Hysteresis	Define hysteresis	K1
2.7	Hysteresis – Magnetometer method	Determine susceptibity of a given liquid using magnetometer method	К5
2.8	Finding Coercivity, retentivity	Interpret Coercivity and retentivity from hysteresis loop	K2
2.9	Energy loss from Hysteresis loop(BH curve)	Estimate Energy loss from Hystersis loop	К5
III	Current electricity		
3.1	Current	Explain current	K2
3.2	Definition of Ampere	Define unit of current	K1
3.3	Units of Voltage and resistance, Ohm's law	DefineOhm's law Relate voltage, current and resistance	К2
3.4	Kirchhoff's law	Explain Kirchhoff's law	K2
3.5	Wheatstone's bridge	Apply Kirchhoff's law and deduce the condition of Wheatstone's bridge	К3
3.6	Carey Foster's bridge law	Estimate the specific resistance of a given coil using carey Foster's bridge	К5
3.7	Potentiometer	Explain the principle of Potentiometer	K2
3.8	Measurement of Current and Resistance	Measure current and resistance of a wire using Potentiometer	K5
3.9	Force between two parallel conductors carrying current	Explain the force between two parallel conductors carrying current	K2
3.10	Fleming's left hand rule	Define Fleming's left hand rule	K1
3.11	Theory of Ballistic galvanometer	Explain the theory of Ballistic galvanometer	K4
3.12	Conversion of Galvanometer into an ammeter	Construct a circuit to convert Galvanometer into an ammeter	К3
3.13	Conversion of Galvanometer into a voltmeter	Construct a circuit to convert Galvanometer into a voltmeter	К3
IV	Electromagnetic induct		
4.1	Laws of electromagnetic induction	Explain the laws of Electromagnetic induction	K2

4.2	Self induction	Explain self induction of a coil	K2
4.3	Determination of self induction by Anderson's method	Determine Self induction of a coil by Anderson's method	К5
4.4	Mutual induction	Explain Mutual induction of a pair of coils	K2
4.5	Determination of Mutual induction by Absolute method	Determine mutual induction of a pair of coil by Absolute method	K5
4.6	Relation between induced emf and mutual inductance	Relate induced emf and mutual inductance	K2
4.7	Coefficient of coupling	Explain Coefficient of coupling	K2
4.8	Eddy current	Explain Eddy current	K2
4.9	Application of Eddy current	Summarize the application of Eddy current	K4
V	Alternating currents		
5.1	AC circuits with single components	Measure mean current and impedance in Ac circuit with single components	K3
5.2	Ac circuits with double components	Measure mean current and impedance in with double components	K3
5.3	Measurement of current and voltage	Measure current and voltage in Ac circuits	K3
5.4	Power in Ac circuits	Explain power in Ac circuits	K2
5.5	Power factor derivation	Derive an expression for Power factor in Ac circuit	K2
5.6	Wattles current –choke	Explain wattles current and choke	K2
5.7	Series resonance circuit	Examine the resonance frequency in Series resonance circuit	K4
5.8	Parallel resonance circuits,	Examine Q factor of a coil in Parallel Resonance circuit	K4
5.9	Impedance	Define Impedance	K1
5.10	Q factor	Explain Q-factor	K2
5.11	Selectivity and sharpness of resonance	Explain Selectivity and sharpness of resonance	K2
5.12	Oscillatory discharge of a condenser	Analyze the oscillatory discharge of a condenser	K4

4. MAPPING SCHEME (PO,PSO &CO)

U13PHZ3		РО									PSO			
4	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4	
CO1	Η	М	L	L	L	L	-	-	-	Н	L	L	М	
CO2	М	М	М	L	Н	М	-	-	L	М	М	Н	L	
CO3	М	L	L	-	М	L	L	-	L	М	Н	L	L	
CO4	Н	М	М	Н	М	L	L	-	L	М	М	Н	L	
CO5	М	М	L	М	Н	L	L	L	М	М	М	М	М	
CO6	М	L	М	М	Н	М	L	L	L	М	L	Н	L	

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHOD

Direct

- 1. ContinuousAssessmentTest(ModelExams) I,II
- 2. Openbooktest, Quizzes , Assignment, Seminar, Problem Solving , Slip test, Surprise test etc.
- 3. EndSemesterExamination

Indirect

1. Course-endsurvey/Feedback

Course Co-Ordinator: Mrs. S. Pauline Sheeba

APPLIED PHYSICS II (FOR II B. SC. COMPUTER SCIENCE)

SOLID STATE DEVICES AND MICROPROCESSOR

SEMESTER: IV

CODE: U13PHZ45

CREDITS: 4

NO. OF HOURS/WEEK: 4

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain semiconductors, characteristics of diodes & their applications	K2	I
CO2	Analyse the Characteristics of Transistors & FET	K4	Ι
CO3	Utilize Operational Amplifier to perform several mathematical operations	К3	п
CO4	Outline the evolution and Architecture of Microprocessor Intel 8085.	K2	III
CO5	Explain the addressing modes and functioning of various Instruction set of Intel 8085.	K2	IV
CO6	Develop simple assembly language programs.	К3	V

2. A. SYLLABUS

Unit-I: Diodes and Transistors

Semiconductors – Types – diode characteristics – Zener Diode – characteristics – regulated power supply – Transistor – types – DC characteristics of CE configuration (PNP) – Transistor as an amplifier – FET – n-Channel FET characteristics – FET parameters – FET amplifiers.

Unit-II: Operational Amplifier

Introduction – differential amplifier – CMRR – Offset Balance – Inverting and Non inverting amplifier – Sign changer – Unit gain follower – Adder – Subtractor – Differentiator – Integrator – D/A conversion – Binary weighted method.

Unit-III: Architecture of Microprocessor 8085

Evolution of Microprocessors – Introduction to Intel 8085 – Architecture – Pin configuration – Registers – Data and Address Bus – Status flags.

Unit-IV: Instruction Set of Intel 8085

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Introduction – Op code – Operand - Addressing Modes - Data Formats - Instruction Set of Intel 8085 instructions - Data transfer group, Arithmetic group, Logical group, Branch group - Stack-I/O and Machine control group.

Unit-V: Examples of Assembly language programs (12 Hours)

Block transfer – 8-bit addition, subtraction, multiplication and division – Sum of a series of numbers – Ascending and descending order – Largest and smallest number in a series of numbers – Multibyte addition and subtraction.

B. TOPICS FOR SELF-STUDY

1. Transistors https://byjus.com/physics/uses-of-transistor

- 2. Architecture of Microprocessor 8085 https://nptel.ac.in/courses/108/107/108107029/
- 3. Microprocessor Programming https://www.geeksforgeeks.org/assembly-language-program-8085-microprocessor-add-two-8-bitnumbers/
- 4. Program for Multibyte addition https://www.tutorialspoint.com/8085-program-to-subtract-two-multi-byte-numbers
- 5. Program for Multibyte addition https://www.coursehero.com/file/73901401/expt1-1doc/

C. TEXT BOOKS

1. V.K.Mehta and Rohit Mehta, Principles of Electronics 11thedition, S.Chand& company Ltd, Delhi, 2008.

2. B.Ram, Fundamentals of Microprocessor and Micro Computers, DhanapatRai and sons, Delhi, 1995.

D. REFERENCE BOOKS

- 1. Malvino, Electronic principles, 5thedition, Tata McGraw Hill Ltd., New Delhi, 1995.
- 2. T.L.Floyd, Electronic Devices, Pearson Education, New York, 2004.

E.WEBLINKS

- 1. https://nptel.ac.in/courses/117/107/117107095/
- 2. https://nptel.ac.in/courses/117/107/117107094/
- 3. https://www.youtube.com/watch?v=IWCAQf2-HMg

Unit/Section	Course content	rse content Learning Outcomes			
Ι	Solid State Devices and Micr				
1.1	Semiconductors-Types of Semiconductors	Outline the basics of Semiconductors Classify the types of Semiconductors	K4		
1.2	Diode Characteristics	Explain the characteristics of diodes	K5		
1.3	Zener diode-Characteristics	Explain the mechanism of Avalanche breakdown.	K4		
1.4		Analyze the Characteristics of Zener diode	K4		
	Regulated Power Supply	Utilize the effect of biasing on Zener diode as regulated power supply	K4		
1.5	Transistor	Classify the type of transistors.	K4		
	Transistor	Discuss the working of PNP transistor.	K2		
1.6	Characteristics of a transistor	Illustrate the characteristics CE configuration of PNP transistor.	K2		
1.7	Transistor amplifier	Explain the working of a transistor as an amplifier.	K2		
		Define FET amplifier	K1		
1.8	Field effect transistor	List the characteristics of FET	K1		
		Explain the parameters of FET	K2		
II	Operational Amplifier				
		Evolution of Operation amplifier			
2.1	Introduction	Outline the role of different stages in operational amplifier	K2		
2.2	Differential amplifiers	Explain the working of differential amplifier	K2		
2.2		Interpret the process of applying negative feedback in operational amplifiers	132		

2.3	CMRR	Illustrate common mode and differential mode gain in operational amplifier Explain common mode and differential mode signals in operational amplifiers Define CMRR	K2
2.4	Offset balance	Illustrate the pin configuration of IC 741 operational amplifier Discuss the construction of offset balance circuit in Operational Amplifier	K5
2.5	Inverting	Explain the working of an Op-amp in inverting configuration	K2
2.6	Non inverting amplifier	Interpret the functioning of an Op-amp in non-inverting configuration Determine the voltage gain of a non- inverting amplifier.	K4
2.7	Sign changer	Apply non inverting configuration in op- amp to construct sign changer	K3
2.8	Unit gain follower	Construct a unit gain amplifier using an operational amplifier	K3
2.9	Adder	Explain the operation of summing amplifiers	K3
2.10	Subtractor	Discuss the working of Op-Amp as a subtractor	K4
2.11	Differentiator	Obtain an expression for output voltage in differentiator circuit.	K4
2.12	Integrator	Discuss the operation of an integrator circuit to produce different waveforms.	K3
2.13	D/A Conversion: Binary Weighted Method	Distinguish digital and analog signals. Explain the terms resolution, step size in improving the quality of D/A conversion Illustrate the method of Binary weighted for D/A conversion	K5
III	Architecture of Microproc	cessor 8085	
3.1	Architecture of microprocessor 8085	Explain about the architecture of Intel 8085 with a proper block diagram	K5

		Analyze the working status flags of Intel 8085.	K4		
3.2	Status flags	Describe the process of data and address bus in Intel 8085	K2		
3.3	Data and address bus	Discuss the working of each pins in pin configuration in Intel 8085	K2		
3.4	Pin configuration	Discuss the working of each pins in pin configuration in Intel 8085	K2		
IV	Instruction Set of INTEL 80	85			
		Define opcode and operand	K1		
4.1	Introduction to instruction set	List the different types of addressing modes in Intel 8085	K1		
4.2	Addressing modes	List the different types of instruction set in Intel 8085	K4		
4.3	Instruction set	Explain the data transfer group/ arithmetic group/ logical group/ branch control group/ I/p control group with suitable example.	К5		
V	Examples of Assembly Lang	uage Programs			
		Apply the instructions of Intel 8085, to Write a program for			
		Block transfer/			
5.1	Assembly language program	Addition and subtraction /Ascending order/	К3		
5.1		Maxima of series of number/			
		Sum of series/			
		Multiplication and division/			
		Multibyte addition.			

4. MAPPING SCHEME (PO, PSO& CO)

U13P	РО										PSO			
HZ45	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4	
CO1	Н	М	L	Н	L	L	М	L	L	Н	Н	М	Н	
CO2	Н	М	L	Н	М	L	М	L	L	Н	Н	М	М	
CO3	Н	Н	М	Н	Н	L	М	L	L	Н	М	Н	М	
CO4	Н	М	М	Н	L	М	L	L	L	Н	М	М	М	
CO5	Н	М	М	М	М	М	L	М	М	Н	М	Н	М	
CO6	Н	М	М	М	Н	М	М	L	L	Н	М	Н	М	

L-Low

M-Moderate H- High

5. COURSEASSESSMENTMETHODS

Direct

- 1. ContinuousAssessmentTest(ModelExams) I,II
- 2. Openbooktest;Cooperativelearningreport,Assignment,Seminar,etc.
- 3. EndSemesterExamination

Indirect

1.Course-endsurvey

Course Co-ordinator: Dr. A. Judith Jayarani

MAJOR PRACTICALS - I

SEMESTER: I

CODE: U16PH1P1

CREDITS: 3NO. OF HOURS/WEEK: 3

1. COURSE OUTCOMES (CO)

After the completion of this course the student will be able to:

CO.NO.	Course outcomes	Level	Experiment covered
CO1	Determine surface tension and interfacial tension by weight drop method	K5	3
CO2	Analyze the basic operations and the characteristics of Zener diode in various configuration	K6	6
CO3	Demonstrate and apply the concept of optical theory of lenses to find the focal Length, radius of curvature of long focus convex lens	K2	5
CO4	Determine the frequency of AC mains using Sonometer and find wavelength, period, amplitude using Meldes method	K5	4,13
CO5	Estimate the moduli of elasticity, rigidity modulus for different materials using non uniform bending pin and microscope and torsion method.	K6	1,14
CO6	Determine refractive index of given prism by spectrometer and measure g and K using compound pendulum.	K5	2,8,14

2. SYLLABUS

List of experiments

- 1. Non-uniform bending microscope method.
- 2. Compound pendulum g and K.
- 3. Surface tension and interfacial tension drop weight method.
- 4. Sonometer-verification of laws.
- 5. Long focus convex lens-f, R,μ .
- 6. Characteristics of junction diodes.
- 7. Static torsion determination of n.
- 8. Spectrometer-refractive index of the prism.
- 9. Digital Screw Gauge Basic measurements
- 10. Digital Vernier Calipers Dimensions of materials
- 11. Mega Ohm meter Measurement of High Resistance

- 12. Cantilever depression scale and telescope.
- 13. Melde's string arrangement-Transverse and longitudinal mode.
- 14. Spectrometer-refractive index of liquid.

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomy level of transaction
1	Young's modulus –non- Uniform bending.	Measure the Young's modulus of the bar material by uniform bending optic lever method	К5
2	Rigidity modulus – Static Torsion	Determine the rigidity modulus using Static Torsion Apparatus.	К5
3	Spectrometer – Refractive index of Glass Prism.	Determine angle of the Prism, minimum deviation and refractive index of prism material using Spectrometer.	К5
4	Sonometer – Verification of laws	Verify the laws of transverse vibration of strings using Sonometer,	K5
5	Compound Pendulum	Test for Acceleration due to gravity, radius of gyration of the bar using Compound Pendulum.	K4
6	Focal Length, Radius of curvature - long focus convex lens	Determine the Focal Length, Radius of curvature - Refractive index using long focus convex lens	K5
7	Characteristics of Junction diode	Analyze the basic operations and the characteristics of Junction diode in various configuration.	K6

8	Viscosity of a Highly Viscous Liquid – Poiseuille's Flow Method.	efficient of viscosity of	К5
9	Digital Screw Gauge	Examine the thickness (d) of the material at various places along its portion.	K4
10	Digital Vernier Caliper	Examine the Breath(b) of the material at various places along its portion.	K4
11	Mega Ohm meter	Measure of High Resistance of given discrete components.	K6
12	Cantilever depression – scale and telescope.	Measure the depression of the beam using scale and telescope.	К5
13	Melde'sstringarrangement-Transverseand longitudinal mode.	Determine the frequency of an electrically maintained tuning fork in two modes (Transverse and Longitudinal).	К5
14	Spectrometer-refractive index of liquid	Determine the refractive index of given liquid using spectrometer.	К5

4. MAPPING SCHEME (PO, PSO & CO)

U16PH1P1				,	РО						PS	50	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	L	Н	-	-	-	-	L	Н	Н	Н	М
CO2	Н	L	Н	Η	-	М	-	Н	М	Н	Н	Н	М
CO3	Н	-	-	Н	L	L	-	-	-	Н	L	L	Н
CO4	Н	-	-	Η	L	L	-	-	-	Н	L	L	Н
CO5	Н	-	L	Н	-	-	-	-	L	Н	Н	Н	М
CO6	Н	L	Н	Н	-	М	-	Н	М	Н	Н	Н	М

5. COURSE ASSESSMENT METHODS

Direct

- 1.Continuous Assessment Test (Model Practical Exams)
- 2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,
- 3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Mr. A. Veerapandian

MAJOR PRACTICALS - II

SEMESTER: II

CODE: U16PH2P2

CREDITS:3

NO. OF HOURS/WEEK: 3

1.COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO. NO.	Course outcomes	Level	Experiment Covered
C01	Measure the coefficient of viscosity of low and highly viscous liquids using graduated burette, Ostwald's viscometer and Stoke's method	K5	2,5,14
CO2	Analyze the basic operations and the characteristics of Zener diode in various configuration	K4	7
CO3	Apply the concept of optical theory of lenses to find the focal Length, radius of curvature and the refractive index of long focus concave lens	К3	6
CO4	Determine the frequency of AC mains using Sonometer.	K5	3
CO5	Estimate the moduli of elasticity for different materials using optic lever and torsional pendulum.	K5	1,4
CO6	Make use of CRO, AFO and multimeter to study the frequency resonant circuit, Lissajous figures, different waveforms and basic electrical measurements	К3	10,12,13

2.SYLLABUS

List of Experiments

- 1. Rigidity modulus Torsional pendulum.
- 2. Co-efficient of viscosity Graduated burette.
- 3. Determination of A.C. frequency Sonometer.
- 4. Young's modulus Uniform bending optic lever.
- 5. Viscosity of highly viscous liquid Stokes method
- 6. Focal Length, Radius of curvature Refractive Index Long focus concave lens.
- 7. Characteristics of Zener diode.
- 8. Energy gap of a thermistor P.O.box.
- 9. Surface tension-capillary rise method.
- 10. Study of frequency resonant circuit/ Lissajous figures CRO/DSO.
- 11. Acoustics studies of fluids Ultrasonic Interferometer.
- 12. Source of Sinusoidal, Square, Saw tooth and Triangular waves AFO.

- 13. Basic electric measurements Multimeter.
- 14. Viscosity of a liquid Ostwald viscometer

3.SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
1	Rigidity modulus - Torsional pendulum	Determine the rigidity modulus of the torsional pendulum	К5
2	Co-efficient of viscosity – Graduated burette	Estimate the Co- efficient of viscosity of liquid by Graduated burette method	K5
3	Determination of A.C. frequency - Sonometer	Determine A.C. frequency mains using sonometer	К5
4	Young's modulus - Uniform bending – optic lever	Measure the Young's modulus of the bar material by uniform bending optic lever method	К5
5	Viscosity of highly viscous liquid – Stokes method	Evaluate the Viscosity of highly viscous liquid by Stokes method	K5
6	Focal Length, Radius of curvature - Refractive Index - Long focus concave lens		К5
7	Characteristics of Zener diode	Analyze the basic operations and the characteristics of Zener diode in various configuration	К4
8	Energy gap of a thermistor - P.O.box	Determine the energy gap of a thermistor using post office box	К5
9	Surface tension-capillary rise method	Measure the surface tension of liquid by capillary rise method	К5

10	Study of frequency resonant circuit/ Lissajous figures - CRO/DSO	5	К4
11	Acoustics studies of fluids - Ultrasonic Interferometer	Determine the various acoustics properties of fluids using Ultrasonic Interferometer	К5
12	Source of Sinusoidal, Square, Saw tooth and Triangular waves – AFO	5	К4
13	Basic electric measurements – Multimeter.	Measure V, I, R, C, L using multimeter in different electronic circuits.	К5
14	Viscosity of a liquid – Ostwald viscometer	Measure the viscosity of a liquid by Ostwald viscometer.	К5

4. MAPPING SCHEME (PO, PSO& CO)

U16PH2P 2					РО						Р	SO	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Η	М	Н	М	Н	Н	М	М	L	Н	Н	Н	М
CO2	Η	Н	Н	М	Н	Н	М	М	М	Н	Н	Н	М
CO3	Н	М	Н	М	Н	Н	М	М	-	Н	L	L	Н
CO4	Н	М	L	L	Н	Η	М	М	-	Н	L	L	Η
CO5	Н	М	Н	М	Н	Н	М	М	L	Н	Н	Н	М
CO6	Н	Н	М	Н	Н	Н	М	М	М	Н	Н	Н	М

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Practical Exams)

2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,

3. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICALS - III

SEMESTER : III

CODE: U16PH3P3

CREDITS: 3

NO. OF HOURS.WEEK: 3

1. COURSE OUTCOMES (CO)

After successful completion of the course, the students will be able to:

CO. NO.	Course Outcomes	Level	Experiment covered
CO1	Determine thermal constants (specific heat, thermal conductivity) of substances.	K1	1,2,3
CO2	Analyze the properties of light (interference, refraction and polarization).	K5	4,5
CO3	Design rectifier circuits using diodes.	K6	6
CO4	Analyze transistor characteristics in CE mode	K4	11
CO5	Analyze the solar spectrum	K2	9
CO6	Estimate the sensitivity of a galvanometer (B.G).	К3	8

2.SYLLABUS

List of Experiments

- 1. Specific heat of a liquid- Newton's law of cooling.
- 2. Specific heat capacity of a liquid Joule's calorimeter.
- 3. Thermal capacity of a bad conductor Lee's disc method.
- 4. Determination of R and of the lens Newton's ring.
- 5. Spectrometer-i-d curve
- 6. Full wave rectifier-Percentage of regulation.
- 7. Ammeter calibration Potentiometer.
- 8. Figure of merit-B.G.
- 9. Spectrometer Spectral distribution of solar radiation
- 10. Dispersive characteristics of biomaterials
- 11. Polarimeter Optical activities of liquids
- 12. Bomb Calorimeter Calorific values of different bio masses
- 13. Transistor Characteristics-CE configuration.
- 14. Telescope (High Range) Determination of Focal length of long focus lens

3.SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Levels of Transaction
1	Specific heat of a liquid- Newton's law of cooling.	Determine specific heat capacity of given liquid by Newton's law of cooling.	К5
2	Specific heat capacity of a liquid - Joule's calorimeter.	Determine specific heat capacity of given liquid using Joule's calorimeter.	K5
3	Thermal conductivity of a bad conductor Lee's disc method.	Measure the thermal conductivity of a poorly conducting material usingLee's disc method.	К3
4	Determination of R and focal length of the lens - Newton's ring.	Determine thickness of the air gap between lens and the base by Newton's ring.	К5
5	Spectrometer-I-d curve	Observe the deviation angle of a ray passing through a prism will be minimal, when the entrance and exit angles are equal. Analyze the relationship between angle of incidence and angle of refraction graphically using the observations and hence to determine the refractive index of	К5
6	Full wave rectifier-Percentage of regulation.	the material of the prism. Construct and convert both polarities of the input waveform to pulsating DC.	К3
7	Ammeter calibration – Potentiometer.	Calibrate the device and verify Ammeter calibration.	K2
8	Figure of merit-B.G.	Characterize the performance of a B.G.	К4
9	Spectrometer – Spectral distribution of solar radiation	Express analytically and graphically the relation between luminous flux per wavelength and wavelength of solar radiation.	К3
10	Polarimeter – Optical activities of liquids	Experiment the ability of a substance to rotate the plane of polarization of a beam of light that	K4

		is passed through it.	
11	Bomb Calorimeter – Calorific values of different bio masses	Measure the amount of heat released or absorbed in chemical or physical reactions.	К5
12	Transistor Characteristics-CE configuration.	AnalyzetheTransistorCharacteristicsinCEconfiguration.	K4
13	Telescope (High Range) – Determination of Focal length of long focus lens	Determine the focal length of the long focus lens.	K6

4. MAPPING SCHEME (PO, PSO& CO)

U16PH3P3		РО							PSO				
010111515	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	М	-	L	-	-	-	М	Н	L	М	-	-	М
CO2	Н	М	М	Н	М	Η	-	L	М	Н	Н	М	-
CO3	-	Н	М	L	Η	Η	Н	М	-	М	L	L	L
CO4	М	L	-	Н	Η	L	-	М	М	Н	Н	-	М
CO5	Н	Н	М	М	-	Η	М	L	Н	-	М	L	L
CO6	-	Н	М	L	Н	L	Н	М	-	М	L	М	L

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Practical Exams)

2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,

3. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICALS - IV

SEMESTER: IV

CODE: U16PH4P4

CREDITS: 3

NO. OF HOURS/WEEK: 3

1. COURSE OUTCOMES (CO)

After successful	completion	of this	course	the students	will be able to.
The successful	completion	or uns	course,	the students	

CO.NO.	Course Outcomes	Level	Experiment Covered
CO1	Measure the temperature co- efficient of materials using potentiometer and P.O. Box.	K5	3,6,12,13
CO2	Determine emissivity of blackened surface of the Spherical calorimeter.	K5	1
CO3	Construct circuit diagram to find specific resistance and calibrate low range voltmeter.	K3	4,5
CO4	Determine thickness of wire, films and wave length of visible light (direct and oblique method) by using spectrometer- Grating.	К5	2,7,10,11
CO5	Make use of optical microscope to identify the microstructure of samples.	К3	9
CO6	Verify the function of logic gates using discrete components.	K2	8

2. SYLLABUS

List of Experiments

- 1. Emissive power of the surface –spherical calorimeter.
- 2. Thickness of wire and insulation Air wedge.
- 3. E.M.F. of a Thermocouple direct deflection method.
- 4. Specific resistance Carey Foster's bridge.
- 5. Calibration of low range voltmeter Potentiometer.
- 6. Temperature Coefficient of resistance Potentiometer.
- 7. Grating- Oblique incidence Spectrometer.
- 8. Study of logic gates discrete components.
- 9. Microstructural analysis of samples Optical Microscope.
- 10. Thickness of films forming air wedge and edge cutting Travelling Microscope with micrometer screw.
- 11. Wave length of Hg Spectrum Grating- Normal incidence Spectrometer.

- 12. Temperature Co-efficient of thermistor P.O. Box.
- 13. Temperature Co-efficient of resistance P.O. Box.

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of transaction
1	Emissive power of the surface –spherical calorimeter	Determine Emissive power of the surface using spherical calorimeter	К5
2	Thickness of wire and insulation - Air wedge	Find the thickness of the wire and insulation by forming interference pattern	К3
3	E.M.F. of a Thermocouple direct deflection method	Estimate the EMF of the thermocouple by direct deflection method	K4
4	Specific resistance - Carey Foster's bridge	Apply the principle of Wheatstone's Bridge to observe the resistance of the given coil and hence calculate the specific resistance	К3
5	Calibration of low range voltmeter - Potentiometer	Illustrate the calibration of voltmeter using potentiometer and to draw its responses graphically	К3
6	Temperature Coefficient of resistance – Potentiometer	Apply the principle of Wheatstone's Bridge to observe the variation in resistance with temperature of the coil and hence calculate the temperature coefficient	К3
7	Grating- Oblique incidence - Spectrometer	Determine the wavelength of spectral lines with a diffracting grating and spectrometer by minimum deviation method	К3
8	Study of logic gates – discrete components	Design logic circuits using discrete components such as diodes and transistors and verify their truth tables	K5
9	Microstructural analysis of samples - Optical Microscope	Analyzes the microstructural characteristics of biomaterials	K4

10	Thickness of films forming air wedge and edge cutting - Travelling Microscope with micrometer screw.	Find the thickness of the wire and edge cutting by forming interference pattern	К3
11	Wave length of Hg Spectrum - Grating- Normal incidence – Spectrometer.	Determine the Calorific values of different bio masses using Bomb Calorimeter	K5
12	Temperature Co-efficient of thermistor - P.O. Box.	Measure the temperature coefficient of thermistor using P.O Box	К5
13	Temperature Co-efficient of resistance - P.O. Box.	Measure the temperature coefficient of resistor using P.O Box	K5

4. MAPPING (CO, PO, PSO)

U16PH4P					PO					PSO			
4	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	М	Н	Н	Н	Н	М	М	М	Н	Н	Н	М
CO2	Н	М	Н	М	Н	Η	М	Н	Н	Н	Н	Н	М
CO3	Н	М	Η	М	Н	Η	М	М	Μ	Н	L	L	Η
CO4	Н	М	L	Н	Н	Η	М	Η	L	Н	L	L	Η
CO5	Н	Η	Η	М	Н	Η	Η	М	L	Н	Η	Η	М
CO6	Н	Η	М	Н	Н	Η	М	М	Η	Н	Н	Н	М

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Practical Exams)

2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,

3. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICALS - V

SEMESTER : V

CODE: U16PH5P5

CREDITS: 3 NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

Aftersuccessful completion of the course the students will be able to:

CO.	Course outcomes	Level	Experiment covered
NO.			
CO1	Recall the laws in specific area and apply it to		1,3,4,14
	estimate the physical properties of materials	K1	
CO2	Illustrate the functions of important circuits that are	K2	12
	used to measure electrical properties of components.		
CO3	Conduct experiments to measure the physical	K3	7,8,9,13,16,17,18,19,20
	observables.		
CO4	Analyze thequality of equipment's based on the	K4	2,5,610,11,15
	observations		
CO5	Conduct experiments to demonstrate the relation	K5	21
	between different properties of materials		
CO6	They have acquiring computational skills in C	K6	22,23,24,25,26
	language		

2.SYLLABUS

List of Experiments

- 1.i-i' curve Spectrometer
- 2.Cauchy's constants Spectrometer.
- 3.Dispersive power of grating Spectrometer.
- 4. Temperature coefficient of thermistor Potentiometer.
- 5. Calibration of high range voltmeter Potentiometer.
- 6. Charge Sensitivity Ballistic galvanometer.
- 7. Absolute capacity of a condenser Ballistic galvanometer.
- 8. Mutual inductance Ballistic galvanometer.
- 9. High resistance by leakage Ballistic galvanometer.
- 10.onversion of galvanometer into ammeter.
- 11. Conversion of galvanometer into voltmeter.
- 12. AC self-inductance of the coil Anderson's bridge.
- 13.Field along the axis of a coil-Determination of H & M
- 14. Small angle prism Spectrometer.
- 15. Temperature coefficient of resistance P.O Box.
- 16. Absolute value of M & H Deflection and vibration magnetometer.

17. Measurement of EMF – Potentiometer.

18. Calculation of Radiation in atmosphere, Characteristics of GM tube, Gamma Radiation and study of isotopes - GM Counter.

- 19. Resistivity of materials Four Probe Set Up.
- 20. Mobility and Carrier Concentration of Materials Hall Effect measurement Set Up.
- 21. Study on the effect of sterilization using IR radiation on Micro-organism IR Source
- 22. Conversion of Celsius into Fahrenheit and Fahrenheit into Celsius.
- 23. Biggest and smallest of a set of numbers.
- 24. Solving quadratic equation
- 25. Arranging the numbers in ascending and descending order
- 26. Arranging the words in alphabetical order.

Experiment No.	Course Content	Learning outcomes	Highest Bloom's Taxonomic Level of transaction
1	i-i' curve – Spectrometer	Analyze the relationship between angle of incidence and angle of refraction graphically using the observations and hence to determine the refractive index of the material of the prism.	К3
2	Cauchy's constants - Spectrometer.	Evaluate the wavelength λ of the lines of mercury spectrum and refractive index μ offered by the material of a prism experimentally and to establish a relation between μ and λ graphically and statistically.	К5
3	Dispersive power of grating - Spectrometer.	Evaluate the wavelength λ of the lines of mercury spectrum experimentally and to estimate the dispersive power of the grating using the observations.	К5
4	Temperature coefficient of thermistor - Potentiometer.	Apply the principle of Wheatstone's bridge to record the variation in resistance with temperature of the thermistor and hence to estimate the temperature coefficient of resistance of it.	К3
5	Calibration of high range voltmeter - Potentiometer.	Validate the calibration on a high range voltmeter by analyzing its response for various values of voltages.	K6

3. SPECIFIC LEARNING OUTCOMES(SLO)

6	Charge Sensitivity -	Estimate the figure of merit	
	Ballistic galvanometer.	of the ballistic galvanometer	K4
		by analyzing its response	174
		experimentally.	
7	Absolute capacity of a	Measure the absolute capacity	
	condenser - Ballistic	of a condenser experimentally	T 7 F
	galvanometer.	using a ballistic galvanometer	K5
8	Mutual inductance -	Measure the mutual	
0	Ballistic galvanometer.	inductance of a pair of coils	
	Buillistic guivanometer.	experimentally using a	K5
		ballistic galvanometer	
9	Uich registeres by	· · · · · · · · · · · · · · · · · · ·	
9	High resistance by	Measure the high resistance of	T 7 F
	leakage - Ballistic	a resistor experimentally using	K5
	galvanometer.	a ballistic galvanometer	
10	Conversion of	Estimate the resistance to be	
	galvanometer into	connected in parallel with	
	ammeter.	given galvanometer, to	
		construct the circuit to convert	K6
		the galvanometer into	
		ammeter of desired range and	
		analyze its function.	
11	Conversion of	Estimate the resistance to be	
11			
	galvanometer into	connected in series with given	
	voltmeter.	galvanometer, to construct the	17.6
		circuit to convert the	K6
		galvanometer into voltmeter	
		of desired range and analyze	
		its function.	
12	AC self-inductance of	Apply the principle of	
	the coil - Anderson's	Anderson bridge to determine	172
	bridge.	the self-inductance of a coil	K3
		experimentally	
13	Field along the axis of	Measure the magnetic field at	
15	a coil-Determination	a point along the axis of the	
	of H & M	coil and to determine the	K5
			K5
		moment of the given magnet	
	~	experimentally.	
14	Small angle prism -	Conduct an experiment to	
	Spectrometer.	measure the refractive index	K5
		of the material of a small	K 5
		angle prism.	
15	Temperature	Apply the principle of	
	coefficient of	Wheatstone bridge to detect	
	resistance - P.O Box.	the minute variation in	
		resistance of a coil with	
		varying temperature and to	K3
		estimate the temperature	
		coefficient resistance of	
		material of the coil.	
	Absolute value of M &	Measure the absolute value of	
16			
16	H - Deflection and	moment of the given magnet	V5
16		moment of the given magnet and horizontal intensity of	K5
16	H - Deflection and		К5
16	H - Deflection and vibration	and horizontal intensity of	K5 K5

		potentiometer.	
18	CalculationofRadiationinatmosphere,CharacteristicsofGammaRadiationandstudyofisotopes-GMCounter.	Appraise the Plateau characteristics of GM tube and to determine reasonable operating point for the tube experimentally	К4
19	Resistivity of materials - Four Probe Set Up.	Measure the energy band gap and hence the resistivity of the given semiconductor experimentally using four probes set up	K5
20	Mobility and Carrier Concentration of Materials - Hall Effect measurement Set Up.	Measure the mobility, charge concentration and hence the Hall coefficient of the given semiconductor.	К5
21	Study on the effect of sterilization using IR radiation on Micro- organism - IR Source	Analyze of the effect of IR radiation over micro- organisms.	K4
22	Conversion of Celsius into Fahrenheit and Fahrenheit into Celsius.	Develop a C program to convert the given temperature in Fahrenheit and vice versa and to tabulate the results.	К6
23	Biggest and smallest of a set of numbers.	Develop a C program to find the biggest / smallest numbers among a set of numbers and tabulate the results.	K6
24	Solving quadratic equation	Develop a C program to solve the quadratic equation and to tabulate the results.	К6
25	Arranging the numbers in ascending and descending order	Develop a C program to arrange a set of numbers in descending order.	К6
26	Arranging the words in alphabetical order	Develop a C program to arrange the given set of words in alphabetical order.	К6

4. MAPPING SCHEME (PO, PSO& CO)

U16PH5P5	РО									PSO			
	PO1	PO2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	-	-	-	-	-	-	-	-	-	Н	-	-	-
CO 2	Н	-	-	-	-	-	-	L	-	-	Н	М	-
CO 3	-	-	-	Н	-	-	М	-	-	-	-	-	-
CO 4	-	Н	-	-	-	-	-	-	-	-	-	-	М
CO 5	-	-	Н	-	-	М	-	-	-	-	-	-	Н
CO 6	-	-	-	-	Н	-	-	-	-	-	Н	-	-
	•	•	•	•	•	•	•	•	Ι	Low N	/-Mod	erate	H- Hi

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Practical Exams)

2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,

3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Mr. A. Veerapandian

MAJOR PRACTICALS - VI

SEMESTER:VI

CREDITS: 3

CODE: U16PH6P6

NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Experiment Covered
CO1	Explain the characteristics of FET and its working as an amplifier.	K4	1,2
CO2	Recall basic logic gates, Boolean algebra and modify digital circuits using K-map.	K6	3,4,5,6
CO3	Design amplifier and oscillator circuits using bipolar transistors.	K6	7,8,9,10
CO4	Analyze low pass and high pass filter circuits using operational amplifier.	K6	11,12,13
CO5	Develop assembly language program to perform various operations using 8085 microprocessors	K6	14,15
CO6	Explain voltage regulation using Zener diode.	K4	16

2. A. SYLLABUS

List of Experiments

- 1. FET characteristics.
- 2. FET amplifier.
- 3. Determination of frequency by beats Hartley oscillator.
- 4. Determination of frequency by Lissajous's figures Colpitts's oscillator.
- 5. Determination of frequency by CRO Tuned collector oscillator.
- 6. Astablemultivibrator.
- 7. Half Adder and Full Adder.
- 8. Half Subtractor and Full Subtractor
- 9. Universal Gates Basic gates using universal gates.
- 10. Series resonance circuit
- 11. Parallel resonance circuit.
- 12. OP-AMP Inverting amplifier Non-inverting amplifier Differential amplifier

- 13. OP-AMP adder and subtractor.
- 14. OP-AMP-High pass filter.
- 15. OP-AMP-Low pass filter.
- 16. OP-AMP- integrator.
- 17. OP-AMP-differentiator.
- 18. Single stage R-C coupled amplifier.
- 19. μ P:8-bit addition and subtraction.
- 20. µP:8-bit multiplication and division.
- 21. Regulated Power supply using Zener diode percentage of regulation.
- 22. Dielectric properties of liquids (Hydrated biomolecules, amino acids and proteins) Dielectric study kit.
- 23. Impedance analysis of materials LCZ Meter.
- 24. Electromagnets with power supply and Gauss Meter Study of Zeeman Shift
- 25. Measurement of EMF Potentiometer.
- 26. Reduction of Boolean expression using K-map.

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment.No.	Course Content	LearningOutcomes	HighestBloom'sTaxonomylevelof transaction
1	FET characteristics.	Analyze the characteristics of field effect transistor	K4
2	FET amplifier.	Analyze the gain of FET amplifiers	K4
	Universal Gates –		
3	Basic gates using		
	universal gates		
	Half Subtractor and		
4	Full Subtractor	Analyze and modify logic circuits using	
	Half Adder and Full	Karnaugh map	K6
5	Adder.	reduction techniques	
	Reduction of		
6	Boolean expression		
	using K-map.		
	Single stage R-C		
7	coupled amplifier.		
8	Hartley Oscillator	Design various	
9	Colpitt's Oscillator	amplifier, oscillator and multivibrator	К6
10	Astablemultivibrator	circuits using bipolar transistor	
	Tuned Collector		
11	Oscillator		
	OP-AMP Inverting	Design operational	
12	amplifier, non- inverting amplifier	amplifier circuits to	K6
12	and Differential amplifier	perform various	Αv

	OP-AMP adder and	mathematical	
13	subtractor	operations	
	OP-AMP-High pass		
14	filter		
	OP-AMP-		
15	Differentiator		
16	OP-AMP-Integrator		
17	OP-AMP-Low pass filter		
	μP:8-bit addition	Develop assembly	
18	and subtraction	language programs	
	μP:8-bit	for 8085	K6
19	multiplication and	Microprocessor	
	division	r	
	Regulated Power		
	supply using Zener	Analyze voltage	
20	diode – percentage	regulation using Zener diode	K4
	of regulation		
	Dielectric properties		
	of liquids (Hydrated		
21	biomolecules, amino	Study the properties of liquids	K2
	acids and proteins) -	or inquites	
	Dielectric study kit		
	Impedance analysis		
22	of materials - LCZ	Analyze impedance of given materials.	K6
	meter	or groon materials.	
	Study of Zeeman	Measure Zeeman	T 7.4
23	shift	shift given sample by magnetic field.	K4
	Measurement of	Determine unknown	
24	EMF -	EMF by	K4
	Potentiometer	potentiometer.	

	Series	resonance		
25	circuit		Design LCR circuits of desired resonant K6 frequency	•
	Parallel	resonance		Кб
26	circuit			

	РО							PS	50				
U16PH6P6	PO1	PO2	PO3	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	101	102	105	4	5	6	7	8	9	1	2	3	4
CO 1	Η	Н	-	Η	М	Η	-	-	-	Н	Н	Η	Н
CO 2	Н	Н	-	Н	М	Н	-	-	-	Н	Н	Η	Н
CO 3	Н	Н	-	Н	М	Н	-	-	-	Н	Н	Н	Н
CO 4	Н	Н	-	Н	М	Н	-	-	-	Н	Н	Η	Н
CO 5	Н	Н	-	Η	М	Н	-	-	-	Н	Н	Η	Н
CO 6	Η	Н	-	Η	М	Η	-	-	-	Н	Н	Η	Н
Low M-Moderate								H- Hig					

4. MAPPING SCHEME (PO, PSO& CO)

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Practical Exams)

2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,

3. End Semester Examination

Indirect

1. Course-end survey

Course co-ordinator: Mr. A. Veerapandian

ALLIED PHYSICS PRACTICAL (FOR I B. Sc MATHS AND II B. ScCHEMISTRY)

SEMESTER:I & II / III & IV

CODE: U16PHYP1

CREDITS: 3NO.OF HOURS/WEEK:3

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Experi ment Covered
CO 1	Measure the coefficient of viscosity of liquids using graduated burette method and find surface tension using drop weight method	K5	2,15
	Determine the Horizontal intensity of earth magnetic field and magnetic moment using Tangent galvanometer.	K5	5,6
CO 3	Measure series and parallel resistance, specific resistance, using potentiometer, Carey fosters bridge.	К3	11,12
	Examine specific heat capacity of two different liquids using Newton's law of cooling method and thermal conductivity of a bad conductor using Lee's disc method.	K4	3,4
	Apply optical theory find the radius of curvature of a given convex lens using Newton rings method and the refractive index of prism using spectrometer.	К3	7,9
	Test Laws of transverse vibrations and find AC frequency of a given string and young's modulus of a non-uniform bending of a bar using pin and Microscope method.	K4	1,8,10

2. SYLLABUS

List of Experiments

- 1. Young's modulus of a non-uniform bending of a bar using pin and Microscope method
- 2. Coefficient of viscosity of a given liquid in the graduated burette using capillary tube method
- 3. The specific heat capacity of two different liquids using Newton's law of cooling method.
- 4. Thermal conductivity of a bad conductor using Lee's disc method.
- 5. Magnetic moment of a field along the axis of a coil using deflection magnetometer method
- 6. Magnetic field intensity of a field along the axis of a coil using deflection magnetometer method.
- 7. Radius of curvature of a given convex lens using Newton rings method
- 8. Laws of transverse vibrations of a wire using sonometer
- 9. Refractive index of a prism using spectrometer.
- 10. Sonometer-AC frequency of a given string using Sonometer.
- 11. (i) Series and (ii) Parallel resistance of a given coils using Meter bridge.
- 12. Specific resistance of a given coil using Carey Foster's Bridge.
- 13. Forward bias resistance and Reverse bias resistance of a given diode using its V-I characteristics circuit method.
- 14. Algebraic operations of AND, OR and NOT gates using discrete component.
- 15. Surface tension and Interfacial tension of given liquid drop using drop weight method.
- 16. Construct the full wave rectifier and verify its percentage of regulation.

3. SPECIFIC LEARNING OUTCOMES(SLO)

Experiment No.	Course Content	Learning outcomes	Highest Bloom's Taxonomic Levels Of Transaction
1	Young's	Determine the Young's modulus of a non-	K3
	Modulus	uniform bending of a bar by constructing	
		pin and Microscope method	
2	Co efficient	Calculate the coefficient of viscosity of a	K3
	of viscosity	given liquid in the graduated burette by	
	of a liquid	constructing capillary tube method	
3	Newton's	Evaluate the measurement of the specific	K5
	law of	heat capacity of two different liquids using	
	cooling	Newton's law of cooling method by (i)	
		experimental and (ii) Graphical techniques	

4	Thermal conductivity -Lee's disc method	Determine thermal conductivity of a bad conductor using Lee's disc method.	K5
5	Magnetic moment of a field along the axis of a coil	Calculate the magnetic moment of a field along the axis of a coil using deflection magnetometer method	K3
6	Magnetic field intensity of a field along the axis of a coil	Calculate the Magnetic field intensity of a field along the axis of a coil using deflection magnetometer method	К3
7	Newton rings	Measure the radius of curvature of a given convex lens using Newton rings method	K5
8	Laws of transverse vibrations	Test the laws of transverse vibrations of a wire using Sonometer.	K4
9	Refractive index of a prism	Estimate the refractive index of a prism using spectrometer	K5
10	Specific resistance of a given coil- Meter Bridge	Measure the specific resistance of a given coil using meter bridge.	K5
11	(i) series and (ii) parallel resistance of a given coils	Calculate the (i) series and (ii) parallel resistance of a given coils using meter bridge.	K3
12	Specific resistance of a given coil- Carey Foster Bridge	Measure the specific resistance of a given coil using Carey Foster's Bridge	K5
13	V-I characteristic s of junction diode	Measure the forward bias resistance and reverse bias resistance of a given diode using its V-I characteristics circuit method	K5
14	AND, OR and NOT gates	Demonstrate the algebraic operations of AND, OR and NOT gates using discrete components	K2
15	Surface tension and Interfacial tension of given liquid	Measure the surface tension and interfacial tension of given liquid drop using drop weight method	K5
16	Full wave	Construct the full wave rectifier for	K3

	rectifier	verifying its percentage of regulation.	
--	-----------	---	--

4. MAPPING (PO, PSO& CO)

U16PHYP1		РО							PSO				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	М	Н	М	Н	Н	М	М	L	Н	Н	Н	М
CO2	Н	Н	Н	М	Н	Н	М	М	М	Н	Н	Н	М
CO3	Н	М	Н	М	Н	Н	М	М	-	Н	L	L	Н
CO4	Н	М	L	L	Н	Н	М	М	-	Н	L	L	Н
CO5	Н	М	Н	М	Н	Н	М	М	L	Н	Н	Н	М
CO6	Н	Н	М	Н	Н	Н	М	М	М	Н	Н	Н	М

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

- 1.Continuous Assessment Test (Model Practical Exams)
- 2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,
- 3. End Semester Examination

Indirect

1. Course-end survey

Course co-ordinator: Mr. A. Veerapandian

APPLIED PHYSICS PRACTICAL (FOR II BSC COMPUTER SCIENCE)

SEMESTER:III & IV

CODE: U13PHZP1

CREDITS: 3NO. OF HOURS/WEEK: 3

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO.NO.	Course Outcomes	Level	Experiments Covered
CO1	Analyze the basic operation and the characteristics of Junction and Zener diode in various configuration and construct regulated power supply using Zener diode.	K4	6,12
CO2	Explain the characteristics features of FET and CE -Transistor.	K4	5,13
CO3	Estimate the Q-factor from frequency response of series and parallel resonance circuits.	K5	4,14
CO4	Construct and study the adder, Subtractor circuits using OPAMP IC 741, and verify the function of logic gates using discrete components.	К3	7,8,15
C05	Determine the horizontal component of intensity of earth magnetic field and magnetic moment using Tangent galvanometer.	K5	2,10
CO6	Measure resistance, specific resistance, current, using potentiometer, Carey fosters bridge and PO box.	K4	1,3,11,16

2. SYLLABUS

List of Experiments

- 1.Measurement of resistance -Potentiometer
- 2. Field along the axis of a Coil carrying current
- 3. Thermister and energy gap
- 4.Series resonance circuit
- **5.FET Characteristics**
- 6.Semiconductor Diode characteristics
- 7.OP AMP adder.
- 8.Logic gates AND, OR, NOT (Discrete Components)
- 9.Zener diode regulated power supply
- 10. Field along the axis of a coil magnetic moment
- 11.Measurement of current-Potentiometer calibration of ammeter
- 12. Characteristics of Zener diode
- 13. Transistor CE characteristics mode
- 14.Parallel resonance circuit

15.OPAMP Subtractor

16.Carey Foster bridge

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
1	Semiconductor Diode Characteristics.	Measure the forward bias resistance and reverse bias resistance of a given Junction diode using its V-I characteristics circuit method	К5
2	Zener diode characteristics.	Measure the forward bias resistance and reverse bias resistance of a given Zener diode using its V-I characteristics circuit method	К5
3	Transistor Characteristics - CE configuration.	Construct and measure Transistor Characteristics - CE configuration.	К3
4	FET characteristics	Analyze the characteristics of FET.	К4
5	Parallel resonance circuit.	Construct and verify the parallel resonance circuit.	
6	Series resonance circuit.	Construct and verify the resonance condition in LCR connected in series.	К5
7	Regulated Power supply	Construct a regulated	К4

	using Zener diode.	power supply using	
		Zener diode and	
		measure percentage of	
		regulations.	
8	OP-AMP adder.	Construct and verify OPAMP adder circuit.	К3
9	OP-AMP subtractor	Construct and verify OPAMP subtractor circuit.	К3
10	Logic gates AND, OR, NOT using discrete components.	Construct logic circuits using discrete components such as diodes and transistors and verify their truth tables	К3
11	Field along the axis of a coil-determination of M.	Determine M using the Field along the axis of coil.	К5
12	Carey-Foster's bridge.	Determine Specific resistance of the unknown coil.	K4
13	Field along the axis of a coil-determination of H	Determine magnetic moment of magnet using the Field along the axis of coil.	К5
14	Potentiometer.	Determination the Specific resistance of given wire using Potentiometer.	К5

15	Thermistor - determination of energy gap - Thermistor.	Measure band gap of thermistor using PO box.	К5
16	Ammeter calibration - Potentiometer.	Calibration of ammeter using potentiometer.	К3

4. MAPPING SCHEME (PO, PSO& CO)

U13PHZP1					PSO								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	М	L	М	L	L	L	М	L	L	М	Н	Н	М
CO2	М	М	М	Н	М	Н	М	М	L	L	L	Н	М
CO3	М	М	М	М	М	L	М	L	L	L	L	L	М
CO4	М	М	L	L	L	L	М	Н	L	Н	L	L	Н
CO5	М	М	М	L	М	L	М	L	L	М	М	М	М
CO6	М	М	L	М	М	М	М	М	М	М	М	М	М

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Practical Exams)

2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,

3. End Semester Examination

Indirect

1. Course-end survey

DIGITAL ELECTRONICS AND MICROPROCESSOR LAB FOR III B.SC. COMPUTER SCIENCE

SEMESTER : V & VI

CODE: U18CS6P6

CREDITS: 3

NO. OF HOURS/WEEK: 2

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Experiments Covered
C01	Recall basics of logic gates by a universal NAND and NOR gates.	K4	3,11
CO2	Construct and study the Half Adder and Full Adder. Half Subtractor and Full Subtractor circuits.	K4	4,12
CO3	Verify the Conversion of Decimal to Hexadecimal and Hexa decimal to decimal and Block Transfer by8085 microprocessors.	K5	8,10
CO4	Develop assembly language program to perform various operations using 8085 microprocessors. µP: MultibyteµP:8-bit: addition and subtractor.	K3	7,15,16
C05	Construct the circuit and verify the Karnaugh map reduction technique, Shift register, Up and down counter.	K5	5,6.13
CO6	Verify the Analog to Digital converter Binary weight method.	K4	14

2.SYLLABUS

List of Experiments

- 1. Microprocessor -Sum of series
- 2. Microprocessor Maxima and Minima of set of data
- 3. NAND as Universal gates
- 4. Half adder and Full adder circuits
- 5. Shift Register
- 6. Karnaughs reduction techniques
- 7. Microprocessor addition and Multiplication
- 8. Microprocessor Block transfer
- 9. Microprocessor ascending and descending order.
- 10. Microprocessor- Decimal to Hexadecimal and Hexadecimal to decimal conversion.
- 11. NOR as Universal gates
- 12. Half subtractor and Full subtractor circuits
- 13. Up Counter and Down Counter
- 14. Analog to Digital: binary weight method
- 15. Microprocessor subtraction and division
- 16. Microprocessor multibyte addition and Subtraction.

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
1	Basic gates by using NAND as universal gates	Construct NAND gates and verify their truth tables as basic gates.	К3
2	Basic gates by using NOR as universal gates	Construct NOR gates and verify their truth tables as basic gates.	К3
3	Half Adder and Full Adder.	Design and verify the truth table of Half Adder and Full Adder.	К3
4	Half Subtractor and Full Subtractor.	Demonstrate the Half Subtractor and Full Subtractor for their truth tables.	К2
5	Conversion of Decimal to Hexadecimal and Hexa decimal to decimal.	Make use of 8085 microprocessors to verify Conversion of Decimal to Hexadecimal and Hexa decimal to decimal.	К3
6	Block Transfer	Make use of 8085 microprocessors to Transferring the Data one location to another location.	К3

7	μP: Sum of series.	Test Sum of series 8085 microprocessors.	К6
8	μP: Maximum and Minimum of a set of numbers.	Choose set of numbers and verify the Maximum and Minimum of set of numbers by 8085 microprocessors.	K6
9	μP:8-bit multiplication and division.	Verify the multiplication and division using 8085 microprocessors.	К5
10	μP: Multibyte addition and subtractor.	Verify the multibyte addition and subtractor using 8085 microprocessors.	К5
11	μP:8-bitAscending and descending order.	Choose set of numbers and verify Ascending and descending order of set of numbers by 8085 microprocessors.	K6
12	Karnaugh's map reduction technique	Simplify Boolean algebra by Karnaugh's map technique.	К4
13	Up and Down counter.	Construct circuit and verify performances of counters.	К6

14	Shift register	Construct and test the performance of register.	К6
15	Analog to Digital converter Binary weight method.	Construct the given circuit and to test the equivalent responses analog to digital.	K6
16	μP: Addition and subtractor.	Verify the addition and subtractor using 8085 microprocessors.	К5

4. Mapping Scheme (PO, PSO& CO)

U18CS6P6					PSO								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	М	L	М	L	L	L	М	L	L	М	Н	Н	М
CO2	М	М	М	Н	М	Н	М	М	L	L	L	Н	М
CO3	М	М	М	М	М	L	М	L	L	L	L	L	М
CO4	М	М	L	L	L	L	L	Н	L	Н	L	L	М
CO5	М	М	L	L	М	L	М	L	L	М	М	М	М
CO6	М	М	L	М	М	М	М	М	М	М	М	М	М

L-Low M-Moderate H-High

5. COURSE ASSESMENT METHODS

Direct

- 1. Record and Observation Evaluation
- 2. ContinousAssesments (Minimum Two)
- 3. End Semester Practical Examinations

In-Direct

- 1. Assignments
- 2. Laboratory / Field visits
- 3. Course end survey/Feedbacks

Course co-ordinator: Mr. A. Veerapandian

PROGRAMME ARTICULATION MATRIX (UG-2019-2020)

		COURSE	CORRELATION WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES												
S.No.	COURSE NAME	COURSE CODE	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PSO1	PSO2	PSO3	PSO4
1	Properties of matter and Acoustics	U16PH101	Н	Н	М	Н	Н	М	М	М	М	Н	М	М	М
2	Mechanics	U16PH202	Н	Η	Н	М	М	М	L	L	L	Н	Н	Н	М
3	Thermal Physics	U16PH303	Н	М	М	L	М	L	L	L	М	М	L	М	L
4	Optics	U16PH404	Н	М	М	М	М	М	L	L	L	Н	М	L	L
5	Electricity, Magnetism and Electromagnetism	U16PH505	Н	Н	М	Н	Н	М	М	М	М	Н	Н	Н	М
6	Electronic Devices	U16PH506	Н	М	М	Н	L	L	L	М	М	Н	L	Н	L
7	Nuclear Physics, Wave Mechanics and Relativity	U16PH607	Н	Н	М	М	Н	L	L	L	М	н	L	М	М
8	Solid State Physics	U16PH608	М	М	Н	М	М	М	М	-	-	Н	М	М	М
9	Atomic Physics	U16PH5:1	М	Μ	М	Н	Н	М	М	L	М	Н	М	L	М
7	Communication System	U16PH5:A	М	Н	Н	Н	М	М	М	М	L	М	М	Н	М
	Digital Electronics	U16PH6:1	Н	Н	М	Н	Н	L	М	L	L	Н	Н	М	М
10	Crystal Growth and Thin Film Physics	U16PH6:A	Н	М	М	М	М	М	L	М	L	Н	М	М	М
11	Programming in C	U16PH6:3	М	Н	Н	Н	Н	Н	М	М	L	М	Н	Н	Н
12	SBEC - I :Bio- Physics And Bio- Medical Instrumentation	U16PH2S1	Н	М	L	М	L	М	L	L	L	М	М	L	М
13	SBEC – II: Concepts through Animations	U16PHPS2	М	L	L	М	L	L	М	-	-	L	L	М	L
14	SBEC - III :Web Designing (Theory And Practical)	U16PHPS3	Н	Н	М	Н	L	Н	М	L	L	М	М	Н	Н
15	NMEC- I:Electrical Appliances	U16PH3E1	М	L	L	М	L	L	L	L	L	М	L	М	L
16	NMEC – II:Audio And Video Systems	U16PH4E2	Н	Н	L	L	L	L	L	L	L	Н	Н	М	М
17	Allied Physics-1 (I B.Sc. Mathematics) Mechanics, sound, thermal physics and optics	U18PHY01	Н	Н	Н	Н	М	М	М	М	М	н	н	М	М
18	Allied Physics-1 (II B.Sc. Chemistry) Mechanics, sound, thermal physics and optics	U18PHY33	Н	Н	Н	Н	М	М	М	М	М	Н	Н	М	М
19	Allied Physics- II (I B.Sc. Mathematics)	U18PHY02	Н	Н	Н	М	Н	М	М	-	-	Н	М	М	М

	Electricity, Atomic and Nuclear Physics and Electronics														
20	Allied Physics-II (II B.Sc. Chemistry) Electricity Atomic and Nuclear Physics and Electronics	U18PHY44	Н	Н	Н	М	Н	М	М	-	-	Н	М	М	М
21	Applied Physics- II (II B.Sc. Computer Science) Electricity, Magnetism and Electromagnetism	U13PHZ34	Н	М	М	М	Н	М	L	L	L	Н	М	М	L
22	Applied Physics II(II B.Sc. Computer Science) Solid state Devices and Microprocessor	U13PHZ45	Н	М	М	Н	М	L	L	L	L	Н	Н	М	Н
23	Major Practicals - I	U16PH1P1	Н	L	М	Н	L	М	-	-	Н	М	Н	Н	М
24	Major Practical-II	U16PH2P2	-	Н	Н	-	Н	М	Н	-	-	-	Н	Н	Н
25	Major Practicals - III	U16PH3P3	Н	L	М	Н	L	М	-	-	Н	М	Н	Н	М
26	Major Practical-IV	U16PH4P4	-	Н	Н	-	Н	М	Н	-	-	-	Н	Н	Н
27	Major Practicals - V	U16PH5P5	Н	Н	Н	Н	Н	М	М	L	L	Н	Н	Н	М
28	Major Practicals - VI	U16PH6P6	Н	Н	-	Н	М	Н	-	-	-	Н	Н	Н	Н
29	Allied Physics Practicals (I B.Sc. Mathematics/ II B.Sc. Chemistry)	U16PHYP1/ U19PHYP2	Н	Н	Н	Н	Н	Н	М	М	L	Н	Н	Н	Н
30	Applied Physics Practicals (II B.Sc. Computer Science)	U13PHZP1	М	М	М	М	L	М	М	М	L	М	М	М	М
31	Digital Electronics and Microprocessor Lab (III B.Sc. Computer Science)	U18CS6P6	М	М	М	М	L	М	М	М	L	М	М	М	М