M.Sc. Chemistry

SYLLABUS (Under Choice Based Credit System-CBCS)

For the Students Admitted in the Academic Year 2019-20

PG & RESEARCH DEPARTMENT OF CHEMISTRY

(DST-FIST Sponsored & DBT-STAR Scheme)
BISHOP HEBER COLLEGE (Autonomous)

(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAACRecognized by UGC as "College of Excellence" TIRUCHIRAPPALLI – 620 017

PG & Research Department of Chemistry

Bishop Heber College (Autonomous), Trichy -17

Vision:

The PG & Research Department of Chemistry envisions...

To transform students into globally-competent graduates by providing a vibrant, Innovative and all-inclusive learning environment that fosters Values, Professional ethics and Social Consciousness.

Mission:

To reach its vision the Department would

- offer a Quality and Comprehensive Curriculum
- facilitate a Competent Learning Environment
- create an Integrated Research Culture
- foster Industry Academia Network for education
- inspire to Innovate

Program Outcomes - M.Sc. Chemistry

On successful completion of the M.Sc. Chemistry program, the post graduand will be able toexhibit the following abilities in the respective domains.

KNOWLEDGE

- **PO1:** Exhibit substantial and advanced knowledge in Organic, Inorganic, Physical and related fields of Chemistry.
- **PO2:** Apply concepts and theories of chemistry to solve qualitative and quantitative problems
- **PO3:** Disseminate scientific and technical information to both Professional and broader audience effectively.

SKILLS

- **PO4:** Analyze complex problems through appropriate techniques, experiments, computational tools, spectral and instrumental methods to provide solutions.
- **PO5:** Assess experimental and research problems critically and independently to arrive at objective conclusions.
- **PO6:** Exhibit digital proficiency in data analysis, library search, basic chemistry software and related computational tools.

ATTITUDES

PO7: Contribute to diverse teams through leadership and collaborative skills and hence adaptable to Jobs in Chemical industries, Academic institutions, Research organizations, corporate and public sectors.

ETHICAL & SOCIAL VALUES

- **PO8**: Practice professional and ethical values with a consciousness to legal, environmental and social responsibilities in all walks of life.
- **PO9:** Observe IPR guidelines while designing, documenting and publishing a possible project.

<u>Program Specific Outcomes - M. Sc.</u> <u>Chemistry</u>

On Successful Completion of M.Sc. Chemistry program, graduand would have acquired thefollowing competencies:

Knowledge & Skills Domain

- **PSO1:** Relate the properties, reactions and applications of various chemical entities using theories and principles.
- **PSO2:** Evaluate the various reaction mechanisms to plan synthetic routes and choose the right modus operandi for reactions and processes in laboratory with safety and environmental security.
- **PSO3**: Comprehend the mathematical and physical basis of the behaviour of chemical species and processes.
- **PSO4:** Develop analytical skills and problem solving skills in addition to project based

PROGRAM ARTICULATION MATRIX - M.Sc. CHEMISTRY

S.	Name of the	Course	CORF	RELATI	ON WI	TH PRO	OGRAN	1 OUTC	COMES	AND P	ROGRA	M SPE	CIFIC O	UTCOM	ES
No	Course	Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
1	Bonding & Structure of Inorganic Compounds	P19CH101	M	M	M	M	L	-	M	-	M	Н	Н	L	Н
2	Concepts in Organic Chemistry	P19CH102	Н	Н	M	M	M	-	L	L	L	Н	M	L	M
3	Chemical Kinetics & Quantum Mechanics	P19CH103	Н	M	M	Н	Н	-	M	M	-	Н	M	Н	M
4	Inorganic Quantitative Estimations & Complex Preparation	P19CH1P1	M	Н	M	Н	Н	M	Н	M	L	Н	M	M	Н
5	Organic Synthesis & Separation Techniques	P19CH1P2	Н	Н	Н	Н	Н	L	Н	M	L	Н	M	M	Н
6	Coordination & Organometallic Chemistry	P19CH204	M	M	L	L	L	M	L	M	-	M	M	L	-
7	Reactions & Mechanisms In Organic Chemistry	P19CH205	Н	Н	Н	M	Н	L	M	-	M	Н	Н	M	M
8	Inorganic Semimicro Analysis & Colorimetric Estimations	P19CH2P3	M	Н	M	M	M	L	M	M	L	Н	Н	M	Н
9	Quantitative Analysis of Organic Compounds	P19CH2P4	Н	Н	Н	Н	Н	-	Н	M	Н	Н	Н	M	Н
10	Data Analysis & Selected Analytical	P19CH2:1	Н	Н	M	Н	M	M	L	M	Н	M	L	Н	Н

	Techniques														
11	RI / MI	P17VL2:1/ P17VL2:2													
12	Organic Spectroscopy	P19CH306	Н	Н	M	Н	M	-	M	M	M	Н	Н	Н	Н
13	Thermodynamics & Electrochemistry	P19CH307	M	M	L	L	L	-	-	-	-	M	-	M	L
14	Physical Chemistry Practical (Non Electrical)	P19CH3P5	Н	Н	M	M	Н	-	М	Н	-	Н	Н	Н	M
15	Physical Chemistry Practical (Electrical)	P19CH3P6	Н	Н	M	Н	Н	L	L	L	L	Н	M	M	Н
16	Bio-Inorganic Chemistry	P19CH3:2	M	M	M	M	M	-	-	M	-	M	M	M	L
17	Project	Р19СН4РЈ													
18	Inorganic Spectroscopy	P19CH408	Н	M	L	M	M	L	M	L	L	Н	M	M	M
19	Group Theory & Spectroscopy	P19CH409	L	M	M	M	M	M	L	L	L	M	M	M	M
20	Applications of Drug Design & Discovery	P19CH4:3	M	M	M	Н	M	M	L	L	L	Н	M	L	L
21	Selected Topics in Chemistry	P19CH4:4	M	M	M	M	L	L	Н	L	L	M	M	M	M
22	Computer Aided Molecular Calculations	P19CH4:P	M	M	L	M	M	Н	-	-	-	L	-	L	M
23	Project	Р19СН4РЈ	Н	M	Н	M	Н	Н	M	M	M	Н	Н	L	M

PG& RESEARCH DEPARTMENT OF CHEMISTRY

Structure of the Curriculum-M.Sc. Chemistry

Semeste	r - I		Semeste	Semester - II				
	Hours	Credits		Hours	Credits			
Core Theory - 1	6	6	Core Theory - 4	6	6			
Core Theory - 2	6	6	Core Theory - 5	6	6			
Core Theory - 3	6	6	Core Practical - 3	5	3			
			(Lab. Cum Theory)	3	3			
Core Practical - 1	6	3	Core Practical - 4	6	3			
(Lab. Cum Theory)	U	3	(Lab. Cum Theory)	U	3			
Core Practical - 2	6	3	Elective - 1	5	4			
(Lab. Cum Theory)	U	3						
			VLO - 1	2	2			
Total	30	24	Total	30	24			
Semester	- III		Semester - IV					
	Hours	Credits		Hours	Credits			
Core Theory - 6	6	5	Core Theory - 8	6	5			
Core Theory - 7	6	5	Core Theory - 9	6	5			
Core Project	1		Core Project	5	4			
Preparatory Course	1	-	Cole Project	3	4			
Core Practical - 5	6	3	Elective - 3	5	4			
Core Practical - 6	6	3	Elective - 4	5	2			
(Lab. Cum Theory)								
Elective - 2	5	4	Elective - 5 : Practical	3	2			
Total	30	20	Total	30	22			

Total	120 Hours	90 Credits

PARTS OF THE CURRICULUM	NO. OF COURSES	CREDITS
Core Course (Theory)	9	50
Core Course (Practical)	6	18
Elective	5	16
Project	1	4
VLO	1	2
TOTAL	22	90

** INTERNSHIP

- **2 Extra credits** can be earned by attending Summer/ Winter Internship on submission of attendance certificate for a period of 8 weeks with a Project Report.
- Industrial Visit to Chemical Industries, Pharmaceutical Industries, CSIR-Centres, Sophisticated Instrumentation Centres etc., within India and submission of Mini Report is also entertained.

$Structure\ of\ the\ Curriculum\ (PG\ Chemistry)$

Sem	Course	Course Code	Course Title	Hrs/	Credi		MARK	S
				Week	ts	CIA	ESA	TOTAL
	Core I	P19CH101	Bonding & Structure of Inorganic	6	6	25	75	100
	Core II	P19CH102	Compounds Concepts in Organic Chemistry	6	6	25	75	100
	Core ii	P19CH103	Chemical Kinetics & Quantum	0	- 0	23	73	100
I	Core III	117011103	Mechanics	6	6	25	75	100
	Core	P19CH1P1	Inorganic Quantitative Estimations					
	Practical I		& Complex Preparation	6	3	40	60	100
	Core	P19CH1P2	Organic Synthesis & Separation					
	Practical II		Techniques	6	3	40	60	100
	C IV	P19CH204	Coordination & Organometallic			25	75	100
	Core IV	P19CH204	Chemistry Reactions & Mechanisms In	6	6	25	75	100
	Core V	P19CH205	Organic Chemistry	6	6	25	75	100
	Core	117011203	Organic Chemistry	0	0	23	73	100
II	Practical		Inorganic Semimicro Analysis &					
	III	P19CH2P3	Colorimetric Estimations	5	3	40	60	100
	Core							
	Practical	D10CH2D4	Quantitative Analysis of Organic		2	40	60	100
	IV.	P19CH2P4	Compounds Data Analysis & Selected	6	3	40	60	100
	Elective-I	P19CH2:1	Analytical Techniques	5	4	25	75	100
		P17VL2:1/						
	VLO	P17VL2:2	RI / MI	2	2	25	75	100
	Core VI	P19CH306	Organic Spectroscopy	6	5	25	75	100
			Thermodynamics &					
	Core VII	P19CH307	Electrochemistry	6	5	25	75	100
	Core		Physical Chemistry Practical				1	
III	Practical V	P19CH3P5	(Non Electrical)	6	3	40	60	100
	Core		Physical Chemistry Practical					
	Practical		(Electrical)					
	VI	P19CH3P6		6	3	40	60	100
			Bio-Inorganic Chemistry					
	Elective -II	P19CH3:2		5	4	25	75	100
	Core							
	Project	P19CH4PJ	Project	1	-			
	Core VIII	P19CH408	Inorganic Spectroscopy	6	5	25	75	100
	Core IX	P19CH409	Group Theory & Spectroscopy	6	5	25	75	100
	Elective		Applications of Drug Design &					
	III	P19CH4:3	Discovery	5	4	25	75	100
IV	Elective		Selected Topics in Chemistry					
	IV	P19CH4:4		5	2	25	75	100
	Elective V-		Computer Aided Molecular					
	Practical	P19CH4:P	Calculations	2	2	40	60	100
		1 19CH4.P	Project	3	2	40	00	100
	Core	Р19СН4РЈ	110,000	5	4			100
	Project	Tot	l al	120	90			2200

Elective Optional Papers 1. Green Chemistry

- Radiation Chemistry
 Chemistry of Polymers

- 4. Analytical Techniques in Chemistry5. Natural Products Chemistry

Course - I: BONDING AND STRUCTURE OF INORGANIC COMPOUNDS

Semester: 1 Course Code: P19CH101

Credits: 6 Total Hrs: 90 Hours/Week:6

1. Course Outcomes:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Predict the reactivity of chemical compounds based on acid-base	K5	I
	concepts and HSAB principle		
2	Assess the role of non-aqueous solvents in chemical reactions	K5	I
3	Distinguish different types of crystal structures and crystal defects	K5	II
4	Explain the nuclear properties, stability and applications of	K4	III
	radioactive nuclei		
5	Predict the structure, geometry, optical and electronic properties of	K5	IV
	inorganic Compounds using VB, VSEPR, MO and Band theories		
6	Classify electron deficient, electron precise and electron rich	K4	V
	inorganic compounds based on their structure and bonding		

2A. Syllabus

UNIT-I SOLVENTS 18 HOURS

1.1 Acids and Bases

Differentiating and levelling solvents – Usanovich and Lux Flood concepts – Solvent ion theory of acids and bases –Hard and Soft Acids and Bases (HSAB)– Classification, acid-base strength and hardness and softness – Symbiosis – Theories of hardness and softness – Electronegativity and hardness and softness – Applications of HSAB, Proton sponges.

1.2 Non-aqueous solvents: Classification- protic and aprotic solvents, – Liquid NH₃, BrF₃, CH₃COOH, liquid SO₂, liquid HF. Proton sponges- molten salts as solvents and ionic liquids.

UNIT-II IONIC BONDING AND CRYSTAL STRUCTURE 18 HOURS

- **2.1** Packing of ions in crystals & crystal structure ccp, hcp, bcc, fcc
- **2.2** Radius ratio and structure of ionic lattices, Calculation of radius ratio and Coordination No, stoichiometry and crystal structures of NaCl, CsCl, Zincblende, wurtzite, Rutile, Flourite, antifluorite, perovskite, CdI_2 , β cristobalite & ReO₃ structure, Spinels Inverse Spinels.
- **2.3** Lattice energy- Slater's rule, Born-Haber cycle- Born-Lande equation, Factors affecting Lattice Energy
- **2.4** Crystal defects: Stoichiometric and non- stoichiometric defects. Metal excess defects Metal deficiency defects calculation of number of defects.

UNIT-III NUCLEAR CHEMISTRY

18 HOURS

3.1 Nuclear Chemistry

The Structure of the nucleus, Radioactive equilibrium, Orbital electron capture, Nuclear isomerism, Internal conversion, Nuclear cross section.

Nuclear stability- Binding energy, shell model, magic numbers, Harkin's rule, Theories of decay processes-Geiger-Nuttal rule, Group displacement laws and units of radioactivity

3.2 Radioactivity

Nuclear reactions: Q- value of nuclear reactions, transmutation, stripping and pickup, fission, fusion, spallation, projectile capture and particle emission reaction, fragmentation and scattering.

Particle accelerators: Cyclotron, linear accelerator and synchrotron

Nuclear reactors: Power reactor, breeder and Fast breeder reactors

Radioactive techniques: Tracer technique, Neutron activation and Isotopic dilution analysis.

Counting techniques: Geiger-.Muller, scintillation and proportional counters.

Applications: carbon dating, agriculture, medicine and industry.

UNIT-IV COVALENT BONDING

18 HOURS

- **4.1 VBT**: Resonance, conditions for resonance, formal charges, hybridization and geometry, VSEPR model- CH₄, NH₃, H₂O, PCl₃F₂ Bents' rule and Walsh diagram- SF₄, BrF₃, ICl₂-, ICl₄-, XeF₄, XeOF₄, XeO₄, XeO₃, XeF₆, XeF₂
- **4.2 MOT:** LCAO method- MO level energy level diagram of hetero diatomic molecule HCl) and polyatomic molecule NH₃ and SF₆–LUMO and HOMO concepts in bonding.
- **4.3 Bonding in metals:** Band theory of solids, Insulators, Semiconductors- n and p type, Super conductors and its applications.

UNIT-V INORGANIC CHAINS, RINGS & CAGES COMPOUNDS 18 HOURS 5.1 Electron deficient, electron precise and electron rich compounds: Boranes and carboranes: Structure of B_2H_6 , B_4H_{10} , $B_{12}H_{12}^{2-}$, B_6H_{10} , B_8H_{12} , $B_{10}H_{14}$. Synthesis of neutral boron hydrides, polyhedral boron anions and dianions, structure of polyhedral boranes-nido – arachno- and closo – frameworks, PSEPT (Wade's rule and Styx code). Carboranes- synthesis, polyhedral geometries of metalloboranes and metallocarboranes.

5.2 Boron –Nitrogen compounds:

Structure and bonding of B₃ N₃ H₆, Borazines, B-N clusters and azaboranes.

- **5.3 Metal clusters**: Structure and bonding of dinuclear cluster Re₂Cl₈²⁻
- **5.4 Poly acids**: Structure of isopoly and heteropoly anions and polycations of W and Mo.
- **5.5** P-N and P-S compounds: Polyphosphazene, cyclophosphazene, P-S cages.
- **5.6 Cyclic S-N compounds**: Tetra sulphur –tetranitride (S₄N₄) and Polythiazyl.

2B.Topics for Self-Study:

S.No.	Topics	Web Links
1	Acid base Equilibrium	https://www.youtube.com/watch?v=jdmHjFp_35I
2	Crystal structure Review	https://www.youtube.com/watch?v=iPb8vRtroLU
3	Nuclear Radiation	https://www.youtube.com/watch?v=iTb_KRG6Lxo
4	Bonding in metal carbonyls	https://www.youtube.com/watch?v=ZkSuggOV9dA
5	cluster of compounds	https://www.youtube.com/watch?v=LHevfXFKl_E

2C.Text Books

- 1. James E. Huheey, Ellen A Keiter and Richard L. Keiter, "Inorganic Chemistry: Principles of Structure and Reactivity", Pearson Education, India, 2014. (Unit- I, II, IV, V)
- 2. H.J. Arnikar, "Essentials of Nuclear Chemistry", New Age International, 2011. (Unit- III)

2D.Reference Books

- 1. Bodie E. Douglas and Darl H. Mc Daniel, John J. Alexander, "Concepts and Models in Inorganic Chemistry", Wiley Eastern, New Delhi, 2006.
- 2. J.D. Lee, "Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- 3. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Golden Sunburst Series, E.B. Saunders Company, Philadelphia, 2010.
- 4. F.Albert Cotton, Geoffrey Wilkinson and Carlos A. Murillo, "Advanced Inorganic Chemistry", John Wiley and Sons, Singapore, 2007.
- 5. B.R. Puri, L.R. Sharma and K.C. Kalia "Principles of Inorganic Chemistry" Vishal Publishing Co., Jalandhar, 2017.
- 6. S. Glasstone, "Source Book on Atomic Energy" 3rd Edition, Affiliated East-West Press Pvt. Ltd., New Delhi, 2014.
- 7. Gary L. Miessler, Donald A. Tarr, "Inorganic Chemistry", Pearson Education, New Delhi, 2008.

3.Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit – 1:		
1.1	Differentiating and leveling solvents.	Distinguish the differentiating and leveling solvents.	K2
	Usanovich, Solvent ion theory of acids and bases and Lux-Flood concepts.	Apply the concepts of acid and bases and identify inorganic species as acids or bases.	K3
	Hard and Soft Acids and Bases (HSAB)— Classification, electronegativity, acid-base strength and hardness and softness.	classify inorganic compounds as hard and soft using the principle of HSAB and to correlate electronegativity, acid-base strength and hardness and softness.	K4
	Applications of HSAB concept.	Interpret the various applications of hardness and softness.	K5
1.2	Non aqueous solvents: Classification - protic and aprotic solvents.	Classify various solvents.	K4
	Liquid NH ₃ , BrF ₃ , CH ₃ COOH, liquid SO ₂ , liquid HF.	Explain the chemistry of different non-aqueous solvents.	K5
	Proton sponges - molten salts as solvents and ionic liquids.	Examine the characteristics of ionic liquids and proton sponges.	K4
	Unit – 2:	,	
2.1	Packing of ions in crystals Crystal structure – ccp, hcp, bcc, fcc.	Classify the different types of packing and crystal structure.	K4

	Radius ratio and structure of ionic lattices, Calculation of radius ratio and Coordination No.	Calculate radius ratio, structure of ionic lattices and coordination number by applying the radius ratio rule.	K4
2.2	Stoichiometry and crystal structures of NaCl, CsCl, Zinc blende Wurtzite, Rutile, Flourite, Antifluorite, Perovskite, CdI ₂ , β-cristobalite & ReO ₃ structure.	Justify the stoichiometry in different types of crystal structures	K5
	Spinels and Inverse Spinels.	Contrast the structure and stochiometry of Spinels and Inverse Spinels.	K4
2.3	Lattice energy- Slater's rule Born-Haber cycle - Born-Lande equation, Factors affecting Lattice Energy.	Calculate lattice energy using Slater's rule and Born-Haber cycle and illustrate the factors affecting Lattice Energy.	K4
	Crystal defects: Stoichiometric and non stoichiometric defects. Metal	Distinguish the different types of crystal defects.	K4
2.4	excess defects – Metal deficiency defects, Calculation of number of defects.	Estimate the defects in the stoichiometric and non-stoichiometric crystals.	K5
	Unit – 3:		
3.1	Nucleus- Structure of the nucleus.	Analyze the structural components of an atomic nucleus.	K4
	Radioactive equilibrium, Orbital electron capture, Nuclear isomerism, Internal conversion, Nuclear cross section.	Compare the different types of nuclear reactions.	K4
	Nuclear stability- Binding energy, shell model, magic numbers, Harkin's rule.	Deduce the stability of nucleus based on binding energy, n/p ratio.	K5
	Theories of decay processes - Geiger-Nuttal rule, Group displacement laws and units of radioactivity.	Examine the theories of decay processes.	K4
3.2	Nuclear reactions: Q- value of nuclear reactions, transmutation, stripping and pickup, fission, fusion, spallation, projectile capture and particle emission reaction, fragmentation and scattering.	Calculate the Q- value of nuclear reactions and to differentiate the nuclear transmutation reactions.	K4

	Particle accelerators: Cyclotron, linear accelerator and synchrotron Nuclear reactors: Power reactor, breeder and Fast breeder reactors.	Compare and contrast the working and applications of different types of particle accelerators.	K4
	Radioactive techniques: Tracer technique, Neutron activation and Isotopic dilution analysis.	Explain the importance, working and applications of radioactive techniques.	K4
	Counting techniques: GeigerMuller, scintillation and proportional counters.	Illustrate the different techniques used to quantify ionising radiations.	K4
	Applications: Carbon dating, agriculture, medicine and industry.	Calculate the age of antique material by carbon dating and explain the role of radioactive materials in agriculture, biology, industry and pharmaceuticals.	K4
	Unit - 4:		
4.1	VBT: Resonance, conditions for resonance, formal charges Hybridization and geometry: VSEPR model - CH4, NH3, CH3, NH4 ⁺ , SO ₄ ²⁻ , CO ₃ ²⁻ , H2O, PCl ₃ F ₂ . Bents' rule- SF ₄ , BrF ₃ , ICl ₂ ⁻ , ICl ₄ ⁻ , XeF ₄ , XeOF ₄ , XeO ₄ , XeO ₃ , XeF ₆ , XeF ₂ .	Predict the structure, hybridization and geometry of inorganic molecules using VSEPR and VB theories.	K5
4.2	MOT: LCAO method MO level energy level diagram of hetero diatomic molecule (HCl) and polyatomic molecule NH ₃ and SF ₆ – LUMO and HOMO concepts in bonding.	Explain the type of bonding in poly atomic molecules using HOMO and LUMO concepts of MOT.	K4
4.3	Bonding in metals: Band theory of solids.	Analyze the optical and electronic properties of semiconductors using Band theory of solids.	K4
	Insulators, Semiconductors n and p type, Super conductors and its applications.	Compare the different types of semiconductors and list their applications.	K4
5.1	Unit – 5: Electron deficient, electron precise and electron rich compounds:		

	Boranes and Carboranes: Structure of B ₂ H ₆ , B ₄ H ₁₀ , B ₁₂ H ₁₂ ² , B ₆ H ₁₀ , B ₈ H ₁₂ , B ₁₀ H ₁₄ . Synthesis of neutral boron hydrides, polyhedral boron anions and dianions. PSEPT (Wade's rule and Styx code).	Predict the type of boranes and carboranes based on Wade's rule and Styx code.	K5
	Structure of polyhedral boranes - nido-arachno and closo-frameworks.	Explain the classification and structure of polyhedral boranes.	K4
	Carboranes - synthesis, polyhedral geometries of metalloboranes and metallocarboranes.	Explain the synthesis and structure and bonding in Carboranes.	K4
5.2	Boron –Nitrogen compounds: Structure and bonding of B3N3H6, Borazines, B-N clusters and azaboranes.	Examine the structure and bonding of Boron –Nitrogen compounds.	K4
	Metal clusters: Structure and bonding of dinuclear cluster Re ₂ Cl ₈₂ .	Analyze the structure and bonding of Metal clusters.	K4
	Poly acids: Structure of isopoly and heteropoly anions and polycations of W and Mo.	Inspect the structure and bonding of Structure of isopoly and heteropoly anions.	K4
	P-N and P-S compounds: Polyphosphazene, cyclophosphazene, P-S cages.	Correlate the structure and bonding of the P-N and P-S compounds.	K4
	S-N compounds : Tetra sulphur – tetranitride (S ₄ N ₄) and Polythiazyl.	Illustrate the different types of S-N compounds.	K4

4. Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

Course Title: BONDING AND STRUCTURE OF INORGANIC COMPOUNDS

Course 11th	Course little: BUNDING AND STRUCTURE OF INORGANIC COMPOUNDS												
Course Coo	Course Code: P19CH101												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	Н	M	M	Н	-	-	-	-	Н	Н	-	Н
CO2	L	M	M	M	M	-	M	-	M	Н	M	-	M
CO3	M	-	M	M	L	-	-	-	M	M	L	-	Н
CO4	M	M	M	M	L	-	-	-	-	-	L	-	Н
CO5	M	Н	M	M	L	-	M	-	-	M	Н	-	Н
CO6	Н	M	-	M	M	-	M	-	-	Н	M	L	Н

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Course: II CONCEPTS IN ORGANIC CHEMISTRY

Semester: 1 Code: P19CH102
Credits: 6 Total Hrs: 90
Hours / Week: 6

1. Course Outcomes:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Apply the rules of nomenclature to name organic compounds	К3	I
2	Distinguish the reactive intermediates and factors affecting their stability	K5	II
3	Examine the evidences for the kinetics and thermodynamic aspects of reactions	K4	II
4	Apply Huckle's and Craig's rules of aromaticity to benzenoid and non-benzenoid compounds	К3	III
5	Categorize the organic compounds based on stereochemistry	K4	IV
6	Evaluate different methods of reaction mechanism related to molecular rearrangements	K5	V

2A. Syllabus

UNIT-I NOMENCLATURE OF ORGANIC COMPOUNDS 18 Hours

- **1.1 Nomenclature :** General rules-Naming of linear and branched alkanes, alkenes, polyenes and alkynes with two or three functional groups by IUPAC nomenclature. Aromatic and heteroaromatic systems- nomenclature of heterocycles having not more than two hetero atoms such as oxygen, nitrogen and sulphur. Fused heterocycles and fused aromatic systems.
- **1.2** Nomenclature of alicyclic, bicyclic and tricyclic compounds- organic molecules including regio and stereoisomers.

UNIT-II REACTION MECHANISMS AND INTERMEDIATES 18 Hours

- **2.1 Reaction Mechanism: Structure and Reactivity:-**Types of reactions, Types of mechanisms, Rate constants determination and life times of reactive energy states -. Potential energy diagrams, transition states and intermediates, methodsof determining mechanisms, isotope effects. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, Hammond's postulate, Quantitative treatment. The Hammett equation and linear free energy relationship, substituent and reaction constants. Taft equation.
- **2.2 Reactive Intermediates:-**Free radicals, carbenes, nitrenes, carbanions, classical and non-classical carbocations, phenonium ions, norbornyl system, common carbocation rearrangements. Application of NMR spectroscopy in the detection of carbocations.

UNIT-III AROMATICITY OF ORGANIC COMPOUNDS

- 18 Hours
- **3.1 Aromaticity-:**Electron delocalization and resonance -Huckel's rule-Aromaticity in benzenoid and non- benzeneoid compounds, alternant and non-alternant hydrocarbons- Craigs rule (fused ring system)- Aromaticity on larger annulenes- antiaromatic homoaromatic and non-aromatic compounds -Molecular orbital description of aromaticity and anti aromaticity.
- **3.2 Some Selected reactions of aromatic system :-**Electrophilic aromatic substitution: Gattermann reaction Gattermann- Kosch formylation reaction- Hoeben- Hoesch reaction- Vilsmeyer formylation. *Nucleophilic aromatic substitution*: Chichibabin amination Bucherer reaction. *Transition metal chemistry:* Pauson-Khand reaction- Heck reaction- Suzuki Coupling Stille Coupling Sonogashira Coupling- Negishi cross coupling.

UNIT -IV ORGANIC STEREO CHEMISTRY

18 Hours

- **4.1 Optical Isomerism -** *Brief introduction to Chirality:* Asymmetry-dissymmetry -chiral axis and chiral planes- examples (Biphenyls, Allenes, spiranes and ansa compound, cyclophanes respectively). *Prochirality:* Principles of Stereogenecity, stereoselectivity, enantioselectivity, diastereoselectivity. Enantiotopic and Diasterotopic. *Asymmetric synthesis:* Stereoselective and stereospecific synthesis stereochemical aspects through various models (Cram / Cram chelation
 - / Felkin-Anh models); Cram's rule. *Methods of resolution:* crystal growth-enantiomeric excess.
 - **4.2 Dynamic stereochemistry** -Conformational analysis -Introduction to terms conformers, configuration, dihedral angle, torsional strain, conformations. Conformational analysis of cycloalkanes (3,4,5 and 6 membered ring with two substituents). Winstein Eliel equation- Curtin-Hammet principle.

UNIT-V MOLECULAR REARRANGEMENT

18 Hours

- **5.1** *Migration of Carbon:* Wagner-Meerwein rearrangement-Wolf rearrangement-Benzil benzilic acid rearrangement, *Migration to electron deficient nitrogen:* Hofmann rearrangement Beckmann rearrangement- Schimdt rearrangement. *Migration to electron deficient oxygen:* Bayer Villager oxidation- Dakin reaction.
- **5.2** *Migration to electron rich carbon :* Favorskii rearrangement Stevens rearrangement- Wittig rearrangement. Neber rearrangement. *Other rearrangements:* Dienone-phenolrearrangement Benzidine rearrangement Gruvenstein and Zimmermann rearrangements.

2B.Topics for Self Study

S. No	Topics	Web links
1	Nomenclature of	https://www.acdlabs.com/iupac/nomenclature/79/r79_164.htm
	polycyclic systems	https://www.acdlabs.com/iupac/nomenclature/79/r79_166.htm
		http://publications.iupac.org/pac/1999/pdf/7103x0513.pdf
		https://doi.org/10.1007/978-3-662-01665-7_1
2	Reaction mechanism	https://en.wikipedia.org/wiki/ANRORC_mechanism
	and intermediates	https://synarchive.com/named-reactions/zincke-reaction

		https://www.organic- chemistry.org/namedreactions/fukuyama-coupling.shtm
3	Aromaticity and related reactions	https://chemistry.illinois.edu/system/files/inline-files/02JanowiczFINALAbstract.pdf http://www.f.u-tokyo.ac.jp/~kanai/seminar/pdf/Lit_K_Yamamoto_M1.pdf
		https://www.organic-chemistry.org/namedreactions/chan-lam- coupling.shtm
4	Optical Isomerism	https://www.sparknotes.com/chemistry/organic2/carbocycles/section3/ https://chem.libretexts.org/Bookshelves/Organic Chemistry/Book%3A_Basic_Principles_of_Organic_Chemistry_(Roberts_and_Caserio)/12%3A_Cycloalkanes_Cycloalkenes_and_Cycloalkynes/12.09%3A_Conformations_of_Decalin_https://www.chemtube3d.com/stdecalins/http://www.mpgpgcollegehardoi.in/Decalins.pdf_https://www.chemistry.mcmaster.ca/silicone/SharplessEdited.pdf
5	Molecular	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/rear
	Rearrangements	ang2.htm#top1 http://burton.chem.ox.ac.uk/handout-2-2018.pdf https://pubs.acs.org/doi/10.1021/ar700198z

2C.Text Books

- 1. R. Panico, W.H. Powell, L. Jean, C. Richer, "A Guide of IUPAC Nomenclature of Organic compounds", Wiley-Blackwell, 1993. (Unit-I)
- 2. Jerry March, "Advanced Organic Chemistry Reaction Mechanisms and Structure", Wiley India, 2006. (Unit-II, III)
- **3.** D. Nasipuri "Stereochemistry of Organic Compounds", New Age International, New Delhi, 2018. (Unit-IV)
- **4.** P.S. Kalsi, "Stereochemistry, Conformations and Mechanism", New Age International Private Limited, New Delhi, 2017. (**Unit-IV**)
- 5. Ahluwalia V K, "Organic Reaction Mechanism" Narosa Publication, 2010. (Unit-V)
- **6.** S.M. Mukherji and S.P.Singh, "Reaction Mechanism in Organic Chemistry", Macmillan India Ltd., Patna, 1990. (**Unit-V**)

2D.Reference Books

- 1. R.S. Cahn and O.C. Dermer, "Introduction to Chemical Nomenclature", Butterworths, London, 1979.
- 2. Peter Sykes, "A Guide Gook to Mechanism in Organic Chemistry", Pearson Education, New Delhi, 2003.
- 3. E.L. Eliel, "Stereochemistry of Carbon Compounds", McGraw Hill, New Delhi, 2003.
- 4. Jonathan Clayden, Nick Greeves, Stuart Warren, "Organic Chemistry", Oxford University Press, 2014.

3.Specific Learning Outcomes (SLO)

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic Highest Level of Transaction
	Unit – 1: Nomenclature of Organic	Compounds	
1.1	Nomenclature—General rules-Naming of linear and branched alkanes, alkenes, polyenes and alkynes with two or three functional groups by IUPAC nomenclature	Apply IUPAC rules to name compounds • with two / three functional groups	К3
	Aromatic and heteroaromatic systems- nomenclature of heterocycles having not more than two hetero atoms such as oxygen, nitrogen and sulphur. Fused heterocycles and fused aromatic systems.	Apply IUPAC rules to name compounds • heterocycles having not more than two hetero • Fused heterocycles and fused aromatic systems	K3
1.2	Nomenclature of alicyclic, bicyclicand tricyclic compounds- organic molecules including region and stereoisomers.	Apply IUPAC rules to name compounds of bicyclic and tricyclic compounds- organic molecules including region and stereoisomers.	К3
	Unit- 2: Reaction Mechanisms and In	termediates	
2.1	Types of reactions, Types of mechanisms, Rate constants – determination and life times of	Distinguish Intermediates and Transition state.	K4
	reactive energy states Potential energy diagrams, transition states and	Illustrate methods of determining mechanism.	K4
	intermediates, methods of determining mechanisms, isotope effects.	Evaluate different types of mechanism.	K4
	Thermodynamic and kinetic requirements, kinetic and thermodynamic control, Hammond's postulate, Quantitative treatment. The Hammett equation and linear free energy relationship, substituent and	Illustrate how reactions proceeds, kinetics and thermodynamics of reactions mechanisms including Hammond's postulate	K4

	reaction constants. Taft equation	To apply Quantitative Measurement of Substituent Effects on Chemical Reactivity - Hammett equation and Taft equation and their significances	K3
2.2	Reactive Intermediates Free radicals, carbenes, nitrenes, carbanions, classical and non-classical, carbocations, phenonium ions, norbornyl system, common carbocation	Compare the different reactive intermediates and various factors affecting their stability, the rearrangements associated with such intermediates	K4
	rearrangements. Application of NMR spectroscopy in the detection of carbocations Unit – 3: Aromaticity of Organic Comp	Apply of NMR spectroscopy in the detection of carbocation	К3
3.1	Aromaticity Electron delocalization and resonance - Huckel's rule- Aromaticity in benzenoid and non-benzenoid compounds, alternant and non- alternant hydrocarbons-	Apply Huckles rules of aromaticity and use that to identify aromaticity / anti aromatcity / non aromaticity in benzenoid and non benzenoid compounds	К3
		Compare alternante and non - alternante hydrocarbons-	K2
	Craigs rule (fused ring system)- Aromaticity on larger annulenes- antiaromatic - homoaromatic and non- aromatic compounds -	Apply Craig's rules of aromaticity to identify aromaticity in benzenoid and non benzenoid compounds	К3
	Molecular orbital description of aromaticity and anti aromaticity.	Determine aromatic compounds and anti-aromatic compound based on Molecular orbital description.	К3
3.2	Some Selected reactions of aromatic system Electrophilic aromatic substitution: Gattermann reaction - Gattermann- Kosch formylation reaction- Hoeben-	Explain the mechanism of various aromatic electrophilic/nucleophilic substitution reaction for synthetic applications.	К3
	Hoesch reaction- Vilsmeyer formylation. <i>Nucleophilic aromatic substitution:</i> Chichibabinamination — Bucherer reaction. <i>Transition metal chemistry:</i> Pauson-Khand reaction-Heck reaction-Suzuki Coupling - Stille Coupling - Sonogashira Coupling-Negishi cross coupling.	Predict different aromatic electrophilic substitution reaction.	К3

	Unit- 4: Organic Stereo Chemistry		
4.1	Brief introduction to Chirality: Asymmetry- dissymmetry -chiral axis and chiral planes- examples (Biphenyls, Allenes, spiranes and ansa	Examine chirality of compounds without chiral centers [Allens, Biphenyls, spiranes, ansa compounds and cyclophanes]	K4
	compound, cyclophanes respectively). Prochirality: Principles of Stereogenecity, stereoselectivity, enantioselectivity, diastereoselectivity.	Deduce Asymmetric synthesis, Stereo selective and stereospecific synthesis – for synthetic applications	K4
	Enantiotopic and Diasterotopic. Asymmetric synthesis: Stereoselective and stereospecific synthesis -	Apply Cram / Cram chelation /Felkin-Anh models for asymmetric synthesis	К3
	stereochemical aspects throughvarious models (Cram / Cram chelation /Felkin-Anh models); Cram's rule.	Predict various re arrangement reactions /their mechanism and their importance in synthesis	K3
	Methods of resolution: crystal growth- enantiomeric excess	Illustrate how seeding method can be employed for the resolution of enantiomers	К3
4.2	Dynamic stereochemistry - Conformational analysis -Introduction to terms - conformers, configuration, dihedral angle, torsional strain, conformations. Conformational analysis of cycloalkanes (3,4,5 and 6 membered ring with twsubstituents). WinsteinEliel equation-Curtin-Hammet principle.	Analyze the stability cycloalkanes of 3,4,5 and 6 membered ring with two substituents using conformational analysis Using WinsteinEliel equation-Curtin-Hammet principle to arrive at the product ratio in a chemical reaction	K4
	Unit - 5 Molecular rearrangement	,	

5.1	Migration of Carbon: Wagner- Meerwein rearrangement-Wolf rearrangement-Benzil benzilic acid		K5
	rearrangement, Migration to electron deficient nitrogen: Hofmann rearrangement – Beckmann rearrangement – Schimdt rearrangement. Migration to electron deficient oxygen: Bayer Villager	medianistic details	
	oxidation- Dakin reaction.	Analysis discounting fully	
5.2	Migration to electron rich carbon: Favorskii	Analyze the role of the Migrating groups in the	K4
	rearrangement – Stevens rearrangement-Wittig rearrangement. Neber rearrangement. Other	rearrangement reactions	
	rearrangements: Dienone- phenol rearrangement - Benzidine rearrangement — Gruvenstein and Zimmermann rearrangements.	Explain based on evidences, the plausible mechanisms of rearrangements	K4

4.Mapping Scheme for the PO, PSOs and Cos

			L-L	ow	\mathbf{M}	-Mode	erate		H- Hi	gh			
Course Title: CONCEPTS IN ORGANIC CHEMISTRY													
Course Code: P19CH102													
Mappin	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PSO	PS0
g	1	2	3	4	5	6	7	8	9	01	02	3	4
CO1	Н	Н	M	L	M	-	M	M	L	Н	-	L	M
CO2	Н	Н	M	M	L	-	L	-	-	Н	M	-	-
CO3	Н	Н	Н	M	M	-	M	L	L	Н	L	L	L
CO4	Н	Н	M	M	L	-	Н	L	L	Н	M	-	-
CO5	Н	Н	M	L	M	-	L	M	L	Н	-	L	M
CO6	Н	Н	M	Н	M	M	L	-	_	Н	-	M	_

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Course: III CHEMICAL KINETICS AND QUANTUM MECHANICS

SEMESTER: I CODE: P19CH103
CREDITS: 6 TOTAL HOURS: 90
Hours / Week: 6

1.Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Correlate the kinetic properties with thermodynamic properties	K5	I
2	Deduce the rate equation from mechanistic data	K5	I
3	Solve problems by applying the principles of Kinetics and Quantum Mechanics	K5	III
4	Predict the hybridization schemes in molecules through Quantum mechanical approach of MO and VB theories	K5	IV
5	Deduce Wave functions and Energy of simple systems using Approximation methods	K5	IV
6	Analyze the mechanism of heterogeneous catalysis based on the principles of adsorption	K4	V

2A. Syllabus

UNIT-I Chemical Kinetics – I 18 Hours

- 1.1 Theories of reaction rates and factors influencing the reaction rate: ARRT (Eyring's theory), Thermodynamic derivation of ARRT-comparison of ARRT with collision theory (A, $\Delta S^{\#}$, E_a and $\Delta H^{\#}$) kinetic isotope effects, Marcus electron transfer theory-inner and outer electron transfer.
- 1.2 Theory of unimolecular reactions-Lindemann's theory Steady State approximation-chain reactions-photochemical reaction between hydrogen and halogens (Cl_2 and Br_2) gas phase auto-oxidations, explosions-hydrogen-oxygen reaction.

UNIT- II Chemical Kinetics – II 18 Hours

- **2.1** Application of ARRT to solution kinetics-effects of solvents, double sphere model, effect of ionic strength on ionic reactions influence of pressure on reaction rates in solution-significance of volume of activation-substituent effects Hammett and Taft equations.
- **2.2** Homogeneous catalysis, acid-base catalysis types and mechanism, derivation of rate law for protolytic acid catalysis and explanation for Arrhenius and van't Hoff intermediates, Bronsted relations- Hammett-Deyrup

acidity function – enzyme catalysis-mechanism of single substrate reaction-Michaelis-Menton equation - Influence of pH, concentration and temperature, Line Waver plot and Eddi – Hofstee plot.

2.3 Fast reactions-study of kinetics by stopped flow technique, relaxation methods, T and P- jump methods, flash photolysis and magnetic resonance method.

UNIT- III Quantum Chemistry-I 18 Hours

- **3.1** Mathematical concepts for quantum mechanics differentiation formula for uv, u/v, (u+v), sinx, cosx, and e^x only partial differentiation Euler's reciprocal relation, chain rule (statement only) Integration methods.
- 3.2 Inadequacy of classical mechanics-wave particle dualism deBroglie's equation Uncertainty principle postulates of quantum mechanics -significance of ψ and ψ^2 ; Schrodinger time independent wave equation- Eigen functions and Eigen values Operators and their properties linear and Hermitian, angular momentum operators-commutation relations.- orthogonalization and normalization.
- **3.3** Applications of wave mechanics to simple systems Particle in a box one and three Dimension, Rigid rotator-Harmonic oscillator zero point energy-Hydrogen atom- shapes and nodal properties of orbitals- Bohr's correspondence principle.

UNIT- IV Quantum Chemistry – II 18 Hours

- **4.1** Approximation methods Variation method-application to one dimensional box, H₂, H₂⁺ and Helium atom Perturbation method application to one dimensional box and Helium atom- Born Oppenheimer Approximation-Hartree method and Hartree Fock Self-consistent Field method many electron atoms- Pauli's principle and Slater determinant.
- **4.2** LCAO- MO treatment of hydrogen molecular ion and H₂-VB treatment of hydrogen molecule hybridization of orbitals in BeF₂, BF₃,CH₄. Huckel pi-electron theory and its applications to ethylene, butadiene, benzene and allyl system.

UNIT- V Surface Chemistry 18 Hours

- **5.1** Adsorption–physisorption and chemisorptions Langumuir, BET & Gibbs adsorption isotherms- surface area determination Heat of adsorption, determination. Adsorption from solutions surface films.
- **5.2** Surface tension effect of electrolytes, non-electrolytes and surface active agents –micelles andreverse micelles. Solublisation, micro emulsions
- 5.3 Heterogeneous catalysis semiconductor catalysis, n-and p-type surfaces kinetics of surface reactions involving adsorbed species Langmuir Hinshelwood mechanism. Langmuir Rideal mechanism and Rideal Eley mechanisms.

2B.Topics for Self-Study:

S.No	TOPICS	Web Links
1	UNIT-I (CHEMICAL KINETICS – I)	https://www.pdfdrive.com/chemical-kinetics-
	chain reactions	<u>e188163536.html</u>
2	UNIT-II (CHEMICAL KINETICS – II)	https://www.pdfdrive.com/chemical-kinetics-
	Fast reactions – Shock Tube method	<u>e188163536.html</u>
3	UNIT- III (QUANTUM CHEMISTRY-I)	https://ocw.mit.edu/courses/chemical-
		engineering/10-626-electrochemical-energy-
	Quantum Tunneling of Electrons	systems-spring-2014/study-
		materials/MIT10_626S14_Lec20.pdf
4	UNIT- IV (QUANTUM CHEMISTRY-II)	https://physicspages.com/pdf/Griffiths%20QM
	Harmonic Oscillator: First Order Perturbation	/Griffiths%20Problems%2006.02.pdf
5	UNIT- V (SURFACE CHEMISTRY)	https://pdfs.semanticscholar.org/34e8/e28e30c
	Calculation of surface tension - Parachor	040e35e022952dff3201c53fb3248.pdf
	method - Effect of temperature on surface	
	tension	

2C.Text Book(s):

- Philip Mathews, "Advanced Physical Chemistry", Foundation Books, New Delhi, 2003.
 (Unit I-V)
- A.K.Chandra, "Introductory Quantum Chemistry", Tata McGraw-Hill, New Delhi, 2017. (Unit- III, IV)
- **3.** B.R. Puri, L.R.Sharma and M.S. Pathania, "Principles of Physical Chemistry", Vishal Publishing Co., Jalandar, 2017. (Unit-II, III, IV, V)

2D.Reference Books:

- 1. Peter Atkins and Julio de Paula, "Physical Chemistry" Oxford University Press, 2018.
- 2. K.J. Laidler, "Chemical Kinetics", Tata McGraw-Hill, New Delhi, 2003.
- 3. A.A. Frost and R.G. Pearson, "Kinetics and Mechanisms", John Wiley & Sons, New York, 1961.

- 4. I. Amdur and G.G. Hammes, "Chemical Kinetics Principles and Selected Topics", McGraw Hill, New York, 1966.
- J.I. Steinfeld, J.S. Francisco and W.L.Hase, "Chemical Kinetics and Dynamics", Prentice Hall, New Jersey, 1999.
- 6. Horia Metiu, "Physical Chemistry-Kinetics", Taylor and Francis, New York, 2006.
- 7. R.K.Dave, "Chemical Kinetics", Campus Books, 2000.
- 8. D.A. Mcquarrie, "Quantum Chemistry", University Science Books, 2016.
- 9. I.N.Levine, "Quantum Chemistry", Prentice Hall, 2016.
- 10. R.K. Prasad, "Quantum Chemistry", New Age international (P) Ltd., New Delhi, 2010.
- 11. B.K. Sen, "Quantum Chemistry", Tata McGraw-Hill, New Delhi, 1992.
- 12. Thomas Engel and Philip Reid, "Physical Chemistry", Pearson Education, New Delhi, 2013.

3. Specific Learning Outcomes (SLO)

Unit/Section	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
I	Chem	nical Kinetics – I	
	Theories of reaction rates and factors influencing the reaction	Compare the collision theory and ARRT	K4
	rate: ARRT (Eyring's	Derive the Erying's Equation	K4
1.1	theory),Thermodynamic derivation of ARRT-comparison of ARRT with collision theory	Identify the factors influencing the reaction rate.	K3
	Kinetic isotope effects	Predict the major product formed during a reaction	K5
		Evaluate the mechanisms using the magnitude of kinetic isotopic substitution	K5
		Categorize the secondary KIE depending upon the site of Isotopic substitution.	K4
	Marcus electron transfer theory- inner and outer electron transfer	Apply the Marcus electron transfer theory for different	

		systems.	К3
		Distinguish outer and inner electron theory.	K4
	Theory of unimolecular reactions - Lindemann's theory – Steady State approximation	Analyze the mechanism for unimolecular reactions	K4
		Apply the Steady State Approximation	К3
	Chain reactions-photochemical reaction between hydrogen and halogens (Cl ₂ and Br ₂)	Outline the mechanism of the photochemical reaction between Hydrogen and halogens	К3
1.2		Apply the steady state approximation to photochemical reaction between Hydrogen and	K3
	Gas phase auto-oxidations, explosions-hydrogen-oxygen reaction.	halogens Determine the reaction rate for gas phase auto-oxidation	К3
		Explain how branching chain reactions can lead to explosion.	K2
II	Chem	ical Kinetics – II	
	Application of ARRT to solution kinetics: Effects of solvents, double sphere model	Analyze the effect of solvents on reaction rate	K4
		Explain the effect of dielectric constant using double sphere model.	K2
		Predict the kinetic model for unknown system.	K5

	Effect of ionic strength on ionic reactions	Explain the kinetic salt effect	K5
2.1		Examine the influence of ionic strength on the rate of reaction	K4
	Influence of pressure on reaction rates in solution- Significance of volume of activation	Relate pressure with the rate of a reaction.	K2
		Derive volume of activation from the pressure dependence nature of rate	K4
	Substituent effects – Hammett and Taft equations.	Predict the effect of substituent on the acidity of	W.5
		an aromatic carboxylic acid. Justify the pKa for the phenols using the appropriate substituent constants.	K5
		Recommend a mechanism for a given reaction by determining the reaction constant.	K5
		Predict the structure of the transition state for a given reaction.	K5
		Determine the reaction constants for the effects of substituent X and Y using the appropriate substituent constants.	K5
		Apply Taft equation in predicting the reaction mechanisms.	K3

		Develop quantitative structure —activity relationships for organic compounds using Taft Equation.	К3
	Homogeneous catalysis, acid-base catalysis – types and mechanism	Explain the kinetics of acid-base catalyzed reactions.	K5
		Determine the order of a given acid-base catalyzed reaction.	K5
	Derivation of rate law for protolytic acid catalysis and explanation for Arrhenius and	Deduce the rate expression for protolytic acid catalysis	K4
	van't Hoff intermediates	Compare the formation and stability of Arrhenius and van't Hoff intermediates.	K4
	Bronsted relations - Hammett- Deyrup acidity function	Deduce Bronsted relationship for acid/ base catalysis	K4
		Assess the acidity of strong acids using Hammett acidity function.	K5
2.2		Correlate between chemical reactivity and the Hammett Acidity function	K4
2.2	Enzyme catalysis-mechanism of single substrate reaction-	Explain the mechanism of enzyme catalyzed reactions	K5
	Michaelis-Menton equation - Influence of pH, concentration and temperature	Deduce Michaelis-Menton equation.	K4
		Illustrate the pH and Temperature dependence of enzyme catalyzed reactions	K4
	Line weaver plot and Eddi –	Explain the kinetics of reactions using Line weaver	K5

	Hofstee plot.	plot	
		Analyze the mechanism of enzyme kinetics using Eddi – Hofstee plot.	K4
		Predict the optimal conditions for enzyme catalysis.	K5
2.3	Fast reactions-study of kinetics by stopped flow technique, Relaxation methods, T and P-jump methods Flash photolysis and Magnetic resonance method	Explain the kinetics of fast reactions by: Stopped flow technique, Relaxation methods, Flash photolysis Magnetic resonance method	K3
III	Quant	um Chemistry-I	
	Mathematical concepts for quantum mechanics – differentiation formula for uv, u/v,	Apply the differentiation formulae for quantum mechanics.	K3
3.1	(u+v), sinx, cosx, and e ^x only – partial differentiation – Euler's reciprocal relation, chain rule (statement only) – Integration methods.	Apply the Integration methods in Quantum mechanical derivations.	K3
	Inadequacy of classical mechanics	Explain the limitations of classical mechanics	K2
		Explain the need for Quantum mechanics.	K2
	Wave-Particle Dualism – de Broglie's equation – Uncertainty principle.	Find out the de Broglie's wave length of a moving object.	K3
		Solve problems on Uncertainty principle	К3
	Postulates of quantum mechanics -significance of ψ and ψ^2	Summarize the postulates of Quantum mechanics	K2
		Explain the significance of ψ	K2

		and ψ^2				
2.2		Evaluate the well-behaved				
3.2		nature of selected	K5			
		parameters.				
	Schrodinger time independent wave equation-Eigen functions and	Deduce the Schrodinger time independent wave equation	K2			
	Eigen values	Define Eigen functions and Eigen values	K1			
	Operators and their properties – linear and Hermitian, angular	Classify the quantum mechanical operators	K2			
	momentum operators- commutation relations	Explain the properties of different operators	K4			
		Deduce Commutation				
		relations for operators				
		Aapply the principles of	К3			
		operators in unknown				
		systems.				
		Describe the dynamic properties of microscopic				
		bodies using the principles of	1//2			
		Quantum mechanics	K2			
	Orthogonalization and Normalization.	Evaluate the wave functions of different systems using the	K5			
		conditions of Orthogo nalization and Normalization.				
	Applications of wave mechanics	Deduce the Schrodinger				
	to simple systems:	wave equation for Particle in	1 K /L			
	Particle in a one Dimensional box	a one Dimensional box and solve it for ψ and Energy.	12.1			

	Particle in a 3- Dimensional box Rigid rotator Simple Harmonic oscillator - zero	Deduce the Schrodinger wave equation for Particle in a 3- Dimensional box and solve it for ψ and Energy.	K4
3.3	point energy	Construct the Schrodinger wave equation for Rigid rotator and solve it for ψ and Energy.	К3
		Deduce the Schrodinger wave equation for a Simple Harmonic oscillator and solve it for ψ and Energy.	K4
	Hydrogen atom- shapes and nodal properties of orbitals - Bohr's correspondence principle.	Prove Bohr's correspondence principle.	К3
IV	Quantu		
	Approximation methods – Variation method-application to one dimensional box, H ₂ , H ₂ ⁺ and Helium atom	Apply the variation methodto Hydrogen and Hydrogenlike atoms.	K3
	Perturbation method - application to Helium atom	Apply the Perturbation method to Helium atom	К3
4.1	Born Oppenheimer Approximation	Outline the uses and failures of Born Oppenheimer Approximation	K2
	Hartree method and Hartree Fock Self-consistent Field method – many electron atoms	Outline the Hartree-Fock SCF theory of polyatomic molecules.	К3
		Apply the HFSCF method to Simple systems with more than one electrons such as Li, Be,etc.	K3
	Pauli's principle and Slater determinant.	Write the Slater determinats for a given electronic	К3

	configuration.					
		Predict the solutions of the Schrodinger wave equation				
		for poly electron systems using the Pauli's exclusion principle and appropriate Slater determinant.	K5			
	LCAO- MO treatment of hydrogen molecular ion and H ₂	Deduce the normalized wave function for the BMO and ABMO using the LCAO for the wave function for $\mathrm{H_2^+}$ ion	K4			
4.2	Hybridization of orbitals in BeF ₂ , BF ₃ andCH ₄ .	Construct the wave functions for sp, sp ² , sp ³ hybrid orbitals.	К3			
	Huckel pi-electron theory and its applications to Ethylene, Butadiene, Benzene and Allyl system.	Construct and solve Huckel secular determinantal equation for Ethylene, Butadiene and Benzene, using HMO theory.	K3			
V	Unit – 5: Surface Chemistry					
	Adsorption–physisorption and chemisorptions	Differentiate Physisorption and Chemisorption	К3			
		Summarize the factors influencing adsorption of agas on a solid.	K2			
5.1		Calculate the volume of a gas that is adsorbed by an adsorbent.	K3			
	Langumuir, BET & Gibbs adsorption isotherms - Surfacearea	Deduce the adsorption isotherms	K4			
	determination	Calculate the surface area of the adsorbent	К3			
	Heat of adsorption determination. Adsorption from solutions -	Deduce an expression which shows the variation of	K4			

	surface films.	surface film pressure with film area.	
	Surface tension – effect of electrolytes, non-electrolytes	Explain the variation of surface tension of a solvent by the addition of a solute.	K2
5.2	Surface active agents –micelles and reverse micelles.	Show how the physical properties of solutions of surfactants such as molar conductance, surface tension, osmotic pressure change at critical micelle concentration.	K2
	Solublisation, micro emulsions	Discuss the methods used in finding the type of an emulsion.	K2
	Heterogeneous catalysis – semiconductor catalysis, n-and p-type surfaces	Explain the transfer of reaction from the gas phase to the surface of a semiconductor result in facilitation of the reaction.	K4
		Analyze the mechanism of the action of semiconductor.	K4
5.3		Explain the role of the catalyst in the transformation of molecules into surface radicals.	К3
	Kinetics of surface reactions involving adsorbed species – Langmuir - Hinshelwood mechanism. Langmuir – Rideal mechanism and Rideal - Eley	Describe the Langmuir – Hinshelwood mechanism for chemical reactions catalyzed on surfaces.	K2
	mechanisms.	Discuss the mechanism of photocatalytic reactions.	K2

4.Mapping (CO, PO, PSO)

L-Low M-Moderate H- High

	Course Title: CHEMICAL KINETICS AND QUANTUM MECHANICS												
Course	Course Code: P19CH103									D G 0.4			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	M	Н	Н	H-	1	M	M	-	Н	Н	Н	-
CO2	Н	Н	M	Н	Н	1	Н	M	-	Н	Н	Н	L
CO3	Н	Н	M	Н	ı	ı	M		-	Н	M	Н	Н
CO4	Н	M	-	-	-	-	M		-	Н	M	Н	M
CO5	Н	L	-	-	-	-	M		-	Н	M	Н	Н
CO6	Н	L	Н	M	Н	-	Н	M	-	Н	Н	Н	-

5.Course Assessment Methods

Direct:

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Practical: I

INORGANIC QUANTITATIVE ESTIMATIONS AND COMPLEX PREPARATION (Lab cum Theory)

Semester: I Code: P19CH1P1
Credits: 3 Total Hrs: 90
Hours/week:6

1. Course Outcomes:

At the end of this course, the student will be able to

S.No.	Course Outcomes	Level
1	Formulate a methodology for separation of metal ions from mixtures	K6
2	Estimate metal ions present in a mixture	K5
3	Propose scheme for synthesizing inorganic complexes	K6
4	Interpret UV-Visible spectra of the given inorganic complexes	K5
5	Predict the nature of bonding in coordination compounds using UV-Vis spectra	K5
6	Choose an appropriate method for estimating metal ions in industrial effluents	K5

2A. Syllabus

1. TITRIMETRY AND GRAVIMETRY:

Only mixture(s) of solutions should be given for estimation
(i) Cu(V) and Ni (G) (ii)Cu(V) and Zn (G)
(iii)Fe(V) and Ni (G) (iv)Zn(V) and Cu (G)
(v)Fe(V) and Zn (G)

2. PREPARATION OF THE FOLLOWING COMPLEXES:

Tetraamminecopper(II)sulphate Potassium trioxalatochromate (III) Potassium trioxalatoaluminate (III) Tristhioureacopper (I) chloride Tristhioureacopper (II)sulphate

3. UV – VISIBLE SPECTRAL STUDIES:

Recording UV-visible spectrum of five coordination complexes and interpretation of the spectra (demonstration only).

2B.Text Books:

- 1. Vogel's, Text Book of Inorganic Qualitative Analysis, 4th Edition, ELBS, 1974
- 2. Vogel's, Quantitative Chemical Analysis, 6th Edition, Pearson Education, 2009

2C.Reference Books:

1. Jeffery G. Bassett.J, Mendhan, R. C. Vogel's "Textbook of Qualitative Chemical Analysis" 5th Edition, ELBS, 1989.

3.Specific Learning Outcomes (SLO)

Course Content	Learning Outcomes	Blooms Taxonomic levels of
	Learning Outcomes	transaction
1. Titrimetry and Gravimetry	Distinguish the primary and secondary standard solutions.	К3
Only mixture(s) of solutions should be given for estimation –	Prepare solutions of different concentration units (upto ppm level)	К3
(i) Cu (V) and Ni (G), (ii) Cu (V) and Zn (G) (iii) Fe (V) and Ni (G)	Develop their skills in estimating metal ions by volumetry and gravimetry.	K5
(iv) Zn (V) and Cu (G) and (v) Fe (V) and Zn (G)		
(1) 20 (1) 4110 211 (3)	Develop methodology to quantitatively separate metal ionin the presence of other metal ions	K5
	Estimate quantitatively the metal ion in a mixture of metal ions	K6
2. Preparation of Coordination Compounds	Distinguish the distinct features of complexes over double salts.	K2
i) Tetramminecopper(II)sulphate, ii) Potassium trioxalatochromate (III) iii) Potassium trioxalatoaluminate	Apply their skills and methodology to prepare a complex with high purity.	К3
(III) iv) Tristhioureacopper(I)chloride v) Tristhioureacopper(I)sulphate	Propose scheme for synthesizing inorganic complexes	К6
3. UV – Vis Spectral	Justify UV-Visible absorption	
characterization (demonstration only)	spectra of inorganic complexes	K6
i) Tetrammine copper(II)sulphate,	Deduce the geometry of the complex	K4

ii) Potassium trioxalatochromate	Summarize the basic principle,	
(III)	instrumentation and method of	
iii)Potassium trioxalatoaluminate	sampling involved in UV-Visible	К2
(III)	spectrophotometry.	K2
iv) Tristhioureacopper(I)chloride		
v) Tristhioureacopper (I)sulphate		

4. Mapping Scheme for the PO, PSOs and COs

L-Low M-Moderate H- High

Course Tit	Course Title: INORGANIC QUANTITATIVE ESTIMATIONS AND COMPLEX PREPARATION												
Course Co	Course Code: P19CH1P1												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	H	M	H	H	M	H	M	-	H	H	L	H
CO2	L	M	M	M	L	-	H	H	L	H	H	M	H
CO3	M	H	M	M	M	L	M	L	L	H	M	M	H
CO4	L	H	M	H	H	M	H	H	H	M	M	L	H
CO5	H	H	ı	H	H	H	H	L	M	H	-	H	H
CO6	H	H	H	H	M	M	-	-	L	H	-	H	H

5. Course Assessment Methods

Direct

- 1. Continuous Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Core Practical - II ORGANIC SYNTHESIS AND SEPARATION TECHNIQUES

Semester: I Code: P19CH1P2
Credits: 3 Total Hrs.: 90
Hours/ week:6

1. Course Outcomes:

At the end of this course, the student will be able to:

CO1: Choose appropriate solvent for separation of a binary mixture of organic compounds (K5)

CO2: Test the functional groups present in organic compounds (K5)

CO3: Plan a scheme for the synthesis of organic compounds (K6)

CO4: Infer purity of synthesized compounds by determining their physical constants (K4)

CO5: Separate the organic compounds in a mixture by column chromatographic technique (K4)

CO6: Predict the completion of reaction by thin layer chromatographic technique (K5)

2A.Syllabus

EXPERIMENTS:

- 1. Solvent separation of the binary mixture by Pilot & Bulk Analysis.
- 2. Report the Melting/Boiling Points of the pure compounds.
- 3. Systematic Semi micro spot analysis & derivatization of Organic Compounds.

Preparations, Recrystallization & determination of Melting points of the two products:

- 1. Cinnamic acid from Benzaldehyde.
- 2. p-nitroacetanilide from Aniline.
- 3. Alpha & Beta D- Glucose penta acetate from the given quantity of Glucose.
- 4. Aspirin from the given quantity of Methyl Salicylate.
- 5. 2,4-dinitrophenylhydrazones of Benzaldehyde and Ethyl methyl ketone.
 - Separation of pure compounds by Column Chromatrographic Separation.
 - Monitoring reaction mechanism by Thin layer Chromatography Separation.

2C.Reference Books:

- 1. Syed Mumtazuddin, Organic Chemistry A Laboratory Manual, Narosa Publishing House, New Delhi, 2014.
- 2. Syed Mumtazuddin, Advanced Practical Chemistry, Syed Mumtazuddin, Pragati Prakashan, Meerut, 2014

- 3. V K Ahluwalia & Sunita Dhingra, Advanced Experimental Organic Chemistry, Manakin Press, New Delhi, 2017.
- 4. Sonia Ratnani Experimental Organic Chemistry, PHI Learning Private Ltd., New Delhi, 2012

3.Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1.1	Solvent separation of the binary mixture by Pilot & Bulk Analysis	Select different types of work-up like acid-base and neutral work-up Determine the nature of organic	K5
1.2	Report the Melting/Boiling Points of the pure compounds	compound present in the mixture Deduce the purity of the prepared pure sample	K4
1.3	Systematic Semimicro spot analysis& derivatization of Organic Compounds	Analyse the given organic compound systematically and prepare a suitable derivative	K4
1.4	Preparations, Recrystallization & determination of Melting points of	Construct scheme and develop skill of organic synthesis	K6
	the two products 1. Cinnamic acid from	Devise purification technique to obtain pure product	K4
	benzaldehyde 2. p-nitroacetanilide from aniline 3. Alpha & beta – D-glucose penta acetate from the given quantity of glucose 4. Aspirin from the given quantity of methylsalicylate 5. 2,4-dinitrophenylhydrazones of benzaldehyde and ethyl methyl ketone	Deduce the purity of prepared product by melting point determination.	K4
2.1	Separation of pure compounds by	Divide the mixture into individual compound	K4

	column chromatographic Separation	Select the correct eluent system	K4
		Choose column length based on the nature of impurities.	К3
2.2	Monitoring reaction mechanism by thin layer chromatography separation	Predict the progress of reaction by TLC.	K5
		Select right eluent system to separate the mixture.	K4

4. Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

Course Title: ORGANIC SYNTHESIS AND SEPARATION TECHNIQUES Course Code: P19CH1P2													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	M	M	-	M	Н	L	M	M	L	M
CO2	Н	Н	Н	Н	Н	-	M	Н	L	Н	M	M	Н
CO3	Н	Н	Н	Н	Н	-	Н	M	Н	Н	Н	Н	Н
CO4	Н	L	Н	L	M	L	L	M	L	L	L	L	L
CO5	Н	Н	M	Н	Н	-	Н	M	Н	Н	M	L	Н
CO6	Н	Н	M	Н	Н	-	Н	M	Н	Н	M	L	Н

5. Course Assessment Methods

Direct

1. Continuous Internal Assessment
2. Model Exam 1 & 2
3. Viva -Voce
4. End Semester Examination
Indirect
1. Course-end survey

PRACTICAL PREPARATORY COURSE-I

(For Organic and Inorganic Practical)

SEMESTER: I COURSE CODES: P19CH1P1& TOTAL HOURS: 30

P19CH1P2

COURSE OBJECTIVES:

- To appreciate the idea behind laboratory experiments in P19CH1P1& P19CH1P2.
- To understand the concepts behind qualitative and quantitative techniques in Organic and Inorganic Practical.

UNIT – I PRINCIPLES IN SEPARATION OF BINARY MIXTURE

Solvent polarity – Miscibility of organic compounds in ether / water – principles of solvent extraction- partitioning of solutes – regeneration of organic components and purification and Recrystallisation. Basic steps involved in bulk separation.

UNIT – II PRINCIPLES & PROTOCOLS FOR PREPARATION

Mechanistic details of preparations performed and the conditions to be maintained- green aspects of the preparation – Simple steps for recycling products – Techniques of Recrystallisation.

UNIT - III

BASIC PRINCIPLES OF INORGANIC VOLUMETRIC AND GRAVIMETRIC ANALYSIS

Recollection of Concentration terms- Preparation of primary and secondary standards-Types of titrations- Indicators (Redox and internal)- stoichiometry of gravimetric reactions— Common errors in volumetry and gravimetry— methods of reducing errors. Difference between double salts and complexes— protocols and conditions in preparation of complexes- spectral identification of d-d transitions in the complexes prepared (demonstration)

UNIT- IV CHROMATOGRAPHIC METHODS

Basic principles of adsorption and partition chromatography – Cautions in preparation and development of chromatograms (both paper and TLC) – Polarity of solvents and elution – Different spotting reagents for identification of organic compounds.

TEXT BOOKS:

- 1. V.V. Ramanujam, Inorganic Semimicro Qualitative Analysis, 3rd Edition, The National Publishing Company, Chennai -1, 2004.
- 2. Gnanaprakasan N.S. & G. Ramamurthy, Organic Chemistry Lab Manual, S. Viswanathan Pvt. Ltd, Chennai -31, 2007.

REFERENCES:

- 1. R.A. Day & A.L. Underwood, Quantitative Analysis, 6th Edition, PHI Learning Pvt. Ltd., New Delhi, 2009.
- 2. Arun Sethi, Systematic Experiments in Chemistry, New Age International Pvt. Ltd, New Delhi. 2009.

COMPONENTS FOR EVALUATION

TEST - 1: Max marks: 30 (Part A - 2 X 10, Part B - 2x5)

TEST – 2: Max marks: 30 (Part A - 2 X 10, Part B - 2x5)

Core Course -IV COORDINATION AND ORGANOALLIC CHEMISTRY

Semester : II Code : P19CH204
Credits : 6 Total Hrs : 90
Hours/week:6

1. Course Outcomes:

After the successful completion of this course, the students will be able to:

S.No	Topic	Level	Unit
1.	Evaluate Crystal Field Stabilization Energy of Coordination compounds based on splitting pattern derived from CFT and MOT	K5	I
2.	Explain reaction-mechanism and stability constant of coordination compounds	K4	II
3.	Categorize various photochemical reactions of coordination compounds	K4	III
4.	Explain structure, bonding and stability of organometallic compounds	K5	IV
5.	Predict the products obtained from different reactions of organometallic compounds	K5	V
6.	Summarize the potential applications of organometallic compounds as industrial Catalysts	K5	V

2A. Syllabus

UNIT-I CO-ORDINATION CHEMISTRY

18 Hours

- 1.1 Nomenclature of mono and polynuclear complexes. Crystal Field theory –Splitting of d orbitals in octahedral symmetry CFSE strong field and weak field splitting calculation of CFSE for dn system. Factors affecting the magnitude of splitting (10Dq). Splitting in tetrahedral symmetry only weak field splitting reasons. Tetragonal symmetry differences between tetrahedral and tetragonal symmetry.
- 1.2 Jorgensen's relation, Spectrochemical series, Nephelauxetic effect, Jahn-Teller theorem and J-T distortion.
- 1.3 M.O theory of Octahedral complexes(sigma and pi bonding), M.O theory of tetrahedral and square planar complexes.

UNIT-II Kinetics and mechanisms of reactions in solutions 18 Hours

- 2.1 Labile and inert complexes, ligand displacement reactions Acid hydrolysis, base hydrolysis SN1CB mechanism and anation reactions in octahedral and square planar complexes–Transeffect-theories and applications. Electron transfer (ET) reactions electron exchange reactions-complementary and non complementary types. Types Inner sphere and Outer sphere processes Applications of ET reactions in inorganic complexes. Isomerization and racemization reactions of complexes Reactions of the coordinating ligands.
- 2.2 Stability of Coordination compounds: Stability constants stepwise and overall formation constants Factors affecting stability constant-Irwing William series- Spectrometric and Jobs methods of determining stability constant.

UNIT-III INORGANIC PHOTOCHEMISTRY

18 Hours

- 3.1 Laws of photochemistry- photophysical processes- Jablonski diagram- Fluorescence-phosphorescence- Kasha's rule- Stoke's shift- Types of electronic transitions in metal complexes –Photochemical transitions in metal complexes
- 3.2 Photo-substitution, photo-oxidation, photo- reduction, photo-aquation, photo-isomerization and Unimolecular charge-transfer
- 3.3 Photochemistry of Cobalt(III) complexes, Ligand field photochemistry of chromium(III) complexes, Adamson's rules, Photochemistry of ruthenium –polypyridine complexes, Photochemistry of organometallic compounds, Chemical actinometers- Reinecke' salt, Uranyl oxalate and Potassium ferrioxalate actinometer.

UNIT-IV ORGANOMETALLIC CHEMISTRY 18Hours

- 4.1 General introduction of organometallic complexes (a) 18-electron compounds (b) 16-electron square planar compounds- Electron count preference- 18 electron rule- (a) neutral-ligand method (b) Donor –pair method. Hapticity Isolobal Analogy and its limitations.
- 4.2 Structure and bonding of organometallic complexes with various types of ligands such as carbon monoxide (Metal Carbonyls), phosphines, Hydrides and dihydrogen complexes. η 1-alkyl,-alkynyl and –aryl ligands. η 2 –alkene (metal olefins Zeise's Salt),–alkyne ligands, non conjugated diene and polyene ligands. Dinitrogen and nitrogen monoxide (metal nitrosyls). The

allyl ligand- $\eta 1$ and $\eta 3$ allyl complexes. Butadiene, cyclobutadiene , cyclooctatetraene, benzene and other arenes

4.3 Metallocenes-(a) synthesis and reactivity of cyclopentadienyl compounds (Ferrocene) –(b) bonding in bis (cyclopentadienyl) metal complexes M.O. theory, (c) fluxional behaviour of metallocenes and (d) bent metallocene complexes

UNIT-V CATALYSIS IN ORGANOMETALLICS 15 Hours

- 5.1. Catalyst-types of catalyst-catalytic steps-(a)Ligand co-ordination and dissociation-(b) insertion(1,1-migratory insertion reactions) and elimination (1,2 –insertions and β -hydride elimination) (c) nucleophilic attack on co-ordinated ligands (d) oxidation and reduction , (e) oxidative addition and reductive elimination.
- 5.2. Hydrogenation of olefins (Wilkinson's Catalyst)- hydroformylation (Oxo process)- Oxidation of Olefins (Wacker process)-Acetic acid synthesis(Monsanto process)- Polymerisation (Ziegler Natta Catalyst) of alkenes- Oligomerisation-Metathesis- σ bond metathesis, alkene metathesis and Ene-yne metathesis- Fischer -Tropsch Synthesis.

2B.Topics for Self-Study:

S.No	Topic	Weblink
1.	Applications of Coordination Compounds in Biological System	https://www.ias.ac.in/article/fulltext/reso/016/12/1273-1283 https://www.youtube.com/watch?v=c2UmZOwy2UY
2.	Transition Metal Allyl and Enyl Complexes	https://www.digimat.in/nptel/courses/video/104101100/L01 html
3.	Biomedical Applications of Photochemistry	http://hub.hku.hk/handle/10722/129257 http://hub.hku.hk/bitstream/10722/129257/1/content.pdf
4.	NMR Spectroscopy of Organometallic compounds	https://www.researchgate.net/publication/261531508 NMR in Organometallic Chemistry Von Paul S Pregosin https://www.youtube.com/watch?v=0GFitxSn-T0 https://sci-hub.se/10.1016/S0065-3055(08)60118-5

2C.Text Books

- 1. James E. Huheey, Ellen A Keiter and Richard L. Keiter, "Inorganic Chemistry: Principles of Structure and Reactivity", Pearson Education, India, 2014. (Unit I, II, IV, V)
- 2. S. Arunachalam, "Photochemistry of Inorganic compounds", 2001 (Unit- III)

2D.Reference Books

- 1. D.F. Shriver and P.W.Atkins, "Inorganic Chemistry", Oxford, New Delhi, 2006.
- 2. Keith F. Purcell and John C. Kotz, "Inorganic Chemistry", Saundera Goldern Sunburst Series, W.B. Saunders Company, Philadelphia, 2010.
- 3. J.D. Lee, "A New Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- 4. F. Albert Cotton, Geoffrey Wilkinson and Carlos A. Murillo, "Advanced Inorganic Chemistry"

 John Wiley & Sons, Singapore, 2007.
- 5. Raymond Chang, "Chemistry" Tata McGraw Hill, New Delhi, 2008.
- 6. Alan G. Sharp, "Inorganic Chemistry", Addison Weseley, New York, 1999.
- 7. Gary L. Miessler, Donald A. Tarr, "Inorganic Chemistry", Pearson Education, New Delhi, 2008.
- 8. A. W. Adamson, "Inorganic Photochemistry", John Wiley & sons, New York, 2000
- 9. B.R. Puri, L.R. Sharma and K.C. Kalia "Principles of Inorganic Chemistry" Vishal Publishing Co., Jalandhar, 2017.

3.Specific Learning Outcomes (SLO)

Unit	Course Content Unit-I	Learning outcomes	Blooms Taxonomic levels of Transaction
	Nomenclature of mono and polynuclear complexes.	Identify the structure of the mono and polynuclear complexes.	K2
	Crystal Field theory –Splittingof d orbitals in octahedral	Deduct the splitting of d –orbitals in octahedral complexes.	K5
1.1	symmetry		

	CFSE - strong field and weak field splitting – calculation of CFSE for d ⁿ system. Factors affecting the magnitude of	Evaluate Crystal Field Stabilization Energy for given complexes.	K5
	splitting (10Dq)	Recall the factors affecting the magnitude of splitting.	K1
	Splitting in tetrahedral symmetry – only weak field	Determine the splitting of d – orbitals in tetrahedral complexes.	К3
	splitting – reasons.	List out the reasons for weak field splitting.	K3
	Tetragonal symmetry – differences between tetrahedral and tetragonal symmetry.	Distinguish tetrahedral and tetragonal symmetry with an example.	K4
1.2	Jorgensen's relation, Spectrochemical series, Nephelauxetic effect,	Recall Jorgensen's relation, Spectrochemical series and Nephelauxetic effect.	K1
	Jahn–Teller theorem and J-T distortion.	Examine the complex for distortion based on Jahn–Teller theorem.	K4
1.3	M.O theory of Octahedral complexes(sigma and pi bonding)	Construct M.O diagram for octahedral complexes.	К3
	M.O theory of tetrahedral and square planar complexes.	Construct the M.O diagram for tetrahedral and square planar complexes.	К3
	Unit-II		
2.1	Labile and inert complexes, ligand displacement reactions –	Classify Labile and inert complexes with examples.	K2
	Acid hydrolysis, base hydrolysis SN1CB mechanism	Compare Acid hydrolysis, and base hydrolysis of complexes using SN ₁ CB mechanism	K4
	Anation reactions in octahedral and square planar complexes	Compare a <u>nation</u> reactions in octahedral and square planar complexes	K4
	Trans effect- theories and applications. Electron transfer (ET) reactions – electron	Predict the product of the reactions based on Trans effect.	К3

	exchange reactions-	Differentiate complementary and	K3
	complementary and non -	non – complementary reactions.	
	complementary types		
	Types – Inner sphere and Outer	Explain the Inner sphere and Outer	K4
	sphere processes	sphere processes in the given	
		complex.	
	Applications of ET reactions in	Categorize isomerisation and	K4
	inorganic complexes.	racemisation reactions in	
	Isomerisation and racemisation	complexes based on ET.	
	reactions of complexes -		
	Reactions of the coordinating		
	ligands.		
2.2	Stability constants - stepwise and	Outline the importance of Stability	K2
	overall formation constants	constant	
	Factors affecting	List out the factors affecting	K1
	stability constant-Irwing	stability constant	
	William series-		
	Spectrometric and Jobs	Find stability constant based on	K1
	methods of determining stability	Spectrometric and Jobs methods	
	constant.		
	Unit-III		
3.1	Laws of photochemistry-	Define Laws of photochemistry.	K1
	photophysical processes-		
	Jablonski diagram-		TZ 4
		Explain photophysical processes	K4
	1 1	using Jablonski diagram	1//2
	Fluorescence- phosphorescence- Kasha's rule- Stoke's shift-	Relate Kasha's rule with	K3
		fluorescence and phosphorescence	***
	Types of electronic transitions in	Explain CTTM, CTTL and CTTS	K4
	metal complexes	in metal complexes.	
	Photochemical transitions in	Categorize the given	K4
	metal complexes	photochemical reactions with	
	Photo-substitution, photo-	examples.	
	oxidation, photo- reduction,		
	photo-aquation, photo-		
	isomerization		
	and Unimolecular charge-		
	transfer Photochemistry of		
	Cobalt(III) complexes		

	Ligand field photochemistry of chromium(III) complexes Adamson's rules	Apply Adamsons rule to photo- aquation reaction of chromium(III) complexes	К3
	Photochemistry of ruthenium – polypyridine complexes	Explain the Photochemistry of ruthenium —polypyridine complexes	K2
	Photochemistry of organometallic compounds	Explain the types of photochemical reactions in organometallic compounds	K2
	Chemical actinometers- Reinecke' salt, Uranyl oxalate and Potassium ferrioxalate	Summarize the importance of actinometer.	K2
	actinometer.	Construct actinometers	К3
	Unit-IV		
4.1	General introduction of organometallic complexes (a) 18-electron compounds (b) 16-electron square planar compounds-	Relate 18- electron rule and 16- electron rule to octahedral and square planar compounds respectively.	К3
	Electron count preference- 18 electron rule- (a) neutral-ligand method (b) Donor –pair method.	Examine the stability of organometallic complexes based on 18- electron rule.	К3
	Hapticity - Isolobal Analogy and its limitations	Recall Hapticity concept.	K1
	its inintations	Identify isolobal fragments	K3
4.2	Structure and bonding of organometallic complexes with ligands such as carbonmonoxide	Identify terminal and bridging carbonyls using IR stretching frequency	К3
	(Metal Carbonyls), phosphines, Hydrides and dihydrogen	Compare the basicity of the various substituted phosphines.	K5
	Structure and bonding of organometallic complexes with ligands such as η^1 -alkyl,-alkenyl,-alkynyl and -aryl ligands.	Explain the mode of bonding in organometallic complexes along with hapticity concept.	K5

	Structure and bonding of organometallic complexes with ligands such as η^2 -alkene (metal olefins Zeise's Salt),—alkyne ligands, non conjugated diene and polyene ligands. Structure and bonding of organometallic complexes with	Examine the mode of bonding in conjugated and nonconjugated systems Differentiate bent and linear nitrosyl complexes.	K3
	ligands such as Dinitrogen and nitrogen monoxide (metal nitrosyls)	Identify the variation of bond length in dinitrogen complex	К3
	Structure and bonding of organometallic complexes with ligands such as The allyl ligand- η^1 and η^3 allyl complexes.	Explain the structure of organometallic complexes along with hapticity concept.	K5
	Structure and bonding of organometallic complexes with ligands such as Butadiene, cyclobutadiene , cyclooctatetraene, benzene and other arenes	Identify δ bonding interaction in the organometallic complexes with ligands such as Butadiene.	К3
4.3	Metallocenes- synthesis and reactivity of cyclopentadienyl compounds (Ferrocene)	Recall the synthesis and reactivity of ferrocene.	K1
	Bonding in bis (cyclopentadienyl) metal complexes M.O. theory,	Construct M.O diagram of ferrocene.	К3
	Fluxional behaviour of metallocenes and bent metallocene complexes	Illustrate Fluxional behaviour of metallocenes and bent metallocene complexes	K2
	Unit-V	,	
5.1	Catalyst-types of catalyst-	Infer the basic catalytic steps.	K2
	catalytic steps-(a)Ligand co- ordination and dissociation-(b)	Classify the types of catalyst	K4
	insertion(1,1-migratory	Identify the nature of ligand insertions	K1

	Elimination - β-hydride elimination) nucleophilic attack on co-ordinated ligands	Analyze the product of the particular reaction and find the nature of elimination.	K4
	Oxidation and reduction ,	Predict the product of the reaction	
	oxidative addition andreductive elimination.	based on oxidative addition and reductive elimination	K5
5.2	Hydrogenation of olefins (Wilkinson's Catalyst)-hydroformylation (Oxo	Construct Tolman catalytic loops for Wilkinsons catalyst.	K3
	process)	Explain the various steps involved in Oxo process.	K5
	Oxidation of Olefins (Wacker process)-Acetic acid	Prioritize the reactions involved in Wacker process.	K5
	synthesis(Monsanto process)	Explain the various reactions involved in Monsanto process.	K5
	Polymerisation (Ziegler Natta Catalyst) of alkenes- Oligomerisation	Explain Ziegler Natta Polymerisation and Oligomerisation	K5
	Metathesis-obond metathesis,alkene metathesis and Ene-yne metathesis	Compare the metathesis in σ bond, alkene and Ene-yne metathesis with an example.	K5
	Fischer-Tropsch Synthesis.	Evaluate the mechanism of Fischer –Tropsch process.	K4

4. Mapping Scheme for the PO, PSOs and COs

L-Low M-Moderate H- High

Course Titl	Course Title: COORDINATION AND ORGANOALLIC CHEMISTRY												
Course Code	Course Code: P19CH204												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	M	M	-	L	M	L	M	-	M	-	L	-
CO2	M	L	L	M	L	M	-	Н	-	Н	M	-	1
CO3	M	L	Н	-	-	M	L	M	-	M	-	Н	ı
CO4	M	Н	L	M	L	-	-	M	-	Н	-	L	ı
CO5	M	Н	L	-	L	M	L	L	-	M	M	L	-
CO6	M	<u>H</u>	L	-	L	L	-	M	-	L	Н	L	-

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Course - V

REACTIONS AND MECHANISMS IN ORGANIC CHEMISTRY

Semester : II Code : P19CH205 Credits : 6 Total Hours :90

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Apply the molecular orbital symmetry to predict the feasibility of pericyclic reactions at different conditions	K3	I
2	Classify different types of Photochemical reactions and their mechanism	K4	II
3	Illustrate organic reaction mechanism based on selectivity of reagent, nature of substrate-structure and reaction condition	K4	III
4	Predict the mechanism of addition reactions with respect to different functional groups and reagents	K5	IV
5	Justify the reactivity of different oxidizing and reducing agents	K5	V
6	Decide the stereochemistry of reaction products with respect to the nature of reagent and condition	K5	V

2A Syllabus

UNIT - I PERICYCLIC REACTIONS

18 Hours

Frontier Orbital Description and correlation approach of – Woodward Hofmann rules - Regiochemistry- Stereochemical aspects- Endo/Exo selection - role of secondary orbital interaction in the following:

Diels Alder Reactions (including 1,3 dipolar additions intramolecular reaction -the retro diels-alder reaction- asymmetric diels-alder reaction) — **Electrocyclic reactions**- Nazarov cyclisation — **Sigmatropic rearrangements** (Cope, Claisen, Oxy Cope- aza Cope and Sommelet-Hauser) and Cheletropic reactions.

UNIT-II ORGANIC PHOTOCHEMISTRY

18 Hours

2.1 Photo Chemistry- I

Interaction of electromagnetic radiation with matter-Excitation- the excited state- the transfer of excitation energy(sensitization and quenching)- **photoreduction**, **photoaddition**: photoaddition of alkene and alkynes to aromatic compounds-photoaddition of alkenene to

carbonyl- Norrish Type-I & II. photodimerisation, Excimer, Exciplexes, Isomerisation of alkenes- Photostationery state, conjugated dienes and aromatic compounds **photo oxidation:** formation of peroxy compounds- oxidative coupling of aromatic compounds- Barton reaction

2.2 Photo Chemistry -II

Intramolecular reactions of carbonyl compound: Norrish type-I and Norrish type-II. $-\beta$ - Υ unsaturated carbonyl compounds. Intermolecular cyclo addition reactions-[2+2] cycloaddition reactions, Paterno — Buchi reaction- cycloaddition reactions of benzene. **Photo rearrangement:** cis-trans isomerisation-intramolecular photocyclisation-sigmatropic rearrangements: cyclohexadienone. **Photo chemical fragmentation:** Photolysis of diazoalkanes- alkyl azide-Barton reaction.

UNIT - III ADDITION REACTIONS 18 Hours

- **3.1 Addition to carbon-carbon multiple bonds**-addition mechanism-electrophilic, nucleophilic and free-radical additions-cyclo addition, orientation and reactivity. Selected reactions Birch reduction-catalytic semi reduction of alkynes Hydroboration-selective hydroborating agents-oxymercuration-demercuration-epoxidation of alkene-Sharpless asymmetric epoxidation- Baeyer Villiger reaction- Michael reaction.
- **3.2** Addition to carbon-hetero atom multiple bonds- addition orientation and reactivity -Selected name reactions Acyloin ester condensation, Aldol condensation, Benzoin condensation, Cannizaro reaction, Claisen reaction, Darzen's condensation, Knovenegal reaction, Mannich reaction and Stobbe condensation.

UNIT – IV CARBON-CARBON BOND FORMATION REACTIONS 18 Hours

- **4.1 Mechanistic details, stereochemical considerations and significance of the following reactions: Formation of carbon-carbon single bonds** Mitsunobu reaction- Reformatsky reaction Robinson annulations Stork Enamine alkylation- Gattermann and Gattermann-Kosch formylation reaction. **Formation of carbon-carbon double bonds** Bamford-Stevens reaction- Horner-Wadsworth- Emmons reaction- Julia olefination-Perkin reaction. **Free radical reaction**-Hoffman-Loffler-Freytag reaction- Hundsdiecker reaction
- **4.2 Formation of carbon-carbon single bonds by organometallic reagents -** Principles- Organo lithium compounds -LDA, R-Li- organomagnesium compounds Organo copper compounds(Gilman's reagent) organo cadmium compounds organomercury compounds- organozinc compounds. **Reagents containing sulfur, boron, silicon** sulfur ylide, sulfoxonium ylide, 9-BBN, disiamyl borane, thexyl borane, trimethyl silyl iodide

UNIT-V REAGENTS FOR OXIDATION AND REDUCTION REACTIONS 18 Hours

- **5.1** Preparation, properties and characteristics of the following oxidizing agents and their reaction on alkenes, aromatic rings, ketones, ketals and carboxylic acids Chromyl chloride, Periodic acid, Pyridinium Chloro Chromate -PCC, Dessmartin, Dichloro Dicyano hydro quinone -DDQ, iodobenzenediacetate, 2- iodoxybenzoic acid IBX, sodium hypochlorite (bleach), Lead tetra acetate-Pb(OAc)₄
- **5.2** Preparation, properties and characteristics of the following reducing agents and their reactions on alkenes, alkynes, aromatic rings, carbonyls, Ketals, azo groups, epoxides and carboxylic acids LiAlH₄, Lithium trialkylborohydride, DIBAL, tri-t butyloxyaluminium hydride, NaBH₄, sodium cyanoborohydride and hydrazine.

2B.Topics for Self-Study:

S. No	Topic	Weblink
1	Hetro diene-dienophile and Lewis acid mediated pericyclic reaction	https://nptel.ac.in/courses/104/106/104106077/
2	Photo induced electron transfer reaction	https://nptel.ac.in/courses/104/106/104106077/
3	Jacobsen-Katsuki-Epoxidation	http://www.namereactions.org/jacobsen-katsuki- epoxidation/
4	New Approaches to Alkene Functionalization via Dehydrogenative Metallation Catalyzed by First-Row Transition Metals	https://acswebcontent.acs.org/prfar/2014/Paper12948.html
5	Kornblum Oxidation Parikh-Doering Oxidation	http://www.iitg.ac.in/kbhabak/files/KPB_CH-420- Lectures%204_5-6_7.pdf

2C.Text Books:

- 1. Ratan Kumar Kar, "Frontier Orbital and Symmetry Controlled Pericyclic Reactions", Books and Allied Ltd, 2009. (Unit-I)
- 2. Jagadamba Singh, "Photochemistry and Pericyclic Reactions" New Age; Third Edition 2012 (Unit I, II)
- 3. Jerry March, "Advanced Organic Chemistry Reaction Mechanisms and Structure", Wiley India, 2006. (Unit-III, IV, V)
- 4. Richard O.C. Norman, James M. Coxon "*Principles of Organic Synthesis*" CRC Press (Special Indian Edition), 2017 (Unit-III, IV, V)

2D.Recommended Reference Books:

- 1. Jonathan Clayden, Nick Greeves, Stuart Warren, "*Organic Chemistry*" Oxford University Press, 2014.
- 2. James MorrissCoxon , Brian Halton "Organic Photochemistry", Cambridge University Press, 2011.
- 3. W. Carruthers, "Modern Methods of Organic Synthesis", Cambridge University Press, Cambridge, 2015.
- 4. Ahluwalia V K "Organic Reaction Mechanism" Narosa Publication, 2010.
- 5. S.M. Mukherji and S.P.Singh, "Reaction Mechanism in Organic Chemistry", Macmillan India Ltd., Patna, 1990

${\bf 3. Specific\ Learning\ Outcomes\ (SLO)}$

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
I		RICYCLIC REACTIONS	_
П.1		Construct FMO orbitals of organic molecules. Predict the stereo chemistry of the reaction products by making use of Woodward Hoffman rule and correlation diagram. Plan and develop the mechanism for different types of pericyclic reaction. Identify the theoretical feasibility of reactions at different conditions.	K3 K3 K3
2.1	Photo Chemistry- I		
	Interaction of electromagnetic radiation with matter-Excitation-the excited state- the transfer of excitation energy(sensitization and quenching)	Describe the photochemical energy transfer of the reaction and its mechanism.	K2

	Photoreduction and Photoaddition Photoaddition of alkene and alkynes to aromatic compounds-photoaddition of alkenene to carbonyl- Norrish Type-I & II. Photodimerisation Excimer,	Classify photo chemical reactions and the product based on the structure of the substrate. Describe Photodimerisation based on the	K4
	Exciplexes, Isomerisation of alkenes- Photostationery state,	structure of substrate and condition of the reaction.	K4
	conjugated dienes and aromatic compounds	Analyze the product ratios based on the energy transfer of photo isomerisation reaction	K4
	Photo oxidation: formation of peroxy compounds- oxidative coupling of aromatic compounds-Barton reaction	Explain the mechanism for various photo oxidation reactions.	K4
2.2	Photo Chemistry –II		
	Intramolecular reactions of carbonyl compound: Norrish	Predict the type of photochemical reaction in carbonyl compounds.	K3
	type-I and Norrish type-II. $-\beta$ - Υ unsaturated carbonyl compounds. Intermolecular cyclo addition reactions-[2+2] cycloaddition reactions, Paterno – Buchi reaction- cycloaddition reactions of benzene.	Analyse the condition of reaction and structure of the substrate to solve problems related to Intra molecular reaction of Carbonyl compound.	K4
	Photo rearrangement: cis-trans isomerisation-intramolecular photocyclisation-sigmatropic rearrangements: cyclohexadienone.	Predict the structure of product based on the reaction condition and substrate structure.	K4
	Photo chemical fragmentation: Photolysis of diazoalkanes- alkyl azide-Barton reaction.	Identify the dissociation pattern in different N- based compounds.	К3
III		ADDITION REACTIONS	
	3.1 Additio	on to carbon-carbon multiple bonds	

Addition mechanism-electrophilic,	Distinguish types of addition reaction.	K4
nucleophilic and free-radical additions-cyclo addition,	Predict the mechanism of addition reactions.	К3
orientation and reactivity	Illustrate the reaction product based on orientation and reactivity	K4
3.2 Addition	to carbon-hetero atom multiple bonds	
Selected reactions - Birch reduction- catalytic semi reduction	Predict the mechanism for different reactions.	K5
of alkynes - Hydroboration- selective hydroborating agents- oxymercuration-demercuration- epoxidation of alkene-Sharpless	Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition.	K5
asymmetric epoxidation- Baeyer Villiger reactionMichael reaction.	Deduce the products of different reactions.	K5
	CARBON BOND FORMATION REACTION	
Mechanistic details, stereochemical cor	CARBON BOND FORMATION REACTION nsiderations and significance of the following relation of carbon-carbon single bonds	
Mechanistic details, stereochemical cor 4.1 Format Mitsunobu reaction- Reformatsky reaction - Robinson annulations -	nsiderations and significance of the following r	reactions:
Mechanistic details, stereochemical cor 4.1 Format Mitsunobu reaction- Reformatsky	tion of carbon-carbon single bonds Predict the mechanism and the products	
Mechanistic details, stereochemical cor 4.1 Format Mitsunobu reaction- Reformatsky reaction - Robinson annulations - Stork Enamine alkylation- Gattermann and Gattermann- Koschformylation reaction. Formation of carbon-carbon	reactions based on the selectivity of reagent, nature of substrate structure and reaction condition. Predict the mechanism and the products of the reactions.	K5
Mechanistic details, stereochemical cor 4.1 Format Mitsunobu reaction- Reformatsky reaction - Robinson annulations - Stork Enamine alkylation- Gattermann and Gattermann- Koschformylation reaction.	reactions and significance of the following residerations and significance of the following residence of the following residence of the mechanism and the products of the reactions. Evaluate the products obtained for the reactions based on the selectivity of reagent, nature of substrate structure and reaction condition.	K5

Hoffman-Loffler-Freytag reaction Deduce the mechanism for different

reactions.

Hundsdiecker reaction

K4

		Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition. Plan a synthesis for the formation of C-C bond.	K5 K4
4.2	Formation of carbon-carbon single bonds by organometallic	Write the mechanism for different reactions.	K5
	reagents Principles- Organo lithium compounds -LDA, R-Liorganomagnesium compounds -	Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition. Plan a synthesis for the formation of C-C bond.	K5 K4
	Organo copper compounds(Gilman's reagent) – organo cadmium compounds – organomercury compounds- organozinc compounds.		
	Reagents containing sulfur, boron, silicon- sulfur ylide, sulfoxoniumylide, 9-BBN,	Write the mechanism for different reactions.	K5
	disiamylborane, thexylborane, trimethylsilyl iodide	Design the synthesis for the formation of C-C bond using sulfur, boron and silicon based reagent.	K4
V	REAGENTS FOR OXIDA	ATION AND REDUCTION REACTIONS	
5.1	Preparation, properties and characteristics of the following	Predict the mechanism for different reactions.	K5
	oxidizing agents : Chromyl chloride, Periodic acid, PyridiniumChloro Chromate - PCC, Dessmartin,	Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition.	K5
	DichloroDicyano hydro quinone - DDQ, iodobenzenediacetate, 2- iodoxybenzoic acid - IBX, sodium	Compare the reactivity and selectivity of different oxidizing agents.	K5
	hypochlorite (bleach), Lead tetra acetate-Pb(OAc) ₄	Choose the suitable reagent while planning synthesis.	K5
5.2	Preparation, properties and characteristics of the following reducing agents and their	Write the mechanism for different reactions.	K5

reactions: LiAlH ₄ , Lithium	Evaluate different reactions based on the	K5
trialkylborohydride, DIBAL, tri-t	selectivity of reagent, nature of substrate	
butyloxyaluminium hydride,	structure and reaction condition.	
NaBH ₄ , sodium cyanoborohydride		
and hydrazine.	Compare the reactivity and selectivity of different reducing agents.	K5
	Choose the suitable reagent while planning synthesis.	K5
	Evaluate the reactivity of different boron based and metal based hydrides.	K5

4. Mapping Scheme for COs, POs and PSOs

L-Low M-Moderate H- High

Course Titl	Course Title: REACTIONS AND MECHANISMS IN ORGANIC CHEMISTRY														
Course Cod	Course Code: P19CH205														
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4		
CO1	Н	Н	Н	M	L	-	L	-	M	Н		Н	L		
CO2	Н	Н	Н	M	Н	L	1	-	Н	Н	Н	M	L		
CO3	Н	Н	Н	M	Н	M	M	1	Н	1	Н	M			
CO4	Н	Н	M	M	Н	L	Н	1	M	M	Н	1	M		
CO5	Н	M	Н	M	Н	ı	Н	ı	M	Н	Н	-	Н		
CO6	Н	Н	Н	M	Н	-	Н	1	Н	Н	Н	-	M		

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Elective Course - I

DATA ANALYSIS AND SELECTED ANALYTICAL TECHNIQUES

Semester: II Code: P19CH2:1
Credits: 4 Total Hours: 75
Hours/week:5

1.Course Outcomes:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Justify different hypothetical tests to confirm the reliability of measured data	K5	I
2	Explain the principle and applications of various electro analytical techniques	K4	II
3	Interpret the Chromatogram of different chromatographic techniques	К3	III
4	Analyze structure of molecules using analytical, spectral and microscopic techniques	K4	IV
5	Determine the Crystal parameters and the crystal structures	K5	V
6	Analyze the structural composition and morphology of molecules	K4	V

2A. Syllabus

UNIT -I DATA ANALYSIS & IPR

1.1 Mean – Median – Standard deviation – Test of hypothesis T-test F-test - Correlation and Regression – Least Square method for curve fitting - Significant Figures in scientific measurements.

15 Hours

Handling numeric data: Spread Sheet software – Creating a Spread Sheet – Basic functions and formulae – Creating Charts, Tables and Graphs.

- 1.2 Intellectual Property Rights (IPR): Introduction and the need for IPR Patents Copyrights
- Trademarks Geographical Indications industrial Designs IP Administration in India –
 Plagiarism and its Detection.

UNIT-II ELECTROANALYTICAL TECHNIQUES-I 15 Hours

- **2.1** Cyclic Voltammetry Basic principle and Experimental technique, Types of Electrodes, Ion selective electrodes, Typical cyclic Voltammogram- reversible, irreversible and quasi-reversible systems.
- **2.2** Factors affecting limiting current residual current, migration current, diffusion current (i_d), Kinetic current, half-wave potential, Ilkovic equation, Applications example: electrochemical oxidation of ascorbic acid.

UNIT-III ELECTROANALYTICAL TECHNIQUES-II 15 Hours

- **3.1** Differential Pulse Voltammetry (DPV) Basic principle and technique, applications. Analysis of metal ions in a mixture. Stripping Voltammetry.
- **3.2** Amperometry Principle, Instrumentation, electrodes, titration curves and Applications.

UNIT-IV CHROMATOGRAPHIC TECHNIQUES 15 Hours

- **4.1**. High Performance Liquid Chromatography (HPLC): Principle, Theory, Instrumentation. Various types adsorption, partition (reverse phase), partition (normal phase), ion-exchange and size exclusion chromatography detectors.

 Interpretation of detector output and Applications.
- **4.2** Gas Liquid Chromatography (GLC): Principle, Theory, Instrumentation Description of the technique Schematic diagram of a gas chromatograph, a typical chromatogram, detectors flame ionization detector, electron capture detector and applications of GLC.
- **4.3** Gas Chromatography-Mass Spectrometry (GCMS): Principle, theory, instrumentation and applications

UNIT – V Crystalline Structure and Surface Morphology

15 Hours

- **5.1** X-ray Diffraction Techniques Crystal symmetry Combination of symmetry elements Crystal classes Screw axis and Glide planes diffraction pattern of crystalline and amorphous materials Instrumentation of X-ray diffractometer Examination of XRD pattern-Scherrer's equation Calculation of Crystal size and prediction of planes Determination of Cubic and Hexagonal Structures.
- **5.2** Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM): Principle, Instrumentation and Applications.
- **5.3** Photo Electron Spectroscopy (PES), Electron Spectroscopy for Chemical Analysis (ESCA) and Auger Electron Spectroscopy: Principle, Techniques and applications.

2B.Topics for Self Study

Topics for Self StudyTopics	Links
AC polarography Cyclic	https://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.7b00361
Voltammetry	https://www.youtube.com/watch?v=utPPQZP_mrU
SEM	http://www.fhi-
	berlin.mpg.de/acnew/department/pages/teaching/pages/teachin
	g wintersemester 2009_2010/dangsheng_su scanning_ele
	ctron_microscopy 100129.pdf
	https://www.youtube.com/watch?v=GY9lfO-tVfE
TEM	https://www.youtube.com/watch?v=zkr3JmhjKbg
X-Ray Diffraction powder	https://www.youtube.com/watch?v=lwV5WCBh9a0
X-Ray Diffraction – single	https://www.youtube.com/watch?v=suVNYD1nCm4
crystal	
GC-Instrumentation	https://www.youtube.com/watch?v=PV4NYBUaUrQ
HPLC- Instrumentation	https://www.youtube.com/watch?v=kz_egMtdnL4
C Programming For Beginners	https://www.youtube.com/watch?v=8PopR3x-VMY

2C.Text Books

- **1.** H.H. Willard, L.L. Merritt and John A. Dean, "Instrumental Methods of Analysis", CBS Publishers, 2004 (Unit-I)
- **2.** R. Gopalan, P.S. Subramanian, K. Rengarajan, "*Elements of Analytical Chemistry*", Sultan Chand and Sons, New Delhi, 1997. (**Unit II-IV**)
- **3.** Doughlas A. Skoog, Donald M.West, F. Jeames Holler, Stanley, R.Crouch, "Fundamentals of Analytical Chemistry", Thomas Books, Bangalore, 2004. (Unit II V)

2D.Recommended Reference Books:

- 1. Gary D. Christian, "Analytical Chemistry", John Wiley and Sons, Singapore, 2004.
- 2. B.K. Sharma, "Instrumental Methods of Chemical Analysis", Goel Publishing House, Meerut, 1999.
- 3. G.L.D. Krupadanam et al., "Analytical Chemistry", University Press, Hyderabad, 2001.

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic
			Levels of
			Transaction
	UNIT I: DATA ANALYSIS & IPR		
1.1	Mean – Median – Standard	Analyse the data by different test	
	deviation – Test of hypothesis, T-	of hypothesis	K4
	test F-test		
	Correlation and Regression – Least	Compare different curve fitting	K4
	Square method for curve fitting -	methods	
	Significant Figures in scientific	Examine the significant figures	К3
	measurements.	in scientific measurements.	
	Handling numeric data: Spread	Evaluate data by creating	K5
	Sheet software – Creating a Spread	schematic charts	
	Sheet – Basic functions and		
	formulae – Creating Charts, Tables		
	and Graphs.		
1.2	Intellectual Property Rights (IPR):	Describe about intellectual	K2
	Introduction and the need for IPR	property rights	
	Patents – Copyrights – Trademarks	Compare the differences among	K2
		patents, copyrights and	
		trademarks	

	Geographical Indications –	Illustrate the Geographical	K2
	industrial Designs – IP	Indications, Industrial design and	
	Administration in India	IP Administration in India	
	Plagiarism and its Detection.	Interpret the methods of	K2
		plagiarism checking and	
		detection.	
	UNIT II: ELECTROANALYTICA	L TECHNIQUES-I	
2.1	Cyclic Voltammetry – Basic	Explain about experimental	K2
	principle and Experimental	techniques of cyclic voltammetry	
	technique, Types of Electrodes, Ion	Classify the types of electrodes	K2
	selective electrodes		
	Typical cyclic Voltammogram-	Analyze cyclic voltammogram	K4
	reversible, irreversible and quasi-	for reversible, irreversible and	
Ì	reversible systems.	quasi-reversible processes	
2.2	Factors affecting limiting current –	Discuss the different factors,	K2
	residual current, migration current,	which are affecting limiting	
	diffusion current (i _d), Kinetic current	current	
	Ilkovic equation, - Applications	Inspect the Ilkovic equation to	K4
	example: electrochemical oxidation	determine the concentration of	
	of ascorbic acid.	electroactive species.	
		Deduce the mechanism of	K4
		electrochemical reactions	
	UNIT III: ELECTROANALYTICA	L TECHNIQUES-II	
3.1	Differential Pulse Voltammetry	Describe the principle and	K2
	(DPV) – Basic principle and	techniques of Differential Pulse	
	technique	Voltammetry.	
	DPV- Applications - Analysis of	Analyze different metal ions	K4
	metal ions in a mixture	from its mixture	
	Stripping Voltammetry	Relate the principle and	K2
		quantitative determination of	
		specific ions.	
3.2	Amperometry – Principle and	Summarize the principle and	K2
	Instrumentation techniques	instrumentation of Amperometry	
	1	techniques	
	Applications of Amperometry	Experiment the electroactive	K4
		species both qualitatively and	
		quantitatively.	
	UNIT IV: CHROMATOGRAPHIC		
4.1	High Performance Liquid	Discuss the principle and	K2
	Chromatography (HPLC): Principle,	instrumentation of HPLC	

	Theory, Instrumentation		
	Types – adsorption, partition (reverse phase), partition (normal phase), ion-exchange and size exclusion chromatography	Classify the different types of chromatographic techniques	K2
	Interpretation of detector output and Applications.	Interpret the chromatogram to separate, identify, and quantify each component in a mixture	K2
4.2	Gas Liquid Chromatography (GLC): Principle, Theory, Instrumentation—	Express the principle of GLC	K2
	Description of the technique	Sketch the instrumentation of GLC	К3
	Schematic diagram of a gas chromatograph, a typical chromatogram	Review the different types of chromatograms	K2
	detectors – flame ionization detector, electron capture detector	Compare different detectors to evaluate different set of samples	K2
	Applications of GLC.	Construct the GLC technique chromatogram to separate, identify, and quantify vaporizable compounds	К3
	GCMS – Principle, theory, instrumentation, Applications	Report the principle, instrumentation and application of GCMS technique.	К3
	UNIT V: CRYSTALLINE STR	UCTURE AND SURFACE MORP	PHOLOGY
5.1	X-ray Diffraction Techniques: Crystal symmetry – Combination of symmetry elements - Crystal classes – Screw axis and Glide planes – diffraction pattern of crystalline and amorphous materials-	Relate symmetry elements with different forms of crystals.	K2
	Instrumentation of X-ray diffractometer	Discuss the instrumentation of X-ray diffractometer	K2
	Examination of XRD pattern- Scherrer's equation – Calculation of Crystal size and prediction of planes – Determination of Cubic and Hexagonal Structures.	Differentiate various types of crystal systems	K4

5.2	Scanning Electron Microscope	Explain the principle and	К3
	(SEM) and Transmission Electron	instrumentation of SEM and	
	Microscope (TEM): Principle,	TEM.	
	Instrumentation and Applications	Correlate the SEM & TEM	K4
		technique to explore the surface	
		morphology and internal	
		composition of materials	
5.3	Photo Electron Spectroscopy (PES),	Write the principle of PES,	К3
	Electron Spectroscopy for Chemical	ESCA and Auger electron	
	Analysis (ESCA) and Auger	spectroscopy techniques.	
	Electron Spectroscopy: Principle,		
	Techniques		

4. Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

	Course Title: DATA ANALYSIS AND SELECTED ANALYTICAL TECHNIQUES Course Code: P19CH2:1														
	PO	PO	PO	PO	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4		
	1	2	3	4											
CO1	Н	Н	M	-	Н	Н	L	Н	Н	Н	-	Н	-		
CO2	Н	-	-	Н	-	-	Н	-	-	M	L	-	Н		
CO3	Н	Н	Н	Н	M	-	M	-	Н	-	Н	M	Н		
CO4	Н	Н	M	Н	Н	-	Н	-	-	Н	-	Н	Н		
CO5	Н	Н	-	Н	-	Н	L	M	Н	M	-	Н	Н		
CO6	Н	Н	Н	Н	-	L	L	M	Н	-	-	Н	Н		

5.Course Assessment Methods

DIRECT:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

Core Practical - III

INORGANIC SEMIMICRO ANALYSIS & COLORIMETRIC ESTIMATIONS

Semester: II Code: P19CH2P3

Credits: 3 Total Hrs: 90 Hours /week:6

1.Course Outcomes:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level
1	Classify rare and common metal cations of different groups present in a mixture	K4
2	Develop analytical skills required for identifying and separating cations in a Mixture	K6
3	Choose appropriate reagents for the identification and separation of cations	K5
4	Analyze water and soil samples using the principles of Semimicro Qualitative Analysis	K4
5	Estimate metal ions colourimetrically	K5
6	Test the pollutant concentration in samples by constructing a standard graph applying Beer-Lambert's law	K6

2A. Syllabus

1. SEMI MICRO QUALITATIVE ANALYSIS

Analysis of a mixture containing two common and two rare cations:

Common Cations: I group - Pb, Tl, II group - Cu, Cd, Bi, III group - Al, Fe, IV group - Mn, Zn, Co, Ni, V group - Ca, Sr, Ba, VI group - Mg, Zero group - NH[‡]...

Rare Cations - I group - W, Ti, IA group - Se, Te, II group - Mo, III group - Be, Zr, Ce, V, U, VI group - Li .

2. COLOURIMETRIC ESTIMATION

Estimation of Copper, Ferric ion, Nickel, Chromium and Manganese using Photoelectric colourimeter

2B.Text Book:

 V. Ramanujam, "Inorganic Semimicro Qualitative analysis", 3rd Edition, The National Publishing Company, Chennai 1974.

2C.Reference Books:

1. Vogel's, "Text book of Inorganic Qualitative Analysis", 4th Edition. ELBS, 1974.

3.Specific Learning Outcomes (SLO)

S.No	S.No Course Content		Learning Outcomes	Blooms Taxonomic levels of Transaction	
1		imicro Qualitative lysis	Analyze common and rare cations systematically in a given inorganic		
	I Pb, W I A Se, Te II Cu, Cd, Bi A Mo B Mo III Be, Zr, Ce, V,U IV Zn, Mn, Ni, Co		mixture by semi-micro qualitative	K4	
			analysis.		
			Categorize the given ions into their respective groups.	K4	
			respective groups.		
			Develop analytical skills required for identifying cations in a mixture.	K6	
			Distinguish inter and intra group	K 4	
	V	Ca, Ba, Sr	precipitation and separation techniques.	IXΨ	
	VI	Mg, Li			
2	Colourimetric Estimations Estimation of Copper, Estimation of Ferric ion, Estimation of		Apply the principle of colourimetry in the quantitative estimation of metal ions.	K3	
			Construct a standard graph	K3	

Nickel, Estimation of	Estimate colourimetrically the metal ions.	K5
Chromium Estimation of Manganese	Test the pollutants concentration in contaminated samples by constructing a standard graph applying Beer-Lambert's law	K6
	Correlate concentration of the solution and absorbance of the solution.	K4

4.Mapping Scheme for the PO, PSOs and Cos L-Low M-Moderate

H- High

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO ₄
rr - 8													
CO1	M	Н	L	M	M	-	M	M	-	Н	Н	M	L
CO2	M	L	L	M	M	-	M	M	-	Н	Н	L	Н
CO3	Н	M	M	M	M	-	M	L	-	НМ	Н	M	Н
CO4	M	Н	Н	Н	M	M	L	Н	L	M	Н	M	Н
CO5	M	Н	L	Н	M	-	M	M	-	Н	M	M	Н
CO6	L	Н	M	M	Н	Н	-	M	-	M	-	M	Н

5.COURSE ASSESSMENT METHODS

Direct		
1.	Continuous Internal Assessment	
2.	Model Exam 1 & 2	
3.	Viva -Voce	
4.	End Semester Examination	
Indirect		
1. Course-end survey		

Semester: III Code: P19CH2P4
Credits: 3 Total Hrs: 90
Hours /week:6

1.Course outcome:

At the end of this course, the student will be able to:

S.No.	Course Outcomes	Level
1	Estimate organic compounds volumetrically	K5
2	Separate the components in organic mixture by paper chromatographic technique	K4
3	Choose the suitable method for purification of organic compounds	K5
4	Recommend appropriate solvents for recrystallization technique	K5
5	Estimate the amount of protein present in milk	K4
6	Compare the saponification value of different oils	K5

2A. Syllabus

1. QUANTITATIVE ANALYSIS

- **1.** Estimation of Phenol / Aniline.
- **2.** Estimation of Amide.
- **3.** Estimation of Glucose. (Methylene Blue Method)
- **4.** Estimation of Ethyl methyl ketone.
- 5. Estimation of Saponification value of oil.
- **6.** Estimation of Nitro group.
- 7. Estimate the given quantity of glycine
- **8.** Estimation of Ester group.

2. PAPER CHROMATOGRAPHIC TECHNIQUES

- 1. Identification of Amino acids by Paper Chromatogaphy.
- 2. Separation of the mixture of three dyes by two dimensional Paper Chromatography.
- 3. Separation of the mixture of three dyes by radial Paper Chromatography.

3. ISOLATION

1. Isolation of Casein from the given quantity of Milk

4. DISTILLATION & RECRYSTALLISATION

- 1. Distillation of the mixture of organic liquids and determination of Boiling points.
- **2.** Recrystallisation of organic solid and determination of Melting points of the crude and the Pure Compound.

2B.Reference Books:

- 1. Syed Mumtazuddin, Organic Chemistry A Laboratory Manual, Narosa Publishing House, New Delhi, 2014.
- 2. Syed Mumtazuddin, Advanced Practical Chemistry, Syed Mumtazuddin, Pragati Prakashan, Meerut, 2014
- 3. V K Ahluwalia & Sunita Dhingra, Advanced Experimental Organic Chemistry, Manakin Press, New Delhi, 2017.

3. Specific Learning Outcomes

.No	Course content	Learning Outcomes	Blooms Taxanomic Levels of Transactions		
	Quantitative Analysis		1		
1	Estimation of Phenol / Aniline.	Estimate phenol and aniline bybromination method.	K5		
2	Estimation of Amide	Test the amide content and to evaluateits concentration	K5		
3	Estimation of Glucose. (Methylene Blue Method)	Estimate glucose by methylene bluemethod.	K5		
4	Estimation of Ethyl methyl ketone	Estimate ketone by haloform method.	K5		
5	Estimation of Saponification value of oil.	Compare the saponification values of different oils.	K5		
6	Estimation of Nitro group	Determine the nitro group of the givensample by reduction method.	K5		
7	Estimate the given quantity of glycine	Estimate glycine by colorimetry method.	K5		
8	Estimation of Ester group	Estimate ester by hydrolysis method.	K5		
	Paper Chromatographic Technique	ies			
9	Identification of Amino acids by Paper Chromatography.				
10	Separation of the mixture of three dyes by two dimensional Paper Chromatography.	Develop a method to separate mixture ofamino acid and dyes by paper	K4		
11	Separation of the mixture of three dyes by radial Paper Chromatography	chromatographic method.			
		Isolation			
12	Isolation of Casein from the given quantity of Milk	Isolate casein from milk samples.	K3		

	Distillation & Recrystallisation								
13	Distillation of the mixture of organic liquids and determination of Boiling points.	Separate organic liquid mixture by distillation method and to check purity of the sample by determination of its boiling point.	К3						
14	Recrystallisation of organic solid and determination of Melting points of the crude and the Pure	Test the melting point of crude and pure compound to examine the suitable recrystallization methods.	K5						
	Compound	Choose the correct solvent system for crystallization of organic solid.	K5						
		Check purity of organic compound by determination of its melting point.	K5						

4.Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

Course Title : QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS Course Code: P19CH2P4													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	M	Н	-	M	-	Н	Н	M	-	Н
CO2	Н	Н	Н	Н	H	-	Н	-	H	Н	H	M	H
CO3	Н	Н	Н	Н	Н	-	Н	M	Н	Н	Н	-	Н
CO4	Н	Н	Н	Н	Н	-	Н	M	Н	Н	Н	-	Н
CO5	Н	Н	Н	Н	Н	-	Н	M	Н	Н	Н	M	Н
CO6	Н	Н	Н	Н	Н	-	Н	M	Н	Н	Н	M	Н

5.COURSE ASSESSMENT METHODS

Direct	
1.	Continuous Internal Assessment
2.	Model Exam 1 & 2
3.	Viva -Voce
4.	End Semester Examination
Indirec	et
1.0	Course-end survey

PRACTICAL PREPARATORY COURSE -II

(For Organic and Inorganic Practical)

SEMESTER: II TOTAL HOURS: 15

Course Code: P19CH2P3 and P19CH2P4

COURSE OBJECTIVES:

- To understand the principles behind the experiments in P19CH2P3 and P19CH2P4
- To identify methods by which error may be reduced in experiments

UNIT - I ERRORS IN ANALYSIS AND MEASUREMENTS

Chemical analysis- sampling - types of analysis- limitations of analytical methods- accuracy-precision -types of errors-minimization of errors- significant figures- Principles of Organic estimations- Back titrations -Reactions involved in each step of estimation.

UNIT - II GOOD LABORATORY PRACTICES

Calibration and use of glass wares- Storing and recycling of some reagents in laboratory - Protocols for Handling chemicals and their disposal - Safety measures and first aid in the laboratory- Handling hazards due to strong acids and bases, toxic chemicals, Remedies for Ingestion, Inhalation and direct absorption of chemicals.

UNIT- III PRINCIPLES OF COLORIMETRIC ANALYSIS

A brief recollection of the Laws of Colorimetry – Components and Instruments of a Colorimeter – Mathematical expression and Importance of Absorbance, molar absorptivity – percentage transmittance – Construction of standard graph – extrapolation and interpolation. Preparation of some important organic and inorganic complexing agents.

UNIT - IV PRINCIPLES OF QUALITATIVE ANALYSIS

Rare and common ions – Grouping of ions – principles behind separation of ions into groups – common ion effect – Solubility Product – Group reagents and reactions involved.

TEXT BOOK:

1. V. Ramanujam, "Inorganic Semimicro Qualitative analysis", 3rd Edition, The National Publishing Company, Chennai, 1974.

REFERENCES:

1. A.K. Srivastva, "Instrumental Approach to Chemical Analysis", 4th Edition, S. Chand and Company, New Delhi, 2010.

Core Course: VI ORGANIC SPECTROSCOPY

Semester: III Code: P19CH306

Credits: 5 Total Hrs: 90 Hours/week:6

1.Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Analyze the ultraviolet spectra of organic compounds	K4	I
2	Predict the absolute configuration of organic compounds through ORD & CD techniques	K5	II
3	Analyze IR Spectra of various organic compounds pertaining to functional groups and nature of bonding	K4	III
4	Interpret NMR (¹ H, ¹³ C & 2D) spectra for structural elucidation of organic molecules	K5	IV
5	Decide the structure of organic molecules based on fragmentation pattern derived from mass spectra	K5	V
6	Justify the structure of the organic compounds using UV, IR, NMR and Mass spectral data	K5	V

2A. Syllabus

UNIT – I Ultraviolet spectroscopy, ORD and CD

18hours

- **1.1 Ultraviolet spectroscopy -** Various electronic transitions (185 800 nm), Beer –Lambert Law, effect of solvent on electronic transitions, UV bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fischer Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Streic effect in biphenyls.
- **1.2 Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD) -** Definition, deduction of absolute configuration, octant rule for ketones, Cotton effect and ORD curves. Comparison between ORD and CD and their interrelationships.

UNIT-II FT-IR spectroscopy

18hours

FT-IR spectroscopy - Instrumentation and sample handling. Characteristic vibrational frequencies of alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of

hydrogen bonding and solvent effect on vibrational frequencies, over tones, combination bands and Fermi resonance,

UNIT-III Nuclear Magnetic Resonance Spectroscopy 18hours

NMR- General introduction and definition, chemical shift, spin – spin interaction, shielding mechanism. Chemical shift values and chemicalexchange, effect of deuteration, complex spin-spin interaction between two, three, four, and five nuclei (first order spectra), virtual coupling, coupling constant. Simplification of complex spectra using - nuclear magnetic double resonance, contact shift reagents - solvent effects. Fourier transform technique - Nuclear Overhauser effect (NOE).

UNIT-IV ¹³C-NMR Spectroscopy and 2D-NMR Spectroscopy 18hours

- **4.1** ¹³C-NMR Spectroscopy General considerations, chemical shift Empirical calculation of chemical shift of aliphatic, Olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon.
- 2D NMR spectroscopy principles and applications of COSY, NOESY, DEPT, INEPT, APT, and INADEQUATE techniques.

UNIT-V Mass Spectrometry 18hours

- **5.1** Mass Spectrometry Introduction, ion production Electron Ionisation (EI), Chemical Ionisation (CI), Field Desorption (FD) and Fast Atom Bombardment (FAB), factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak, McLafferty rearrangement. Nitrogen rule. High resolution mass spectrometry. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.
- **5.2** A review of spectroscopic problems Calculation of double bond equivalent and its application in structure elucidation. Structural elucidation of organic molecules involving IR, UV, NMR and mass data.

2B.Topics for Self-Study:

S.No.	Topics	Web Links
1	Characterisation Techniques of polymers, nanocomposites and biomaterials	https://www.sciencedirect.com/topics/chemistry/u v-vis-spectroscopy
2	Two-Dimensional Infrared (2D IR) Spectroscopy: Theory and Applications-	https://doi.org/10.1366%2F0003702904087398
3	Advanced NMR techniques for structural characterization of heterocyclic structures	https://www.researchgate.net/publication/2285915 78
4	¹³ C NMR spectroscopy applications to brain energy metabolism	https://www.frontiersin.org/articles/10.3389/fne ne.2013.00009/full
5	Advanced mass spectrometry-based methods for the analysis of conformational integrity of biopharmaceutical products	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3 375681/

2C.Text Books

- P.S. Kalsi, "Spectroscopy of Organic Compounds", New Age International, New Delhi, 2016 (Unit I-V)
- **2.** Y.R. Sharma, "Elementary Organic spectroscopy- Principles and chemical Applications", S.Chand & Co., New Delhi,2013. (**Unit I-V**)

2D.Reference Books

- R.M. Silverstein, G.C. Bassier and T.C. Morrill, "Spectrometric Identification of Organic Compounds", Wiley, New Delhi, 2015.
- 2. Donald L. Pavia, Gary M. Lampman, George S. Kriz "Introduction to Spectroscopy" Cengage Learning India Private Limited, 2015.
- 3. J.R. Dyer, "Application of Spectroscopy of Organic Compounds", Prentice Hall, New Delhi, 1978.
- 4. W.Kemp, "Organic spectroscopy", Palgrave, New York, 2008.

3. Specific Learning Outcomes (SLO)

			Blooms		
Unit	Course Content		Taxonomic		
Omt	Course Content	Learning Outcomes	levels of		
			Transaction		
	Unit-1: Ultraviolet Spectroscopy, Op	otical Rotatory Dispersion (ORD)	and Circular		
	Dichroism (CD)				
1.1	Ultraviolet Spectroscopy: Various	Classify the various electronic	K2		
	electronic transitions (185 - 800 nm)	transitions and compare their			
		energies			
	Beer – Lambert Law	Categorize high and low intensity	K4		
		absorptions			
		Analyse the molar absorptivity and	K4		
		absorbance of the organic			
		compound from given data			
	Effect of solvent on electronic	Explain the dependence of solvent	K2		
	transitions	polarity on the wave length of			
		absorption			
	UV bands for carbonyl, unsaturated	Evaluate the wavelengths of	K4		
	carbonyl, dienes, conjugated polyenes	absorption of the organic			
	compounds. Fischer – Woodward	compound through the set of			
	rules for conjugated dienes and	empirical rules/values			
	carbonyl compounds				
	Ultraviolet spectra of aromatic and	Illustrate the characteristic	K2		
	heterocyclic compounds	electronic transitions of aromatic			
	-	and heterocyclic compounds			
	Steric effect in biphenyls	Interpret the structural dependency	K2		
		on the absorption of energy for			
		substituted biphenyls			
1.2	Optical Rotatory Dispersion (ORD)	Relate the utility of ORD to	K2		
	and Circular Dichroism (CD)	deduct absolute configuration of			

	Definition of Optical Rotatory	organic compounds				
	Dispersion (ORD)		T7.5			
	Cotton effects and ORD curves.	Predict the absolute configuration	K5			
	Octant rule for ketone - Deduction of	of organic compound from the				
	absolute configuration	given information.				
	Circular Dichroism	Explain the phenomenon andrelate	K4			
		its utility to the deduction of				
		absolute configuration of organic				
		compounds				
	Comparison between ORD and CD	Compare the features of the	K2			
	and their interrelationships	respective techniques and explain				
	-	their inter-relationship				
		-				
	Unit-2: FT-IR spectroscopy					
2.1	Instrumentation and sample handling	sample handling Recall the theory of				
		electromagnetic spectrum and the				
		criterion for organic compounds to				
		absorb in infra-red region				
	Characteristic vibrational frequencies	Categorize various absorption	K4			
	of organic functional groups (alkenes,	frequencies with respect to the				
	alkynes, aromatic compounds,	functional group and vice versa				
	alcohols, ethers, phenols and amines)					
	Vibrational frequencies of carbonyl	Categorize various absorption K4				
	compounds (ketones, aldehydes,	frequencies with respect to				
	esters, amides, acids, anhydrides,	carbonyl functional group and vice				
	lactones, lactams and conjugated	versa				
	carbonyl compounds)					
2.2	Effect of hydrogen bonding and	Apply the dependency and effect of	К3			
	solvent effect on vibrational	H-bonding in the frequencies of				
	frequencies	absorption				
	Overtones, combination bands and	Identify various bands in IR	K2			
	Fermi resonance	spectra of organic compounds				
	Unit-3: Nuclear Magnetic Resonance	Spectroscopy				

3.1	Introduction and definition, chemical shift, spin- spin interaction	Identify the nuclear spin states, magnetic moments and mechanism of absorption of energy by the nucleus	K2
	Shielding mechanism - Chemical shift values	Differentiate the nature of shielding in the organic compound	K4
		Distinguish protons of various chemical shifts arising from different chemical environments	K5
		Assess the correlation for proton chemical shifts	K5
	Chemical exchange	Explain the nature of chemically exchangeable protons	K2
	Effect of deuteration	Illustrate deuterium isotopic effect	K2
	Complex spin-spin interaction	Identify magnetically equivalent	K2
	between two to five nuclei (first order	and non-equivalent protons	
	spectra) - Coupling Constant and	Evaluate the splitting pattern dueto	K5
	Virtual Coupling	through-bond interactions when	
		different kinds of magneticallynon-	
		equivalent nuclei are present	
		Infer the stereochemical	K4
		dependency of spin interactions in	
		organic compounds	
	Simplification of complex spectra	Predict complex NMR spectra by	K5
	using – double resonance, contact shift	applying various techniques	
	reagents - solvent effects. Fourier		
	Transform Technique - Nuclear		
	Overhauser effect		
	Unit-4: ¹³ C-NMR and 2D-NMR Spec	troscopy	
4.1	Chemical shift - Empirical calculation	Describe the theory of C-13 NMR	K1
	of chemical shift of aliphatic,	spectra	
	Olefinic, alkyne, aromatic, hetero-		

	aromatic and carbonyl carbon	Infer the chemical shifts of various organic functional groups using available empirical data	K4
		Predict the structure of the organic compound from the given C-13 NMR data/spectra	K5
4.2	2D NMR spectroscopy – principles and applications of COSY, NOESY, DEPT, INEPT, APT, and INADEQUATE techniques	Predict the structure of complex organic molecules by comparing through space coupling interactions	K5
	Unit-5: Mass Spectroscopy & Review		
5.1	Mass Spectroscopy Electron Ionisation (EI), Chemical Ionisation (CI), Field Desorption (FD) and Fast Atom Bombardment (FAB) techniques	Compare the various modes of ionization techniques in mass spectroscopy	K2
	Factors affecting fragmentation, ion analysis, ion abundance	Identify the various factors affecting fragmentation of organic compounds in mass spectroscopy	K2
	Mass spectral fragmentation of organic compounds with common functional groups, molecular ion peak, metastable peak	Illustrate the various fragmentation patterns arising from the common functional groups	K4
	McLafferty rearrangement	Analyse the characteristic fragmentation to arrive atstructural aspects of organic compounds	K4
	Nitrogen rule	Predict the presence or absence of nitrogen based on the molecularion peak	K3
	High resolution mass spectrometry	Express the principles of the	K2

		techniques involved	
	Mass spectral fragmentation of	Predict the structure of organic	K5
	organic compounds with respect to	compound by mass spectral	
	their structure determination	fragmentation patterns	
5.2	Review of spectroscopic problems:	Evaluate the spectral patterns of	K5
	Calculation of double bond equivalent	various organic compounds	
	and its application in structure		
	elucidation. Structural elucidation of		
	organic molecules involving IR, UV,		
	NMR and mass data		

4.Mapping (CO, PO, PSO)

L-Low M-Moderate H- High

Course Title: ORGANIC SPECTROSCOPY Course Code:P19CH306													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Н	Н	-	Н	M	L	Н	L	L	L
CO2	Н	Н	M	L	L	•	L	L	L	Н	M	M	M
CO3	Н	Н	Н	Н	Н	ı	Н	M	M	Н	Н	Н	Н
CO4	Н	Н	M	Н	Н	ı	M	M	M	Н	Н	Н	Н
CO5	Н	Н	M	Н	M	ı	M	M	M	Н	Н	Н	Н
CO ₆	Н	Н	M	Н	M	-	Н	M	Н	Н	Н	Н	Н

5.Course Assessment Methods **DIRECT**:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination.

INDIRECT:

1. Course-end survey

Core Course -VII THERMODYNAMICS AND ELECTROCHEMISTRY

Semester: III Code: P19CH307
Credits: 5 Total Hrs: 90
Hours/week:6

1. Course Outcomes:

After the successful completion of this course, the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Evaluate the macroscopic properties using classical	K5	I
	thermodynamics		
2	Analyze the fundamental concepts of atoms and molecules and their	K4	II
	arrangements in different energy levels by statistical approach		
3	Determine the macroscopic properties based on the translational,	K5	III
	vibrational, rotational and electronic partition functions of		
	molecules		
4	Explain the electrochemical phenomena of various energy storage	K4	IV
	systems		
5	Predict the mean ionic coefficient of different electrolytes and	K5	IV
	working principle of electrochemical cells and electrodes		
6	Justify the electro kinetic phenomena of processes at electrodes	K5	V

2A. Syllabus

UNIT -I CLASSICAL THERMODYNAMICS

18 Hours

- **1.1** Partial molar properties—chemical potential, relationship between partial molar quantities and thermodynamic functions Gibbs-Duhem equation-calculation of partial molar quantities from experimental data,
- **1.2** Thermodynamic properties of real gases-activity- fugacity concept calculation of fugacity of real gas and activity coefficient —definition and experimental determination of activity coefficients of non-electrolytes.

UNIT –II STATISTICAL THERMODYNAMICS – I 18 Hours

- **2.1** Probability types of events-theories of probability- multiplicative nature of probability-permutations and combinations Stirling's Approximation.
- **2.2** Statistical mechanics calculation of thermodynamic probability of system Assembly, ensembles, phase space-definition of micro and macro states different methods of counting macro and micro states distinguishable and indistinguishable particles-classical statistics derivation of Maxwell Boltzmann distribution law- Its application to gaseous system energy, velocity distribution concept of negative Kelvin temperature.
- **2.3** Quantum statistics-Bose Einstein and Fermi Dirac statistics-comparison with Maxwell-Boltzmann statistics application of BE statistics to photon gas-Application of FD statistics to electron gas and to thermionic emission derivation of thermionic energy.

UNIT- III STATISTICAL THERMODYNAMICS – II 18 Hours

- 3.1 Partition function characteristics translational, rotational, vibrational, electronic partition function expression for enthalpy, internal energy, Gibb's energy, entropy (Sackur Tetrode equation), work function and equilibrium constant in terms of partition functions partition function of mono atomic and diatomic molecules.
- **3.2** Heat capacity of solids –Derivation of Einstein's equation and its limitations, Debye T cubed law and its significance.
- **3.3** Non-equilibrium thermodynamics, Steady-State-phenomenological laws and Onsager's reciprocal relations.

UNIT-IV ELECTROCHEMISTRY-I 18 Hours

- **4.1** Debye-Huckel-Onsager theory and its derivation –Debye –Falkanhagen and Wein's effects extension to Debye-Huckel Onsager theory.
- **4.2** Activity of ions in solutions-mean ionic activity coefficients-experimental determination Debye-Huckel limiting law-modification for higher concentrations Bjerrum model.
- **4.3** Electrochemical cells-Electrode –Electrolyte equilibrium-thermodynamic quantities from emf data Nernst equation for electrode potential and emf of a cell classification of electrodes(electrodes of I kind, II kind, redox and membrane) electrolyte concentration cells (with and without transference) liquid junction potential its elimination applications of concentration cells.
- **4.4** Electrochemical energy storage systems- primary and secondary cells-Fuel cells (efficiency- advantage-types)

UNIT-V ELECTROCHEMISTRY – II 18 Hours

- **5.1** Electrical double layer theory of multiple layers at electrode- (Guoy Chapman, Stern and Helmholtz model) double layer capacity Electrokinetic phenomena, zeta potential and electro osmotic velocity, zeta potential and streaming potential determination of zeta potential and interpretation of zeta potential values.
- **5.2** Process at electrodes-Butler-Volmer equation-high and low field approximation-Tafel equation

5.3 Electrochemical corrosion of metals, constructions and use of Pourbaix and Evans Diagrams and prevention of corrosion.

2B.Topics for Self-Study

S.N	Topics	Web links
О		
1	Fugacity of a gas in a Gaseous mixture and liquid in a liquid mixture	http://pillars.che.pitt.edu/files/course_17/print /Fugacity_and_Equilibrium_Calculations.pdf https://www.youtube.com/watch?v=t2UmK5t
		yWoU&ab_channel=Ch- 11ChemicalEngg%2CChemistryandothers
2	Applications of Quantum Statistics	http://quantum.lassp.cornell.edu/lecture/quant um_statistical_mechanics
3		http://www.tkm.kit.edu/downloads/ss2014_th
	Partition function of real gas	eof/Theory_F_2014.pdf
4	Types of Fuel cell	https://www.energy.gov/eere/fuelcells/types- fuel-cells
5	Different Types of Corrosion - their	https://www.brighthubengineering.com/manu
	Causes and their Prevention	facturing-technology/81750-corrosion-
		prevention-techniques/
		https://www.youtube.com/watch?v=A_rI9rN
		VgR8&ab_channel=MagicMarks

2C.Text Books:

- 1. M.C.Gupta, "Statistical Thermodynamics", Wiley Eastern Ltd., New Age International, New Delhi, 1998. (Unit -II, III)
- 2. R.P. Rastogi and R.R. Mishra, "An introduction to Chemical Thermodynamics", Vikas Publishing House, New Delhi, 2000. (Unit -I, II, III)
- **3.** B.R. Puri, L.R.Sharma and M.S. Pathania, "Principles of Physical Chemistry", Vishal Publishing Co., Jalandar, 2017. (Unit –IV, V)

2D.Recommended Reference Books:

- 1. R. Stephen Berry, Stuart A.Rice and John Ross, "Physical Chemistry", Oxford University Press, New York, 2000.
- 2. D.A. Mcquarrie, J.D. Simon, "Molecular Thermodynamics", University Science books, California, 1999.
- 3. F.W.Sears, Thermodynamics, "Kinetic theory of Gases and statistical mechanics", 2nd Edition, Wesley, 1972.
- 4. Horia Metiu, "Physical chemistry- Thermodynamics", Taylor and Francis, 2006.
- 5. Peter Atkins and Julio de Paula Atkins "Physical Chemistry", Oxford University Press, Oxfored, 2018.
- 6. G.W.Castellan, "Physical Chemistry", Narosa Publishing House, New Delhi, 2002.
- 7. Robert J. Silbey, Robert A. Alberty, "Physical Chemistry", John Wiley and Sons, New York, 2006.
- 8. Philip Mathews, "Advanced Chemistry", Foundation Books, New Delhi, 2003.
- 9. P.K. Ghosh, "Introduction to Photoelectron spectroscopy", John Wiley and Sons, New York, 1989.

- 10. Samuel Glasstone, "Introduction to Electrochemistry", Prentice Hall, New Delhi, 2006.
- 11. D.R. Crow, "Principles and Applications of Electrochemistry", Chapman and Hall, London, 1994.

3. Specific Learning Outcomes (SLO)

Unit	Course Content	Learning outcomes	Blooms Taxonomic levels of Transaction
	Unit –I Classical Thermodynamics		
I	Partial molar properties—chemical potential, relationship between partial molar quantities and thermodynamic functions	Solve the problems based on chemical potential determination	К3
	Gibbs-Duhem equation- calculation of partial molar quantities from	Deduce Gibbs-Duhem equation	K4
	experimental data	Calculate partial molar properties	K4
	Thermodynamic properties of real gases- activity- fugacity concept - calculation of fugacity of real gas	Solve the problems based on fugacity	K4
	Activity coefficient –definition and experimental determination of activity coefficients of non-electrolytes.	Evaluate the activity coefficient of non- electrolytes	K5
	Unit-II Statistical Thermodynamic-I		
2.1	Probability – types of events-theories of probability- multiplicative nature of	Illustrate the types of events in probability	K2
	probability	Summarize the theories of probability	K2
	Permutations and Combinations	Solve the permutation and combination problems	К3
	Stirling's Approximation	Apply Stirling's approximation to large systems	K3

2.2	Statistical mechanics – calculation of thermodynamic probability of system	Examine thermodynamic probability of system	K4
		Evaluate the most probable distribution	K4
	Assembly , ensembles, phase space-definition of micro and macro states	Compare the types of ensembles	K2
	Different methods of counting macro and micro states	Solve problems based on microstate and microstate counting	К3
		Evaluate statistical weight factor	К3
	Distinguishable and indistinguishable particles	Differentiate distinguishable and indistinguishable particles	K2
	Classical statistics - derivation of Maxwell Boltzmann distribution law- Its application to gaseous system -	Infer the significance of Maxwell Boltzmann distribution law	К3
	energy, velocity distribution - concept of negative Kelvin temperature.	Apply Boltzmann distribution law in the calculation of properties of system	К3
2.3	Quantum statistics-Bose Einstein and Fermi Dirac statistics-comparison with	Deduce Bose-Einstein and Fermi Dirac statistics	K4
	Maxwell- Boltzmann statistics – application of BE statistics to photongas-Application of FD statistics to electron gas and to thermionic emission – derivation of thermionic energy.	Compare three statistical thermodynamics	K2
		Explain Bose- Einstein condensation	K2
		Evaluate the energy involved in thermionic emission	K4
	Unit-III Statistical Thermodynamics-II		

3.1	Partition function – characteristics - translational, rotational, vibrational, electronic partition function	Manipulate the values of partition functions and to arrive the numerical values	K3
		Calculate all types of partition functions for diatomic molecules	К3
		Compute thermodynamic parameters of system based on partition functions	К3
	Expression for enthalpy, internalenergy, Gibb's energy, entropy (Sackur – Tetrode equation), workfunction and equilibrium constant in terms of partition functions.	Relate thermodynamic functions with statistical thermodynamic function like partition functions	К3
	Tunctions .	Deduce the Sackur-Tetrode equation	K4 K3
	Partition function of mono atomic and diatomic molecules	Compute Statistical entropy Evaluate the partition function of mono and diatomic molecules	K5
3.2	Heat capacity of solids –Derivation of Einstein's equation and its limitations,	Infer Einstein equation and Debye Equation	K4
	Debye T - cubed law and its significance.	Calculate heat capacity of solids	К3
3.3	Non-equilibrium thermodynamics, Steady-State-phenomenological laws and Onsager's reciprocal relations.	Explain Onsager's reciprocal relation	K4
	Unit-IV Electrochemistry-I		

4.1	Debye-Huckel-Onsager theory and its derivation –Debye –Falkanhagen and	Interpret Debye-Huckel- Onsager theory	К3
	Wein's effects – extension to Debye-Huckel Onsager theory.	Explain Debye-Falkanhagen and Wein's effect	K4
4.2	Activity of ions in solutions-mean ionic activity coefficients-experimental determination	Manipulate mean ionic activity coefficients of solutions	К3
	Debye-Huckel limiting law-modification for higher concentrations –	Deduce Debye-Huckel limiting law	K4
	Bjerrum model.	Illustrate the primary and secondary salt effect	K4
		Analyze the influence of ionic strength	K4
4.3	Electrochemical cells-Electrode –	Calculate EMF of a cell	K3
	Electrolyte equilibrium-thermodynamic quantities from emf data	Construct a cell diagram	К3
	Nernst equation for electrode potential	Deduce Nernst Equation	K4
	and emf of a cell	Write a EMF Series	К3
		Evaluate the feasibility of cell reaction	K5
	Classification of electrodes(electrodes of I kind, II kind, redox and membrane)	Classify the types of electrodes with examples	K2
	Electrolyte concentration cells (with and without transference) – liquid junction potential – its elimination – applications	Compare concentration cell with and without transference relation	K4
	of concentration cells.	Assess liquid junction potential	K5
		Compute Liquid junction potential of concentration cells	К3
		Write the applications of concentration cells	К3
4.4	Electrochemical energy storagesystems- primary and secondary cells- Fuel	Differentiate the types of energy storage system	K4
	cells(efficiency-advantage-types)	Categorize energy storage cells	K4
	Unit-V Electrochemistry-II		

5.1	Electrical double layer – theory of multiple layers at electrode- (Guoy Chapman, Stern and Helmholtz model) – double layer capacity	Compare the significance of double layer theory with multiple layer theory	K5
	Electrokinetic phenomena, zetapotential and electro osmotic velocity, zeta potential and streaming potential	Examine the relation between electro kinetic phenomena	К3
	Determination of zeta potential and interpretation of zeta potential values.	Determine the Zeta potential values	К3
5.2	Process at electrodes-Butler-Volmer equation-high and low field		K4
	approximation-Tafel equation	Calculate anodic and cathodic current	K4
5.3	Electrochemical corrosion of metals, constructions and use of Pourbaix and	Write the uses of Pourbaix and Evans Diagram	K3
	Evans Diagrams and prevention of corrosion.	Summarize the different methods of corrosion prevention	K2

4. Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

Course	Course Title: THERMODYNAMICS AND ELECTROCHEMISTRY												
Course	Course Code: P19CH307												
	PO	PO	PO	PO	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
	1	2	3	4									
CO1	Н	Н	L	-	-	-	-	-	-	M	-	Н	M
CO2	M	Н	-	-	-	-	-	-	-	M	-	L	M
CO3	M	Н		-	-	-	-	-	-	L	-	Н	L
CO4	L	-	L	M	M	-	-	-	-	M	-	-	-
CO5	-	L	M	L	-	-	-	-	-	Н	-	M	L
CO6	Н	L	-	-	L	-	-			ı	ı	L	-

5.Course Assessment Methods

DIRECT:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

ELECTIVE COURSE: II - BIO-INORGANIC CHEMISTRY

SEMESTER : III CODE : P19CH3:2 TOTAL HOURS : 75 Hours /week:5

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain the role of metal complexes, alkali and alkaline earth metals in living systems	K5	I
2	Illustrate various membrane transport mechanisms in biological systems	K4	II
3	Categorize metalloproteins as redox agents and oxygen carriers based on their structure and functions	K4	III
4	Justify the role of various metalloproteins in photosynthesis	K5	III
5	Summarize the physiological and biochemical functions of minerals and their toxicity	K5	IV
6	Correlate the structure and mode of action of therapeutic drugs	K4	V

2A. Syllabus

UNIT-I

MEALS IN BIOLOGY

15Hours

Hours

- **1.1** An overview of metals in Biology Essential metals –their fate and conversion in Biological systems. Bio- organometallic chemistry Metal ion Complexation Thermodynamics and Kinetics Electron transfer reactions.
- 1.2 Biological role of alkali metals Alkali and alkaline earth metals complexes: Complexes of β -diketone, crown ethers, cryptands and spiranes; Template Effect, macro-cyclic effect, macro-cyclic effect.

UNIT-II TRANSPORT OF METALS 15 Hours

Structure, characteristics and composition of cell membrane- The fluid model - Membrane Transport: Active and passive transport, Ping-Pong model of facilitated diffusion- Iono-phores, Transporter proteins- Ion pumps – Mechanism of Na⁺ and K ⁺ pumps- Gated transport - voltage gated transport. Types of ports in ion transport – uniport- symport – Antiport. Gap Junctions

- **3.1** Bio-Redox agents: Fe-S proteins-Ferredoxin and Rubredoxin, HIPIPs-Functions and Structure, Non-heme iron proteins (Ferritin, Hemosiderin)
- **3.2** Metals as Carriers Iron Containig Oxygen Carriers -Myoglobin Hemoglobin Structure and Prosthetic group -Mechanism of reversible binding of dioxygen and Cooperativity -CO binding to Fe and model Complexes containing Cobalt.- Structure and Function of Vitamin-B₁₂
- **3.3** Oxygen uptake proteins: Cytochrome P-450 enzyme.
- **3.4** Photosynthesis- Light phase and dark phase reactions, Photosystem I and II. Nitrogen Fixation- Invivo Copper proteins: Blue copper proteins(Cupredoxins)-Type I-Plastocyanin Type III-Hemocyanin. Non blue copper proteins-Type II-Galactoseoxidase and Superoxidase dimutase .Some other copper protein -Ceruloplasmin.

UNIT- IV METAL DIETARY REQUIREMENT AND TOXICITY 15 Hours

Minerals in Diet – Requirement of various minerals in Physiological and biochemical functions-Classification of minerals according to their functions in the body – Digestion and Absorption of minerals – Mechanism of Iron Absorption – Ferroprotein secretion.

4.2 Toxicity Due to Metals - Bio-chemistry of toxic Metals Pb, Cd, Hg, Al, Fe, Cu, Pu -Detoxification by metal chelates.

UNIT-V METALS IN MEDICINE 15Hours Structure, Mode of action, Bio – availability and solubility and advantages and side effects of the

following drugs:

- 5. 1. Cancer therapy: Cis-platin and its mode of action.
- 5. 2. Radiotherapy: Radio-pharmaceuticals- Technetium. Chemotherapy basics and applications
- 5.3. Anti-rheumatic agents: Gold containing drugs and their action.
- 5.4. Psychopharmacological drugs: Lithium drugs and their mode of action.
- 5.5. Contrast enhancing agents for MRI: MRI imaging, Synthesis of Gadolinium based contrast agents.

2B.Topics for Self-Study:

S.No.	Topics	Web Links
1	Alkali metals in biology	https://link.springer.com/referenceworkentry/10.10
		07/978-3-319-39193-9_154-1
2	Ions transport	https://www.intechopen.com/books/ion-channels-
		in-health-and-sickness/introductory-chapter-ion-
		channels
3	oxygen uptake	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2
		554684/pdf/bullwho00238-0086.pdf
		https://www.sciencedirect.com/science/article/abs/
		pii/S1380732301800029
4	Detoxification method	https://www.scribd.com/read/149973523/A-
		Textbook-on-EDTA-Chelation-Therapy-Second-
		Edition#
5	Metals in medicine	https://www.researchgate.net/publication/2308121
		00_Metals_in_Medicine

2C.Text Books:

- 1. Asim K. Das. "Bio-Inorganic chemistry", Books and Allied Publishers, 2007. (Unit I-IV)
- 2. Subbiah Balaji, "Nanobiotechnology", MJP Publishers, Chennai, 2010. (Unit -V)

2D.Recommended Reference Books:

- 1. Stephen J. Lippard, Jeremy Mark Berg, "Principles of Bioinorganic Chemistry", University Science Books, 1994.
- 2. James E. Dabrowiak, "Metals in Medicine (Inorganic Chemistry: A text book series)", Willey Black well, 2017.K.J. Laidler, "Chemical Kinetics", Tata McGraw-Hill, New Delhi, 2003.

3.Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning outcomes	Blooms Taxonomy Level of Transaction
I	MF	EALS IN BIOLOGY	
	An overview of metals in Biology	Inspect the role of metal complexes	
	- Essential metals – their fate and	in living systems.	
	conversion in Biological systems.		
	Bio-organometallic chemistry -		K5
	Metal ion Complexation -		
	Thermodynamics and Kinetics -		
	Electron transfer reactions.		

	Biological role of alkali metals - Alkali and alkaline earth metals complexes: Complexes of β-diketone, crown ethers, cryptands and spiranes; Template Effect, macro-cyclic effect, macro-cyclic effect.	Distinguish the role of alkali metals, alkaline earth metals and organometallic compounds in biological systems.	K5
UNIT-II	TRANSPOI	RT OF METALS	
2.1	Structure, characteristics and composition of cell membrane- The fluid model - Membrane Transport: Active and passive transport, Ping-Pong model of facilitated diffusion- Ionophores, Transporter proteins- Ion pumps – Mechanism of Na ⁺ and K ⁺ pumps- Gated transport -voltage gated transport.	Examine the different mechanisms of membrane transport in biological systems.	K4
2.2	Types of ports in ion transport – uniport- symport – Antiport. Gap Junctions.		K4
Unit - III		OPROTEINS	
3.1	Bio-Redox agents: Fe-S proteins- Ferredoxin and Rubredoxin, HIPIPs-Functions and Structure, Non-heme iron proteins (Ferritin, Hemosiderin)	Inspect the role of biomolecules that act as redox agents with relation to their structure.	K4
3.2	Metals as Carriers - Iron Containing Oxygen Carriers - Myoglobin - Hemoglobin - Structure and Prosthetic group - Mechanism of reversible binding of dioxygen and Cooperativity - CO binding to Fe and model Complexes containing Cobalt - Structure and Function of Vitamin-B ₁₂ .	Distinguish the metal complexesthat act as oxygen carriers based on their structure and functions	K4
3.3	Oxygen uptake proteins: Cytochrome P-450 enzyme	Justify the significance of Cyt-450.	K5
3.4	Photosynthesis- Light phase and dark phase reactions, Photosystem I and II. Nitrogen Fixation- Invivo Copper proteins: Blue-copper proteins	Distinguish the light and dark phase reactions and the functions of blue copper proteins and non-blue copper proteins.	K5

	(Cupredoxins) - Type I -		
	Plastocyanin -Type III -		
	Hemocyanin. Non-blue copper		
	proteins- Type II - Galactose		
	oxidase and Superoxidedismutase.		
	Some other copper protein -		
	Ceruloplasmin.		
Unit - 4		REQUIREMENT AND TOXICITY	
4.1	Minerals in Diet – Requirementof	Perceive the requirement of various	
	various minerals in Physiological	minerals and their digestion and	
	and biochemical functions -	absorption by the human body.	
	Classification of minerals		
	according to theirfunctions in the		K5
	body – Digestion and Absorption		
	of minerals –Mechanism of Iron		
	Absorption –		
4.2	Ferroprotein secretion.	Evaluate the toxicity and	
4.2	Toxicity Due to Metals - Biochemistry of toxic Metals Pb, Cd,	Evaluate the toxicity and detoxification effect of metals and	
	Hg, Al, Fe, Cu, Pu - Detoxification	metal chelates respectively.	K5
	by metal chelates.	metal eliciates respectively.	IXS
	by metal elelates.		
Unit - 5	METAL DIETARY	REQUIREMENT AND TOXICITY	
5.1	Cancer therapy: Cisplatin and its	Differentiate the various	
	mode of action.	chemotherapeutic drugs as	K3
		Anti-Cancer agents,	
5.2	Radiotherapy: Radio-	Anti-rheumaticagents,	K3
	pharmaceuticals- Technetium.	Psychopharmacological drugs and	
	Chemotherapy – basics and	Contrast enhancing agents and	
	applications	correlate their structure with the	
5.3	Anti-rheumatic agents: Gold	mode of action.	K3
- ·	containing drugs and their action.		110
5.4	Psychopharmacological drugs:		K3
	Lithium drugs and their mode of		
	action.	}	W2
5.5	Contrast enhancing agents for		K3
	MRI: MRI imaging, Synthesis of		
	Gadolinium based contrast agents.		

4. Mapping Scheme for COs, POs and PSOs

L-Low M-Moderate H- High

Course Titl	Course Title: BIO-INORGANIC CHEMISTRY												
Course Code: P19CH3:2													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	M	M	L	M	-	-	-	-	M	L	M	-
CO2	M	L	M	Н	M	•	-	•	-	Н	M	L	L
CO3	Н	Н	M	M	Н	-	-	-	-	M	Н	M	L
CO4	M	M	M	-	Н	-	-	-	-	Н	M	-	L
CO5	L	M	L	M	M	-	-	Н	-	M	L	Н	-
CO6	Н	M	M	Н	Н	-	-	Н	-	Н	L	L	Н

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Core Practical: V

PHYSICAL CHEMISTRY PRACTICAL (NON ELECTRICAL)

(Lab. Cum Theory)

Semester: I1I Code: P19CH3P5
Credits: 3 Total Hrs:90
Hours/week:6

1.Course Outcomes:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level
1	Determine the Arrhenius parameters from kinetics data	K5
2	Evaluate the influence of ionic strength on rate constant	K5
3	Recommend the optimal conditions to automotive antifreeze using colligative properties	K5
4	Choose specific and selective adsorbents for industrial and environment related problems using Adsorption isotherms	K5
5	Measure qualitative and quantitative parameters of components in drugs, cosmetics, food and beverages, polarimetrically	K5
6	Assess the heat of solution for solute and solvent in a given mixture	K5

2A. Syllabus

NON-ELECTRICAL EXPERIMENTS:

- 1. Comparison of strength of acids by the study of kinetics of hydrolysis of an ester.
- 2. Evaluation of E_a and A by studying the kinetics of acid catalysed hydrolysis of ethyl acetate.
- 3. Determination of molecular weight by Rast method.
- 4. Construction of phase diagram of a congruent system.
- 5. Determination of critical solution temperature of phenol-water system and study of the effect of NaCl on miscibility temperature.
- 6. Comparison of the strength of acids by the kinetic study of iodination of acetone.
- 7. Effect of an inert salt on the kinetics of clock reaction between I^- and $S_2O_3^{2-}$.
- 8. Construction of adsorption isotherm for the adsorption of oxalic acid and charcoal.
- 9. Polarimetric study of the kinetics of acid catalysed inversion of sucrose.
- 10. Determination of heat of solution of a substance (benzoic acid or ammonium oxalate) by the measurement of its solubility as a function of temperature.

2B.Text Books:

- 1. J.N.Gurthu and R.Kapoor, "Advanced Experimental Chemistry", S. Chand and Co., 1987.
- 2. Sundaram, Krishnan, Raghavan, "Practical Chemistry (Part II)", S.Viswanathan and Co.Pvt. Ltd., 1996.

2C.Reference Books:

1. David P. Shoemaker, Carl W. Garland and Joseph W. Nibler, "Experiments in Physical Chemistry", 5th Edition, McGraw- Hill Book company, 1989.

3.Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1.1	Comparison of strength of acids by the study of kinetics of hydrolysis of an ester	Determine the rate, order, molecularity and frequency factor of the given reaction.	K5
	Evaluation of E _a and A by studying the kinetics of acid catalysed hydrolysis of	Explain the influence of ionic strength on rate constant	K5
	ethyl acetate Comparison of the strength of acids by the kinetic study of iodination of	Justify the charge of the active species involved in the reaction.	K5
	 acetone Effect of an inert salt on the kinetics of clock reaction between I and S₂O₃²⁻. 	Evaluate the acid strength by following the kinetics of Iodination of acetone.	K5
	 Determination of molecular weight by Rast method. 	Illustrate the colligative properties.	K5
		Determine the molal depression constant (K _f) of a given solvent.	K5
		Determine the transition temperature of given salt hydrate.	K5
		Estimate the molecular weight of unknown compound	K5
	 Construction of phase diagram of a congruent system Determination of critical solution 	Determine the congruent melting point by constructing the phase diagram.	K5
	temperature of phenol-water systemand study of the effect of NaCl on miscibility temperature	Evaluate the critical solution temperature of partially miscible liquid systems.	K5

	Evaluate the effect of	
	impurities on CST.	K5
• Construction of adsorption isotherm for the adsorption of oxalic acid and	Explain the factors affecting surface reactions	K5
charcoal.	Compare physisorption and chemisorption	K5
	Choose the suitable adsorption	
	isotherms to predict thekinetics	K5
 Polarimetric study of the kinetics of acid catalysed inversion of sucrose 	Explain the mechanism of inversion of sugar	K5
	Evaluate the kinetic parameter of chemical reactions by polarimetry.	K5
Determination of heat of solution	Evaluate the heat of solution.	K5
of a substance (benzoic acid or ammonium oxalate) by the measurement of its solubility as a function of temperature.	Predict the feasibility of the reaction from the thermodynamic data	K5

4. Mapping of POs, PSOs and Cos

H- High; M- Moderate; L- Low

Course Title: PHYSICAL CHEMISTRY PRACTICAL (NON ELECTRICAL)

Course Code: P19CH3P5

Course Court 112 Citere													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	M	M	Н		M	Н		Н	Н	Н	M
CO2	Н	Н	M	M	Н		M	Н		Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н		Н	Н		Н	Н	Н	M
CO4	Н	Н	Н	Н	Н		Н	Н		Н	Н	Н	M
CO5	Н	Н	Н	Н	Н		Н	Н		Н	Н	Н	M
CO6	Н	Н	L	M	Н		M	Н		Н	Н	Н	M

5.COURSE ASSESSMENT METHODS

Direct 1. Continuous Internal Assessment 2. Model Exam 1 & 2

- 2. Woder Exam 1 &
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Core Practical: VI

PHYSICAL CHEMISTRY PRACTICAL (Electrical)

Semester : III Code : P19CH3P6
Credits : 3 Total Hrs :90
Hours/week:6

1. Course Outcomes:

At the end of this course, the students will be able to:

S.No.	Course Outcomes	Level
1	Utilize the potentiometer and conductivity meter to estimate the	K3
	strength of various acids, bases, halides and other salts in the given	
	mixtures	
2	Compare the reliability of results for a given experiment by	K5
	Conductometric and Potentiometric methods	
3	Construct different types of electrochemical cells	K6
4	Prioritize the methods of analysis for an experiment in a given set of	K5
	conditions	
5	Analyse the solubility product of the given salt by conductometric	K4
	and potentiometric methods	

2A. Syllabus

ELECTRICAL EXPERIMENTS:

- 1. Conductometric determination of dissociation constant of a weak acid.
- 2. Potentiometric determination of pKa of an acid.
- 3. Measurement of single electrode potentials of Zn^{2+} / Zn and Cu^{2+} /Cu electrodes.
- 4. Potentiometric redox titration of KMnO₄ with KI or Fe²⁺ or Ce⁴⁺ and determination of standard redox potential.
- 5. Potentiometric estimation of mixture of halides.
- 6. Conductometric estimation of mixture of halides
- 7. Conductometric estimation of the components of buffer.
- 8. Conductometric estimation of mixture of weak and strong acids.
- 9. Conductometric precipitation titration of BaCl₂ with MgSO₄ and K₂SO₄.
- 10. Conductometric titration of NH₄Cl and HCl against NaOH.
- 11. Conductometric titration of mixture of alkali against HCl.
- 12. Determination of solubility product by
 - a) Conductometric method b) Potentiometry Concentration cell method
 - c) Potentiometry Chemical cell method.
- 13. Potentiometric estimation of mixture of weak and strong acids.

14. Conductometric study of the kinetics of saponification of ester- (Internal/ Demonstration only)

2B.Text Books:

- 1. J.N. Gurthu and R. Kapoor, "Advanced Experimental Chemistry", S. Chand and Co.,1987.
- 2. Sundaram, Krishnan, Raghavan, "Practical Chemistry (Part II)", S.Viswanathan and Co.Pvt.,1996.

2C.Reference Books:

1. David P.Shoemaker, Carl W.Garland and Joseph W.Nibler, "Experiments in Physical Chemistry", 5th Edition, McGraw- Hill Book company, 1989.

3. Specific Learning Outcomes (SLO)

S. No	Course Content	Learning Outcomes	Blooms Taxonomic level of Transaction
1	Conductometric determination of dissociation constant of a weak acid.	Examine the dissociation constant of weak acids by conductometric method.	K3
2	Potentiometric determination of pK_a of an acid.	Determine the dissociation constant of weak acids by potentiometric method.	K3
3	Measurement of single electrode potentials of Zn ²⁺ /Zn and Cu ²⁺ /Cu electrode	Measure electrode potentials of various electrodes	K6
4	Potentiometric redox titration of KMnO ₄ with KI or Fe ²⁺ or Ce ⁴⁺ and determination of standard redox potential.	Interpret potentiometric redox titrations for the estimation of the given analyte.	K5
5	Potentiometric estimation of mixture of halides.	Estimate the mixture of halides by potentiometry.	K4
6	Conductometric estimation of mixture of halides	Estimate mixture of halides by conductometric method.	K4

7	Conductometric estimation of the components of buffer	Estimate the amount of different components in buffer mixtures.	K4
8	Conductometric estimation of mixture of weak and strong acids	Evaluate the concentration of mixture of acids by conductometric method.	K5
9	Conductometric precipitation titration of BaCl ₂ with MgSO ₄ and K ₂ SO ₄	Interpret conductometric precipitation titration for the estimation the given analyte.	K5
10	Conductometric titration of NH ₄ Cl and HCl against NaOH.	Estimate the NH ₄ Cl and HCl present in a mixture conductometrically.	K4
11	Conductometric titration of mixture of alkali against HCl	Estimate the components present in a mixture of bases by conductometric method	K4
10	Determination of solubility product by a) Conductometric method b) Potentiometry - Concentration cell method c) Potentiometry - Chemical cell	Evaluate the solubility product of sparingly soluble salts by conductometric and potentiometric method	K5
12	method.		11.0
13	Potentiometric estimation of mixture of weak and strong acids	Estimate the components of mixture of weak and strong acids by potentiometric method	K4
14	Conductometric study of the kinetics of saponification of ester-(Internal/ Demonstration only)	Identify the order of saponification of ester by following the kinetics conductometrically.	K2

Mapping Scheme for the PO, PSOs and Cos M-Moderate H- High

Course Title: PHYSICAL CHEMISTRY PRACTICAL (Electrical)

Course Code: P19CH3P6

L-Low

course code (11) chart													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Н	M	L	-	-	-	Н	M	M	Н
CO2	Н	Н	M	Н	Н	L	L	-	-	Н	Н	Н	Н
CO3	Н	Н	Н	M	M	-	-	L	L	Н	M	L	Н
CO4	Н	Н	M	Н	Н	-	L	M	M	Н	M	L	M
CO5	M	Н	-	Н	Н	L	-	-	-	M	Н	-	Н
CO6	M	Н	M	M	Н	M	L	-	L	Н	M	M	L

5. Course Assessment Methods

Direct

- 1. Continuous Internal Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

PRACTICAL PREPARATORY COURSE - III

SEMESTER: III TOTAL HOURS: 30

CODE: P19CH3P5& P19CH3P6

COURSE OBJECTIVES:

- To learn the concepts of Physical Chemistry experiments in P19CH3P5& P19CH3P6.
- To understand the principle and methodology behind various techniques.
- To learn the laboratory precautions, procedures and preparations involved in the experiments.

UNIT-I

Concentration Units-Mole concept, normality, molarity, molality, mole fraction, weight %, volume %, ppm, ppb-Types of solutions-primary and secondary standard substances-standard solutions- dilution formula- Calculations- Graphs – Regression coefficient-Slope and intercept.

Chemical kinetics- Reaction rates-Reaction molecularities -order of a reaction-Determination of the order of a reaction-Graphical method- Arrhenius equation - The temperature co-efficient-Temperature control using Thermostat.

Oscillatory reactions: Principle of Iodination of acetone- - Clock reaction-influence of ionic strength on rate constant.

UNIT-II

Polarimetry - optical rotation -mechanism of inversion of cane sugar.

Thermo chemistry-Heat of formation-Heat of combustion-Heat of solution –integral heat of dilution-heat of hydration. Use of indicators in titrations.

Colligative properties and Phase equilibria - Phase-Component-degree of freedom-Reduced Gibbs phase rule-eutectic temperature-eutectic composition-freezing point diagram of binary mixtures- examples of one, two and three component systems.

Surface phenomenon – differences between adsorption and absorption - adsorbent-adsorbate-Physisorptions-chemisorption-types of adsorption isotherms (Only final equations).

UNIT-III

Electrochemistry-Electrical conductance of electrolytes-Specific conductivity-Equivalent conductivity-Molar conductivity- conductance value of ions-Effect of dilution on conductivity.

Ostwald's dilution law-Debye-Huckel Onsager equation- Debye -Huckel limiting law-Kohlrausch law (Only final equation).

Conductometric titrations-Principle & types, Standardisation of conductometer-Wheatstone's meter bridge-Conductivity cell-Advantages of conductometric titrations.

Concept of solubility- Solubility Product – Common ion effect - pH scale – Buffer.

Potentiometric titrations- Galvanic cell- Nernst Equation - Electrode potential- Electrochemical series-Types of electrodes- salt bridge- liquid junction potential- standardization of potentiometer- Standard cell and Western cell. Measurement of EMF of cell-overall cell reactions- writing cell diagram- Applications of potentiometric titrations.

TEXT BOOKS:

- 1. Jagadamba singh, R.K.P. Singh, Jaya Singh, LDS Yadav, I.R. Siddiqui and Jaya Shrivastava, "Advanced Practical Chemistry" Pragati Prakasham Publishers, Fifth Edition, 2014.
- 2. B. Viswanathan and P.S. Raghavan, "Practical Physical Chemistry" Viva Books Pvt. Ltd., 2006. (Unit I-III)

REFERENCES:

- 1. B. Yadav, "Advanced Practial Physical Chemistry" Satyendra Rastogi Mitra, 34th Edition, 2014.
- 2. David P. Shoemaker, Carl-W.Garland and Joseph W. Nibler, Experiments in Physical Chemistry, Mc Graw-Hill-International, Fifth Edition, 2004.

COMPONENTS FOR EVALUATION

Test -1 Max marks :30 (Part A 2 X 10, Part B 2 x 5)

Test – 2 Max marks :30 (Part A 2 X 10, Part B 2 x 5)

PROJECT PREPARATORY COURSE

SEMESTER : III CODE : P19CH4PJ
TOTAL HOURS: 15

COURSE OBJECTIVES:

- To learn the fundamentals of Short term research Projects
- To understand the basic requirements of a project work and plan ahead of the project work.

UNIT- I RESEARCH METHODOLOGY

Basic elements of Research – Objectives – Types of research – Steps involved in research – Identifying a PROBLEM for project- Evolving strategies for solving – Designing feasible experiments – planning and scheduling a Project

UNIT- II REVIEW OF LITERATURE

Sources of literature- primary – secondary – tertiary – importance and characters of Monographs, Journals, Notes and Communications. Methods of literature survey – Chemical Abstracts and Indexing – Computer aided searches – Use of Search engines and advanced searches using Google Scholar , Scifinder– PubMed , RSC, PDB. Ordering and scheming the literature review – Identification of gaps in literature

UNIT- III PREPARATION OF A PROJECT REPORT AND PRESENTATION

Planning a project report – criteria for selection of the titles and subtitles –Scientific language for writing – Tenses and voices for the Introduction – Review and Report. Language editors and raters and their usage- Bibliography preparation – styles and types – Methods of including references in MsWord – Mendeleev and Microsoft End note for reference. Simple tips for usage of MS word, Excel, power point, Origin and OneNote for project report preparation

REFERENCES:

- 1. Research and Writing across the disciplines P Ramadass and A. Wilson Aruni , MJP Publishers, Chennai, 2009.
- 2. https://www.mendeley.com/download-mendeley-desktop/
- 3. http://cassi.cas.org/
- 4. https://www.cas.org/

COMPONENTS FOR EVALUATION:

Test -1 Max marks :30 (Part - A: 2 X 10, Part - B: 2 x 5)

Test - 2 Max marks :30 (Part - A: 2 X 10, Part - B: 2 x 5)

Core Course: VIII INORGANIC SPECTROSCOPY

Semester: IV Code: P19CH408
Credits: 5 Total Hrs: 90

Hours/week:6

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain the metal-ligand interaction in transition metal complexes through electronic spectra	K5	I
2	Justify the structure and bonding of coordination compounds using IR and Raman Spectroscopy	K5	П
3	Analyze the splitting pattern of NMR signals with respect to different nuclei present in inorganic compounds.	K4	III
4	Analyze the EPR spectra of Inorganic compounds based on the effect of spin-orbit coupling and crystal field effects.	K4	IV
5	Examine the effect of magnetic and quadrupole fields on Mossbauer spectra of simple Molecules.	K4	V
6	Deduce the structure of coordination compounds using data derived from Electronic, IR, Raman, NMR, ESR and Mossbauer spectroscopic techniques.	K5	V

2A. Syllabus

UNIT- I ELECTRONIC SPECTROSCOPY

18 Hours

Electronic Spectroscopy of complexes- characteristics of d-d transitions, selection rules for d-d transitions- Term symbols for d – ions, Use of Orgel diagrams for d^{1-10} octahedral and tetrahedral complexes, Tanabe-Sugano diagrams for d^1 and d^6 octahedral complexes only. Effect of Jahn -Teller distortion and spin - orbit coupling on spectra. Charge transfer spectra (LMCT and MLCT)- Intensity of Charge transfer transitions in inorganic and coordination compounds, Electronic absorption spectra of low spin and strong field complexes.

UNIT- II IR AND RAMAN SPECTROSCOPY 18 Hours

Combined uses of IR and Raman Spectroscopy in the structural elucidation of simple molecules like H₂O, ClF₃ NO₃^{-,} and ClO₃⁻. Effect of Co-ordination on ligand vibrations – uses of group vibrations in the structural elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate, nitrate, sulphate and dimethyl sulphoxide. Effect of isotopic substitution on the vibrational spectra of

molecules. Differentiation of coordinated water and lattice water. Applications of IR to identify terminal and bridging carbonyl group.

UNIT- III NMR SPECTROSCOPY 18 Hours

Applications of NMR to inorganic compounds-(spin-spin coupling involving different nuclei ${}^{1}H, {}^{31}P, {}^{13}C)$ NMR of metal hydrides(H^{1} NMR)- Metal carbonyls(C^{13} NMR)- F^{19} , P^{31} NMR. Effect of quadrupolar nuclei (${}^{2}H, {}^{10}B, {}^{11}B$) on the ${}^{1}H$ NMR spectrum. NMR of paramagnetic molecules – isotopic shifts, contact and Pseudo-contact interactions- lanthanide shift reagents.

UNIT- IV EPR SPECTROSCOPY 18 Hours

Basic principle – characteristics of 'g' –Hyperfine splitting –selection rules – factors affecting the magnitude of the 'g' values. 'g' value of transition metal ions –dependence on spin – orbit coupling and crystal field effects. EPR of d¹ to d9 systems of first transition series. Tetragonally distorted copper complexes – Zero-field splitting and Kramer's degeneracy. Solid state EPR – spin-lattice relaxation – spin-spin relaxation – exchange processes.

UNIT-V Magneto-chemistry & Mossbauer Spectroscopy 18 Hours

5.1 Magneto-chemistry

Determination of magnetic susceptibility by Guoy and Faraday methods. Magnetic properties of low spin and high spin octahedral complexes of first row transition metals- Curies law, Curies-Weiss law, Curie temperature and Neel temperature, Types of Magnetism- Paramagnetism, Diamagnetism, Ferro and anti-ferromagnetism.

5.2 Mossbauer Spectroscopy:

Principle- Doppler effect –Recoil energy- isomer shift – quadrupole effect – magnetic interactions - magnetic field on spectra –simple applications to iron and tin compounds.

2B.Topics for Self-Study:

S.No	Topics	Web link
1	Microstates in electronic spectroscopy	https://www.youtube.com/watch?v=oUm493PIPJA
2	Transition Metal Cyclopentadienyl	https://www.youtube.com/watch?v=52oh47-Kti4
	Nitrosyl Complexes	
3	Fluxional behavior in NMR	https://www.youtube.com/watch?v=teXjVQM2fsw
	spectroscopy	
4	Spin orbit coupling	https://www.youtube.com/watch?v=Np6KRP-tl-
		o&pbjreload=101
5	Mossbauer spectrum- spin cross over &	https://www.youtube.com/watch?v=pbMNfO-
	Zeeman splitting	Z5iA

2C.Text Book(s):

- 1. B.K. Sharma, "Spectroscopy", Krishna Prakashan, New Delhi, 1993. (Unit I-V)
- 2. P.S. Sindhu, "Molecular Spectroscopy" Tata McGraw Hill, 2000.
- 3. H. Kaur, "Spectroscopy" Pragati Publications, Meerut, 2001.
- 4. V.B.Pathania, "Spectroscopy" Campus Books, New Delhi, 2002

2D.Reference Books:

- 1.R. S. Drago, "Physical Methods in Inorganic Chemistry", East West Publishers, New Delhi, 1965.
- 2. EAV Ebsworth, "Structural Methods in Inorganic Chemistry", ELBS, Oxford,1988.
- 3. A. Abdul Jameel "Application of Physical Methods to Inorganic compounds" JAN Publication, Trichy, 2003.
- 4. James E. Huheey, Ellen A Keiter and Richard L. Keiter, "Inorganic Chemistry: Principles of Structure and Reactivity", Pearson Education, India, 2014.

3.Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic Levels of Transaction
	Unit- I ELECTRON	NIC SPECTROSCOPY	
1	Electronic Spectroscopy of complexes - characteristics ofd-d transitions - selection rules for d-d transitions	Identify the types and the rules governing the transitions in d-block elements	К3
	Term symbols for d – ions	Categorize the term symbols of various microstates in d-block ions	K4
	Use of Orgel diagrams for d ¹⁻¹⁰ octahedral and tetrahedral complexes	Analyze the relative energies of electronic terms in transition metal complexes	K4
	Tanabe-Sugano diagrams for d ¹ and d ⁶ octahedral complexes only	Explain the absorptions in the electronic spectra of coordination compounds	K5
	Effect of Jahn -Teller distortion and spin - orbit coupling on spectra	Examine the effect of Jahn -Teller distortion and spin - orbit coupling on the electronic transitions	K4
	Charge transfer spectra(LMCT and MLCT) - Intensity of Charge transfer transitions in inorganic and coordination compounds	Examine the interaction between MOs of metal and ligand in excited state	K4
	Electronic absorption spectra of low spin and strong field complexes	Compare the absorption spectra of low spin, strong field complexes	K4
	Unit- II IR AND RA	MAN SPECTROSCOPY	
2	Combined uses of IR and Raman Spectroscopy in the structural elucidation of simple molecules like H ₂ O, ClF ₃ , NO ₃ ⁻ and ClO ₃ ⁻	Categorize the structure of simple molecules using IR and Raman spectroscopy	K4

Effect of Co-ordination o ligand vibrations	Analyze the effect of coordination of the ligand stretching frequencies	K4
Uses of group vibrations in the structural elucidation of meta complexes of urea, thiourea	e Deduct the structure of metal complexes containing differenttypes	K5
cyanide, thiocyanate, nitrate sulphate and dimethy sulphoxide	·1	
Effect of isotopic substitution on the vibrational spectra of molecules	of substitution	K5
Differentiation of coordinated water and lattice water	Distinguish coordinated and lattice water molecules	K4
Applications of IR to identification terminal and bridging carbony group	_	K5
	PECTROSCOPY	
3 Applications of NMR to inorganic compounds-(spir spin coupling involvind different nuclei ¹ H, ³¹ P, ¹³ C)		K4
NMR of metal hydrides (H NMR), Metal carbonyls (C NMR), F ¹⁹ , P ³¹ NMR	•	K4
Effect of quadrupolar nuclei (² H, ¹⁰ B, ¹¹ B) on the ¹ H NMR spectrum	Categorize the splitting pattern by coupling with quadrupolar nuclei	K4
NMR of paramagnetic molecules - isotopic shifts contact and Pseudo-contact interactions- lanthanide shifts reagents	s, compounds	K4
	R SPECTROSCOPY	
4 EPR Spectroscopy - Basi principle - characteristics of 'g	c Analyze the interaction between magnetic moments of nucleus and	K4

- Hyperfine splitting - selection rules	electrons in atoms and the rules governing it	
Factors affecting the magnitude of the 'g' values - 'g' value of transition metal ions - dependence on spin — orbit coupling and crystal field effects	Examine the effect of spin orbit coupling and crystal field effects on the magnitude of g value in ions of d-block	K4
EPR of d ¹ to d ⁹ systems of first transition series	Categorize the EPR of 1st row d-block compounds	K4
Tetragonally distorted copper complexes	Inspect the effect of tetragonal distortion (elongation) in octahedral copper complexes	K4
Zero-field splitting and Kramer's degeneracy	Analyze the effect of magnetic field on EPR spectra	K4
Solid state EPR - spin-lattice relaxation - spin-spin relaxation - exchange processes	Examine the effect of relaxation process on EPR spectra	K4
Unit- V Mag	neto-chemistry & Mossbauer Spectro	oscopy
Magneto-chemistry - Determination of magnetic susceptibility by Guoy and Faraday methods	Apply of the different methods to determine magnetic susceptibility	К3
Magnetic properties of low spin and high spin octahedral complexes of first rowtransition metals		K4
Curies law, Curies-Weiss law, Curie temperature and Neel temperature	Illustrate the effect of magnetization in a paramagnetic material	K2
Types of Magnetism- Paramagnetism, Diamagnetism, Ferro and anti-ferromagnetism	Outline the different types of magnetism and their characteristics	K2
5.2 Mossbauer Spectroscopy -	Examine the basic principles and	K4

quadrupole effect		
Magnetic interactions -	Explain the effect of magnetic field	K2
magnetic field on spectra	on spectra	
Simple applications to iron and	Apply the principles of Mossbauer	K3
tin compounds	spectroscopy to iron and tin	
	compounds	

4. Mapping of COs with POs and PSOs

L-Low M-Moderate H- High

	Course Tittle: INORGANIC SPECTROSCOPY Course Code:P19CH408												
	PO PO PO PO PO PO PO PO PO PSO PSO PSO P										PSO		
	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	Н	-M	Н	M	-	L	-	-	Н	-	M	M
CO2	Н	Н	L	M	M	L	Н	L	M	Н	Н	M	Н
CO3	Н	Н	L	M	M	L	Н	L	M	Н	Н	M	Н
CO4	Н	M	L	L	L	L	M	-	L	M	M	L	M
CO5	Н	L	L	L	L	-	L	-	L	L	-	-	L
CO6	Н	M	M	M	M	M	Н	L	M	-	M	M	Н

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

CORE COURSE: IX - GROUP THEORY & SPECTROSCOPY

SEMESTER: IV

CREDITS: 5

CODE: P19CH409

TOTAL HOURS: 90

Hours / works6

Hours /week:6

1.Course Outcomes:

After the successful completion of this course, the students will be able to:

S.No.	Course Outcomes	Level	Unit
1.	Categorize the molecules based on symmetry elements,	K4	I
	symmetry operations and point groups		
2.	Evaluate the selection rules for spectroscopy and hybridization	K5	II
	schemes using the concept of molecular symmetry		
3.	Explain the principles involved in different spectroscopic	K2	III
	techniques		
4.	Interpret the structure of molecules based on IR and Raman	K5	IV
	spectroscopy		
5.	Analyze the importance of electronic spectroscopy and the	K4	IV
	energy transfer processes		
6.	Examine the structure of molecules using the principles of NMR	K4	V
	& NQR spectroscopy		

2A. Syllabus

UNIT-I

GROUP THEORY

- **1.1** Group theory -symmetry of elements and symmetry of operations, point groups of molecules, properties of a group and sub-group, isomorphism, cyclic, abelian, class-similarity transformation and conjugate, matrix representation product of symmetry operations, group multiplication tables(C_{n} , C_{nv} and D_{nh} only) great orthogonality theorem and its consequences, construction of character tables(C_{2V} and C_{3V}). Direct products reducible and irreducible representation Wave function as bases for irreducible representation.
- **1.2** Crystal point group, crystal symmetry screw axis and glide plane, space groups, translational elements of symmetry, differences between molecular symmetry and crystal symmetry.

UNIT – II APPLICATIONS OF GROUP THEORY

Group theory and molecular electronic states- Transition moment integral – spectroscopic selection rules to IR, Raman (H_2O , NH_3 , trans- N_2F_2) and electronic spectroscopy (HCHO) - projection operators and their use to construct SALC - evaluation of energies and MO's for systems - ethylene, butadiene, benzene and allyl. Hybridization schemes of orbitals – (sp, sp² and sp³)

UNIT-III MOLECULAR SPECTROSCOPY-I

- **3.1** Introductory aspects: electromagnetic radiation -representation of spectra, the line width and intensity of spectral transitions- factors influencing them- Einstein's transition probability and oscillator strength.
- **3.2** Infrared spectroscopy: Selection rules –harmonic and anharmonic oscillations –rotation and vibrational spectra of polyatomic molecules –CO₂,H₂O-fermi resonance –influence of rotation on the spectra of diatomic molecules –parallel and perpendicular bands.
- **3.3** Raman spectroscopy: Raman effect –elastic and inelastic scattering –quantum theory origin of Stokes, Anti-Stokes and Rayleigh lines selection rules-rotational and vibrational Raman spectra simple molecules (CO₂, H₂O), mutual exclusion principle Basics of Laser Raman spectroscopy.

UNIT-IV MOLECULAR SPECTROSCOPY-II

- **4.1** Electronic spectra: electronic spectra of molecules, Born Oppenheimer approximation, vibrational coarse structure –Frank-Condon principle, dissociation energy, predissociation, rotational fine structure of electronic vibrational transitions Fortrat diagram- various types of transitions auxochromes ,chromophores bathochromic and hypsochromic shift- effect of substituent and polarity of solvent.
- **4.2** Emission spectroscopy: fate of electronically excited molecules- fluorescence, phosphorescence, emission spectra of molecules.
- **4.3 Photochemistry**: Differences between photochemical and thermal reactions-Quantum yield- Photophysical processes in electronically excited molecules Jablonski diagram-energy transfer processes Radiative and Non-Radiative transitions –Fluorescence-relation to structure- Phosphorescence- conditions for Phosphorescence emission (spin-orbit coupling)-Photosensitization Stern Volmer equation derivation for quenching of luminescence and quenching of chemical reaction and its applications- Chemiluminescence.

UNIT-V MOLECULAR SPECTROSCOPY-III

5.1 NMR spectroscopy: Energy of interaction and its derivation, Zeeman effect, nuclear spin and applied magnetic field, Effect of 'B' on splitting – Larmor precession and its expression-relaxation processes – PMR – chemical shift - factors affecting chemical shift and coupling constant (J) – spin-spin interaction. ¹³C NMR spectroscopy – chemical exchange-**Problems.**

- **5.2** NQR spectroscopy: characteristics of quadrupolar nucleus- effect of field gradient and magnetic field upon quadrupolar energy levels- NQR transitions applications of NQR spectroscopy.
- **5.3** Lasers: Nature of stimulated emission-coherence, monochromaticity, population inversion
- cavity and mode characteristics- types of lasers- solid state, gas, chemical and dye lasers.

2B.Topics for Self-Study:

S.No.	Topics	Web Links
1	Problems on Group Theory	https://www.youtube.com/watch?v=UVA42JYBk Kw
2	Challenges in application of Raman spectroscopy to biology and materials	https://pubs.rsc.org/en/content/articlepdf/2018/ra/c 8ra04491k
3	Sensing genetic disorders with fluorescence	https://chembam.com/online-resources/experiments/sensing-with-fluorescence/
4	Multidimensional NMR Spectroscopy	https://nptel.ac.in/courses/104/108/104108097/
5	The Future of Laser Technology	https://now.northropgrumman.com/the-future-of-laser-technology-hint-its-bright/

2C.Text Books

- 1. K.V. Raman, "Group Theory and its Application to Chemistry", Tata McGraw-Hill, New Delhi, 2000. (Unit I, II)
- 2. G. Aruldhas, "Molecular Structure and Spectroscopy", Prentice Hall, New Delhi, 2002. (Unit III, IV, V)

2D.Reference Books

- 1. F.A. Cotton, "Chemical Applications to Group Theory", John Wiley and Sons, New York, 2008.
- 2. Robert. L. Carter, "Molecular symmetry and Group Theory", John Wiley and Sons, New York, 2009.
- 3. B.E. Douglas and C.A. Hollingsworth, "Symmetry in Bonding and Spectra- an Introduction", Academic Press, 2012.
- 4. Robert J. Silbey, Robert A. Alberty, "Physical Chemistry", John Wiley and Sons, New York, 2006.
- 5. G.M. Barrow, "Introduction to Molecular Spectroscopy", McGraw-Hill, New York, 1964.
- 6. C.N. Banwell and E.M. McCash, "Fundamentals of Molecular Spectroscopy", 4th Edition, Tata McGraw-Hill, New Delhi, 2000.
- 7. K.V. Raman, R. Gopalan and P.S. Raghavan, "Molecular Spectroscopy", Thomson and Vijay Nicol, Singapore, 2004.
- 8. I.N.Levine, "Molecular Spectroscopy", John Wiley and Sons, New York, 1974.
- 9. A.Rahman, "Nuclear Magnetic resonance- Basic Principles", Springer-verlag, New York, 1986.

3.Specific Learning Outcomes (SLO)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of				
			Transaction.				
I	Group T	heory					
1.1	Group theory -symmetry of elements and symmetry of operations, point groups of molecules.	Identify the point group of the given molecule.	K3				
	8	Categorize the molecules					
		based on the point group.	K4				
	Properties of a group and sub-group, isomorphism, cyclic, abelian, class-similarity transformation and conjugate, matrix representation.	Classify a group based on the various properties of group.	K4				
	Product of symmetry operations,	Summarize the symmetry					
	group multiplication tables (C_n , C_{nv} and D_{nh} only)	operations for a point group	K2				
		Test for the symmetry operation to form the group from multiplication table	K4				
	Great orthogonality theorem and its consequences.	Explain the Orthogonality theorem and its significance	K4				
	Construction of character tables (C ₂ vand C ₃ v). Direct products – reducible and irreducible representation – Wave function as bases for irreducible representation	Construct the character table for a specific point group.	К3				
1.2	Crystal point group, crystal symmetry - screw axis and glide plane, space groups, translational elements of	Identify the crystallographic space group.	К3				
	symmetry, differences between molecular symmetry and Crystal symmetry.	Classify the crystal symmetry.	K4				
II	Applications of Group Theory						
2.1	Group theory and molecular electronic states- Transition moment integral	Outline the selection rules for molecular spectroscopy	K2				
	spectroscopic selection rules to IR, Raman (H ₂ O, NH ₃ , trans-N ₂ F ₂) and electronic spectroscopy (HCHO)	Analyze the molecular symmetry with reference to its spectroscopic outcome.	K4				
	projection operators and their use to construct SALC - evaluation of energies and MO's for systems ethylene, butadiene, benzene and allyl.	Construct the SALC to calculate Pi bond energy of different systems.	К3				

	Hybridization schemes of orbitals – (sp, sp ² and sp ³)	Evaluate the hybridized orbital involved in a given molecule by symmetry operation	K5
III	Molecular	r Spectroscopy-I	
3.1	Introductory aspects: electromagnetic radiation -representation of spectra, the line width and intensity of spectral transitions	Outline the introductory aspect of spectroscopy.	K2
	transitions	Examine the factors affecting the width and intensity of spectral lines	K4
	Factors influencing them- Einstein's transition probability and oscillator strength.	Explain transition probability and oscillator strength.	К3
		Evaluate oscillator strength.	K4
3.2	Infrared spectroscopy: Selection rules -harmonic and anharmonic oscillations	Show the selection rules for harmonic and anharmonic oscillators.	K2
		Evaluate the anhormonicity value of molecule	K5
	Rotation and vibrational spectra of polyatomic molecules –CO ₂ , H ₂ O-fermi resonance	Identify vibrational and rotational frequency of poly atomic molecules.	К3
	Influence of rotation on the spectra of diatomic molecules –parallel and perpendicular bands.	Make use of rotational energy in the vibration level to understand the parallel and perpendicular bands.	K3
3.4	Raman spectroscopy: Raman effect – elastic and inelastic scattering – quantum theory – origin of Stokes,	Summarize the basics of Raman scattering.	K2
	Anti-Stokes and Rayleigh lines	Identify the factors affecting scattering	К3
	Selection rules-rotational and vibrational Raman spectra – simple molecules (CO ₂ , H ₂ O), mutual exclusion principle – Basics of Laser	Explain the selection rules for active molecules in Raman spectra.	К3
	Raman spectroscopy.	Summarize the theory of mutual exclusion principle	K2
		Predict the structure of molecule based on Raman spectra	K5
IV	Molecular	Spectroscopy-II	

4.1	Electronic spectra: electronic spectra of molecules, Born Oppenheimer approximation, vibrational coarse structure –Frank-Condon principle, dissociation energy, predissociation.	Explain the basics of electronic spectrum and Frank- Condon principle. Summarize the factors influencing predissociation of molecule. Calculate dissociation energy of molecule.	K3 K2 K4
	Rotational fine structure of electronic vibrational transitions – Fortrait diagram	Make use of Fortrait diagram Predict the effect of	K3
	Various types of transitions - auxochromes, chromophores - bathochromic and hypsochromicshift-	rotation on vibrational transition. Outline the various types of shifts in electronic transition.	K3 K2
	effect of substituent and polarity of solvent.	Analyze the effect of substituent on absorption	К3
4.2	Emission spectroscopy: fate of electronically excited molecules-	Explain the basics of emission spectroscopy.	K4
	fluorescence, phosphorescence, emission spectra of molecules.	Summarize the energy transfer processes occurring in emission spectra.	K2
V	Molecula	r Spectroscopy-III	
5.1	NMR spectroscopy: Energy of interaction and its derivation, Zeeman effect, nuclear spin and applied magnetic field, Effect of 'B' on	Explain the basics of nuclear magnetic resonance spectroscopy. Calculate the energy of	K2
	splitting – Larmor precession and its expression.	interaction and processional frequency.	K4
	Relaxation processes – PMR – chemical shift - factors affecting chemical shift and coupling constant (J) –spin-spin interaction. ¹³ C NMR spectroscopy – chemical exchange-Problems.	Examine the factors affecting chemical shift and coupling constant	K4
5.2	NQR spectroscopy: characteristics of quadrupolar nucleus- effect of field	Apply NQR principle and spectroscopy.	К3

	gradient and magnetic field upon quadrupolar energy levels- NQR transitions – applications of NQR spectroscopy.		
5.3	Lasers: Nature of stimulated emission- coherence, monochromaticity, population	Explain the basics of LASER radiation.	К3
	inversion.	Outline the factors affecting the LASER	K2
	Cavity and mode characteristics- types of lasers- solid state, gas, chemical and dye lasers.	Explain the different types of LASER.	К3
	-	Construct the LASER sources.	К3

4. Mapping Scheme for the PO, PSOs and COs

L-Low M-Moderate H- High

Course Title: GROUP THEORY & SPECTROSCOPY

Course Code: P19CH409

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	L	M	Н	Н				M	L	M		L	M
CO2	M	Н		M		M				Н		M	Н
CO3	L	M	M	Н	M				L	M		L	
CO4		L	M	M	Н			L		L	Н		L
CO5		L	M	M	Н	M	M			L	Н		
CO6	M	Н		M						Н		M	

5.Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

ELECTIVE COURSE: III - APPLICATIONS OF DRUG DESIGN & DISCOVERY

SEMESTER: IV CODE: P19CH4:3 **CREDITS: 4 TOTAL HOURS: 75**

Hours/Week:5

1.Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Summarize the pharmacokinetics and pharmacodynamics of processes from Drug to Hit	K2	I
2	Evaluate the different modes of drug - receptor interactions	K5	II
3	Propose a Retro-synthetic strategy for the drug molecule	K6	III
4	Employ the principals involved in simple QM & MM Calculations and QSAR procedures for a given drug molecule (K3)	К3	IV
5	Explain the Steps involved in a docking Scheme	K4	V
6	Create and Interconvert Molecular Representations in different electronic formats for further computation and Topological Analysis	K6	V

2A. Syllabus

DRUG DESIGN AND DISCOVERY 15 hours UNIT- I

Historical background- -drug targets: lipids, carbohydrates, proteins, enzymes, and nucleic acids as drug targets and receptors. Receptor Pharmocology – Agonists and Antagonists (partial and full)-Allosteric Modulators – Pharmacokinetics and pharmacodynamics: administration, absorption, distribution, metabolism, elimination of drugs-bioavailability of drugs-side effects- Case study: serotonin and dopamine receptors and transferring drugs.

DRUG IDENTIFICATION AND VALIDATION **UNIT-II** 15 hours

Steps in drug discovery - Lead identification- Hits- Drug validation-Natural products as drugs molecular recognition in drug design – thermodynamic considerations – physical basis and inter molecular interactions between drugs and targets like electrostatic interactions - ionic bondshydrogen bonds – Inductive interactions – dispersive forces. Stereochemistry in drug designing – stereospecificity of drug targets – Eudesmic ratio – Examples of Eutomers and Distomers

RETROSYNTHETIC STRATEGIES FOR DRUG SYNTHESIS UNIT - III 15 hours Introduction to retrosynthetic analysis and disconnection approach – synthons acceptor and donor - synthetic equivalents- umpolungs - planning a synthesis - relay and convergent routes-Guidelines for disconnection – one group C-X and C-C disconnections – Chemoselectivity. Two group C-C disconnections in dicarbonyls – Case Study: Synthesis of Amelfolide.

UNIT- IV COMPUTER AIDED DRUG DESIGN 15 hours

Molecular modeling in drug design – Energy Minimization methods – both Molecular Mechanics and Quantum mechanical Methods –Energy minimization –Conformational analysis –Structure based and Ligand based Drug design –QSAR – parameters –Quantitative models of QSAR – Hansch methods – free Wilson model -3D pharmacophore modeling – Docking – Introduction-Preparation of protein and ligands-Types of docking- rigid and flexible methods of docking - Online docking tools- Post docking analysis.

UNIT -V CHEM INFORMATICS

15 hours

Introduction- Molecular representation and Topological indices -2D & 3D, SMILES-ROSDAL-MDL number, Z-Matrix and Cartesian coordinates-Types of database-Online Cheminformatics database-Chemspider-MOLBASE-ADMET property calculator, DruLiTo, Episuite and molinspiration.

2B.Topics for Self-Study:

S.No	Topics	Web Links
•		
1	Target based Drug Design – video Lesson	https://www.youtube.com/watch?v=Ir2qIuFM
		RkE
2	Computer Aided Drug Design Some case	https://www.researchgate.net/publication/2689
	studies	24374_Success_Limitation_and_Future_of_Co
		mputer_Aided_Drug_Designing
3	AutoDock Exercises	http://autodock.scripps.edu/faqs-help/tutorial
4	Drug Likeliness Tools for practice	http://www.niper.gov.in/pi_dev_tools/DruLiTo
	_	Web/DruLiTo_index.html

2C.Text Books

- **1.** Andrew R. Leach, Valerie J Gillet, An Introduction to Cheminformatics, Revised Edition, Springer, Netherland, 2007. (**Unit I, II, IV, V**)
- 2.Stuart Warren "Organic Synthesis The Disconnection Approach" Wiley; 2nd Edition, 2008 (Unit III)

2D.Reference Books

- 1. Larsen et al, Text book of Drug Design and Discovery, $\mathbf{4}^{\text{th}}$ Edition, London and Newyork , Taylor
 - and Francis, 2004.
- 2. Graham L. Patrick, An Introduction to Medicinal Chemistry, 4th Edition, Oxford University Press, 2009.
- 3. Johann Gasteiger, Thomas Engel, Cheminformatics : A Textbook, Wiley VCH, Weinheim, 2003.

2E.Web links:

To download protein Structures and small molecules: https://www.rcsb.org/ Online Platform for Molecular Description: https://www.scbdd.com/chemdes/

3.Specific Learning Outcomes (SLO)

Unit/Section	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
I	Drug Design A	and Discovery	
	Historical background	Recall the various methods & stages of drug design adopted from time to time.	K1
	Drug targets: lipids, carbohydrates, proteins, enzymes, and nucleic acids as drug targets and receptors.	Classify the Targets and receptors based on their chemical and biological	K2
	Receptors Pharmocology –	Relate receptors based on types of interactions	К3
	Agonists and Antagonists (partial and full)- Allosteric Modulators	Correlate the activity of different possible drug molecules	K4
	Pharmacokinetics and pharmacodynamics: administration, absorption, distribution, metabolism, elimination of drugs	Estimate the fate of a drug candidate in human body.	K5
	bioavailability of drugs-side effects-	List out rules that connect Properties of candidates to their bioavailability	K2
	Case study: serotonin and dopamine receptors and transferring drugs.	Recollect the principles involved in the design of a suitable drug using transferring receptors	K2
II	Drug Identificat	ion And Validation	
	Steps in drug discovery – Lead identification- Hits- Drug validation	Construct a step wise plan for the design of a known drug	К3

	Natural products as drugs	List out the various types of natural sources for drug design	K2
	Molecular recognition in drug design – thermodynamic considerations –	Summarize the role of thermodynamic parameters in the drug target interactions.	K5
	Physical basis and inter molecular interactions between drugs and targets like electrostatic interactions – ionic bonds- hydrogen bonds- Inductive interactions – dispersive forces	Identify the role played by different types of Molecular interactions between drugs & Targets.	K3
	Stereochemistry in drug		
	designing – Stereospecificity of	Apply the Eudesmic	
	drug targets – Eudesmic ratio –	ratios in appropriate	К3
	Examples of Eutomers and	cases of drug design.	
	Distomers		
III	Retrosynthetic Strategie	s For Drug Synthesis	
	Introduction to retrosynthetic analysis and disconnection approach	Differentiate the retro- synthetic Scheme from a conventional Synthetic Scheme	K4
	Synthons acceptor and donor – synthetic equivalents- umpolungs	Create a Synthon and Synthetic Equivalents for a Targeted Molecule.	K6
	Planning a synthesis – relay and convergent routes-	Compute the percentage yield in different routes of a synthesis. Choose the appropriate route while planning a synthesis	K 6
	Guidelines for disconnection – one group C-X and C-C disconnections	Create a synthetic strategy through one group disconnections.	K6

	Chemoselectivity	Evaluate possible routes of synthesis based on selectivity Principles.	K5
	Two group C-C disconnections in dicarbonyls –	Create a synthetic strategy through two group disconnections.	K6
	Case Study : Synthesis of Amelfolide.	Recollect the application of the disconnection approach in synthesis of Amelfolide.	K2
IV	Computer Aided Di	rug Design	
	Molecular modeling in drug design – Energy Minimization methods – both Molecular Mechanics and Quantum mechanical Methods	Apply the basics theoretical background of Molecular Modelling Methods to simple molecular calculations.	К3
	Energy minimization – Conformational analysis	Compare the methods used in different Programs to identify conformers <i>insilico</i>	K2
	Structure based and Ligand based Drug design –QSAR – parameters –	Utilise Physical & Chemical Parameters to find out Structure – Activity Relationships	К3
	Quantitative models of QSAR – Hansch methods – free Wilson model -3D pharmacophore modeling	Illustrate the Qualitative models for relevant Drug candidates.	K2
	- Docking - Introduction-		
	Preparation of protein and	Analyse the steps	K4
	ligands-Types of docking- rigid	involved in the docking scheme.	N4
	and flexible methods of docking		
	-Online docking tools- Post docking analysis.	Utilize the free docking tools – Autodock and Hex.	К3
V	Chem Inform	atics	

Introduction to Cheminformatics	Describe the features of cheminformatics.	K2
Molecular representation and Topological indices -2D & 3D, SMILES-ROSDAL-MDL number, Z-Matrix and Cartesian coordinates-	Construct 2D & 3D representations of molecules using Software Tools or Online Programs	K6
Types of database-Online Cheminformatics database- Chemspider-MOLBASE-	Analyse relevant information from databases useful for Drug Design.	K4
ADMET property calculator, DruLiTo, Episuite and molinspiration.	Correlate bio-activity of candidates reported in literature to ADMET properties using the different Soft ware to	K4

4. Mapping Scheme for the PO, PSOs and COs

L-Low M-Moderate H- High

Course Title: APPLICATIONS OF DRUG DESIGN & DISCOVERY
Course Code: P19CH4:3

Course Cou	Course Coue: 117CH4.5												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	M	Н	L	-	-	ı	-	Н	M	-	ı
CO2	Н	M	M	Н	L	-	-	1	-	Н	L	L	1
CO3	Н	Н	-	M	L	-	L	L	L	Н	Н	-	Н
CO4	M	Н	L	Н	M	M	L	1	_	M	_	M	M
CO5	M	M	M	Н	M	Н	M	L	L	M	M	L	L
CO6	M	M	L	L	Н	Н	M	-	L	Н	M	L	M

5.Course Assessment Methods

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Seminar
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

ELECTIVE IV: SELECTED TOPICS IN CHEMISTRY

SEMESTER : IV
CREDITS : 2
CODE : P19CH4:4
TOTAL HOURS : 75
Hours/Week :5

1.Course Outcomes:

At the end of this course, the students will be able to:

S.No.	Course Outcomes	Level	Unit
1.	Categorize nanomaterials based on structure and properties	K4	I
2.	Apply nanomaterials in the field of sensors and energy storage	K3	II
	devices		
3.	Summarize the principles and applications of Radiation	K4	III
	chemistry in different fields		
4.	Explain the principle of molecular recognition and	K4	IV
	supramolecular interactions		
5.	Explain the applications of supramolecules in drug delivery	К3	IV
	systems and electronic devices		
6.	Apply the principles of Green Chemistry in chemical processes	К3	V

2A. Syllabus

UNIT – I NANO MATERIALS

15 Hours

Definition, Classification, size dependent, optical and electronic properties of Nanomaterials, Dandling bonds- 1D and 2D Nano structures, CNT and Fullerenes-Quantum dots-Wet methods of synthesis.

UNIT –II APPLICATIONS OF NANOMATERIALS 15 Hours

Application of Nano materials in medicine, drug delivery, agriculture, communication, defence sector, Solar cells, Sensors- Chemical Sensors and Biosensors, super capacitors, pollution treatment.

UNIT –III RADIATION CHEMISTRY 15 Hours

Measurement of dose. Dosimetric terms and units (Roentgen, REM, Rad, Gray, Sievert), inter conversions, calculation of absorbed dose-various types of dosimeters, chemical dosimeters (Fricke, Ceric sulphate and FBX)- Radiolysis of water & hydrated electron. Principle and set up of Radioimmunoassay (RIA) & Immuno-radiometric assay (IRMA)

UNIT -IV SUPRAMOLECULAR CHEMISTRY 15 Hours

Introduction, types of supramolecular interactions, lock and key principle, molecular recognition of different types of guest-host systems, Classification of receptors-cooperative and binding in host-guest systems, molecular hosts-calixarenes, cyclodextrins, cucurbiturils. Dendrimers-Properties and applications, Supramolecular devices- Photonics, logic gates and switching devices.

UNIT -V GREEN CHEMISTRY 15 Hours

Introduction, Anastas twelve principles, Concept of atom economy, some important techniques and directions in practicing green chemistry, use of green solvents- TiO₂ as green photo catalyst, green polymer-chitin, real world examples of green processes.

2B.Topics for Self – Study

S.No.	Topics	Web Links
1	Benefits and Applications of	https://www.nano.gov/you/nanotechnology-
	Nanotechnology	<u>benefits</u>
2	A Review on Chemical and Physical	https://www.ijraset.com/fileserve.php?FID=13212
	Synthesis Methods of Nanomaterials	
3	The Medical, Agricultural, and	https://www.laradioactivite.com/site/pages/RadioP
	Industrial Applications of Nuclear	<u>DF/Waltar.pdf</u>
	Technology	
4	Supramolecular Chemistry-Concepts	https://www.ijsr.net/archive/v4i4/29031502.pdf
	and Applications	
5	Industrial applications of green	https://link.springer.com/article/10.1007/s42452-
	chemistry: Status, Challenges and	<u>020-2019-6</u>
	Prospects	
6	Applications of green chemistry in	https://www.researchgate.net/publication/3200339
	pharmaceutical chemistry and day	<u>07</u>
	today life	

2C.Text Books

- **1.** V.K. Ahluwalia, "Methods and Reagents of Green Chemistry: An Introduction by Green Chemistry", Alpha Science International, 2013. (**Unit-V**)
- **2.** Asim K. Das & Mahua Das, "An Introduction to Supramolercular Chemistry", CBS Publishers & Distributors PVT ltd., 2005. (**Unit-IV**)
- **3.** Jean- Marie Lehn, "Supramolecular Chemistry Concepts & Perspectives", Wiley –VCH, 2014. (Unit-IV)
- 4. A. Mozumder, "Fundamentals of Radiation Chemistry", Academic Press, 1999. (Unit-II)
- **5.** F.W. Billmayer. "Textbook of Polymer Science", Wiley New York, 1991. (Unit-III)
- **6.** Shubra Singh M.S. Ramachandra Rao, "Nanoscience and Nanotechnology: Fundamentals of Frontiers", 2013, Wiley Edition, New Delhi. (**Unit-I**)

2D.Reference Books

1. P. T. Anastas and J.C Warner, "Green Chemistry theory and Practice", Oxford University press,

Oxford, 1988.

2. T. Pradeep, Nano The Essentials, McGraw Hill-Professional, 2008

3. Specific Learning Outcomes (SLO)

Unit	Course content	Blooms Taxonomic levels of Transactions	
	Unit-I : Nano Materials		
1	Nano Materials –Definition	Recall the types & properties of nanomaterials	K2
2	Nano Materials – Classification and Size dependent	Categorize the size of the nano materials with their specific properties	K4
2	Optical and electronic properties of nano materials	Apply the properties of nanomaterials to construct suitable devices	К3
3		Identify nanomaterials for suitable applications in opto-electronics	К3
4	Dandling bonds – 1D and 2D Nanostructures	Explain the structure of 1D & 2D nanostructures	K2
5	CNT and Fullurenes	Construct carbon nanotubes for drug delivery systems	К3
6	Quantum dots: Wet methods of synthesis	Explain the wet synthetic methods for quantum dots	K2
	Unit – II: Applications of Nano	Materials	1

	T	1	
7	Applications of Nano materials in: Medicine, drug delivery, agriculture, defence sector and communication	Apply the application of nanomaterials with specific properties in pharmaceutical, agricultural industrial and communication sectors.	K3
8	Solar cells	Develop the nanomaterials for solar cells	К3
9	Sensors – Chemical Sensors and Biosensors	Develop the nanomaterials suitable for chemical sensors & biosensors	К3
10	Super capacitors	Construct the energy storage devices	K3
11	Pollution treatment	Apply the nanomaterials in pollution control & treatment	К3
	Unit-III: Radiation Chemistry	7	
12	Measurement of dose – Dosimetric terms and units (Roentgen, REM, Rad, Gray, Sievert), interconversions	Classify the different terms used in radiation chemistry and the various units for radiation dosage	K2
13	Calculation of absorbed dose	Apply the principle of dosimeters to calculate the absorbed dose	К3
14	Various types of dosimeters, chemical dosimeters (Fricke, Ceric sulphate and FBX)	Explain the different types of dosimeters and uses	K2
15	Radiolysis of water & hydrated electron.	Explain the mechanism of radiolysis of water and hydrated electron	K2
16	Principle and set up of Radioimmunoassay (RIA) & Immuno-radiometric assay (IRMA)	Examine the principle of RIA & IRMA for detecting the antigenantibody concentrations	K4
	Unit – IV : Supramolecular Ch	emistry	
17	Supramolecular chemistry - Introduction	Explain the importance of supramolecular chemistry	K2
18	Supramolecular chemistry – types of supramolecular interactions	Explain the different types of supramolecular interactions in various molecules	K2

19	Lock and key principle	Illustrate the lock & key mechanism of supramolecules	K2
20	Molecular recognition of different types of guest-host systems	Explain the principle of molecular recognition of guest-host systems	K4
21	Classification of receptors- cooperative and binding in host- guest systems, molecular hosts- calixarenes, cyclodextrins, cucurbiturils.	Choose the different types of molecular receptors for host-guest systems	К3
22	Dendrimers-Properties and applications	Develop the properties of dendrimers suitable for drug delivery stystems	К3
23	Supramolecular devices- Photonics, logic gates and switching devices.	Construct various electronic devices using supramolecules	К3
	Unit-V: Green Chemistry		
24	Green Chemistry - Introduction	Outline the concepts of green chemistry	K2
25	Twelve principles of Green Chemistry	Recall the principles of green chemistry	K2
26	Concept of atom economy	Explain the concept of atom economy of a reaction	K2
27	Some important techniques and directions in practicing green chemistry	Identify the techniques and directions of green chemistry	К3
28	Use of green solvents- TiO ₂ as green photo catalyst, green polymer-chitin, real world examples of green processes.	Classify the greener solvents for greener processes	K3

4. Mapping Scheme for the POs, PSOs and Cos for the Course P19CH4:4

L-Low

M-Moderate

H- High

Course Code: P19CH4:4

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	M	M	L	1	Н	M	L	M	M	M	M
CO2	Н	M	M	M	L	ı	Н	M	L	M	Н	M	M
CO3	M	Н	Н	M	M	L	Н	L	L	M	Н	M	M
CO4	M	M	M	M	Н	M	M	L	L	L	L	L	L
CO5	M	M	M	L	L	L	M	L	L	M	L	L	L
CO6	Н	M	M	M	L	M	Н	Н	L	M	M	L	M

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Elective: V COMPUTER AIDED MOLECULAR CALCULATIONS (PRACTICAL)

Semester: IV Code: P19CH4:P Credits: 2 Total Hrs :45

1. Course Outcomes:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level
1	Construct the chemical structure of molecules using computational	K6
	tools (K6)	
2	Analyze chemical structures using software such as Mercury and JMOL (K4)	K4
3	Interpret the properties of drugs using QSAR study, PDB search, and Regression analysis (K5)	K5
4	Determine different chemical quantities (UV spectra, Adsorption and Toxicity value) using computational software such as DruLiTo, Chemdraw and Argus Lab (K5)	K5
5	Predict the structure and properties of molecules using appropriate computational tools (K5)	K5
6	Inspect the binding efficiency of Pro-drug molecules using docking studies (K4)	K4

2A. Syllabus

EXPERIMENTS:

- 1. Calculation of ADMET properties of some drugs using DruLiTo (Drug likeliness toxicity)
- 2. Calculation of the topological and molecular parameters from chemdraw and Chem-3D.
- 3. Use mathematica and online equation editors to type the given derivation (At least two pages)
- 4. Retrieving chemical and biological information from online data bases (Swiss prot, NCI, PDB, CCDC).
- 5. Use of online compound collection data bases (zinc.docking.org, molinspiration)
- 6. Analyse the hydrogen bonding interaction in the given host guest molecules using HBAT.
- 7. Regression analysis of the given set of data (MS-Excel)
- 8. Docking: Small molecule docking using Chemdraw.
- 9. QSAR a) Calculation of Clog P values
 - b) Effect of functional group on activity

- c) Drawing QSAR plot based on the QSAR results.
- 10. Molecular visualization and interconversion using Hg-Mercury, JMOL, chemissian,
- 11. Prediction of UV-Spectra of the given molecules using Argus Lab.

2B.Text Books:

- 1. Anand Solomon "Molecular Modeling and Drug Design" MJP Publishers, Chennai, 2008
- 2. K.V. Raman "Computers in Chemistry" Tata McGraw Hill, New Delhi, 1993.

2C.Reference Books:

- 1. Kishore Arora "Computer Applications in Chemistry", Anmol Publications, New Delhi, 2004.
- 2. Andrew R. Leach, "Molecular Modeling Principles & Applications", Prentice Hall, 2nd Edition, 2008.

3.Specific Learning Outcomes (SLO)

S.No	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1.	Calculation of ADMET properties of some drugs using DruLiTo (Drug likeliness toxicity)	Evaluate the nature of drug using ADMET properties	K5
2.	Calculation of the topological and molecular parameters from Chemdraw and Chem-3D	Predict the molecular topology to understand their reactivity	K6
3.	Use mathematical and online equation editors to type the given derivation (At least two pages)	Utilize online tools for writing equations and fitting into the document	К3
4.	Retrieving chemical and biological information from online data bases (Swiss prot, NCI, PDB, CCDC)	Examine the protein functions by the details obtained from the database	K4
	· · · · · · · · · · · · · · · · · · ·	Deduce the details for molecular docking studies	K4
5.	Use of online compound collection data bases (zinc.docking.org, molinspiration)	Choose the suitable drug from the online data base	K3
6.	Analyse the hydrogen bonding interaction in the given host guest molecules using HBAT	Analyze the stability and structural features of hydrogen bonded host-guest molecules	K4

7.	Regression analysis of the given set of	Apply regression analysis and	K3
	data (MS-Excel)	interpret the given data	
8.	Docking: Small molecule docking	Infer docking studies of simple	K4
	using Chemdraw	molecules	
9.	QSAR	Interpret the property of drugs	K5
	a) Calculation of Clog P values	using structure activity relationship	
	b) Effect of functional group on		
	activity		
	c) Drawing QSAR plot based on the		
	QSAR results		
10.	Molecular visualization and	Analyze the structure of molecules	K4
	interconversion using Hg-Mercury,	with the software	
	JMOL, Chemissian.		
11.	Prediction of UV-Spectra of the given	Develop the UV-spectra for a given	K3
	molecules using Argus Lab.	molecule	

3.AText Books:

- 1. Anand Solomon "Molecular Modeling and Drug Design" MJP Publishers, Chennai, 2008.
- 2. K.V. Raman "Computers in Chemistry" Tata McGraw Hill, New Delhi, 1993.

3B.Recommended Reference Books:

- 1. Kishore Arora "Computer Applications in Chemistry", Anmol Publications, New Delhi, 2004.
- 2. Andrew R. Leach, "Molecular Modeling Principles & Applications", Prentice Hall,2nd Edition, 2008.
- 3. F. Jensen, Introduction to computational chemistry, Wiley, New York, 1999.

Mapping Scheme for the POs, PSOs and COs

H - High; M - Moderate; L - Low

Course Title: COMPUTER AIDED MOLECULAR CALCULATIONS Course Code: P19CH4:P													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	M	L	L	Н	-	-	-	M	-	-	Н
CO2	-	-	L	Н	M	-	-	-	-	L	-	-	Н
CO3	-	-	L	M	M	Н	-	-	-	-	-	M	M
CO4	-	M	M	Н	M	Н	-	-	-	L	-	-	M
CO5	-	Н	L	Н	M	Н	-	-	-	-	-	Н	L
CO6	M	-	-	M	L	Н	-	-	-	M		L	M

Core Project

CORE PROJECT

(Theory cum Project)

Semester: IV Code: P19CH4PJ Credits: 4 Total Hrs: 75 Hours/week:5

1.Course Outcomes:

At the end of this project, the students will be able to:

S.No.	Course Outcomes						
1	Choose an appropriate problem and suitable methodology with	K6					
	respect to the challenges in the field (K5)						
2	Survey literature sources for adapting alternate or new methodologies	K4					
	(K4)						
3	Compile project findings for presenting the solution to broader	K5					
	audience (K6)						
4	Practice ethical and professional values (K3)	K5					
5	Justify the findings with relevant scientific evidences (K6)	K5					
6	Propose new, sustainable and innovative solutions for real time	K4					
	applications (K6)						

2. Syllabus-Nil 3. Specific Learning Outcomes:

Course Content	Learning Outcomes	Blooms Taxonom ic Levels of Transacti on
Choosing a suitable area of research	Discover a suitable topic relevant to reallife challenges	K2
	Predict open ended Problems	K3
	Develop analytical thinking	K3
	Apply various tools to cite Literature	K3
Objectives and Methodology	Devise the methodology	K4
	Plan for the execution of the project work	K4
	Sketch the work plan	K3
Analysis of Result	Solve the problem through various techniquesand methodologies	K6
Discussion based on data analyzed	Compile and interpret project findings	K6
Report Preparation	Justify results in logical and scientific way	K6
	Summarize the findings	K5
Viva-Voce	Defend his findings	K5
	Justify the conclusion	K6

Communicating to Journal	Develop critical thinking	K6
	Plan for collaborations	K4
	Prepare research article	K6

4. Mapping Scheme for the PO, PSOs and Cos

L-Low M-Moderate H- High

Course Title: CORE PROJECT													
Course Code: P19CH4PJ													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	-	M	Н	M	M	M	-	Н	Н	L	-
CO2	Н	M	M	Н	Н	Н	M	-	-	Н	Н	-	M
CO3	Н	Н	Н	Н	Н	Н	ı	M	Н	Н	Н	L	Н
CO4	ı	-	Н	L	L	Н	1	Н	Н	Н	M	Н	-
CO5	Н	Н	Н	Н	Н	M	M	M	M	Н	Н	M	Н
CO6	Н	M	Н	M	M	Н	Н	Н	-	Н	Н	Н	Н

5.COURSE ASSESSMENT METHODS

Direct

- 1. Reviews -1 & 3
- 2. Viva -Voce (Internal)
- 3. Viva -Voce (External)
- 4. Project Report