M.Sc. Chemistry

SYLLABUS

(Under Choice Based Credit System)

For the Students Admitted in the Academic Year 2021-22

PG & RESEARCH DEPARTMENT OF CHEMISTRY

(DST-FIST Sponsored & DBT-STAR Scheme)

BISHOP HEBER COLLEGE (Autonomous)

(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC)(Recognized by UGC as "College of Excellence")

TIRUCHIRAPPALLI - 620 017

JUNE -2021

PG & Research Department of Chemistry

Bishop Heber College (Autonomous), Trichy -17

Vision:

The PG & Research Department of Chemistry envisions... To transform students into globally-competent graduates by Providing a vibrant, Innovative and all-inclusive learning environment that fosters Values, Professional ethics and Social Consciousness.

Mission:

To reach its vision the Department would

- offer a Quality and Comprehensive Curriculum
- facilitate a Competent Learning Environment
- create an Integrated Research Culture
- foster Industry Academia Network for education
- inspire to Innovate

Program Outcomes - M.Sc. Chemistry

On successful completion of the M.Sc. Chemistry program, the post graduand will be able to exhibit the following abilities in the respective domains.

KNOWLEDGE

- **PO1:** Exhibit substantial and advanced knowledge in Organic, Inorganic, Physical and related fields of Chemistry.
- PO2: Apply concepts and theories of chemistry to solve qualitative and quantitative problems
- **PO3:** Disseminate scientific and technical information to both Professional and broader audience effectively.

SKILLS

- **PO4:** Analyze complex problems through appropriate techniques, experiments, computational tools, spectral and instrumental methods to provide solutions.
- **PO5:** Assess experimental and research problems critically and independently to arrive at objective conclusions.
- **PO6:** Exhibit digital proficiency in data analysis, library search, basic chemistry software and related computational tools.

ATTITUDES

PO7: Contribute to diverse teams through leadership and collaborative skills and hence adaptable to Jobs in Chemical industries, Academic institutions, Research organizations, corporate and public sectors.

ETHICAL & SOCIAL VALUES

PO8: Practice professional and ethical values with a consciousness to legal, environmental and social responsibilities in all walks of life.

PO9: Observe IPR guidelines while designing, documenting and publishing a possible project.

Program Specific Outcomes - M. Sc. Chemistry

On Successful Completion of M.Sc. Chemistry program, graduand would have acquired the following competencies:

Knowledge & Skills Domain

- **PSO1 :** Relate the properties, reactions and applications of various chemical entities using theories and principles.
- **PSO2:** Evaluate the various reaction mechanisms to plan synthetic routes and choose the right modus operandi for reactions and processes in laboratory with safety and environmental security.
- **PSO3**: Comprehend the mathematical and physical basis of the behaviour of chemical species and processes.
- PSO4: Develop analytical skills and problem solving skills in addition to project based

PROGRAM ARTICULATION MATRIX M.Sc.CHEMISTRY - 2021-22

S. No	NameoftheCourse	Course Code	CORF MES	RELAT	IONW	ITHP	ROGR	AMO	UTCO	MESA	NDPR	OGRAM	SPECIF	ΙΟΟυτο	:0
NU			P01	P02	P03	P04	P05	P06	P07	P08	P09	PS01	PSO2	PSO3	PSO4
1	Bonding & Structureof InorganicCompounds	P21CH101	М	М	М	М	L	-	М	-	М	Н	Н	L	Н
2	Concepts in OrganicChemistry	P21CH102	Н	Н	М	М	М	-	L	L	L	Н	М	L	М
3	ChemicalKinetics&QuantumMechanics	P21CH103	Н	М	М	Η	Η	-	М	М	-	Н	М	Н	М
	Frontiers areas in Chemistry	P21CH1:A	М	М	М	М	L	L	Н	L	L	М	М	М	М
4	Green Chemistry	P21CH1:B	М	М	М	М	L	L	Н	L	L	М	М	М	М
	Forensic Chemistry	P21CH1:C	Н	-	Н	М	L	Н	-	Н	-	Н	Н	М	Н
5	InorganicQuantitative Estimations &ComplexPreparation	P21CH1P1	М	Н	М	Н	Н	М	Н	М	L	Н	М	М	Н
6	Organic Synthesis &SeparationTechniques	P21CH1P2	Н	Н	Н	Н	Н	L	Н	М	L	Н	М	М	Н
7	Coordination&OrganometallicC hemistry	P21CH204	М	М	L	L	L	М	L	М	-	М	М	L	-
8	Reactions &Mechanisms InOrganicChemistry	P21CH205	Н	Н	Н	М	Н	L	М	-	М	Н	Н	М	М
9	Thermodynamics& Electrochemistry	P21CH206	М	М	L	L	L	-	-	-	-	М	-	М	L
10	Inorganic SemimicroAnalysis & ColorimetricEstimations	P21CH2P3	М	Н	М	М	М	L	М	М	L	Н	Н	М	Н
11	QuantitativeAnalysisofOrganic Compounds	P21CH2P4	Н	Н	Н	Н	Н	-	Н	М	Η	Н	Н	М	Н
12	RI/MI	P17VL2:1/ P17VL2:2													
13	OrganicSpectroscopy	P21CH307	Н	Н	М	Н	М	-	М	М	Μ	Н	Н	Н	Н
14	Group Theory &Spectroscopy	P21CH308	L	М	М	М	М	Μ	L	L	L	Μ	М	М	М
15	Bio-InorganicChemistry	P21CH3:2	М	Μ	М	М	М	-	-	М	I	М	М	М	L
16	PhysicalChemistry Practical (NonElectrical)	P21CH3P5	Н	Н	М	М	Н	-	М	Η	I	Н	Н	Н	М
17	Physical ChemistryPractical (Electrical)	P21CH3P6	Н	Н	М	Н	Н	L	L	L	L	Н	М	М	Н
	Project Preparatory course	P21CH4PJ													
18	InorganicSpectroscopy	P21CH409	Н	Μ	L	М	М	L	Μ	L	L	Н	М	М	Μ
	Data Analysis &SelectedAnalytical techniques	P21CH4:A	Н	Н	М	Н	М	М	L	М	Η	М	L	Н	Н
19	Applications of Chemical Analysis	P21CH4:B	Н	Н	Н	Н	Н	-	Н	L	-	Н	М	М	-
1)	Polymer Chemistry	P21CH4:C	Н	Н	Н	М	-	-	-	Н	-	Н	-	-	Н
	Agricultural Chemistry	P21CH4:D	Н	Н	Н	Н	Н	М	М	М	М	Н	М	М	М

20	Applications of Drug Design & Discovery	P21CH4:4	М	М	М	Н	М	М	L	L	L	Н	М	L	L
21	Computer AidedMolecularCalculations	P21CH4:P	М	М	L	М	М	Н	-	-	-	L	-	L	М
22	Project	P21CH4PJ	Н	М	Η	М	Н	Н	Μ	М	М	Н	Н	L	М

Semeste	r – I		Semester	r – II	
	Hours	Credits		Hours	Credits
Core Theory - 1	5	5	Core Theory - 4	6	5
Core Theory - 2	5	5	Core Theory - 5	6	5
Core Theory - 3	6	6	Core Theory - 6	6	5
Elective - 1	4	4	Core Practical - 3 (Lab. Cum Theory)	5	3
Core Practical - 1 (Lab. Cum Theory)	5	3	Core Practical - 4 (Lab. Cum Theory)	5	3
Core Practical - 2 (Lab. Cum Theory)	5	3	VLO - 1	2	2
Total	30	26	Total	30	23
Semester			Semester		<u>.</u>
	Hours	Credits		Hours	Credits
Core Theory - 7	6	5	Core Theory - 9	6	5
Core Theory - 8	6	5	Elective - 3	5	4
Elective - 2	5	4	Elective - 4	6	4
Core Practical - 5	6	3	Elective - 5 Practical	4	3
Core Practical - 6 (Lab. Cum Theory)	6	3	Core Project	9	4
Generic Elective: Project Preparatory Course	1	1			
Total	30	21	Total	30	20

PG& RESEARCH DEPARTMENT OF CHEMISTRY Overall Consolidated Structure -M.Sc., Chemistry (2021-22)

Total 120 Hours 90 Credits

PARTS OF THE CURRICULUM	NO. OF COURSES	CREDITS
Core Course (Theory)	9	46
Core Course (Practical)	6	18
Elective (4 Theory + 1 Practical)	5	19
Project (1 Theory + 1 Project)	2	5
VLO	1	2
TOTAL	23	90

**** INTERNSHIP**

- 2 Extra credits can be earned by attending Summer/ Winter Internship on submission of attendance certificate for a period of 8 weeks with a Project Report.
- Industrial Visit to Chemical Industries, Pharmaceutical Industries, CSIR-Labs, Sophisticated Instrumentation Centre etc., within India and submission of Mini Report is also entertained.

Sem	Course	Course Code	Title	Hours	Credi		MARK	S
				/Week	ts	CIA	ESA	TOTAL
	Core I	P21CH101	Bonding & Structure of Inorganic Compounds	5	5	25	75	100
	Core II	P21CH102	Concepts in Organic Chemistry	5	5	25	75	100
Ι	Core III	P21CH103	Chemical Kinetics & Quantum Mechanics	6	6	25	75	100
	Elective I	P21CH1:A / P21CH1:B/ P21CH1:C	Frontier Areas in Chemistry / Green Chemistry Forensic Chemistry	4	4	25	75	100
	Core Practical I	P21CH1P1	Inorganic Quantitative Estimations & Complex Preparation	5	3	40	60	100
	Core Practical II	P21CH1P2	Organic Synthesis & Separation Techniques	5	3	40	60	100
	Core IV	P21CH204	Coordination & Organometallic Chemistry	6	5	25	75	100
	Core V	P21CH205	Reactions & Mechanisms in Organic Chemistry	6	5	25	75	100
II	Core VI	P21CH206	Thermodynamics & Electrochemistry	6	5	25	75	100
	Core Practical III	P21CH2P3	Inorganic Semimicro Analysis & Colorimetric Estimations	5	3	40	60	100
	Core Practical IV.	P21CH2P4	Quantitative Analysis of Organic Compounds	5	3	40	60	100
	VLO	P17VL2:1/ P17VL2:2	RI / MI	2	2	25	75	100
	Core VII	P21CH307	Organic Spectroscopy	6	5	25	75	100
	Core VIII	P21CH308	Group Theory & Spectroscopy	6	5	25	75	100
	Elective -II	P21CH3:2	Bio-Inorganic Chemistry	5	4	25	75	100
ш	Core Practical V	P21CH3P5	Physical Chemistry Practical (Non-Electrical)	6	3	40	60	100
	Core Practical VI	P21CH3P6	Physical Chemistry Practical (Electrical)	6	3	40	60	100
	Generic Elective	Р21СНЗРЈ	Project Preparatory course	1	1			
	Core IX	P21CH409	Inorganic Spectroscopy	6	5	25	75	100
IV	Elective-III	P21CH4:A/ P21CH4:B/ P21CH4:C/ P21CH4:D	Data Analysis & Selected Analytical Techniques / Applications of Chemical Analysis/ Polymer Chemistry/	5	4	25	75	100
	Elective IV	P21CH4:4	Agricultural Chemistry Applications of Drug Design & Discovery	6	4	25	75	100
	Elective V- Practical	P21CH4:P	Computer Aided Molecular Calculations	4	3	40	60	100
	Core Project	P21CH4PJ	Project	9	4			100
	· · ·	Total		120	90			2300

Structure of the Curriculum -2021 -22 (PG Chemistry) DQAR-CRITERION -

Core Course - I: BONDING AND STRUCTURE OF INORGANIC COMPOUNDS

Semester : 1 Credits : 5

Code : P21CH101 Total Hrs : 75 Hours /Week:5

1.COURSE OUTCOMES:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Predict the reactivity of chemical compounds based on acid-base concepts and HSAB principle	K5	Ι
2	Assess the role of non-aqueous solvents in chemical reactions	K5	Ι
3	Distinguish different types of crystal structures and crystal defects	K5	II
4	Explain the nuclear properties, stability and applications of radioactive nuclei	K4	III
5	Predict the structure, geometry, optical and electronic properties of inorganic Compounds using VB, VSEPR, MO and Band theories	K5	IV
6	Classify electron deficient, electron precise and electron rich inorganic compounds based on their structure and bonding	K4	V

2A. SYLLABUS

UNIT-I

SOLVENTS

15 HOURS

1.1 Acids and Bases

Differentiating and levelling solvents – Usanovich and Lux Flood concepts – Solvent ion theory of acids and bases –Hard and Soft Acids and Bases (HSAB)– Classification, acid-base strength and hardness and softness – Symbiosis – Theories of hardness and softness – Electronegativity and hardness and softness – Applications of HSAB, Proton sponges.

1.2 Non-aqueous solvents: Classification- protic and aprotic solvents, - Liquid NH₃, BrF₃,

CH₃COOH, liquid SO₂, liquid HF. Proton sponges- molten salts as solvents and ionic liquids.

UNIT–II IONIC BONDING AND CRYSTAL STRUCTURE 15 HOURS

2.1 Packing of ions in crystals & crystal structure – ccp, hcp, bcc, fcc

2.2 Radius ratio and structure of ionic lattices, Calculation of radius ratio and Coordination No, stoichiometry and crystal structures of NaCl, CsCl, Zincblende, wurtzite, Rutile, Flourite, antifluorite, perovskite, CdI₂, β - cristobalite & ReO₃ structure, Spinels Inverse Spinels.

2.3 Lattice energy- Slater's rule, Born-Haber cycle- Born-Lande equation, Factors affecting Lattice Energy

2.4 Crystal defects: Stoichiometric and non- stoichiometric defects. Metal excess defects – Metal deficiency defects - calculation of number of defects.

15 HOURS

UNIT-III NUCLEAR CHEMISTRY

3.1 Nuclear Chemistry

The Structure of the nucleus, Radioactive equilibrium, Orbital electron capture, Nuclear isomerism, Internal conversion, Nuclear cross section.

Nuclear stability- Binding energy, shell model, magic numbers, Harkin's rule, Theories of decay processes-Geiger-Nuttal rule, Group displacement laws and units of radioactivity

3.2 Radioactivity

Nuclear reactions: Q- value of nuclear reactions, transmutation, stripping and pickup, fission, fusion, spallation, projectile capture and particle emission reaction, fragmentation and scattering.

Particle accelerators: Cyclotron, linear accelerator and synchrotron

Nuclear reactors: Power reactor, breeder and Fast breeder reactors

Radioactive techniques: Tracer technique, Neutron activation and Isotopic dilution analysis.

Counting techniques: Geiger-.Muller, scintillation and proportional counters.

Applications: carbon dating, agriculture, medicine and industry.

UNIT-IV COVALENT BONDING 15 HOURS

41 VBT: Resonance, conditions for resonance, formal charges, hybridization and geometry, VSEPR model- CH₄, NH₃, H₂O, PCl₃F₂- Bents' rule and Walsh diagram- SF₄, BrF₃, ICl₂⁻, ICl₄⁻, XeF₄, XeOF₄, XeO₄, XeO₃, XeF₆, XeF₂

42 MOT: LCAO method- MO level energy level diagram of hetero diatomic molecule HCl) and polyatomic molecule NH₃ and SF₆–LUMO and HOMO concepts in bonding.

43 Bonding in metals: Band theory of solids, Insulators, Semiconductors- n- and p- type, Super conductors and its applications.

UNIT-V INORGANIC CHAINS, RINGS & CAGES COMPOUNDS 15 HOURS

5.1 Electron deficient, electron precise and electron rich compounds: Boranes and **carboranes**: Structure of B_2H_6 , B_4H_{10} , $B_{12}H_{12}^{2-}$, B_6H_{10} , B_8H_{12} , $B_{10}H_{14}$. Synthesis of neutral boron hydrides, polyhedral boron anions and dianions, structure of polyhedral boranes-nido –arachno-

and closo - frameworks, PSEPT (Wade's rule and Styx code). Carboranes- synthesis,

polyhedralgeometries of metalloboranes and metallocarboranes.

5.2 Boron –Nitrogen compounds:

Structure and bonding of B₃ N₃ H₆, Borazines, B-N clusters and azaboranes.

- **5.3 Metal clusters**: Structure and bonding of dinuclear cluster Re₂Cl₈²⁻
- 5.4 Poly acids: Structure of isopoly and heteropoly anions and polycations of W and Mo.
- **5.5** P-N and P-S compounds: Polyphosphazene, cyclophosphazene, P-S cages.
- **5.6 Cyclic S-N compounds**: Tetra sulphur –tetranitride (S₄N₄) and Polythiazyl.

2B.Topics for Self-Study:

S.No.	Topics	Web Links
1	Acid base Equilibrium	https://www.youtube.com/watch?v=jdmHjFp_35I
2	Crystal structure Review	https://www.youtube.com/watch?v=iPb8vRtroLU
3	Nuclear Radiation	https://www.youtube.com/watch?v=iTb_KRG6Lxo
4	Bonding in metal carbonyls	https://www.youtube.com/watch?v=ZkSuggOV9dA
5	cluster of compounds	https://www.youtube.com/watch?v=LHevfXFKl_E

2C.TEXT BOOKS

- 1. James E. Huheey, Ellen A Keiter and Richard L. Keiter, "Inorganic Chemistry: Principles of Structure and Reactivity", Pearson Education, India, 2014. (Unit- I, II, IV, V)
- H.J. Arnikar, "Essentials of Nuclear Chemistry", New Age International, 2011. (Unit- III)

2D. REFERENCE BOOKS

- Bodie E. Douglas and Darl H. Mc Daniel, John J. Alexander, "Concepts and Models in Inorganic Chemistry", Wiley Eastern, New Delhi, 2006.
- 2. J.D. Lee, "Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- 3. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Golden Sunburst Series, E.B. Saunders Company, Philadelphia, 2010.
- 4. F.Albert Cotton, Geoffrey Wilkinson and Carlos A. Murillo, "Advanced Inorganic Chemistry", John Wiley and Sons, Singapore, 2007.
- 5. B.R. Puri, L.R. Sharma and K.C. Kalia "Principles of Inorganic Chemistry" Vishal

Publishing Co., Jalandhar, 2017.

- S. Glasstone, "Source Book on Atomic Energy" 3rd Edition, Affiliated East-WestPress Pvt. Ltd., New Delhi, 2014.
- Gary L. Miessler, Donald A. Tarr, "Inorganic Chemistry", Pearson Education, New Delhi, 2008.

3. SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit – 1:		
1.1	Differentiating and leveling solvents.	Distinguish the differentiating and leveling solvents.	K2
	Usanovich, Solvent ion theory of acids and bases and Lux-Flood concepts.	Apply the concepts of acid and bases and identify inorganic species as acids or bases.	К3
	Hard and Soft Acids and Bases (HSAB)– Classification, electronegativity, acid-base strength and hardness and softness.	classify inorganic compounds as hard and soft using the principle of HSAB and to correlate electronegativity, acid-base strength and hardness and softness.	K4
	Applications of HSAB concept.	Interpret the various applications of hardness and softness.	K5
1.2	Non aqueous solvents: Classification - protic and aprotic solvents.	Classify various solvents.	K4
	Liquid NH ₃ , BrF ₃ , CH ₃ COOH, liquid SO ₂ , liquid HF.	Explain the chemistry of different non-aqueous solvents.	K5
	Proton sponges - molten salts as solvents and ionic liquids.	Examine the characteristics of ionic liquids and proton sponges.	K4
	Unit – 2:		
2.1	Packing of ions in crystals Crystal structure – ccp, hcp, bcc, fcc.	Classify the different types of packing and crystal structure.	K4

	Radius ratio and structure of ionic lattices, Calculation of radius ratio and Coordination No.	Calculate radius ratio, structure of ionic lattices and coordination number by applying the radius ratio rule.	K4
2.2	Stoichiometry and crystal structures of NaCl, CsCl, Zinc blende Wurtzite, Rutile, Flourite, Antifluorite, Perovskite, CdI ₂ , β- cristobalite & ReO ₃ structure.	Justify the stoichiometry in different types of crystal structures	K5
	Spinels and Inverse Spinels.	Contrast the structure and stochiometry of Spinels and Inverse Spinels.	K4
2.3	Lattice energy- Slater's rule Born-Haber cycle - Born-Lande equation, Factors affecting Lattice Energy.	Calculate lattice energy using Slater's rule and Born-Haber cycle and illustrate the factors affecting Lattice Energy.	K4
	Crystal defects: Stoichiometric and non stoichiometric defects. Metal	Distinguish the different types of crystal defects.	K4
2.4	excess defects – Metal deficiency defects, Calculation of number of defects.	Estimate the defects in the stoichiometric and non-stoichiometric crystals.	K5
	Unit – 3:		
3.1	Nucleus- Structure of the nucleus.	Analyze the structural components of an atomic nucleus.	К3
	Radioactive equilibrium, Orbital electron capture, Nuclear isomerism, Internal conversion, Nuclear cross section.	Compare the different types of nuclear reactions.	K4
	Nuclear stability- Binding energy, shell model, magic numbers, Harkin's rule.	Explain the stability of nucleus based on binding energy, n/p ratio.	K4
	Theories of decay processes - Geiger-Nuttal rule, Group displacement laws and units of radioactivity.	Examine the theories of decay processes.	K4
3.2	Nuclear reactions : Q- value of nuclear reactions, transmutation, stripping and pickup, fission, fusion, spallation, projectile capture and particle emission reaction, fragmentation and scattering.	Calculate the Q- value of nuclear reactions and to differentiate the nuclear transmutation reactions.	K4

	Particle accelerators: Cyclotron,	Compare and contrast the	
	linear accelerator and synchrotron	working and applications of	K4
	Nuclear reactors: Power reactor,	different types of particle	Λ4
	breeder and Fast breeder reactors.	accelerators.	
	Radioactive techniques : Tracer technique, Neutron activation and Isotopic dilution analysis.	Explain the importance, working and applications of radioactive techniques.	K4
	Counting techniques : Geiger- .Muller, scintillation and proportional counters.	Illustrate the different techniques used to quantify ionising radiations.	K4
	Applications : Carbon dating, agriculture, medicine and industry.	Calculate the age of antique material by carbon dating and explain the role of radioactive materials in agriculture, biology, industry and pharmaceuticals.	K4
	Unit - 4:		
4.1	VBT : Resonance, conditions for resonance, formal charges Hybridization and geometry: VSEPR model - CH4, NH3, CH ₃ NH ₄ ⁺ , SO ²⁻ , CO ²⁻ , H Q, PCl ₃ F ^{2-'} Bents' rule- SF4, BrF3, ICl ²⁻ , ICl ^{4-,} XeF4, XeOF4, XeO4, XeO3, XeF6, XeF2.	Predict the structure, hybridization and geometry of inorganic molecules using VSEPR and VB theories.	K5
4.2	MOT: LCAO method MO level energy level diagram of hetero diatomic molecule (HCl) and polyatomic molecule NH3 and SF6 – LUMO and HOMOconcepts in bonding.	Explain the type of bonding in poly atomic molecules using HOMO and LUMO concepts of MOT.	K4
4.3	Bonding in metals: Band theory of solids.	Analyze the optical and electronic properties of semiconductors using Band theory of solids.	K4
	Insulators, Semiconductors n and p type, Super conductors and its applications.	Compare the different types of semiconductors and list their applications.	K4
	Unit – 5:		
5.1	Electron deficient , electron precise and electron rich compounds:		

	Boranes and Carboranes: Structure of B_2H_6 , B_4H_{10} , $B_{12}H_{12}^2$, B_6H_{10} , B_8H_{12} , $B_{10}H_{14}$. Synthesis of neutral boron hydrides, polyhedral boron anions and dianions. PSEPT (Wade's rule and Styx code).	Identify the type of boranes and carboranes based on Wade's rule and Styx code.	K3
	Structure of polyhedral boranes – closo, nido and arachno– frameworks.	Explain the classification and structure of polyhedral boranes.	K4
	Carboranes - synthesis, polyhedral geometries of metalloboranes and metallocarboranes.	Explain the synthesis and structure and bonding in Carboranes.	K4
5.2	Boron –Nitrogen compounds: Structure and bonding of B3N3H6, Borazines, B-N clusters and azaboranes.	Examine the structure and bonding of Boron –Nitrogen compounds.	K4
	Metal clusters : Structure and bonding of dinuclear cluster Re ₂ Cl ₈₂ .	Analyze the structure and bonding of Metal clusters.	K4
	Poly acids : Structure of isopoly and heteropoly anions and polycations of W and Mo.	Inspect the structure and bonding of Structure of isopoly and heteropoly anions.	K4
	P-N and P-S compounds: Polyphosphazene, cyclophosphazene, P-S cages.	Correlate the structure and bonding of the P-N and P-S compounds.	K4
	S-N compounds : Tetra sulphur – tetranitride (S ₄ N ₄) and Polythiazyl.	Illustrate the different types of S-N compounds.	K4

4.MAPPING of COs with POs and PSOs

L-	Lo	w
	L U	٧V

M-Moderate

H- High

	Course Title: BONDING AND STRUCTURE OF INORGANIC COMPOUNDS Course Code : P21CH101												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	М	Н	М	М	Н	-	-	-	-	Н	Н	-	Н
CO2	L	М	М	М	М	-	М	-	М	Н	М	-	М
CO3	М	-	М	М	L	-	-	-	М	М	L	-	Н
CO4	М	М	М	М	L	-	-	-	-	-	L	-	Н
CO5	М	Н	М	М	L	-	М	-	-	М	Н	-	Н
CO6	Н	М	-	М	М	-	М	-	-	Н	М	L	Н

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr . C. Raja

Core Course: II CONCEPTS IN ORGANIC CHEMISTRY

Semester : 1 Credits : 5

Code : P21CH102 Total Hrs :75 Hours/ week:5

1.COURSE OUTCOMES:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Apply the rules of nomenclature to name organic compounds	K3	Ι
2	Distinguish the reactive intermediates and factors affecting their stability	K4	II
3	Examine the evidences for the kinetics and thermodynamic aspects of reactions	K4	II
4	Apply Huckle's and Craig's rules of aromaticity to benzenoid and non-benzenoid compounds	K3	III
5	Categorize the organic compounds based on stereochemistry	K4	IV
6	Evaluate different methods of reaction mechanism related to molecular rearrangments	K5	V

2A. SYLLABUS

UNIT-I NOMENCLATURE OF ORGANIC COMPOUNDS

15 Hours

11 Nomenclature – General rules-Naming of linear and branched alkanes, alkenes, polyenes and alkynes with two or three functional groups by IUPAC nomenclature. Aromatic and heteroaromatic systems- nomenclature of heterocycles having not more than two hetero atoms such as oxygen, nitrogen and sulphur. Fused heterocycles and fused aromatic systems.

12 Nomenclature of alicyclic, bicyclic and tricyclic compounds- organic molecules including regio and stereoisomers.

UNIT-IIREACTION MECHANISMS AND INTERMEDIATES15 Hours2.1Reaction Mechanism: Structure and Reactivity15 Hours

Types of reactions, Types of mechanisms, Rate constants – determination and life times of reactive energy states -. Potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, Hammond's postulate, Quantitative treatment. The Hammett equation and linear free energy relationship, substituent and reaction constants. Taft equation.

2.2 Reactive Intermediates

Free radicals, carbenes, nitrenes, carbanions, classical and non-classical carbocations, phenonium ions, norbornyl system, common carbocation rearrangements. Application of NMR spectroscopy in the detection of carbocations.

UNIT-III AROMATICITY OF ORGANIC COMPOUNDS

3.1 Aromaticity

Electron delocalization and resonance -Huckel's rule-Aromaticity in benzenoid and nonbenzeneoid compounds, alternant and non-alternant hydrocarbons- Craigs rule (fused ring system)- Aromaticity on larger annulenes- antiaromatic - homoaromatic and non-aromatic compounds -Molecular orbital description of aromaticity and anti aromaticity.

3.2 Some Selected reactions of aromatic system

Electrophilic aromatic substitution: Gattermann reaction - Gattermann- Kosch formylation reaction- Hoeben- Hoesch reaction- Vilsmeyer formylation. **Nucleophilic aromaticsubstitution:** Chichibabin amination - Bucherer reaction. **Transition metal chemistry:** Pauson- Khand reaction-Heck reaction-Suzuki Coupling - Stille Coupling - Sonogashira Coupling- Negishi cross coupling.

UNIT –IV ORGANIC STEREO CHEMISTRY

4.1 Optical Isomerism

Brief introduction to Chirality: Asymmetry- dissymmetry -chiral axis and chiral planesexamples (Biphenyls, Allenes, spiranes and ansa compound, cyclophanes respectively). **Prochirality:** Principles of Stereogenecity, stereoselectivity, enantioselectivity, diastereoselectivity. Enantiotopic and Diasterotopic. **Asymmetric synthesis**: Stereoselective and stereospecific synthesis - stereochemical aspects through various models (Cram / Cram chelation / Felkin-Anh models); Cram's rule. **Methods of resolution:** crystal growth-enantiomeric excess. **4.2 Dynamic stereochemistry** -Conformational analysis -Introduction to terms - conformers, configuration, dihedral angle, torsional strain, conformations. Conformational analysis of cycloalkanes (3,4,5 and 6 membered ring with two substituents). Winstein Eliel equation- Curtin-Hammet principle.

UNIT-V MOLECULAR REARRANGEMENT

5.1 Migration of Carbon: Wagner-Meerwein rearrangement-Wolf rearrangement-Benzil benzilic acid rearrangement, **Migration to electron deficient nitrogen:** Hofmann rearrangement – Beckmann rearrangement- Schimdt rearrangement. **Migration to electron deficient oxygen:** Bayer Villager oxidation- Dakin reaction.

5.2 Migration to electron rich carbon : Favorskii rearrangement – Stevens rearrangement-Wittig rearrangement. Neber rearrangement. **Other rearrangements:** Dienone-phenol rearrangement - Benzidine rearrangement – Gruvenstein and Zimmermann rearrangements.

15 Hours

15 Hours

15 Hours

2B.TOPICS FOR SELF STUDY

S.	Topics	Web links
No	-	
1	Nomenclature of	https://www.acdlabs.com/iupac/nomenclature/79/r79_164.htm
	polycyclic systems	https://www.acdlabs.com/iupac/nomenclature/79/r79_166.htm
		http://publications.iupac.org/pac/1999/pdf/7103x0513.pdf
		https://doi.org/10.1007/978-3-662-01665-7_1
2	Reaction mechanism	https://en.wikipedia.org/wiki/ANRORC_mechanism
	and intermediates	https://synarchive.com/named-reactions/zincke-reaction
		https://www.organic-
		chemistry.org/namedreactions/fukuyama-coupling.shtm
3	Aromaticity and	https://chemistry.illinois.edu/system/files/inline-
	related reactions	files/02JanowiczFINALAbstract.pdf
		http://www.f.u-
		tokyo.ac.jp/~kanai/seminar/pdf/Lit_K_Yamamoto_M1.pdf
		https://www.organic-chemistry.org/namedreactions/chan-lam-
		<u>coupling.shtm</u>
4	Optical Isomerism	https://www.sparknotes.com/chemistry/organic2/carbocycles/s
		ection3/_
		https://chem.libretexts.org/Bookshelves/Organic_Chemistry/B
		ook%3A Basic Principles of Organic Chemistry (Roberts_
		and_Caserio)/12%3A_Cycloalkanes_Cycloalkenes_and_Cycl
		oalkynes/12.09%3A_Conformations_of_Decalin_
		https://www.chemtube3d.com/stdecalins/
		http://www.mpgpgcollegehardoi.in/Decalins.pdf
		https://www.chemistry.mcmaster.ca/silicone/SharplessEdited.
		<u>pdf</u>
5	Molecular	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/rear
	Rearrangements	ang2.htm#top1
		http://burton.chem.ox.ac.uk/handout-2-2018.pdf
		https://pubs.acs.org/doi/10.1021/ar700198z

2C.TEXT BOOKS

- 1. R. Panico, W.H. Powell, L. Jean, C. Richer, "A Guide of IUPAC Nomenclature of Organic compounds", Wiley-Blackwell, 1993. (Unit-I)
- 2. Jerry March, "Advanced Organic Chemistry Reaction Mechanisms and Structure", Wiley India, 2006. (Unit-II, III)
- **3.** D. Nasipuri "Stereochemistry of Organic Compounds", New Age International, New Delhi, 2018. (**Unit-IV**)
- 4. P.S. Kalsi, "Stereochemistry, Conformations and Mechanism", New Age International Private Limited, New Delhi, 2017. (Unit-IV)
- 5. Ahluwalia V K, "Organic Reaction Mechanism" Narosa Publication, 2010. (Unit-V)
- 6. S.M. Mukherji and S.P.Singh, "Reaction Mechanism in Organic Chemistry", Macmillan India Ltd., Patna, 1990. (Unit-V)

2D.REFERENCE BOOKS

- 1. R.S. Cahn and O.C. Dermer, "Introduction to Chemical Nomenclature", Butterworths, London, 1979.
- 2. Peter Sykes, "A Guide Gook to Mechanism in Organic Chemistry", Pearson Education, New Delhi, 2003.
- 3. E.L. Eliel, "Stereochemistry of Carbon Compounds", McGraw Hill, New Delhi, 2003.
- 4. Jonathan Clayden, Nick Greeves, Stuart Warren, "Organic Chemistry", Oxford University Press, 2014.

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic Highest Level of Transaction
	Unit – 1 : Nomenclature of Organic		
1.1	Nomenclature–General rules -Naming of linear and branchedalkanes, alkenes, polyenes and alkyneswith two or three functional groups by IUPAC nomenclature	Apply IUPAC rules to name compoundswith two / three functional groups	К3
	Aromatic and heteroaromatic systems- nomenclature of heterocycles having not more than two hetero atoms such as oxygen, nitrogen and sulphur. Fused heterocycles and fused aromatic systems.	 Apply IUPAC rules to name compounds heterocycles having not more than two hetero Fused heterocycles and fused aromatic systems 	K3
1.2	Nomenclature of alicyclic, bicyclicand tricyclic compounds- organic molecules including region and stereoisomers.	Apply IUPAC rules to name compounds of bicyclic and tricyclic compounds- organic molecules including region and stereoisomers.	К3
	Unit- 2: Reaction Mechanisms and In	termediates	
2.1	Types of reactions, Types of mechanisms, Rate constants – determination and life times of	Distinguish Intermediates and Transition state.	К4
	reactive energy states Potential energy diagrams, transition states and	Illustrate methods of determining mechanism.	K4
	intermediates, methods of determining mechanisms, isotope effects.	Evaluate different types of mechanism.	K4

	Thermodynamic and kinetic requirements, kinetic and thermodynamic control, Hammond's postulate, Quantitative treatment. The Hammett equation and linear free energy relationship, substituent and reaction constants. Taft equation	Illustrate how reactions proceeds, kinetics and thermodynamics of reactions mechanisms including Hammond's postulate To apply Quantitative Measurement of Substituent Effects on Chemical Reactivity - Hammett equation and Taft equation and their significances	K4 K3
2.2	Reactive Intermediates Free radicals, carbenes, nitrenes, carbanions, classical and non-classical , carbocations, phenonium ions, norbornyl system, commoncarbocation rearrangements.	Compare the different reactive intermediates and various factors affecting their stability, the rearrangements associated with such intermediates	K4
	Application of NMR spectroscopy in the detection of carbocations	Apply of NMR spectroscopy in the detection of carbocation	К3
	Unit – 3: Aromaticity of Organic Com	pounds	
3.1	Aromaticity Electron delocalization and resonance - Huckel's rule- Aromaticity in benzenoid and non-benzenoid compounds, alternant and non- alternant hydrocarbons-	Apply Huckles rules of aromaticity and use that to identify aromaticity / anti aromatcity / non aromaticityin benzenoid and non benzenoid compounds	K3
		Compare alternant and non- alternant hydrocarbons-	K2
	Craigs rule (fused ring system)- Aromaticity on larger annulenes- antiaromatic - homoaromatic and non- aromatic compounds -	ApplyCraig'srulesofaromaticitytoidentifyaromaticityin benzenoid and nonbenzenoid compounds	K3
	Molecular orbital description of aromaticity and anti aromaticity.	Determine aromatic compounds and anti-aromatic compound based on Molecular orbital description.	K3
3.2	Some Selected reactions of aromatic system	Explain the mechanism of various aromatic electrophilic /	K3

	Kosch formylation reaction- Hoeben- Hoesch reaction- Vilsmeyerformylation. Nucleophilic aromatic substitution: Chichibabinamination – Bucherer reaction. Transition metal chemistry: Pauson-Khand reaction- Heck reaction-Suzuki Coupling - Stille Coupling - Sonogashira Coupling- Negishi cross coupling.Unit- 4: Organic Stereo Chemistry	Predict different aromatic electrophilic substitution reaction.	K3
4.1	Brief introduction to Chirality: Asymmetry- dissymmetry -chiral axis and chiral planes- examples (Biphenyls, Allenes, spiranes and ansa compound, cyclophanes respectively).	Examine chirality of compounds without chiral centers [Allene, Biphenyls, spiranes, ansa compounds and cyclophanes]	K4
	Prochirality:PrinciplesofStereogenecity,stereoselectivity,enantioselectivity,diastereoselectivity.EnantiotopicandDiasterotopic.Asymmetric synthesis:Stereoselectiveandstereospecificsynthesis-	Stereo selective and stereospecific synthesis – for synthetic applications	K4
	stereochemical aspects throughvarious models (Cram / Cram chelation /Felkin-Anh models); Cram's rule. <i>Methods of resolution:</i> crystal growth-	Apply Cram/ Cramchelation/Felkin-Anhmodelsforasymmetric synthesis	K3
	enantiomeric excess	Predict various rearrangement reactions /their mechanism and their importance in synthesis	K3
		Illustrate how seeding method can be employed for the resolution of enantiomers	K3
4.2	DynamicstereochemistryConformational analysis-Introductionto terms - conformers, configuration,dihedralangle,torsionalstrain,conformations.Conformationalanalysis of cycloalkanes (3,4,5 and 6membered ring with twsubstituents).WinsteinElielequation-Curtin-Hammet principle.	Analyze the stability cycloalkanes of 3,4,5 and 6 membered ring with two substituents using conformational analysis Using WinsteinEliel equation-Curtin-Hammet principle to arrive at the product ratio in a chemical reaction	K4

5.1	MigrationofCarbon:Wagner-Meerweinrearrangement-Wolfrearrangement-Benzilbenzilicacidrearrangement,Migrationdeficientnitrogen:Hofmannrearrangement–Beckmannrearrangement-Schimdtrearrangement-Schimdtrearrangement.Migrationto electrondeficientoxygen:BayerVillageroxidation-Dakin reaction.	rearrangement reactions with	K5
5.2	Migration to electron rich carbon : Favorskii rearrangement – Stevens rearrangement-Wittig rearrangement. Neber rearrangement. Other rearrangements: Dienone- phenol rearrangement - Benzidine rearrangement – Gruvenstein and Zimmermann	Analyze the role of the Migrating groups in the rearrangement reactions Explain based on evidences, the plausible mechanisms of rearrangements	K4 K4
	Gruvenstein and Zimmermann rearrangements.	rearrangements	

4.MAPPING SCHEME for the PO, PSOs and COs

L-Low

M-Moderate

H- High

	Course Title: BONDING AND STRUCTURE OF INORGANIC COMPOUNDS Course Code : P21CH102												
Mapping	PO 1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PS04
CO1	H H	Н	M	L	М	-	М	М	L	H	-	L	М
CO2	Н	Н	М	М	L	-	L	-	-	Н	М	-	-
CO3	Н	Н	Н	М	М	-	М	L	L	Н	L	L	L
CO4	Н	Н	М	М	L	-	Н	L	L	Н	М	-	-
CO5	Н	Н	М	L	М	-	L	М	L	Н	-	L	М
CO6	Н	Н	М	Н	М	М	L	-	-	Н	-	М	-

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. S. Angeline Vedha

Core Course: III CHEMICAL KINETICS AND QUANTUM MECHANICS

SEMESTER : I CREDITS : 6

CODE : P21CH103 TOTAL HOURS : 90 Hours /week:6

1.COURSE OUTCOMES

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Correlate the kinetic properties with thermodynamic properties	K5	Ι
2	Deduce the rate equation from mechanistic data	K5	Ι
3	Solve problems by applying the principles of Kinetics and Quantum Mechanics	K5	III
4	Predict the hybridization schemes in molecules through Quantum mechanical approach of MO and VB theories	K5	IV
5	Deduce Wave functions and Energy of simple systems using Approximation methods	K5	IV
6	Analyze the mechanism of heterogeneous catalysis based on the principles of adsorption	K4	V

2A. SYLLABUS

UNIT-I

Chemical Kinetics – I

18 Hours

1.1 Theories of reaction rates and factors influencing the reaction rate: ARRT (Eyring's theory), Thermodynamic derivation of ARRT-comparison of ARRT with collision theory (A, $\Delta S^{\#}$, E_a and $\Delta H^{\#}$) – kinetic isotope effects, Marcus electron transfer theory-inner and outer electron transfer.

1.2 Theory of unimolecular reactions-Lindemann's theory – Steady State approximation-chain reactions-photochemical reaction between hydrogen and halogens (Cl_2 and Br_2) – gas phase auto-oxidations, explosions-hydrogen-oxygen reaction.

UNIT- II Chemical Kinetics – II 18 Hours

2.1 Application of ARRT to solution kinetics-effects of solvents, double sphere model, effect of ionic strength on ionic reactions – influence of pressure on reaction rates in solution-significance of volume of activation-substituent effects – Hammett and Taft equations.

2.2 Homogeneous catalysis, acid-base catalysis – types and mechanism, derivation of rate law for protolytic

acid catalysis and explanation for Arrhenius and van't Hoff intermediates, Bronsted relations- Hammett-Deyrup acidity function – enzyme catalysis-mechanism of single substrate reaction-Michaelis-Menton equation - Influence of pH, concentration and temperature, Line Waver plot and Eddi – Hofstee plot.

2.3 Fast reactions-study of kinetics by stopped flow technique, relaxation methods, T and P- jump methods, flash photolysis and magnetic resonance method.

UNIT- III Quantum Chemistry-I 18 Hours

3.1 Mathematical concepts for quantum mechanics – differentiation formula for uv, u/v, (u+v), sinx, cosx, and e^x only – partial differentiation – Euler's reciprocal relation, chain rule (statement only) – Integration methods.

3.2 Inadequacy of classical mechanics-wave particle dualism – deBroglie's equation – Uncertainty principle – postulates of quantum mechanics -significance of ψ and ψ^2 ; Schrodinger time independent wave equation- Eigen functions and Eigen values - Operators and their properties – linear and Hermitian, angular momentum operators-commutation relations.- orthogonalization and normalization.

3.3 Applications of wave mechanics to simple systems – Particle in a box - one and three Dimension, Rigid rotator-Harmonic oscillator - zero point energy-Hydrogen atom- shapes and nodal properties of orbitals- Bohr's correspondence principle.

UNIT- IV Quantum Chemistry – II 18 Hours

4.1 Approximation methods – Variation method-application to one dimensional box, H_2 , H_2^+ and Helium atom – Perturbation method - application to one dimensional box and Helium atom- Born Oppenheimer Approximation-Hartree method and Hartree Fock Self-consistent Field method – many electron atoms- Pauli's principle and Slater determinant.

4.2 LCAO- MO treatment of hydrogen molecular ion and H_2 -VB treatment of hydrogen molecule - hybridization of orbitals in BeF₂, BF₃,CH₄. Huckel pi-electron theory and its applications to ethylene, butadiene, benzene and allyl system.

UNIT- V Surface Chemistry 18 Hours

5.1 Adsorption–physisorption and chemisorptions – Langumuir, BET & Gibbs adsorption isotherms- surface area determination – Heat of adsorption, determination. Adsorption from solutions - surface films.

5.2 Surface tension – effect of electrolytes, non-electrolytes and surface active agents –micelles and reverse micelles. Solublisation, micro emulsions

5.3 Heterogeneous catalysis – semiconductor catalysis, n-and p-type surfaces – kinetics of surface reactions involving adsorbed species – Langmuir - Hinshelwood mechanism. Langmuir – Rideal mechanism and Rideal - Eley mechanisms.

2B.TOPICS FOR SELF-STUDY:

S.No	TOPICS	Web Links
1	UNIT-I (CHEMICAL KINETICS – I)	https://www.pdfdrive.com/chemical-kinetics-
	chain reactions	e188163536.html
2	UNIT-II (CHEMICAL KINETICS – II)	https://www.pdfdrive.com/chemical-kinetics-
	Fast reactions – Shock Tube method	e188163536.html
3	UNIT- III (QUANTUM CHEMISTRY-I)	https://ocw.mit.edu/courses/chemical-
		engineering/10-626-electrochemical-energy-
	Quantum Tunneling of Electrons	systems-spring-2014/study-
		materials/MIT10_626S14_Lec20.pdf
4	UNIT- IV (QUANTUM CHEMISTRY-II)	https://physicspages.com/pdf/Griffiths%20QM
		/Griffiths%20Problems%2006.02.pdf
	Harmonic Oscillator: First Order Perturbation	
5	UNIT- V (SURFACE CHEMISTRY)	https://pdfs.semanticscholar.org/34e8/e28e30c
		040e35e022952dff3201c53fb3248.pdf
	Calculation of surface tension - Parachor	1
	method - Effect of temperature on surface	
	tension	

2C.TEXT BOOK(S):

- Philip Mathews, "Advanced Physical Chemistry", Foundation Books, New Delhi, 2003. (Unit I-V)
- A.K.Chandra, "Introductory Quantum Chemistry", Tata McGraw-Hill, New Delhi, 2017. (Unit- III, IV)
- **3.** B.R. Puri, L.R.Sharma and M.S. Pathania, "Principles of Physical Chemistry", Vishal Publishing Co., Jalandar, 2017. (Unit-II, III, IV, V)

2D.REFERENCE BOOKS:

- 1. Peter Atkins and Julio de Paula, "Physical Chemistry" Oxford University Press, 2018.
- 2. K.J. Laidler, "Chemical Kinetics", Tata McGraw-Hill, New Delhi, 2003.
- 3. A.A. Frost and R.G. Pearson, "Kinetics and Mechanisms", John Wiley & Sons, New York, 1961.

- 4. I. Amdur and G.G. Hammes, "Chemical Kinetics Principles and Selected Topics", McGraw Hill, New York, 1966.
- 5. J.I. Steinfeld, J.S. Francisco and W.L.Hase, "Chemical Kinetics and Dynamics", Prentice Hall, New Jersey, 1999.
- 6. Horia Metiu, "Physical Chemistry-Kinetics", Taylor and Francis, New York, 2006.
- 7. R.K.Dave, "Chemical Kinetics", Campus Books, 2000.
- 8. D.A. Mcquarrie, "Quantum Chemistry", University Science Books, 2016.
- 9. I.N.Levine, "Quantum Chemistry", Prentice Hall, 2016.
- 10. R.K. Prasad, "Quantum Chemistry", New Age international (P) Ltd., New Delhi, 2010.
- 11. B.K. Sen, "Quantum Chemistry", Tata McGraw-Hill, New Delhi, 1992.
- 12. Thomas Engel and Philip Reid, "Physical Chemistry", Pearson Education, New Delhi, 2013.

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit/Section	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
Ι	Chen	nical Kinetics – I	
	Theories of reaction rates and factors influencing the reaction rate: ARRT (Eyring's	Compare the collision theory and ARRT	K4
	theory),Thermodynamic derivation of ARRT-comparison	Derive the Erying's Equation	K4
1.1	of ARRT with collision theory	Identify the factors influencing the reaction rate.	К3
	Kinetic isotope effects	Predict the major product formed during a reaction	K5
		Evaluate the mechanisms using the magnitude of kinetic isotopic substitution	K5
		Categorize the secondary KIE depending upon the site of Isotopic substitution.	K4
	Marcus electron transfer theory- inner and outer electron transfer	Apply the Marcus electron transfer theory for different	

		systems.	K3			
		Distinguish outer and inner electron theory.	K4			
	Theory of unimolecular reactions - Lindemann's theory – Steady State approximation	Analyze the mechanism for unimolecular reactions	K4			
		Apply the Steady State Approximation	K3			
	Chain reactions-photochemical reaction between hydrogen and halogens (Cl ₂ and Br ₂)	Outline the mechanism of the photochemical reaction between Hydrogen and halogens	К3			
1.2		ApplythesteadystateapproximationtophotochemicalreactionbetweenHydrogenandhalogens	K3			
	Gas phase auto-oxidations, explosions-hydrogen-oxygen reaction.	Determine the reaction rate for gas phase auto-oxidation	K3			
		Explain how branching chain reactions can lead to explosion.	K2			
II	Chemical Kinetics – II					
	Application of ARRT to solution kinetics: Effects of solvents, double sphere model	Analyze the effect of solvents on reaction rate	K4			
		Explain the effect of dielectric constant using double sphere model.	K2			
		Predict the kinetic model for unknown system.	K5			

	Effect of ionic strength on ionic reactions	Explain the kinetic salt effect	K5
2.1		Examine the influence of ionic strength on the rate of reaction	K4
	Influence of pressure on reaction rates in solution- Significance of volume of activation	Relate pressure with the rate of a reaction.	K2
		Derive volume of activation from the pressure dependence nature of rate constant.	K4
	Substituent effects – Hammett and Taft equations.	Predict the effect of substituent on the acidity of an aromatic carboxylic acid.	K5
		Justify the pKa for the phenols using the appropriate substituent constants.	K5
		Recommend a mechanism for a given reaction by determining the reaction constant.	K5
		Predict the structure of the transition state for a given reaction.	K5
		Determine the reaction constants for the effects of substituent X and Y using the appropriate substituent constants.	K5
		Apply Taft equation in predicting the reaction mechanisms.	K3

		Developquantitativestructure-activityrelationshipsfororganiccompoundsusingTaftEquation.	К3
	Homogeneous catalysis, acid-base catalysis – types and mechanism	Explain the kinetics of acid- base catalyzed reactions.	K5
		Determine the order of a given acid-base catalyzed reaction.	K5
	Derivation of rate law for protolytic acid catalysis and explanation for Arrhenius and	Deduce the rate expression for protolytic acid catalysis	K4
	van't Hoff intermediates	Compare the formation and stability of Arrhenius and van't Hoff intermediates.	K4
	Bronsted relations - Hammett- Deyrup acidity function	Deduce Bronsted relationship for acid/ base catalysis	K4
		Assess the acidity of strong acids using Hammett acidity function.	K5
2.2		Correlate between chemical reactivity and the Hammett Acidity function	K4
2.2	Enzyme catalysis-mechanism of single substrate reaction-	Explain the mechanism of enzyme catalyzed reactions	K5
	Michaelis-Menton equation - Influence of pH, concentrationand temperature	Deduce Michaelis-Menton equation.	K4
		Illustrate the pH and Temperature dependence of enzyme catalyzed reactions	K4
	Line weaver plot and Eddi –	Explain the kinetics of reactions using Line weaver	K5

	Hofstee plot.	plot	
	noisee piot.	Analyze the mechanism of	
		enzyme kinetics using Eddi –	K4
			111
		Hofstee plot.	
		Predict the optimal	17 5
		conditions for enzyme	K5
		catalysis.	
	Fast reactions-study of kinetics by	Explain the kinetics of fast	
	stopped flow technique,	reactions by: Stopped flow	
	Relaxation methods, T and P-	technique, Relaxation	
• •	jump methods	methods, Flash photolysis	K3
2.3	Flash photolysis and Magnetic	Magnetic resonance method	
	resonance method		
III	Quant	um Chemistry-I	
	Mathematical concepts for	Apply the differentiation	
	quantum mechanics –	formulae for quantum	K3
	differentiation formula for uv , u/v ,	mechanics.	IX.
	$(u+v)$, sinx, cosx, and e^x only –		
3.1	partial differentiation – Euler's	Apply the Integration	W2
	reciprocal relation, chain rule	methods in Quantum	K3
	(statement only) – Integration	mechanical derivations.	
	methods.		
	Inadequacy of classical mechanics	Explain the limitations of	170
		classical mechanics	K2
		Explain the need for	
		Quantum mechanics.	K2
	Wave-Particle Dualism – de	Find out the de Broglie's	
	Broglie's equation – Uncertainty	Ũ	
	principle.	wave length of a moving	K3
	principie.	object.	КJ
		Solve problems on	K3
		Uncertainty principle	113
	Postulates of quantum mechanics	Summarize the postulates of	
	-significance of ψ and ψ^2	Quantum mechanics	
		Explain the significance of ψ	K2

		and ψ^2	
3.2		Evaluate the well-behaved nature of selected parameters.	К5
	Schrodinger time independent wave equation-Eigen functionsand	Deduce the Schrodinger time independent wave equation	K2
	Eigen values	Define Eigen functions and Eigen values	K1
	Operators and their properties – linear and Hermitian, angular momentum operators-	Classify the quantum mechanical operators	K2
	momentum operators- commutation relations	Explain the properties of different operators	K4
		Deduce Commutation relations for operators	
		Aapply the principles of operators in unknown systems.	К3
		Describe the dynamic	
		properties of microscopic bodies using the principles of Quantum mechanics	К2
	Orthogonalization and Normalization.	Evaluate the wave functions of different systems using the conditions of Orthogo nalization and Normalization.	К5
	Applications of wave mechanics to simple systems: Particle in a one Dimensional box	Deduce the Schrodinger wave equation for Particle in a one Dimensional box and solve it for ψ and Energy.	K4

	Particle in a 3- Dimensional box Rigid rotator Simple Harmonic oscillator - zero	Deduce the Schrodinger wave equation for Particle in a 3- Dimensional box and solve it for ψ and Energy.	K4
3.3	point energy	Construct the Schrodinger wave equation for Rigid rotator and solve it for ψ and Energy.	K3
		Deduce the Schrodinger wave equation for a Simple Harmonic oscillator and solve it for ψ and Energy.	K4
	Hydrogen atom- shapes and nodal properties of orbitals - Bohr's correspondence principle.	Prove Bohr's correspondence principle.	K3
IV	Quantum Chemistry –II		
	$\begin{array}{c c} Approximation methods - \\ Variation method-application to \\ one dimensional box, H_2, H_2^+ and \\ Helium atom \end{array}$	Apply the variation methodto Hydrogen and Hydrogenlike atoms.	К3
	Perturbation method - application to Helium atom	Apply the Perturbation method to Helium atom	K3
4.1	Born Oppenheimer Approximation	Outline the uses and failures of Born Oppenheimer Approximation	K2
	Hartree method and Hartree Fock Self-consistent Field method – many electron atoms	Outline the Hartree-Fock SCF theory of polyatomic molecules.	K3
		Apply the HFSCF method to Simple systems with more than one electrons such as Li, Be,etc.	K3
	Pauli's principle and Slater determinant.	Write the Slater determinats for a given electronic	K3

		<i>~</i> . [
		configuration.	
		Predict the solutions of the Schrodinger wave equation for poly electron systems using the Pauli's exclusion principle and appropriate Slater determinant.	K5
	LCAO- MO treatment of hydrogen molecular ion and H ₂	Deduce the normalized wave function for the BMO and ABMO using the LCAO for the wave function for H_2^+ ion	K4
4.2	Hybridization of orbitals in BeF ₂ , BF ₃ andCH ₄ .	Construct the wave functions for sp, sp^2 , sp^3 hybrid orbitals.	К3
	Huckel pi-electron theory and its applications to Ethylene, Butadiene, Benzene and Allyl system.	Construct and solve Huckel secular determinantal equation for Ethylene, Butadiene and Benzene, using HMO theory.	К3
V	Unit – 5: Surface Chemistry		
	Adsorption–physisorption and chemisorption	Differentiate Physisorption and Chemisorption	K3
5.1		Summarize the factors influencing adsorption of agas on a solid.	K2
		Calculate the volume of a gas that is adsorbed by an adsorbent.	К3
	Langmuir, BET & Gibbs adsorption isotherms - Surfacearea determination	Deduce the adsorption isotherms	K4
		Calculate the surface area of the adsorbent	К3
	Heat of adsorption determination. Adsorption from solutions -	Deduce an expression which shows the variation of	K4

[surface films.	surface film pressure with	
	surface fiffis.	film area.	
	Surface tension – effect of electrolytes, non-electrolytes	Explain the variation of surface tension of a solvent by the addition of a solute.	K2
5.2	Surface active agents –micelles and reverse micelles.	Show how the physical properties of solutions of surfactants such as molar conductance, surface tension, osmotic pressure change at critical micelle concentration.	K2
	Solublisation, micro emulsions	Discuss the methods used in finding the type of an emulsion.	K2
	Heterogeneous catalysis – semiconductor catalysis, n-and p- type surfaces	Explain the transfer of reaction from the gas phase to the surface of a semiconductor result in facilitation of the reaction.	K4
		Analyze the mechanism of the action of semiconductor.	K4
5.3		Explain the role of the catalyst in the transformation of molecules into surface radicals.	К3
	Kinetics of surface reactions involving adsorbed species – Langmuir - Hinshelwood mechanism. Langmuir – Rideal mechanism and Rideal - Eley	Describe the Langmuir – Hinshelwood mechanism for chemical reactions catalyzed on surfaces.	К2
	mechanisms.	Discuss the mechanism of photocatalytic reactions.	K2

4.MAPPING (CO, PO, PSO)

L-Low

M-Moderate

H- High

	Course Title:CHEMICAL KINETICS AND QUANTUM MECHANICS Course Code : P21CH103												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	М	Н	Н	H-	-	М	М	-	Н	Η	Η	-
CO2	Н	Н	М	Н	Н	-	Н	М	-	Н	Η	Н	L
CO3	Н	Н	М	Н	-	-	М		-	Н	М	Н	Н
CO4	Н	М	-	-	-	-	М		-	Н	М	Η	М
CO5	Н	L	-	-	-	-	М		-	Н	М	Η	Н
CO6	Н	L	Н	М	Н	-	Н	М	-	Н	Η	Η	-

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. J. Lakshmi Prabha

ELECTIVE I: FRONTIER AREAS IN CHEMISTRY

SEMESTER : I CREDITS : 4

CODE : P21CH1:A TOTAL HOURS : 60 Hours/week:4

1.COURSE OUTCOMES:

At the end of this course, the students will be able to:

S.No.	Course Outcomes	Level	Unit
1.	Categorize nanomaterials based on structure and properties	K4	Ι
2.	Outline the applications of nanomaterials in various fields	K3	Π
3.	Summarize the principles and applications of Radiation chemistry in different fields	K4	III
4.	Explain the principle of molecular recognition and supramolecular interactions	K4	IV
5.	Explain the applications of supramolecules in drug delivery systems and electronic devices	K3	IV
6.	Apply the principles of Green Chemistry in chemical processes	K3	V

2A. SYLLABUS

UNIT – I NANO MATERIALS

12 Hours

Introduction, Classification, Optical, electronic, electrical, Redox, Mechanical, Magnetic and catalytic properties of Nanomaterials, Dandling bonds - 1D and 2D Nano structures, CNT, Graphene and Fullerenes-Quantum dots - Various approaches for the synthesis of nanomaterials – top down, bottom up, controlled colloidal synthesis, impregnation technology and green synthesis.

UNIT –II APPLICATIONS OF NANOMATERIALS 12 Hours

Application of Nano materials in medicine, drug delivery, agriculture, communication, defense, Solar cells, Sensors (Chemical Sensors and Biosensors), energy storage devices and environment.

UNIT –III RADIATION CHEMISTRY 12 Hours

Measurement of dose. Dosimetric terms and units (Roentgen, REM, Rad, Gray, Sievert), inter conversions, calculation of absorbed dose-various types of dosimeters, chemical dosimeters (Fricke, Ceric sulphate and FBX)- Radiolysis of water & hydrated electron. Principle and set up of Radioimmunoassay (RIA) & Immuno-radiometric assay (IRMA)

UNIT -IVSUPRAMOLECULAR CHEMISTRY12 HoursIntroduction, types of supramolecular interactions, lock and key principle, molecularrecognition of different types of guest-host systems, Classification of receptors-cooperativeand binding in host-guest systems, molecular hosts-calixarenes, cyclodextrins, cucurbiturils.Dendrimers-Properties and applications, Supramolecular devices- Photonics, logic gates andswitching devices.

UNIT –V GREEN CHEMISTRY

12 Hours

Introduction, Anastas twelve principles, Concept of atom economy, some important techniques and directions in practicing green chemistry, use of green solvents- TiO_2 as green photo catalyst, green polymer-chitin, real world examples of green processes.

S.No.	Topics	Web Links
1	Benefits and Applications of Nanotechnology	https://www.nano.gov/you/nanotechnolog y-benefits
2	A Review on Chemical and Physical Synthesis Methods of Nanomaterials	https://www.ijraset.com/fileserve.php?FID=13212
3	The Medical, Agricultural, and Industrial Applications of Nuclear Technology	https://www.laradioactivite.com/site/pages/RadioP DF/Waltar.pdf
4	Supramolecular Chemistry-Concepts and Applications	https://www.ijsr.net/archive/v4i4/29031502.pdf
5	Industrial applications of green chemistry: Status, Challenges and Prospects	https://link.springer.com/article/10.1007/s4245 2-020-2019-6
6	Applications of green chemistry in pharmaceutical chemistry and day today life	https://www.researchgate.net/publication/3200339

2B.TOPICS FOR SELF – STUDY

2C.TEXT BOOKS

1. V.K. Ahluwalia, "Methods and Reagents of Green Chemistry: An Introduction by Green Chemistry", Alpha Science International, 2013. (**Unit-V**)

2. Asim K. Das & Mahua Das, "An Introduction to Supramolercular Chemistry", CBS Publishers & Distributors PVT ltd., 2005. (**Unit-IV**)

3. Jean- Marie Lehn, "Supramolecular Chemistry Concepts & Perspectives", Wiley –VCH, 2014. (**Unit-IV**)

4. A. Mozumder, "Fundamentals of Radiation Chemistry", Academic Press, 1999. (Unit-II)

5. F.W. Billmayer. "Textbook of Polymer Science", Wiley New York, 1991. (Unit-III)

6. Shubra Singh M.S. Ramachandra Rao, "Nanoscience and Nanotechnology: Fundamentals of Frontiers", 2013, Wiley Edition, New Delhi. (**Unit-I**)

2D.REFERENCE BOOKS

1. P. T. Anastas and J.C Warner, "Green Chemistry theory and Practice", Oxford University press,

Oxford, 1988.

2. T. Pradeep, Nano The Essentials, McGraw Hill-Professional, 2008

Unit	Course content	Learning Outcomes	Blooms Taxonomic levels of Transactions		
	Unit-I : Nano Materials		•		
1	Nano Materials –Definition	Recall the types & properties of nanomaterials	K2		
2	Nano Materials – Classification and Size dependent	Categorize the size of the nano materials with their specific properties	K4		
3	Optical and electronic properties of nano materials	Apply the properties of nanomaterials to construct suitable devices	K3		
3		Identify nanomaterials for suitable applications in opto- electronics	K3		
4	Dandling bonds – 1D and 2D Nanostructures	Explain the structure of 1D & 2D nanostructures	K2		
5	CNT and Fullerenes	Construct carbon nanotubes for drug delivery systems	K3		

3. SPECIFIC LEARNING OUTCOMES (SLOs)

6	Quantum dots : Wet methods of synthesis	Explain the wet synthetic methods for quantum dots	K2
	Unit – II: Applications of Nano	Materials	
7	Applications of Nano materials in: Medicine, drug delivery, agriculture, defense sector and communication	Apply the application of nanomaterials with specific properties in pharmaceutical, agricultural industrial and communication sectors.	K3
8	Solar cells	Develop the nanomaterials for solar cells	K3
9	Sensors – Chemical Sensors and Biosensors	Develop the nanomaterials suitable for chemical sensors & biosensors	K3
10	Super capacitors	Construct the energy storage devices	К3
1	Pollution treatment	Apply the nanomaterials in pollution control & treatment	K3
	Unit-III: Radiation Chemistry	y	
12	Measurement of dose – Dosimetric terms and units (Roentgen, REM, Rad, Gray, Sievert), interconversions	Classify the different terms used in radiation chemistry and the various units for radiation dosage	K2
13	Calculation of absorbed dose	Apply the principle of dosimeters to calculate the absorbed dose	K3
[4	Various types of dosimeters, chemical dosimeters (Fricke, Ceric sulphate and FBX)	Explain the different types of dosimeters and uses	K2
15	Radiolysis of water & hydrated electron.	Explain the mechanism of radiolysis of water and hydrated electron	K2
6	Principle and set up of Radioimmunoassay (RIA) & Immuno-radiometric assay (IRMA)	Examine the principle of RIA & IRMA for detecting the antigen- antibody concentrations	K4
	Unit – IV : Supramolecular Ch	emistry	
17	Supramolecular chemistry - Introduction	Explain the importance of supramolecular chemistry	K2

18	Supramolecular chemistry – types of supramolecular interactions	Explain the different types of supramolecular interactions in various molecules	K2
19	Lock and key principle	Illustrate the lock & key mechanism of supramolecules	K2
20	Molecular recognition of different types of guest-host systems	Explain the principle of molecular recognition of guest- host systems	K4
21	Classification of receptors- cooperative and binding in host- guest systems, molecular hosts- calixarenes, cyclodextrins, cucurbiturils.	Choose the different types of molecular receptors for host- guest systems	K3
22	Dendrimers-Properties and applications	Develop the properties of dendrimers suitable for drug delivery stystems	K3
23	Supramolecular devices- Photonics, logic gates and switching devices.	Construct various electronic devices using supramolecules	К3
	Unit-V: Green Chemistry		
24	Green Chemistry - Introduction	Outline the concepts of green chemistry	K2
25	Twelve principles of Green Chemistry	Recall the principles of green chemistry	K2
26	Concept of atom economy	Explain the concept of atom economy of a reaction	K2
27	Some important techniques and directions in practicing green chemistry	Identify the techniques and directions of green chemistry	К3
28	Use of green solvents- TiO ₂ as green photo catalyst, green polymer-chitin, real world examples of green processes.	Classify the greener solvents for greener processes	К3

3. MAPPING SCHEME FOR THE POs, PSOs and COs

L-Low

M-Moderate

H- High

Course Title: FRONTIER AREAS IN CHEMISTRY

Course Code: P21CH1:A

Course Cou	0. 121	0111.11											
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Η	Μ	Μ	L	-	Η	М	L	М	М	М	М
CO2	Н	Μ	Μ	Μ	L	-	Η	Μ	L	М	Н	М	М
CO3	Μ	Н	Н	Μ	Μ	L	Н	L	L	М	Н	М	М
CO4	Μ	Μ	Μ	Μ	Η	Μ	Μ	L	L	L	L	L	L
CO5	Μ	Μ	Μ	L	L	L	Μ	L	L	М	L	L	L
CO6	Н	М	М	М	L	М	Н	Н	L	М	М	L	М

5.COURSE ASSESSMENT METHODS

Direct

- 4. Continuous Assessment Test (Model Exams) I,II
- 5. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 6. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. I. Pradeep

ELECTIVE I: GREEN CHEMISTRY

SEMESTER : I CREDITS : 4

CODE : P21CH1:B TOTAL HOURS : 60 Hours/ week:4

1.COURSE OUTCOMES:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level	Unit	
1	Explain the principles and significance of green chemistry	K2	Ι	
2	List out the different techniques for Green synthesis			
3	Examine the different categories of energy-efficient green	K4	II	
5	transformations.			
4	Contrast the properties of commonly used green solvents	K4	III	
5	List out the green processes in industries	K4	IV	
6	Explain the source and measurements of energy generated from the	K5	V	
0	feedstock			

2A. SYLLABUS

UNIT - I PRINCIPLES & CONCEPT OF GREEN CHEMISTRY 12 HOURS

Introduction – Concept and Principles - development of Green Chemistry - Atom economy reactions – rearrangement reactions, addition reactions- atom un-economic – sublimation - elimination - Wittig reactions - Need of Green Chemistry in our day-to-day life.

UNIT - II ENERGY EFFICIENT GREEN TRANSFORMATIONS 12 HOURS Design for Energy efficient transformations – Principles, methodology and examples of the following green reactions: Photochemical reactions – Advantages - Challenges faced by photochemical process. Microwave technology on Chemistry- Microwave heating – Microwave assisted reactions - Sonochemistry, Electrochemical Synthesis - Examples of Electrochemical synthesis. Enzymatic reactions.

UNIT- III GREEN SOLVENTS & CATALYSTS FOR SYNTHESIS 12 HOURS

3.1 Water as the universal Solvent- Aqueous Phase Transformations- Properties, Methods of handling and Applications of the following as solvents for chemical transformations: Ionic Liquids – Super critical Water- Liquid CO₂ – Polyethylene Glycol.

3.2 Green Aspects of Homogeneous and Heterogeneous Catalysis - Use of Phase transfer Catalysts for green synthesis - Solid Phase transformations – Polymer supported reactions – Types of polymer supports – Merrifields Automated synthesis as a typical example of solid supported reactions.

UNIT - IV GREEN PROCESSES IN INDUSTRIES 12 HOURS

Methyl Methacrylate (MMA) - Greening of Acetic acid manufacture-Vitamin C – Leather manufacture – Types of Leather – Difference between Hide and Skin-Tanning – Reverse tanning

- Vegetable tanning - Chrome tanning-Fat liquoring - Dyeing - Application-

Polyethylene - Ziegler Natta Catalysis - Metallocene Catalysis - Eco friendly Pesticides and Insecticides.

UNIT - V BIOMASS AND MEASUREMENT OF ENVIRONMENTAL PERFORMANCE 12 HOURS

5.1 Feed Stocks – Sources – Utilization – Biological Feed Stocks – Fermentation and Plant sources of Chemicals – Glucose and cellulose as feed stock – Conversion of waste to feed stock Biomass – Energy from Biomass.

1. **2** Importance of measurement of environmental performance – lactic acid production- safer Gasoline – introduction to life cycle assessment-four stages of Life Cycle Assessment (LCA) –Carbon foot printing-green process Matrics - eco labels - Integrated Pollution and Prevention and Control (IPPC)- basics of REACH (Registration, Evaluation, Authorization ofChemicals)

2B.TOPICS FOR SELF-STUDY:

S.No	Topics	Web Links
•		
1	Green Chemistry in our day-to-day life.	https://www.youtube.com/watch?v=L2Q2q20KaEk
2	Synthesis of Organic Drugs using Green route	https://www.youtube.com/watch?v=IvgCVmwJM3c
3	Green analytical chemistry	https://www.youtube.com/watch?v=SvRe_wc0w3Q
4	Green industries	https://youtu.be/usxxFVT1eDU
5	Biomass and Carbon cycle	https://youtu.be/Lt58sBZM4dM

2C.TEXT BOOKS:

- 1. V.K. Ahluwalia, Methods and Reagents of Green Chemistry: An Introduction by Green Chemistry.
- 2. Web source : www.clri.org (Unit I-V)

2D.REFERENCE BOOKS:

1. Mike Lancaster, "Green Chemistry and Introductory Text", RSC, 2010.

2. P.T. Anastas and J.C Warner, Green Chemistry theory and Practice, Oxford University press, Oxford (1988).

- 3. P. Tundoet. al., Green Chemistry, Wiley –Blackwell, London (2007).
- 4. Protti D.Dondi et.al., Green Chemistry.
- 5. T.E Graedel, Streamlined Life cycle Assessment, Prentice Hall, New Jersey (1998).

3.SPECIFIC LEARNING OUTCOMES(SLOs)

Unit	Course Content	Content Learning Outcomes					
	Principles & Concept of Green Che	emistry					
	Introduction – Concept and Principles - development of Green Chemistry	Illustrate the Basic Concepts and Principles of Green Chemistry	K2				
Ι	Atom economy reactions – rearrangement reactions, addition reactions- atom un-economic – sublimation -elimination -Wittig reactions	Compare the Atom Economy and Un-economy concepts in reactions	K2				
	Need of Green Chemistry in our day-to-day life.	Summarize the need of Green chemistry in daily life	K2				
Π	Unit -2: Energy Efficient Green Tr	ansformations					
	Design for Energy efficient						
	transformations – Principles,	Outline the need of Green					
	methodology and examples of the	reactions in Transformations	K2				
	following green reactions:						
	Photochemical reactions – Advantages - Challenges faced by photochemical process. Microwave technology on Chemistry- Microwave heating – Microwave assisted reactions- Sonochemistry, Electrochemical Synthesis - Examples of Electrochemical synthesis. Enzymatic reactions.	List out the different techniques for Green synthesis	K4				
	Unit – 3: Green Solvents & Catalys	sts for Synthesis					
	Water as the universal Solvent-						
	Aqueous Phase Transformations-						
	Properties, Methods of handling						
3.1	and Applications of the following as solvents for chemical	Summarize the importance of Green solvents.	K2				
	transformations: Ionic Liquids -						
	Super critical Water- Liquid CO ₂ –						
	Polyethylene Glycol						

3.2	Green Aspects of Homogeneous and Heterogeneous Catalysis - Use of Phase transfer Catalysts for green synthesis - Solid Phase transformations – Polymer supported reactions – Types of polymer supports – Merrifields Automated synthesis as a typical example of solid supported reactions.		K2
	Unit -4: Green Processes In Indust	ries	
	Methyl Methacrylate (MMA) - Greening of Acetic acid manufacture-Vitamin C – Leather manufacture –Types of Leather – Difference between Hide and Skin- Tanning –Reverse tanning – Vegetable tanning –Chrome tanning-Fat liquoring – Dyeing – Application-Polyethylene - Ziegler Natta Catalysis - Metallocene Catalysis - Eco friendly Pesticides and Insecticides.	List out the various Compounds synthesised by Green process	K4
	Unit- 5: Biomass and Measuremen	t of Environmental Performance	
5.1	Feed Stocks – Sources – Utilization – Biological Feed Stocks – Fermentation and Plant sources of Chemicals – Glucose and cellulose as feed stock – Conversion of waste to feed stock Biomass – Energy from Biomass.	conversion from different	K4
5.2	Importance of measurementof environmental performance – lactic acid production-safer Gasoline – introduction to life cycle assessment-four stages of Life Cycle Assessment (LCA) – Carbon foot printing-green process Matrics - eco labels - Integrated Pollution and Prevention and Control (IPPC)- basics of REACH (Registration, Evaluation,	Measure the BiomassConversion	K5

4.MAPPING of COs with POs and PSOs

L-Low

M-Moderate

H- High

Course Tit	le: EL	ECTIV	/E I: (GREEN	N CHE	MIST	RY						
Course Cod	Course Code : P21CH1:B												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	М	Μ	-	М	-	L	L	-	Н	-	-	-
CO2	М	М	Н	-	Μ	-	-	-	-	Н	-	-	-
CO3	Н	М	М		Н	-	-	-	-	М	Н	-	-
CO4	Н	М	М	L	L	-	-	-	-	Н	Н	-	-
CO5	Н	М	Μ	L	L	-	L	L	-	М	Н	-	-
CO6	М	М	Н	L	-	-	-	-	-	М	Н	-	-

5.COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. C. Arul

Core Practical : I

INORGANIC QUANTITATIVE ESTIMATIONS AND COMPLEX PREPARATION (Lab cum Theory)

Semester : I Credits : 3

Code : P21CH1P1 Total Hrs : 75 Hours/week:5

1.COURSE OUTCOMES:

At the end of this course, the student will be able to

S.No.	Course Outcomes	Level
1	Formulate a methodology for separation of metal ions from mixtures	K6
2	Estimate metal ions present in a mixture	K5
3	Propose scheme for synthesizing inorganic complexes	K6
4	Interpret UV-Visible spectra of the given inorganic complexes	K5
5	Predict the nature of bonding in coordination compounds using UV- Vis spectra	K5
6	Choose an appropriate method for estimating metal ions in industrial effluents	K5

2A. SYLLABUS

1. TITRIMETRY AND GRAVIMETRY:

Only mixture(s) of solutions should be given for estimation (i) Cu(V) and Ni (G) (ii)Cu(V) and Zn (G) (iii)Fe(V) and Ni (G) (iv)Zn(V) and Cu (G) (v)Fe(V) and Zn (G)

2. PREPARATION OF THE FOLLOWING COMPLEXES:

Tetraamminecopper(II)sulphate Potassium trioxalatochromate (III) Potassium trioxalatoaluminate (III) Tristhioureacopper (I) chloride Tristhioureacopper (II)sulphate

3. UV – VISIBLE SPECTRAL STUDIES:

Recording UV-visible spectrum of five coordination complexes and interpretation of the spectra (demonstration only).

2B.TEXT BOOKS:

- 1. Vogel's, Text Book of Inorganic Qualitative Analysis, 4th Edition, ELBS, 1974
- 2. Vogel's, Quantitative Chemical Analysis, 6th Edition, Pearson Education, 2009

2C. REFERENCE BOOKS:

1. Jeffery G. Bassett.J, Mendhan, R. C. Vogel's "Textbook of Qualitative Chemical Analysis" 5th Edition, ELBS, 1989.

3. SPECIFIC LEARNING OUTCOMES(SLOs) :

Course Content	Learning Outcomes	Blooms Taxonomic levels of transaction
1. Titrimetry and Gravimetry	Distinguish the primary and secondary standard solutions.	К3
Only mixture(s) of solutions should be given for estimation – (i) Cu (V) and Ni (G),	Prepare solutions of different concentration units (upto ppm level)	К3
 (ii) Cu (V) and Zn (G) (iii) Fe (V) and Ni (G) (iv) Zn (V) and Cu (G) and (v) Fe (V) and Zn (G) 	Develop their skills in estimating metal ions by volumetry and gravimetry.	K5
	Develop methodology to quantitatively separate metal ionin the presence of other metal ions	K5
	Estimate quantitatively the metal ion in a mixture of metal ions	K6
 2. Preparation of Coordination Compounds i) Tetramminecopper(II)sulphate, 	Distinguish the distinct features of complexes over double salts.	K2
ii) Potassium trioxalatochromate (III)iii) Potassium trioxalatoaluminate (III)	Apply their skills and methodology to prepare a complex with high purity.	К3
iv) Tristhioureacopper(I)chloridev) Tristhioureacopper(I)sulphate	Propose scheme for synthesizing inorganic complexes	K6
3. UV – Vis Spectral characterization (demonstration only)	Justify UV-Visible absorption spectra of inorganic complexes	K6
i) Tetramminecopper(II)sulphate,	Deduce the geometry of the complex	K4

ii) Potassium trioxalatochromate	Summarize the basic principle,	
(III)	instrumentation and method of	
iii) Potassium trioxalatoaluminate	sampling involved in UV-Visible	К2
(III)	spectrophotometry.	K2
iv) Tristhioureacopper(I)chloride		
v) Tristhioureacopper (I)sulphate		

4. MAPPING SCHEME for the PO, PSOs and COs

L-Low M-Moderate					te		H	- High	l				
Course Title: INORGANIC QUANTITATIVE ESTIMATIONS AND COMPLEX PREPARATION Course Code : P21CH1P1													
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Μ	Η	Μ	Η	Η	Μ	Η	Μ	-	Η	Η	L	Η
CO2	L	Μ	Μ	Μ	L	-	Η	Η	L	Η	Η	Μ	Η
CO3	Μ	Η	Μ	Μ	Μ	L	Μ	L	L	Η	Μ	Μ	Η
CO4	L	Η	Μ	Η	Η	Μ	Η	Η	Η	Μ	Μ	L	Η
CO5	Η	Н	-	Η	Η	Η	Η	L	Μ	Η	-	Η	Η
CO6	Η	Η	Η	Η	Μ	Μ	-	-	L	Η	-	Η	Η

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. I. Sharmila Lydia

Core Practical - II ORGANIC SYNTHESIS AND SEPARATION TECHNIQUES (Lab cum Theory)

Semester: I Credits: 3

Code: P21CH1P2 Total Hrs.: 75 Hours/week:5

1.COURSE OUTCOMES:

At the end of this course, the student will be able to:

S.No.	Course Outcomes	Level
1	Choose appropriate solvent for separation of a binary mixture of organic compounds	K5
2	Test the functional groups present in organic compounds	K5
3	Plan a scheme for the synthesis of organic compounds	K6
4	Infer purity of synthesized compounds by determining their physical constants	K4
	Separate the organic compounds in a mixture by column chromatographic technique	K4
	Predict the completion of reaction by thin layer Chromatographic technique	K5

2A. SYLLABUS

I. Qualitative Analysis :

- Solvent separation of the binary mixture by Pilot & Bulk Analysis.
- Systematic Semimicro spot analysis & derivatization of Organic Compounds.

II. Preparations, Recrystallization, Determination of Melting points of the two products and Monitoring reaction mechanism by TLC:

- Cinnamic acid from Benzaldehyde.
- p-nitroacetanilide from Aniline.
- Alpha & Beta D- Glucose penta acetate from the given quantity of Glucose.
- Aspirin from the given quantity of Methyl Salicylate.
- 2,4-dinitrophenylhydrazones of Benzaldehyde and Ethyl methyl ketone.

III. Group/Demonstration Experiments:

• Separation of pure compounds by Column Chromatography.

2B.REFERENCE BOOKS :

- 1. Syed Mumtazuddin, Organic Chemistry A Laboratory Manual, Narosa Publishing House, New Delhi, 2014.
- 2. Syed Mumtazuddin, Advanced Practical Chemistry, Syed Mumtazuddin, Pragati Prakashan, Meerut, 2014. V K Ahluwalia & Sunita Dhingra, Advanced Experimental Organic Chemistry, ManakinPress, New Delhi, 2017.
- 3. Sonia Ratnani Experimental Organic Chemistry, PHI Learning Private Ltd., New Delhi, 2012

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction			
1.1	Solvent separation of the binary mixture by Pilot & Bulk Analysis	Select different types of work-up like acid-base and neutral work-up	K5			
		Determine the nature of organic compound present in the mixture	K5			
1.2	Report the Melting/Boiling Points of the pure compounds					
1.3	Systematic Semimicro spot analysis& derivatization of Organic Compounds	Analyse the given organic compound systematically and prepare a suitable derivative	K4			
1.4	Preparations, Recrystallization & determination of Melting points of	Construct scheme and develop skill of organic synthesis	K6			
	the two products 1.Cinnamic acid from benzaldehyde 2.p-nitroacetanilide from aniline	Devise purification technique to obtain pure product	K4			

3.SPECIFIC LEARNING OUTCOMES(SLOs):

	 3.Alpha & beta – D-glucose penta acetate from the given quantity of glucose 4.Aspirin from the given quantity of methylsalicylate 5.2,4-dinitrophenylhydrazones of benzaldehyde and ethyl methyl ketone 	Deduce the purity of prepared product by melting point determination.	K4
2.1	Separation of pure compounds by	Divide the mixture into individual compound	K4

	column chromatographic Separation	Select the correct eluent system	K4
		Choose column length based on the nature of impurities.	K3
2.2	Monitoring reaction mechanism by thin layer chromatography separation	Predict the progress of reaction by TLC.	K5
		Select right eluent system to separate the mixture.	K4

4. MAPPING SCHEME FOR THE PO, PSOs and Cos

L-Low

M-Moderate

H- High

Course Title: ORGANIC SYNTHESIS AND SEPARATION TECHNIQUES Course Code: P21CH1P2

		-											
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	М	М	-	М	Н	L	М	М	L	М
CO2	Н	Н	Н	Н	Н	-	М	Н	L	Н	М	М	Η
CO3	Н	Н	Н	Н	Н	-	Н	М	Н	Н	Н	Н	Н
CO4	Н	L	Н	L	М	L	L	М	L	L	L	L	L
CO5	Н	Н	М	Н	Н	-	Н	М	Н	Н	М	L	Н
CO6	Н	Н	М	Н	Н	-	Н	М	Н	Н	М	L	Н

5.COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. S. Angeline Vedha

Core Course -IV COORDINATION AND ORGANOALLIC CHEMISTRY

Semester: II Credits: 5

Code: P21CH204 Total Hrs: 90 Hours/week:6

1.COURSE OUTCOMES:

After the successful completion of this course, the students will be able to :

S.No	Торіс	Level	Unit
1.	Evaluate Crystal Field Stabilization Energy of Coordination compounds based on splitting pattern derived from CFT and MOT	К5	Ι
2.	Explain reaction-mechanism and stability constant of coordination compounds	K4	II
3.	Categorize various photochemical reactions of coordination compounds	K4	III
4.	Explain structure, bonding and stability of organometallic compounds	K5	IV
5.	Predict the products obtained from different reactions of organometallic compounds	K5	V
6.	Summarize the potential applications of organometallic compounds as industrial Catalysts	K5	V

2A. SYLLABUS

UNIT-I CO-ORDINATION CHEMISTRY 18 Hours

1.1 Nomenclature of mono and polynuclear complexes. Crystal Field theory –Splitting of d orbitals in octahedral symmetry – CFSE - strong field and weak field splitting – calculation of CFSE for dn system. Factors affecting the magnitude of splitting (10Dq). Splitting in tetrahedral symmetry – only weak field splitting – reasons. Tetragonal symmetry – differences between tetrahedral and tetragonal symmetry.

1.2 Jorgensen's relation, Spectrochemical series, Nephelauxetic effect, Jahn–Teller theorem and J-T distortion.

1.3 M.O theory of Octahedral complexes(sigma and pi bonding), M.O theory of tetrahedral and square planar complexes.

UNIT–II Kinetics and mechanisms of reactions in solutions 18 Hours

2.1 Labile and inert complexes, ligand displacement reactions – Acid hydrolysis, base hydrolysis SN1CB mechanism and anation reactions in octahedral and square planar complexes–Transeffect-theories and applications. Electron transfer (ET) reactions – electron exchange reactions-complementary and non – complementary types. Types – Inner sphere and Outer sphere processes – Applications of ET reactions in inorganic complexes. Isomerization and racemization reactions of complexes – Reactions of the coordinating ligands.

2.2 Stability of Coordination compounds: Stability constants - stepwise and overall formation constants – Factors affecting stability constant-Irwing William series- Spectrometric and Jobs methods of determining stability constant.

18 Hours

UNIT-III INORGANIC PHOTOCHEMISTRY

3.1 Laws of photochemistry- photophysical processes- Jablonski diagram- Fluorescencephosphorescence- Kasha's rule- Stoke's shift- Types of electronic transitions in metal complexes –Photochemical transitions in metal complexes

3.2 Photo-substitution, photo-oxidation, photo- reduction, photo-aquation, photo-isomerization

and Unimolecular charge-transfer

3.3 Photochemistry of Cobalt(III) complexes, Ligand field photochemistry of chromium(III) complexes, Adamson's rules, Photochemistry of ruthenium –polypyridine complexes, Photochemistry of organometallic compounds, Chemical actinometers- Reinecke' salt, Uranyl oxalate and Potassium ferrioxalate actinometer.

UNIT-IV ORGANOMETALLIC CHEMISTRY 18 Hours

4.1 General introduction of organometallic complexes (a) 18-electron compounds (b) 16-electron square planar compounds- Electron count preference- 18 electron rule- (a) neutral-ligand method(b) Donor –pair method. Hapticity - Isolobal Analogy and its limitations.

4.2 Structure and bonding of organometallic complexes with various types of ligands such as carbon monoxide (Metal Carbonyls), phosphines, Hydrides and dihydrogen complexes. η 1-alkyl,-alkenyl,-alkynyl and –aryl ligands. η 2 –alkene (metal olefins Zeise's Salt),–alkyne ligands, non

conjugated diene and polyene ligands. Dinitrogen and nitrogen monoxide (metal nitrosyls). The allyl ligand- $\eta 1$ and $\eta 3$ allyl complexes. Butadiene, cyclobutadiene, cyclooctatetraene, benzene and other arenes

4.3 Metallocenes-(a) synthesis and reactivity of cyclopentadienyl compounds (Ferrocene) –(b) bonding in bis (cyclopentadienyl) metal complexes M.O. theory, (c) fluxional behaviour of metallocenes and (d) bent metallocene complexes

UNIT-V CATALYSIS IN ORGANOMETALLICS 18 Hours

5.1. Catalyst-types of catalyst-catalytic steps-(a)Ligand co-ordination and dissociation-(b) insertion(1,1-migratory insertion reactions) and elimination - (1,2 –insertions and β -hydride elimination) (c) nucleophilic attack on co-ordinated ligands (d) oxidation and reduction , (e) oxidative addition and reductive elimination.

5.2. Hydrogenation of olefins (Wilkinson's Catalyst)- hydroformylation (Oxo process)- Oxidation of Olefins (Wacker process)-Acetic acid synthesis(Monsanto process)- Polymerisation (Ziegler Natta Catalyst) of alkenes- Oligomerisation-Metathesis- σ bond metathesis, alkene metathesis and Ene-yne metathesis- Fischer -Tropsch Synthesis.

2B.TOPICS FOR SELF-STUDY:

S.No	Topic	Weblink
1.	Applications of Coordination Compounds in Biological System	https://www.ias.ac.in/article/fulltext/reso/016/12/1273-1283 https://www.youtube.com/watch?v=c2UmZOwy2UY
2.	Transition Metal Allyl and Enyl Complexes	https://www.digimat.in/nptel/courses/video/104101100/L01 .html
3.	Biomedical Applications of Photochemistry	http://hub.hku.hk/handle/10722/129257 http://hub.hku.hk/bitstream/10722/129257/1/content.pdf

4.	NMR Spectroscopy of Organometallic compounds	https://www.researchgate.net/publication/261531508_NMR in_Organometallic_Chemistry_Von_Paul_S_Pregosin_
		https://www.youtube.com/watch?v=0GFitxSn-T0
		https://sci-hub.se/10.1016/S0065-3055(08)60118-5

2C.TEXT BOOKS

- 1. James E. Huheey, Ellen A Keiter and Richard L. Keiter, "Inorganic Chemistry: Principles of Structure and Reactivity", Pearson Education, India, 2014. (Unit I, II, IV, V)
- 2. S. Arunachalam, "Photochemistry of Inorganic compounds", 2001 (Unit-III)

2D.REFERENCE BOOKS

- 1. D.F. Shriver and P.W.Atkins, "Inorganic Chemistry", Oxford, New Delhi, 2006.
- 2. Keith F. Purcell and John C. Kotz, "Inorganic Chemistry", Saundera Goldern Sunburst Series, W.B. Saunders Company, Philadelphia, 2010.
- 3. J.D. Lee, "A New Concise Inorganic Chemistry", Oxford University Press, New Delhi, 2008.
- F. Albert Cotton, Geoffrey Wilkinson and Carlos A. Murillo, "Advanced Inorganic Chemistry" John Wiley & Sons, Singapore, 2007.
- 5. Raymond Chang, "Chemistry" Tata McGraw Hill, New Delhi, 2008.
- 6. Alan G. Sharp, "Inorganic Chemistry", Addison Weseley, New York, 1999.
- 7. Gary L. Miessler, Donald A. Tarr, "Inorganic Chemistry", Pearson Education, New Delhi, 2008.
- 8. A. W. Adamson, "Inorganic Photochemistry", John Wiley & sons, New York, 2000
- 9. B.R. Puri, L.R. Sharma and K.C. Kalia "Principles of Inorganic Chemistry" Vishal Publishing Co., Jalandhar, 2017.

3. SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Learning outcomes	Blooms Taxonomic levels of Transaction
	Unit-I		
	Nomenclature of mono and polynuclear complexes.	Identify the structure of the mono and polynuclear complexes.	K2
1.1	Crystal Field theory – Splittingof d orbitals in octahedral symmetry	Deduct the splitting of d –orbitals in octahedral complexes.	K5
	CFSE - strong field and weak field splitting – calculation of CFSE for d ⁿ system. Factors affecting the magnitude of	Evaluate Crystal Field Stabilization Energy for given complexes.	K5
	splitting (10Dq)	Recall the factors affecting the magnitude of splitting.	K1
	Splitting in tetrahedral symmetry – only weak field splitting – reasons.	Determine the splitting of d – orbitals in tetrahedral complexes.	K3
		List out the reasons for weak field splitting.	K3
	Tetragonal symmetry – differences between tetrahedral and tetragonal symmetry.	Distinguish tetrahedral and tetragonal symmetry with an example.	K4
1.2	Jorgensen'srelation,Spectrochemicalseries,Nephelauxetic effect,	Recall Jorgensen's relation, Spectrochemical series and Nephelauxetic effect.	K1
	Jahn–Teller theorem and J-T distortion.	Examine the complex for distortion based on Jahn–Teller theorem.	K4
1.3	M.O theory of Octahedral complexes(sigma and pi bonding)	Construct M.O diagram for octahedral complexes.	K3
	M.O theory of tetrahedral and square planar complexes.	Construct the M.O diagram for tetrahedral and square planar complexes.	K3
	Unit-II		

2.1	Labile and inert complexes, ligand displacement reactions – Acid hydrolysis, base hydrolysis	Classify Labile and inert complexes with examples.	K2
	SN1CB mechanism	Compare Acid hydrolysis, and base hydrolysis of complexes using SN ₁ CB mechanism	K4
	Anation reactions in octahedral and square planar complexes	Compare a <u>nation</u> reactions in octahedral and square planar complexes	K4
	Trans effect- theories and applications. Electron transfer (ET) reactions – electron	Predict the product of the reactions based on Trans effect.	K3
	exchange reactions- complementary and non – complementary types	Differentiate complementary and non – complementary reactions.	К3
	Types – Inner sphere and Outer sphere processes	Explain the Inner sphere and Outer sphere processes in the given complex.	K4
	Applications of ET reactions in inorganic complexes. Isomerisation and racemisation reactions of complexes – Reactions of the coordinating ligands.	Categorize isomerisation and racemisation reactions in complexes based on ET .	К4
2.2	Stability constants - stepwise and overall formation constants	Outline the importance of Stability constant	K2
	Factorsaffectingstabilityconstant-IrwingWilliam series-	List out the factors affecting stability constant	K1
	Spectrometric and Jobs methods of determiningstability constant.	Find stability constant based on Spectrometric and Jobs methods	K1
	Unit-III		
3.1	Laws of photochemistry- photophysical processes- Jablonski diagram-	Define Laws of photochemistry.	K1
		Explain photophysical processes using Jablonski diagram	K4
	Fluorescence- phosphorescence- Kasha's rule- Stoke's shift-	Relate Kasha's rule with fluorescence and phosphorescence	К3

	Types of electronic transitions in metal complexes	Explain CTTM, CTTL and CTTS in metal complexes.	K4
	Photochemical transitions in metal complexes Photo-substitution, photo- oxidation, photo- reduction, photo-aquation, photo- isomerization and Unimolecular charge- transfer Photochemistry of Cobalt(III) complexes	Categorize the given photochemical reactions with examples.	K4
	Ligand field photochemistry of chromium(III) complexes Adamson's rules	Apply Adamsons rule to photo- aquation reaction of chromium(III) complexes	К3
	Photochemistry of ruthenium – polypyridine complexes	Explain the Photochemistry of ruthenium –polypyridine complexes	K2
	Photochemistry of organometallic compounds	Explain the types of photochemical reactions in organometallic compounds	K2
	Chemicalactinometers-Reinecke' salt, Uranyl oxalateandPotassiumferrioxalate	Summarize the importance of actinometer.	K2
	actinometer.	Construct actinometers	К3
4.4	Unit-IV		110
4.1	General introduction of organometallic complexes (a) 18-electron compounds (b) 16- electron square planar compounds-	Relate 18- electron rule and 16- electron rule to octahedral and square planar compounds respectively.	К3
	Electron count preference- 18 electron rule- (a) neutral-ligand method (b) Donor –pair method.	Examine the stability of organometallic complexes based on 18- electron rule.	K3
	Hapticity - Isolobal Analogy and its limitations	Recall Hapticity concept.	K1
		Identify isolobal fragments	K3

4.2	Structure and bonding of organometallic complexes with ligands such as carbonmonoxide	Identify terminal and bridging carbonyls using IR stretching frequency	К3
	(Metal Carbonyls), phosphines, Hydrides and dihydrogen	Compare the basicity of the various substituted phosphines.	K5
	Structure and bonding of organometallic complexes with ligands such as η^1 -alkyl,-alkenyl,-alkynyl and –aryl ligands.	Explain the mode of bonding in organometallic complexes along with hapticity concept.	K5
	Structure and bonding of organometallic complexes with ligands such as η^2 –alkene (metal olefins Zeise's Salt),– alkyne ligands, non conjugated diene and polyene ligands.	Examine the mode of bonding in conjugated and nonconjugated systems	К3
	Structure and bonding of organometallic complexes with ligands such as Dinitrogen and	Differentiate bent and linear nitrosyl complexes.	K2
	nitrogen monoxide (metal nitrosyls)	Identify the variation of bond length in dinitrogen complex	К3
	Structure and bonding of organometallic complexes with ligands such as The allyl ligand- η^1 and η^3 allyl complexes.	Explain the structure of organometallic complexes along with hapticity concept.	K5
	Structure and bonding of organometallic complexes with ligands such as Butadiene, cyclobutadiene , cyclooctatetraene, benzene and other arenes	Identify δ bonding interaction in the organometallic complexes with ligands such as Butadiene.	K3
4.3	Metallocenes- synthesis and reactivity of cyclopentadienyl compounds (Ferrocene)	Recall the synthesis and reactivity of ferrocene.	K1
	Bondinginbis(cyclopentadienyl)metalcomplexes M.O. theory,	Construct M.O diagram of ferrocene.	K3
	Fluxional behaviour of metallocenes and bent metallocene complexes	Illustrate Fluxional behaviour of metallocenes and bent metallocene complexes	K2
	Unit-V		

5.1	Catalyst-types of catalyst- catalytic steps-(a)Ligand co-	Infer the basic catalytic steps.	K2
	ordination and dissociation-(b) insertion(1,1-migratory	Classify the types of catalyst	K4
	insertion reactions,1,2 – insertions)	Identify the nature of ligand insertions	K1
	Elimination - β-hydride elimination) nucleophilic attack on co-ordinated ligands	Analyze the product of the particular reaction and find the nature of elimination.	K4
	Oxidation and reduction , oxidative addition and reductive elimination.	Predict the product of the reaction based on oxidative addition and reductive elimination	K5
5.2	Hydrogenationofolefins(Wilkinson'sCatalyst)-hydroformylation(Oxo	Construct Tolman catalytic loops for Wilkinsons catalyst.	K3
	process)	Explain the various steps involved in Oxo process.	K5
	Oxidation of Olefins (Wacker process)-Acetic acid synthesis(Monsanto process)	Prioritize the reactions involved in Wacker process.	K5
		Explain the various reactions involved in Monsanto process.	K5
	Polymerisation (Ziegler Natta Catalyst) of alkenes- Oligomerisation	Explain Ziegler Natta Polymerisation and Oligomerisation	K5
	Metathesis-obond metathesis,alkene metathesis and Ene-yne metathesis	Compare the metathesis in σ bond, alkene and Ene-yne metathesis with an example.	K5
	Fischer-Tropsch Synthesis.	Evaluate the mechanism of Fischer —Tropsch process.	K4

4.MAPPING SCHEME FOR THE PO, PSOs and COs

L-Low

M-Moderate

H- High

3.7 1	DOC	DOC	DOC	DO 1	DOF	DOÍ	DOF	DOC	DOG	DCO 1	DCOT	DCOC	DOC
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	М	М	-	L	М	L	М	-	М	-	L	-
CO2	М	L	L	М	L	М	-	Н	-	Н	М	-	-
CO3	М	L	Н	-	-	М	L	М	-	М	-	Н	-
CO4	М	Н	L	М	L	-	-	М	-	Н	-	L	-
CO5	М	Н	L	-	L	М	L	L	-	М	М	L	-
CO6	М	H	L	-	L	L	-	М	-	L	Н	L	-

5.COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr . I. Sharmila Lydia

Core Course – V:

REACTIONS AND MECHANISMS IN ORGANIC CHEMISTRY

Semester : II Credits : 5

Code : P21CH205 Total Hours :90 Hours/week:6

1.COURSE OUTCOMES :

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Apply the molecular orbital symmetry to predict the feasibility of pericyclic reactions at different conditions	K3	Ι
2	Classify different types of Photochemical reactions and their mechanism	K4	II
3	Deduce the organic reaction mechanism based on selectivity of reagent, nature of substrate-structure and reaction condition	K5	III
4	Predict the mechanism of addition reactions with respect to different functional groups and reagents	K5	IV
5	Justify the reactivity of different oxidizing and reducing agents	K5	V
6	Decide the stereochemistry of reaction products with respect to the nature of reagent and condition	K5	V

2A. SYLLABUS

UNIT – I

PERICYCLIC REACTIONS

18 Hours

Frontier Orbital Description and correlation approach of - Woodward Hofmann rules -Regiochemistry- Stereochemical aspects- Endo/Exo selection - role of secondary orbital interaction in the following:

Diels Alder Reactions (including 1,3 dipolar additions intramolecular reaction -the retro dielsalder reaction- asymmetric diels-alder reaction) – Electrocyclic reactions- Nazarov cyclisation - Sigmatropic rearrangements (Cope, Claisen, Oxy Cope- aza Cope and Sommelet-Hauser) and Cheletropic reactions.

UNIT-II ORGANIC PHOTOCHEMISTRY 18 Hours

2.1 Photo Chemistry- I

Interaction of electromagnetic radiation with matter-Excitation- the excited state- the transfer of excitation energy(sensitization and quenching)- photoreduction, photoaddition : photoaddition of alkene and alkynes to aromatic compounds-photoaddition of alkenene to

carbonyl- Norrish Type-I & II. photodimerisation, Excimer, Exciplexes, Isomerisation of alkenes- Photostationery state, conjugated dienes and aromatic compounds **photo oxidation:** formation of peroxy compounds- oxidative coupling of aromatic compounds- Barton reaction

2.2 Photo Chemistry -II

Intramolecular reactions of carbonyl compound: Norrish type-I and Norrish type-II. $-\beta$ - Υ unsaturated carbonyl compounds. Intermolecular cyclo addition reactions-[2+2] cycloaddition reactions, Paterno – Buchi reaction- cycloaddition reactions of benzene. Photo rearrangement: cis-trans isomerisation-intramolecular photocyclisation-sigmatropic rearrangements: cyclohexadienone. Photo chemical fragmentation: Photolysis of diazoalkanes- alkyl azide-Barton reaction.

UNIT - III ADDITION REACTIONS 18 Hours

3.1 Addition to carbon-carbon multiple bonds-addition mechanism-electrophilic, nucleophilic and free-radical additions-cyclo addition, orientation and reactivity. Selected reactions - Birch reduction-catalytic semi reduction of alkynes - Hydroboration-selective hydroborating agents-oxymercuration-demercuration-epoxidation of alkene-Sharpless asymmetric epoxidation- Baeyer Villiger reaction - Michael reaction.

3.2 Addition to carbon-hetero atom multiple bonds- addition orientation and reactivity -Selected name reactions - Acyloin ester condensation, Aldol condensation, Benzoin condensation, Cannizaro reaction, Claisen reaction, Darzen's condensation, Knovenegal reaction, Mannich reaction and Stobbe condensation.

UNIT – IV CARBON-CARBON BOND FORMATION REACTIONS 18 Hours

4.1 Mechanistic details, stereochemical considerations and significance of the following reactions: Formation of carbon-carbon single bonds - Mitsunobu reaction- Reformatsky reaction - Robinson annulations - Stork Enamine alkylation- Gattermann and Gattermann-Kosch formylation reaction. **Formation of carbon-carbon double bonds** - Bamford-Stevens reaction- Horner-Wadsworth-Emmons reaction- Julia olefination-Perkin reaction. **Free radical reaction**-Hoffman-Loffler-Freytag reaction- Hundsdiecker reaction

4.2 Formation of carbon-carbon single bonds by organometallic reagents - Principles- Organo lithium compounds -LDA, R-Li- organomagnesium compounds – Organo copper compounds(Gilman's reagent) – organo cadmium compounds – organomercury compounds- organozinc compounds. **Reagents containing sulfur, boron, silicon**- sulfur ylide, sulfoxonium ylide, 9-BBN, disiamyl borane, thexyl borane, trimethyl silyl iodide

UNIT-V REAGENTS FOR OXIDATION AND REDUCTION REACTIONS 18 Hours

5.1 Preparation, properties and characteristics of the following oxidizing agents and their reaction on alkenes, aromatic rings, ketones, ketals and carboxylic acids - Chromyl chloride, Periodic acid, Pyridinium Chloro Chromate -PCC, Dessmartin, Dichloro Dicyano hydro quinone -DDQ, iodobenzenediacetate, 2- iodoxybenzoic acid - IBX, sodium hypochlorite (bleach), Lead tetra acetate-Pb(OAc)₄

5.2 Preparation, properties and characteristics of the following reducing agents and their reactions on alkenes, alkynes, aromatic rings, carbonyls, Ketals, azo groups, epoxides and carboxylic acids - LiAlH₄, Lithium trialkylborohydride, DIBAL, tri-t butyloxyaluminium hydride, NaBH₄, sodium cyanoborohydride and hydrazine.

S. No	Торіс	Weblink
1	Hetro diene-dienophile and Lewis acid mediated pericyclic reaction	https://nptel.ac.in/courses/104/106/104106077/
2	Photo induced electron transfer reaction	https://nptel.ac.in/courses/104/106/104106077/
3	Jacobsen-Katsuki-Epoxidation	http://www.namereactions.org/jacobsen-katsuki- epoxidation/
4	New Approaches to Alkene Functionalization via Dehydrogenative Metallation Catalyzed by First-Row Transition Metals	https://acswebcontent.acs.org/prfar/2014/Paper12948.html
5	Kornblum Oxidation Parikh-Doering Oxidation	http://www.iitg.ac.in/kbhabak/files/KPB_CH-420- Lectures%204_5-6_7.pdf

2B.TOPICS FOR SELF-STUDY:

2C.TEXT BOOKS:

- 1. Ratan Kumar Kar, "*Frontier Orbital and Symmetry Controlled Pericyclic Reactions*", Books and Allied Ltd, 2009. (Unit-I)
- 2. Jagadamba Singh, "*Photochemistry and Pericyclic Reactions*" New Age; Third Edition 2012 (Unit I, II)
- 3. Jerry March, "Advanced Organic Chemistry Reaction Mechanisms and Structure", Wiley India, 2006. (Unit-III, IV, V)
- 4. Richard O.C. Norman, James M. Coxon "*Principles of Organic Synthesis*" CRC Press (Special Indian Edition), 2017 (Unit-III, IV, V)

2D.REFERENCE BOOKS:

- 1. Jonathan Clayden, Nick Greeves, Stuart Warren, "Organic Chemistry" Oxford University Press, 2014.
- 2. James MorrissCoxon, Brian Halton "Organic Photochemistry", Cambridge University Press, 2011.
- 3. W. Carruthers, "*Modern Methods of Organic Synthesis*", Cambridge University Press, Cambridge , 2015.
- 4. Ahluwalia V K "Organic Reaction Mechanism" Narosa Publication, 2010.
- 5. S.M. Mukherji and S.P.Singh, "*Reaction Mechanism in Organic Chemistry*", Macmillan India Ltd., Patna, 1990

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Contents	Learning Outcomes	Blooms Taxonomic levels of Transaction
Ι	PE	RICYCLIC REACTIONS	1
1.1	Frontier Orbital Description	Construct FMO orbitals of organic molecules.	K3
	Correlation approach of – Woodward Hofmann rules Regiochemistry- Stereo chemical aspects- Endo/Exo selection - role of secondary orbital interaction in	Predict the stereo chemistry of the reaction products by making use of Woodward Hoffman rule and correlation diagram.	K3
	the following: Diels Alder Reactions (including 1,3 dipolar additions intramolecular reaction -the retro	Plan and develop the mechanism for different types of pericyclic reaction.	К3
	diels-alder reaction- asymmetric diels-alder reaction) Electrocyclic reactions- Nazarov cyclisation	Identify the theoretical feasibility of reactions at different conditions.	K3
	Sigmatropic rearrangements (Cope, Claisen, Oxy Cope- aza Cope and Sommelet-Hauser) and Cheletropic reactions.		
II	OR	GANIC PHOTOCHEMISTRY	
2.1	Photo Chemistry- I		
	Interaction of electromagnetic radiation with matter-Excitation- the excited state- the transfer of excitation energy(sensitization and quenching)	Describe the photochemical energy transfer of the reaction and its mechanism.	К2

	Photoreduction and		
	Photoaddition Photoaddition of alkene and alkynes to aromatic compounds- photoaddition of alkenene to carbonyl- Norrish Type-I & II.	Classify photo chemical reactions and the product based on the structure of the substrate.	K4
	Photodimerisation Excimer, Exciplexes, Isomerisation of alkenes- Photostationery state, conjugated dienes and aromatic	Describe Photodimerisation based on the structure of substrate and condition of the reaction.	K4
	compounds	Analyze the product ratios based on the energy transfer of photo isomerisation reaction	K4
	Photo oxidation: formation of peroxy compounds- oxidative coupling of aromatic compounds- Barton reaction	Explain the mechanism for various photo oxidation reactions.	K4
2.2	Photo Chemistry –II		
	Intramolecular reactions of carbonyl compound: Norrish type-I and Norrish type-II. $-\beta$ - Υ unsaturated carbonyl compounds.	Predict the type of photochemical reaction in carbonyl compounds.	K3
	Intermolecular cyclo addition reactions-[2+2] cycloaddition reactions, Paterno – Buchi reaction- cycloaddition reactions of benzene.	Analyse the condition of reaction and structure of the substrate to solve problems related to Intra molecular reaction of Carbonyl compound.	K4
	Photo rearrangement: cis-trans isomerisation-intramolecular photocyclisation-sigmatropic rearrangements: cyclohexadienone.	Predict the structure of product based on the reaction condition and substrate structure.	K4
	Photo chemical fragmentation: Photolysis of diazoalkanes- alkyl azide-Barton reaction.	Identify the dissociation pattern in different N- based compounds.	K3
	-	ADDITION REACTIONS	
Π		n to carbon-carbon multiple bonds	
II 	3.1 Additio	n to carbon carbon multiple bonds	
	Addition mechanism-electrophilic,	Distinguish types of addition reaction.	K4
		_	K4 K3

Selected reactions - Birch reduction- catalytic semi reduction of alkynes - Hydroboration- selective hydroborating agents- oxymercuration-demercuration- epoxidation of alkene-Sharpless	Predict the mechanism for different reactions.Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition.	K
asymmetric epoxidation- Baeyer Villiger reactionMichael reaction.	Deduce the products of different reactions.	K

Mechanistic details, stereochemical considerations and significance of the following reactions:

4.1 Forma	tion of carbon-carbon single bonds	
Mitsunobu reaction- Reformatsky reaction - Robinson annulations - Stork Enamine alkylation-	Predict the mechanism and the products of the reactions.	K5
Gattermann and Gattermann- Koschformylation reaction.	Evaluate the products obtained for the reactions based on the selectivity of reagent, nature of substrate structure and reaction condition.	K5
Formation of carbon-carbon double bonds	Predict the mechanism for different reactions.	K5
Bamford-Stevens reaction- Horner-Wadsworth-Emmons reaction- Julia olefination-Perkin reaction.	Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition.	K5
Free radical mechanism	Plan a synthesis for the formation of C-C bond.	K4
Hoffman-Loffler-Freytag reaction- Hundsdiecker reaction	Deduce the mechanism for different reactions.	K4

V 5.1	REAGENTS FOR OXID Preparation, properties and	ATION AND REDUCTION REACTIONS Predict the mechanism for different	K5
V	trimethylsilyl iodide	C-C bond using sulfur, boron and silicon based reagent.	K4
	Reagents containing sulfur, boron, silicon - sulfur ylide,sulfoxoniumylide, 9-BBN, disiamylborane, thexylborane,	Write the mechanism for different reactions.Design the synthesis for the formation of	K5
1.2	Formation of carbon-carbon single bonds by organometallic reagents Principles- Organo lithium compounds -LDA, R-Li- organomagnesium compounds – Organo copper compounds(Gilman's reagent) – organo cadmium compounds – organomercury compounds- organozinc compounds.	Plan a synthesis for the formation of C-C bond. Write the mechanism for different reactions. Evaluate different reactions based on the selectivity of reagent, nature of substrate structure and reaction condition. Plan a synthesis for the formation of C-C bond.	K4 K5 K5 K4

reactions: LiAlH4, Lithium	Evaluate different reactions based on the	K5
trialkylborohydride, DIBAL, tri-t	selectivity of reagent, nature of substrate	
butyloxyaluminium hydride,	structure and reaction condition.	
NaBH ₄ , sodium cyanoborohydride		
and hydrazine.		
	Compare the reactivity and selectivity of	K5
	different reducing agents.	
	Choose the suitable reagent while	K5
	planning synthesis.	
	Evaluate the reactivity of different boron	К5
	-	КJ
	based and metal based hydrides.	

4. MAPPING SCHEME FOR COs, POs and PSOs

M-Moderate

H- High

Course Title: REACTIONS AND MECHANISMS IN ORGANIC CHEMISTRY Course Code : P21CH205

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	М	L	-	L	-	М	Н		Н	L
CO2	Н	Н	Н	М	Н	L	-	-	Η	Н	Н	М	L
CO3	Н	Н	Η	М	Η	М	М	-	Η	-	Η	М	
CO4	Н	Η	М	М	Η	L	Η	-	М	М	Η	-	М
CO5	Н	М	Н	М	Н	-	Н	-	М	Н	Н	-	Н
CO6	Н	Н	Н	М	Н	-	Н	-	Н	Н	Н	-	М

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Mr . P.Sathiaseelan

Core Course -VI: THERMODYNAMICS AND ELECTROCHEMISTRY

Semester: III Credits: 5

Code: P21CH206 Total Hrs: 90 Hours/week:6

1. COURSE OUTCOMES:

After the successful completion of this course, the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Evaluate the macroscopic properties using classical	K5	Ι
	thermodynamics		
2	Analyze the fundamental concepts of atoms and molecules and their	K4	II
	arrangements in different energy levels by statistical approach		
3	Determine the macroscopic properties based on the translational,	K5	III
	vibrational, rotational and electronic partition functions of		
	molecules		
4	Explain the electrochemical phenomena of various energy storage	K4	IV
	systems		
5	Predict the mean ionic coefficient of different electrolytes and	K5	IV
	working principle of electrochemical cells and electrodes		
6	Justify the electro kinetic phenomena of processes at electrodes	K5	V

2A. SYLLABUS

UNIT –I CLASSICAL THERMODYNAMICS

18 Hours

1.1 Partial molar properties–chemical potential, relationship between partial molar quantities and thermodynamic functions - Gibbs-Duhem equation-calculation of partial molar quantities from experimental data,

1.2 Thermodynamic properties of real gases-activity- fugacity concept - calculation of fugacity of real gas and activity coefficient –definition and experimental determination of activity coefficients of non-electrolytes.

UNIT -IISTATISTICAL THERMODYNAMICS - I18 Hours2.1Probability - types of events-theories of probability- multiplicative nature of18 Hours

 $probability\mbox{-}permutations\mbox{ and combinations}-Stirling's\mbox{ Approximation}.$

2.2 Statistical mechanics – calculation of thermodynamic probability of system – Assembly, ensembles, phase space-definition of micro and macro states - different methods of counting macro and micro states – distinguishable and indistinguishable particles-classical statistics - derivation of Maxwell Boltzmann distribution law- Its application to gaseous system – energy, velocity distribution - concept of negative Kelvin temperature.

2.3 Quantum statistics-Bose Einstein and Fermi Dirac statistics-comparison with Maxwell-

Boltzmann statistics – application of BE statistics to photon gas-Application of FD statistics to electron gas and to thermionic emission – derivation of thermionic energy.

UNIT-III STATISTICAL THERMODYNAMICS – II 18 Hours

3.1 Partition function – characteristics - translational, rotational, vibrational, electronic partition function - expression for enthalpy, internal energy, Gibb's energy, entropy (Sackur – Tetrode equation), work function and equilibrium constant in terms of partition functions – partition function of mono atomic and diatomic molecules.

3.2 Heat capacity of solids –Derivation of Einstein's equation and its limitations, Debye T - cubed law and its significance.

3.3 Non-equilibrium thermodynamics, Steady-State-phenomenological laws and Onsager's reciprocal relations.

UNIT-IV ELECTROCHEMISTRY-I 18 Hours

4.1 Debye-Huckel-Onsager theory and its derivation –Debye –Falkanhagen and Wein's effects – extension to Debye-Huckel Onsager theory.

4.2 Activity of ions in solutions-mean ionic activity coefficients-experimental determination – Debye-Huckel limiting law-modification for higher concentrations – Bjerrummodel.

4.3 Electrochemical cells-Electrode –Electrolyte equilibrium-thermodynamic quantities from emf data – Nernst equation for electrode potential and emf of a cell – classification of electrodes(electrodes of I kind, II kind, redox and membrane) – electrolyte concentration cells (with and without transference) – liquid junction potential – its elimination – applications of concentration cells.

4.4 Electrochemical energy storage systems- primary and secondary cells-Fuel cells (efficiency- advantage-types)

UNIT-V ELECTROCHEMISTRY – II 18 Hours

5.1 Electrical double layer – theory of multiple layers at electrode- (Guoy Chapman, Stern and Helmholtz model) – double layer capacity – Electrokinetic phenomena, zeta potential and electro osmotic velocity, zeta potential and streaming potential – determination of zeta potential and interpretation of zeta potential values.

5.2 Process at electrodes-Butler-Volmer equation-high and low field approximation-Tafel equation

5.3 Electrochemical corrosion of metals, constructions and use of Pourbaix and Evans Diagrams and prevention of corrosion.

2B.TOPICS FOR SELF-STUDY

S.N	Topics	Web links
0		
1	Fugacity of a gas in a Gaseous mixture	http://pillars.che.pitt.edu/files/course_17/print
	and liquid in a liquid mixture	/Fugacity_and_Equilibrium_Calculations.pdf
		https://www.youtube.com/watch?v=t2UmK5t
		yWoU&ab_channel=Ch-
		11ChemicalEngg%2CChemistryandothers
2	Applications of Quantum Statistics	http://quantum.lassp.cornell.edu/lecture/quant
		um_statistical_mechanics
_		
3		http://www.tkm.kit.edu/downloads/ss2014_th
	Partition function of real gas	eof/Theory_F_2014.pdf
4	Types of Fuel cell	https://www.energy.gov/eere/fuelcells/types-
		<u>fuel-cells</u>
5	Different Types of Corrosion - their	https://www.brighthubengineering.com/manu
	Causes and their Prevention	facturing-technology/81750-corrosion-
		prevention-techniques/
		https://www.youtube.com/watch?v=A_rI9rN_
		VgR8&ab_channel=MagicMarks

2C.TEXT BOOKS:

- 1. M.C.Gupta, "Statistical Thermodynamics", Wiley Eastern Ltd., New Age International, New Delhi, 1998. (Unit -II, III)
- 2 R.P. Rastogi and R.R. Mishra, "An introduction to Chemical Thermodynamics", Vikas Publishing House, New Delhi, 2000. (Unit -I, II, III)
- **3.** B.R. Puri, L.R.Sharma and M.S. Pathania, "Principles of Physical Chemistry", Vishal Publishing Co., Jalandar, 2017. (**Unit –IV, V**)

2D. REFERENCE BOOKS:

- 1. R. Stephen Berry, Stuart A.Rice and John Ross, "Physical Chemistry", Oxford University Press, New York, 2000.
- 2. D.A. Mcquarrie, J.D. Simon, "Molecular Thermodynamics", University Science books, California, 1999.
- 3. F.W.Sears, Thermodynamics, "Kinetic theory of Gases and statistical mechanics", 2nd Edition, Wesley, 1972.
- 4. Horia Metiu, "Physical chemistry- Thermodynamics", Taylor and Francis, 2006.

- 5. Peter Atkins and Julio de Paula Atkins "Physical Chemistry", Oxford University Press, Oxfored, 2018.
- 6. G.W.Castellan, "Physical Chemistry", Narosa Publishing House, New Delhi, 2002.
- 7. Robert J. Silbey, Robert A. Alberty, "Physical Chemistry", John Wiley and Sons, New York, 2006.
- 8. Philip Mathews, "Advanced Chemistry", Foundation Books, New Delhi, 2003.
- 9. P.K. Ghosh, "Introduction to Photoelectron spectroscopy", John Wiley and Sons, New York , 1989.
- 10. Samuel Glasstone, "Introduction to Electrochemistry", Prentice Hall, New Delhi, 2006.
- 11. D.R. Crow, "Principles and Applications of Electrochemistry", Chapman and Hall, London, 1994.

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Learning outcomes	Blooms Taxonomic levels of Transaction	
	Unit –I Classical Thermodynamics			
I	Partial molar properties–chemical potential, relationship between partial molar quantities and thermodynamic functions	Solve the problems based on chemical potential determination	К3	
	Gibbs-Duhem equation- calculation of partial molar quantities from	Deduce Gibbs-Duhem equation	K4	
	experimental data	Calculate partial molar properties	K4	
	Thermodynamic properties of real gases- activity- fugacity concept - calculation of fugacity of real gas	Solve the problems based on fugacity	K4	
	Activity coefficient –definition and experimental determination of activity coefficients of non-electrolytes.	Evaluate the activity coefficient of non- electrolytes	К5	
	Unit-II Statistical Thermodynamic-I			
2.1	Probability – types of events-theories of probability- multiplicative nature of	Illustrate the types of events in probability	K2	
	probability	Summarize the theories of probability	K2	
	Permutations and Combinations	Solve the permutation and combination problems	К3	
	Stirling's Approximation	Apply Stirling's approximation to large systems	К3	

2.2	Statistical mechanics – calculation of thermodynamic probability of system	Examine thermodynamic probability of system	K4			
	thermodynamic probability of system	Evaluate the most probable distribution	K4			
	Assembly, ensembles, phase	Compare the types of	K2			
	space-definition of micro and macro states	ensembles				
	Different methods of counting macro and micro states	Solve problems based on microstate and microstate counting	К3			
		Evaluate statistical weight factor	K3			
	Distinguishable and indistinguishable particles	Differentiate distinguishable and indistinguishable particles	K2			
	Classical statistics - derivation of Maxwell Boltzmann distribution law- Its application to gaseous system – energy, velocity distribution - concept of negative Kelvin temperature.	Infer the significance of Maxwell Boltzmann distribution law	К3			
		Apply Boltzmann distribution law in the calculation of properties of system	К3			
2.3	Quantum statistics-Bose Einstein and Fermi Dirac statistics-comparison with	Deduce Bose-Einstein and Fermi Dirac statistics	K4			
	Maxwell- application of BE statistics to photongas- Application of FD statistics to electron	Compare three statistical thermodynamics	K2			
	gas and to thermionic emission – derivation of thermionic energy.	Explain Bose- Einstein condensation	K2			
		Evaluate the energy involved in thermionic emission	K4			
	Unit-III Statistical Thermodynamics-II					
3.1	Partition function – characteristics - translational, rotational, vibrational, electronic partition function	Manipulate the values of partition functions and to arrive the numerical values	К3			
		Calculate all types of partition functions for diatomic	K3			

		molecules	
		Compute thermodynamic parameters of system based on partition functions	K3
	Expression for enthalpy, internalenergy, Gibb's energy, entropy (Sackur – Tetrode equation), work function and equilibrium constant in	Relate thermodynamic functions with statistical thermodynamic function like partition functions	K3
	terms of partition functions .	Deduce the Sackur-Tetrode equation	K4
		Compute Statistical entropy	K3
	Partition function of mono atomic and diatomic molecules	Evaluate the partition function of mono and diatomic molecules	K5
3.2	Heat capacity of solids –Derivation of Einstein's equation and its limitations, Debye T - cubed law and its	Infer Einstein equation and Debye Equation	K4
	significance.	Calculate heat capacity of solids	К3
3.3	Non-equilibrium thermodynamics, Steady-State-phenomenological laws and Onsager's reciprocal relations.	Explain Onsager's reciprocal relation	K4
	Unit-IV Electrochemistry-I		
4.1	Debye-Huckel-Onsager theory and its derivation –Debye –Falkanhagen and	Interpret Debye-Huckel- Onsager theory	K3
	Wein's effects – extension to Debye- Huckel Onsager theory.	Explain Debye-Falkanhagen and Wein's effect	K4
4.2	Activity of ions in solutions-mean ionic activity coefficients-experimental	Manipulate mean ionic activity coefficients of solutions	K3
	determination		
	Debye-Huckel limiting law- modification for higher concentrations –	Deduce Debye-Huckel limiting law	K4
	Bjerrum model.	Illustrate the primary and secondary salt effect	K4
		Analyze the influence of ionic strength	K4
4.3	Electrochemical cells-Electrode –	Calculate EMF of a cell	K3
	Electrolyte equilibrium-thermodynamic quantities from emf data	Construct a cell diagram	K3
	Nernst equation for electrode potential	Deduce Nernst Equation	K4
	and emf of a cell	Write a EMF Series	K3
		Evaluate the feasibility of cell reaction	K5

	Classification of	Classify the types of electrodes	K2
	electrodes(electrodes of I kind, II kind,	with examples	
	redox and membrane)		
	Electrolyte concentration cells (with and	Compare concentration cell	K4
	without transference) – liquid junction	with and without transference	
	potential – its elimination – applications	relation	
	of concentration cells.	Assess liquid junction	K5
		potential	
		Compute Liquid junction	K3
		potential of concentration cells	
		Write the applications of	K3
		concentration cells	
4.4	Electrochemical energy storagesystems-	Differentiate the types of	K4
	primary and secondary cells- Fuel	energy storage system	
	cells(efficiency-advantage-types)	Categorize energy storage cells	K4
	Unit-V Electrochemistry-II		
5.1	Electrical double layer – theory of	Compare the significance of	K5
5.1	multiple layers at electrode- (Guoy	double layer theory with	IX.
	Chapman, Stern and Helmholtz model)	multiple layer theory	
	- double layer capacity	inducipie layer theory	
	Electrokinetic phenomena, zetapotential	Examine the relation between	K3
	and electro osmotic velocity, zeta	electro kinetic phenomena	i ko
	potential and streaming potential	electro kinetie phenomena	
	Determination of zeta potential and	Determine the Zeta potential	К3
	interpretation of zeta potential values.	values	
5.2	Process at electrodes-Butler-Volmer	Deduce the Butler-Volmer and	K4
	equation-high and low field	Tafel equation	
	approximation-Tafel equation	Calculate anodic and cathodic	K4
		current	
5.3	Electrochemical corrosion of metals,	Write the uses of Pourbaix and	K3
	constructions and use of Pourbaix and	Evans Diagram	
	Evans Diagrams and prevention of	-	
	corrosion.	Summarize the different	K2
		methods of corrosion	
		prevention	

4.MAPPING SCHEME FOR THE PO, PSOs and COs

L-Low **M-Moderate** H-High Course Title: THERMODYNAMICS AND ELECTROCHEMISTRY Course Code: P21CH206 PO PO5 **PO6 PO7 PO8 PO9** PO PO PO **PSO1** PSO2 PSO3 PSO4 Mappi ng 1 3 2 4 **CO1** Η Η L М Η Μ _ _ _ _ _ _ _ CO₂ Μ Η L _ М _ Μ _ _ _ _ _ _ **CO3** Μ Η L L Η -------**CO4** L L М М _ Μ _ _ _ _ _ _ **CO5** _ L Μ L Η М L _ _ _ _ _ _ **CO6** Η L L L -_ --_ --_ -

5.COURSE ASSESSMENT METHODS:

DIRECT

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

Course Coordinator: Dr. J. Christy Ezhilarasi

INORGANIC SEMIMICRO ANALYSIS & COLORIMETRIC ESTIMATIONS

Semester : II

Credits : 3

Code : P21CH2P3 Total Hrs : 75 Hours/week:5

1.COURSE OUTCOMES :

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level
1	Classify rare and common metal cations of different groups present in a mixture	K4
2	Develop analytical skills required for identifying and separating cations in a Mixture	K6
3	Choose appropriate reagents for the identification and separation of cations	K5
4	Analyze water and soil samples using the principles of Semimicro Qualitative Analysis	K4
5	Estimate metal ions colourimetrically	K5
6	Test the pollutant concentration in samples by constructing a standard graph applying Beer-Lambert's law	K6

2A. SYLLABUS

1. SEMI MICRO QUALITATIVE ANALYSIS

Analysis of a mixture containing two common and two rare cations:

Common Cations: I group - Pb, Tl, II group - Cu, Cd, Bi, III group - Al, Fe, IV group - Mn, Zn, Co, Ni, V group - Ca, Sr, Ba, VI group - Mg, Zero group - $NH_{4,..}^+$

Rare Cations - I group – W, Ti, IA group – Se, Te, II group – Mo, III group – Be, Zr, Ce, V, U, VI group - Li.

2. COLOURIMETRIC ESTIMATION

Estimation of Copper, Ferric ion, Nickel, Chromium and Manganese using Photoelectric colourimeter.

2B.TEXT BOOK :

1. V. Ramanujam, "Inorganic Semimicro Qualitative analysis", 3rd Edition, The National Publishing Company, Chennai 1974.

2C.REFERENCESBOOKS:

1. Vogel's, "Text book of Inorganic Qualitative Analysis", 4th Edition. ELBS, 1974.

3.SPECIFIC LEARNING OUTCOMES(SLOs)

S.No	No Course Content		Learning Outcomes	Blooms Taxonomic levels of Transaction
1	Semimicro Qualitative AnalysisIPb, W		Analyze common and rare cations systematically in a given inorganic mixture by semi-micro qualitative	K4
	ΙΑ	Se, Te	analysis.	
	IIACu, Cd, BiIIBMoIIIBe, Zr, Ce, V,U		Categorize the given ions into their respective groups.	K4
			Develop analytical skills required for identifying cations in a mixture.	K6
	IV V VI	Zn, Mn, Ni, Co Ca, Ba, Sr Mg, Li	Distinguish inter and intra group precipitation and separation techniques.	K4
2	Estima		Apply the principle of colourimetry in the quantitative estimation of metal ions.	К3
	Estima	tion of Copper, tion of Ferric timation of	Construct a standard graph	К3
	Nickel, Chrom	Estimation of	Estimate colourimetrically the metal ions.	K5
	Estimation of Manganese		Test the pollutants concentration in contaminated samples by constructing a standard graph applying Beer-Lambert's law	K6
			Correlate concentration of the solution and absorbance of the solution.	K4

Mapping Scheme for the PO, PSOs and Cos

L-Low

M-Moderate

H- High

	Course Title: INORGANIC SEMIMICRO ANALYSIS & COLORIMETRIC ESTIMATIONS Course Code : P21CH2P3												
Mapping			PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	М	Н	L	М	М	-	М	М	-	Н	Н	М	L
CO2	М	L	L	М	М	-	М	М	-	Н	Н	L	Н
CO3	Н	М	М	М	М	-	М	L	-	HM	Н	М	Н
CO4	М	Н	Н	Н	М	М	L	Η	L	М	Н	М	Н
CO5	М	Н	L	Н	М	-	М	М	-	Н	М	М	Н
CO6	L	Н	М	М	Η	Η	-	М	-	М	-	М	Н

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. C. Raja

Core Practical - IV QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS

Semester: III Credits: 3

Code: P21CH2P4 Total Hrs: 75 Hours/week:5

1.COURSE OUTCOME:

At the end of this course, the student will be able to:

S.No.	D. Course Outcomes	
1	Estimate organic compounds volumetrically	K5
2	Separate the components in organic mixture by paper chromatographic technique	K4
3	Choose the suitable method for purification of organic compounds	K5
4	Recommend appropriate solvents for recrystallization technique	K5
5	Estimate the amount of protein present in milk	K4
6	Compare the saponification value of different oils	K5

2A. SYLLABUS

1. QUANTITATIVE ANALYSIS

- **1.** Estimation of Phenol / Aniline.
- 2. Estimation of Amide/ Ester group.
- **3.** Estimation of Glucose. (Methylene Blue Method)
- 4. Estimation of Ethyl methyl ketone.
- 5. Estimation of Saponification value of oil.
- **6.** Estimate of Glycine.

2. PAPER CHROMATOGRAPHIC TECHNIQUES

- 1. Identification of Amino acids by Paper Chromatography.
- 2. Separation of the mixture of three dyes by two dimensional Paper Chromatography.
- 3. Separation of the mixture of three dyes by radial Paper Chromatography.

3. ISOLATION (Group/Demonstration)

1. Isolation of Casein from the given quantity of Milk

4. DISTILLATION & RECRYSTALLISATION (Group/Demonstration)

1. Distillation of the mixture of organic liquids and determination of Boiling points.

2B.REFERENCE BOOKS:

1. Syed Mumtazuddin, Organic Chemistry – A Laboratory Manual, Narosa Publishing House, New Delhi, 2014.

2. Syed Mumtazuddin, Advanced Practical Chemistry, Syed Mumtazuddin, Pragati Prakashan, Meerut, 2014

3. V K Ahluwalia & Sunita Dhingra, Advanced Experimental Organic Chemistry, Manakin Press, New Delhi, 2017.

3.SPECIFIC LEARNING OUTCOMES(SLOs)

S.No	Course content	Learning Outcomes	Blooms Taxanomic Levels of Transactions
	Quantitative Analysis		
1	Estimation of Phenol / Aniline.	Estimate phenol and aniline by bromination method.	K5
2	Estimation of Amide/ Ester group	Estimate amide/ester by hydrolysis method. Test the amide/ester content and to evaluate its concentration	К5
3	Estimation of Glucose. (Methylene Blue Method)	Estimate glucose by methylene blue method.	К5
4	Estimation of Ethyl methyl ketone	Estimate ketone by haloform method.	K5
5	Estimation of Saponification value of oil.	Compare the saponification values of different oils.	К5
6	Estimation of Nitro group	Determine the nitro group of the given sample by reduction method.	K5
7	Estimate the given quantity of glycine	Estimate glycine by colorimetry method.	К5
	Paper Chromatographic Techniqu	ues	
9	Identification of Amino acids by PC		
10	Separation of the mixture of three dyes by two dimensional PC	Develop a method to separate mixture of	K4
11	Separation of the mixture of three dyes by radial PC	amino acid and dyes by paper chromatographic method.	
	Isolation		
12	Isolation of Casein from the given quantity of Milk	Isolate casein from milk samples.	К3

	Distillation & Recrystallisation				
13	Distillation of the mixture of organic liquids and determination of Boiling points.	Separate organic liquid mixture by distillation method and to check purity of the sample by determination of its boiling point.	К3		
14	Recrystallisation of organic solid and determination of Melting points of the crude and the Pure	Test the melting point of crude and pure compound to examine the suitable recrystallization methods.	K5		
	Compound	Choose the correct solvent system for crystallization of organic solid.	K5		
		Check purity of organic compound by determination of its melting point.	K5		

4. MAPPING SCHEME for the PO, PSOs and COs for the course P21CH2P4

		L-]	Low		M	Mode	rate]	H- High			
	Course Title: QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS Course Code: P21CH2P4												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Μ	Н	-	М	-	Н	Η	Μ	-	Н
CO2	Н	Н	Н	Η	Η	-	Н	-	Η	Η	Н	М	Н
CO3	Н	Н	Н	Н	Н	-	Н	М	Н	Н	Н	-	Н
CO4	Н	Н	Н	Н	Н	-	Н	М	Н	Н	Н	-	Н
CO5	Н	Н	Н	Н	Н	-	Н	М	Н	Н	Н	М	Н
CO6	Н	Н	Н	Н	Н	-	Н	М	Н	Н	Н	М	Н

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. S. Priscilla Prabavathy

Core Course: VII

ORGANIC SPECTROSCOPY

Semester: III Credits: 5 Code: P21CH307 Total Hrs: 90 Hours/week:6

1.COURSE OUTCOMES

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Analyze the ultraviolet spectra of organic compounds	K4	Ι
2	Predict the absolute configuration of organic compounds through ORD & CD techniques	K5	Ι
3	Analyze IR Spectra of various organic compounds pertaining to functional groups and nature of bonding	K4	II
4	Interpret NMR (¹ H, ¹³ C & 2D) spectra for structural elucidation of organic molecules	K5	III
5	Decide the structure of organic molecules based on fragmentation pattern derived from mass spectra	K5	IV
6	Justify the structure of the organic compounds using UV, IR, NMR and Mass spectral data	K5	V

2A. SYLLABUS

UNIT – I

18 hours

18 hours

1.1 Ultraviolet and spectroscopy - Various electronic transitions (185 - 800 nm), Beer –Lambert Law, effect of solvent on electronic transitions, UV bands for carbonylcompounds, unsaturated carbonyl compounds, dienes , conjugated polyenes. Fischer – Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Streic effect in biphenyls.

12 Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD) - Definition, deduction of absolute configuration, octant rule for ketones, Cotton effect and ORD curves. Comparison between ORD and CD and their interrelationships.

UNIT-II

FT-IR spectroscopy - Instrumentation and sample handling. Characteristic vibrational frequencies of alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of

hydrogen bonding and solvent effect on vibrational frequencies, over tones, combination bands and Fermi resonance,

UNIT-III

Nuclear Magnetic Resonance Spectroscopy - General introduction and definition, chemical shift, spin – spin interaction, shielding mechanism. Chemical shift values and chemical exchange, effect of deuteration, complex spin- spin interaction between two, three, four, and five nuclei (first order spectra), virtual coupling, coupling constant. Simplification of complexspectra using - nuclear magnetic double resonance, contact shift reagents - solvent effects.Fourier transform technique - Nuclear Overhauser effect (NOE).

UNIT-IV

¹³C-NMR Spectroscopy - General considerations, chemical shift - Empirical calculation of chemical shift of aliphatic, Olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon.
2D NMR spectroscopy - principles and applications of COSY, NOESY, DEPT, INEPT, APT, and INADEQUATE techniques.

UNIT-V

5.1 Mass Spectrometry - Introduction, ion production – Electron Ionisation (EI), Chemical Ionisation (CI), Field Desorption (FD) and Fast Atom Bombardment (FAB), factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak, McLafferty rearrangement. Nitrogen rule. High resolution mass spectrometry. Examples of mass spectral fragmentation of organic compounds of organic compounds with respect to their structure determination.

5.2 A review of spectroscopic problems - Calculation of double bond equivalent and its application in structure elucidation. Structural elucidation of organic molecules involving IR, UV, NMR and mass data.

18 hours

18 hours

18 hours

2B.TOPICS FOR SELF-STUDY:

S.No.	Topics	Web Links
1	Characterisation Techniques of polymers, nanocomposites and biomaterials	https://www.sciencedirect.com/topics/chemistry/u v-vis-spectroscopy
2	Two-Dimensional Infrared (2D IR) Spectroscopy: Theory and Applications-	https://doi.org/10.1366%2F0003702904087398
3	Advanced NMR techniques for structural characterization of heterocyclic structures	https://www.researchgate.net/publication/2285915 78
4	¹³ C NMR spectroscopy applications to brain energy metabolism	https://www.frontiersin.org/articles/10.3389/fne ne.2013.00009/full
5	Advanced mass spectrometry-based methods for the analysis of conformational integrity of biopharmaceutical products	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3 375681/

2C.TEXT BOOKS

- P.S. Kalsi, "Spectroscopy of Organic Compounds", New Age International, New Delhi, 2016 (Unit I-V)
- Y.R. Sharma, "Elementary Organic spectroscopy- Principles and chemical Applications", S.Chand & Co., New Delhi,2013. (Unit I-V)

2D.REFERENCE BOOKS

- 1. R.M. Silverstein, G.C. Bassier and T.C. Morrill, "Spectrometric Identification of Organic Compounds", Wiley, New Delhi, 2015.
- Donald L. Pavia, Gary M. Lampman, George S. Kriz "Introduction to Spectroscopy" Cengage Learning India Private Limited, 2015.
- J.R. Dyer, "Application of Spectroscopy of Organic Compounds", Prentice Hall, New Delhi, 1978.
- 4. W.Kemp, "Organic spectroscopy", Palgrave, New York, 2008.

3. SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Blooms Taxonomic levels of Transaction	
	Unit-1: Ultraviolet Spectroscopy, Op Dichroism (CD)	tical Rotatory Dispersion (ORD) ar	d Circular
1.1	Ultraviolet Spectroscopy: Various electronic transitions (185 - 800 nm)	Classify the various electronic transitions and compare their energies	К2
	Beer – Lambert Law	Categorize high and low intensity absorptions	K4
		Analyse the molar absorptivityand absorbance of the organic compound from given data	K4
	Effect of solvent on electronic transitions	Explain the dependence of solvent polarity on the wave length of absorption	K2
	UV bands for carbonyl, unsaturated carbonyl, dienes, conjugated polyenes compounds. Fischer – Woodward rules for conjugated dienes and carbonyl compounds	Evaluate the wavelengths of absorption of the organic compound through the set of empirical rules/values	K4
	Ultraviolet spectra of aromatic and heterocyclic compounds	Illustrate the characteristic electronic transitions of aromatic and heterocyclic compounds	K2
	Steric effect in biphenyls	Interpret the structural dependency on the absorption of energy for substituted biphenyls	K2
1.2	Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD)	Relate the utility of ORD to deduct absolute configuration of	K2

	Definition of Optical Rotatory Dispersion (ORD)	organic compounds	
	Cotton effects and ORD curves.	Predict the absolute configuration	K5
	Octant rule for ketone - Deduction of	of organic compound from the	
	absolute configuration	given information.	
	Circular Dichroism	Explain the phenomenon andrelate	K4
		its utility to the deduction of	
		absolute configuration of organic	
		compounds	
	Comparison between ORD and CD	Compare the features of the	K2
	and their interrelationships	respective techniques and explain	
		their inter-relationship	
	Unit-2: FT-IR spectroscopy		
2.1	Instrumentation and sample handling	Recallthetheoryofelectromagneticspectrum and thecriterionfor organic compounds toabsorb in infra-red region	K1
	Characteristic vibrational frequencies	Categorize various absorption	K4
	of organic functional groups (alkenes,	frequencies with respect to the	
	alkynes, aromatic compounds,	functional group and vice versa	
	alcohols, ethers, phenols and amines)		
	Vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds)	Categorize various absorption frequencies with respect to carbonyl functional group and vice versa	K4
2.2		Apply the dependency and effect of H-bonding in the frequencies of absorption	K3
	Overtones, combination bands and Fermi resonance	Identify various bands in IR spectra of organic compounds	K2

3.1	Introduction and definition, chemical	Identify the nuclear spin states,	K2
5.1	shift, spin- spin interaction		K2
	sint, spin- spin interaction	magnetic moments and mechanism of absorption of	
		*	
	Chielding markening Chaminal	energy by the nucleus	TZ A
	Shielding mechanism - Chemical	Differentiate the nature of	K4
	shift values	shielding in the organic compound	17.5
		Distinguish protons of various	K5
		chemical shifts arising from different chemical environments	
			17.5
		Assess the correlation for proton	K5
		chemical shifts	
	Chemical exchange	Explain the nature of chemically	K2
		exchangeable protons	
	Effect of deuteration	Illustrate deuterium isotopic effect	K2
	Complex spin-spin interaction	Identify magnetically equivalent	K2
	between two to five nuclei (first order	and non-equivalent protons	
	spectra) - Coupling Constant and	Evaluate the splitting pattern due	K5
	Virtual Coupling	to through-bond interactions when	
		different kinds of magneticallynon-	
		equivalent nuclei are present	
		Infer the stereochemical	K4
		dependency of spin interactions in	
		organic compounds	
	Simplification of complex spectra	Predict complex NMR spectra by	K5
	using-double resonance, contact shift	applying various techniques	
	reagents - solvent effects. Fourier		
	Transform Technique - Nuclear		
	Overhauser effect		
	Unit-4: ¹³ C-NMR and 2D-NMR Spec	troscopy	
4.1	Chemical shift - Empirical calculation	Describe the theory of C-13 NMR	K1
	of chemical shift of aliphatic,	spectra	
	Olefinic, alkyne, aromatic, hetero-		

4.2	aromatic and carbonyl carbon 2D NMR spectroscopy – principles and applications of COSY, NOESY, DEPT, INEPT, APT, and INADEQUATE techniques	Infer the chemical shifts of various organic functional groups using available empirical data Predict the structure of the organic compound from the given C-13 NMR data/spectra Predict the structure of complex organic molecules by comparing through space coupling interactions	K4 K5 K5
	Unit-5: Mass Spectroscopy & Review		
5.1	Mass Spectroscopy Electron Ionisation (EI), Chemical Ionisation (CI), Field Desorption (FD) and Fast Atom Bombardment (FAB) techniques	Compare the various modes of ionization techniques in mass spectroscopy	К2
	Factors affecting fragmentation, ion analysis, ion abundance	Identify the various factors affecting fragmentation of organic compounds in mass spectroscopy	K2
	Mass spectral fragmentation of organic compounds with common functional groups, molecular ion peak, metastable peak	Illustrate the various fragmentation patterns arising from the common functional groups	K4
	McLafferty rearrangement	Analysethecharacteristicfragmentation to arrive atstructuralaspects of organic compounds	K4
	Nitrogen rule	Predict the presence or absence of nitrogen based on the molecularion peak	К3
	High resolution mass spectrometry	Express the principles of the	K2

	Mass spectral fragmentation of organic compounds with respect to their structure determination	techniques involved Predict the structure of organic compound by mass spectral fragmentation patterns	K5
5.2	Review of spectroscopic problems: Calculation of double bond equivalent and its application in structure elucidation. Structural elucidation of organic molecules involving IR, UV, NMR and mass data	Evaluate the spectral patterns of various organic compounds	K5

4.MAPPING (CO, PO, PSO)

L-]	Low		M-Moderate						H- High				
	Course Title: ORGANIC SPECTROSCOPY Course Code:P21CH307												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Η	Η	Η	-	Η	М	L	Н	L	L	L
CO2	Н	Н	М	L	L	-	L	L	L	Н	М	М	М
CO3	Н	Н	Н	Η	Н	-	Н	М	М	Η	Н	Н	Н
CO4	Н	Н	М	Η	Η	-	М	М	М	Н	Н	Н	Н
CO5	Н	Н	М	Η	М	-	М	М	М	Н	Н	Н	Н
CO6	Н	Н	М	Η	М	-	Н	М	Н	Н	Н	Н	Н

5.COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

Course Coordinator: Dr . S. Isaiah

GROUP THEORY & SPECTROSCOPY

SEMESTER : III CREDITS : 5

CORE COURSE : VIII

CODE : P21CH308 TOTAL HOURS : 90 Hours/week:6

1.COURSE OUTCOMES:

After the successful completion of this course, the students will be able to:

S.No.	Course Outcomes	Level	Unit
1.	Categorize the molecules based on symmetry elements,	K4	Ι
	symmetry operations and point groups		
2.	Evaluate the selection rules for spectroscopy and hybridization	K5	II
	schemes using the concept of molecular symmetry		
3.	Explain the principles involved in different spectroscopic	K5	III
	techniques		
4.	Interpret the structure of molecules based on IR and Raman	K5	IV
	spectroscopy		
5.	Analyze the importance of electronic spectroscopy and the	K4	IV
	energy transfer processes		
6.	Examine the structure of molecules using the principles of NMR	K4	V
	& NQR spectroscopy		

2A. SYLLABUS

UNIT-I

GROUP THEORY

18 Hours

1.1 Group theory -symmetry of elements and symmetry of operations, point groups of molecules, properties of a group and sub-group, isomorphism, cyclic, abelian, class- similarity transformation and conjugate, matrix representation – product of symmetry operations, group multiplication tables(C_n , C_{nv} and D_{nh} only) - great orthogonality theorem and its consequences, construction of character tables(C_{2v} and C_{3v}). Direct products – reducible and irreducible representation - Wave function as bases for irreducible representation.

1.2 Crystal point group, crystal symmetry - screw axis and glide plane, space groups, translational elements of symmetry, differences between molecular symmetry and crystal symmetry.

UNIT – II APPLICATIONS OF GROUP THEORY 18 Hours

Group theory and molecular electronic states- Transition moment integral – spectroscopic selection rules to IR, Raman (H₂O, NH₃, trans-N₂F₂) and electronic spectroscopy (HCHO) - projection operators and their use to construct SALC - evaluation of energies and MO's for systems - ethylene, butadiene, benzene and allyl. Hybridization schemes of orbitals – (sp, sp² and sp³)

UNIT-III MOLECULAR SPECTROSCOPY-I 18 Hours

3.1 Introductory aspects: electromagnetic radiation -representation of spectra, the line width and intensity of spectral transitions- factors influencing them- Einstein's transition probability and oscillator strength.

3.2 Infrared spectroscopy: Selection rules –harmonic and anharmonic oscillations –rotation and vibrational spectra of polyatomic molecules –CO₂,H₂O-fermi resonance –influence of rotation on the spectra of diatomic molecules –parallel and perpendicular bands.

3.3 Raman spectroscopy: Raman effect –elastic and inelastic scattering –quantum theory – origin of Stokes, Anti-Stokes and Rayleigh lines – selection rules-rotational and vibrational Raman spectra – simple molecules (CO₂, H₂O), mutual exclusion principle – Basics of Laser Raman spectroscopy.

UNIT-IV MOLECULAR SPECTROSCOPY-II 18 Hours

41 Electronic spectra: electronic spectra of molecules, Born Oppenheimer approximation, vibrational coarse structure –Frank-Condon principle, dissociation energy, predissociation, rotational fine structure of electronic vibrational transitions – Fortrat diagram- various types of transitions - auxochromes ,chromophores - bathochromic and hypsochromic shift- effect of substituent and polarity of solvent.

42 Emission spectroscopy: fate of electronically excited molecules- fluorescence, phosphorescence, emission spectra of molecules.

43 Photochemistry: Differences between photochemical and thermal reactions-Quantum yield- Photophysical processes in electronically excited molecules – Jablonski diagram-energy transfer processes – Radiative and Non-Radiative transitions –Fluorescence-relation to structure- Phosphorescence- conditions for Phosphorescence emission (spin-orbit coupling)- Photosensitization – Stern - Volmer equation derivation for quenching of luminescence and quenching of chemical reaction and its applications- Chemiluminescence.

UNIT-V MOLECULAR SPECTROSCOPY-III 18 Hours

5.1 NMR spectroscopy : Energy of interaction and its derivation, Zeeman effect, nuclear spin and applied magnetic field, Effect of 'B' on splitting – Larmor precession and its expression

relaxation processes – PMR – chemical shift - factors affecting chemical shift and coupling constant (J) – spin-spin interaction. ¹³C NMR spectroscopy – chemical exchange Problems.

52 NQR spectroscopy: characteristics of quadrupolar nucleus- effect of field gradient and magnetic field upon quadrupolar energy levels- NQR transitions – applications of NQR spectroscopy.

- 53 Lasers: Nature of stimulated emission- coherence, monochromaticity, population inversion
- cavity and mode characteristics- types of lasers- solid state, gas, chemical and dye lasers.

20.101	. TOTICS FOR SELF-STODT.							
S.No.	Topics	Web Links						
1	Problems on Group Theory	https://www.youtube.com/watch?v=UVA42JYBk Kw						
2	Challenges in application of Raman spectroscopy to biology and materials	https://pubs.rsc.org/en/content/articlepdf/2018/ra/c 8ra04491k						
3	Sensing genetic disorders with fluorescence	https://chembam.com/online- resources/experiments/sensing-with-fluorescence/						
4	Multidimensional NMR Spectroscopy	https://nptel.ac.in/courses/104/108/104108097/						
5	The Future of Laser Technology	https://now.northropgrumman.com/the-future-of- laser-technology-hint-its-bright/						

2B.TOPICS FOR SELF-STUDY:

2C.TEXT BOOKS

- 1. K.V. Raman, "Group Theory and its Application to Chemistry", Tata McGraw-Hill, New Delhi, 2000. (Unit I, II)
- 2. G. Aruldhas, "Molecular Structure and Spectroscopy", Prentice Hall, New Delhi, 2002. (Unit III, IV, V)

2D.REFERENCE BOOKS

- 1. F.A. Cotton, "Chemical Applications to Group Theory", John Wiley and Sons, New York, 2008.
- 2. Robert. L. Carter, "Molecular symmetry and Group Theory", John Wiley and Sons, New York, 2009.
- 3. B.E. Douglas and C.A. Hollingsworth, "Symmetry in Bonding and Spectra- an Introduction", Academic Press, 2012.
- 4. Robert J. Silbey, Robert A. Alberty, "Physical Chemistry", John Wiley and Sons, New York, 2006.
- 5. G.M. Barrow, "Introduction to Molecular Spectroscopy", McGraw-Hill, New York, 1964.
- 6. C.N. Banwell and E.M. McCash, "Fundamentals of Molecular Spectroscopy", 4th Edition, Tata McGraw-Hill, New Delhi, 2000.
- 7. K.V. Raman, R. Gopalan and P.S. Raghavan, "Molecular Spectroscopy", Thomson and Vijay Nicol, Singapore, 2004.
- 8. I.N.Levine, "Molecular Spectroscopy", John Wiley and Sons, New York, 1974.
- 9. A.Rahman, "Nuclear Magnetic resonance- Basic Principles", Springer-verlag, New York, 1986.

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction.
Ι	Group I	Theory	
1.1	Group theory -symmetry of elements and symmetry of operations, point groups of molecules.	Identify the point group of the given molecule.	К3
		Categorize the molecules based on the point group.	K4
	Properties of a group and sub-group, isomorphism, cyclic, abelian, class- similarity transformation and conjugate, matrix representation.	Classify a group based on the various properties of group.	K4
	Product of symmetry operations, group multiplication tables(C_n, C_{nv} and D_{nh} only)	Summarize the symmetry operations for a point group	K2
		Test for the symmetry operation to form the group from multiplication table	K4
	Great orthogonality theorem and its consequences.	Explain the Orthogonality theorem and its significance	K4
	Construction of character tables $(C_{2V} and C_{3V})$. Direct products – reducible and irreducible representation – Wave function as bases for irreducible representation	Construct the character table for a specific point group.	K3
1.2	Crystal point group, crystal symmetry - screw axis and glide plane, space groups, translational elements of	Identify the crystallographic space group.	K3
	symmetry, differences between molecular symmetry and Crystal symmetry.	Classify the crystal symmetry.	K4
Π	Applications of	Group Theory	
2.1	Group theory and molecular electronic states- Transition moment integral	Outline the selection rules for molecular spectroscopy	K2
	spectroscopic selection rules to IR, Raman (H ₂ O, NH ₃ , trans-N ₂ F ₂) and electronic spectroscopy (HCHO)	Analyze the molecular symmetry with reference to its spectroscopic outcome.	K4
	projection operators and their use to construct SALC - evaluation of energies and MO's for systems ethylene, butadiene, benzene and allyl.	Construct the SALC to calculate Pi bond energy of different systems.	К3

	Hybridization schemes of orbitals – (sp, sp ² and sp ³)	Evaluate the hybridized orbital involved in a given molecule by symmetry operation	K5
III	Molecula	r Spectroscopy-I	
3.1	Introductory aspects: electromagnetic radiation -representation of spectra, the line width and intensity of spectral	Outline the introductory aspect of spectroscopy.	K2
	transitions	Examine the factors affecting the width and intensity of spectral lines	K4
	Factors influencing them-Einstein's transition probability and oscillator strength.	Explain transition probability and oscillator strength.	K3
		Evaluate oscillator strength.	K4
3.2	Infrared spectroscopy: Selection rules –harmonic and anharmonic oscillations	Show the selection rules for harmonic and anharmonic oscillators.	K2
		Evaluate the anhormonicity value of molecule	K5
	Rotation and vibrational spectra of polyatomic molecules –CO ₂ , H ₂ O-fermi resonance	Identify vibrational and rotational frequency of poly atomic molecules.	K3
	Influence of rotation on the spectra of diatomic molecules –parallel and perpendicular bands.	Make use of rotational energy in the vibration level to understand the parallel and perpendicular bands.	K3
3.4	Raman spectroscopy: Raman effect – elastic and inelastic scattering –	Summarize the basics of Raman scattering.	K2
	quantum theory – origin of Stokes, Anti-Stokes and Rayleigh lines	Identify the factors affecting scattering	K3
	Selection rules-rotational and vibrational Raman spectra – simple molecules (CO ₂ , H ₂ O), mutual	Explain the selection rules for active molecules in Raman spectra.	K3
	exclusion principle – Basics of Laser Raman spectroscopy.	Summarize the theory of mutual exclusion principle	K2
		Predict the structure of molecule based on Raman spectra	K5
IV	Molecular	Spectroscopy-II	
4.1	Electronic spectra: electronic spectra of molecules, Born Oppenheimer approximation, vibrational coarse	Explain the basics of electronic spectrum and Frank- Condon principle.	K3
	structure –Frank-Condon principle, dissociation energy, predissociation.	Summarize the factors influencing predissociation of molecule.	K2

		Calculate dissociation energy of molecule.	K4			
	Rotational fine structure of electronic vibrational transitions – Fortrait	Make use of Fortrait diagram	K3			
	diagram	Predict the effect of rotation on vibrational transition.	K5			
	Various types of transitions - auxochromes, chromophores - bathochromic and hypsochromicshift-	Outline the various types of shifts in electronic transition.	K2			
	effect of substituent and polarity of solvent.	Analyze the effect of substituent on absorption	K3			
4.2	Emission spectroscopy: fate of electronically excited molecules-	Explain the basics of emission spectroscopy.	K4			
	fluorescence, phosphorescence, emission spectra of molecules.	Summarize the energy transfer processes occurring in emission spectra.	K2			
V	Molecular Spectroscopy-III					
5.1	NMR spectroscopy : Energy of interaction and its derivation, Zeeman effect, nuclear spin and applied	Explain the basics of nuclear magnetic resonance spectroscopy.	K2			
	magnetic field, Effect of 'B' on splitting – Larmor precession and its expression.	Calculate the energy of interaction and processional frequency.	K4			
	Relaxation processes – PMR – chemical shift - factors affecting chemical shift and coupling constant (J) –spin-spin interaction. ¹³ C NMR spectroscopy – chemical exchange- Problems.	Examine the factors affecting chemical shift and coupling constant	K4			
5.2	NQR spectroscopy: characteristics of quadrupolar nucleus- effect of field	Apply NQR principle and spectroscopy.	K3			
	gradient and magnetic field upon quadrupolar energy levels- NQR transitions – applications of NQR spectroscopy.					
5.3	Lasers: Nature of stimulated emission- coherence,	Explain the basics of LASER radiation.	K3			
	monochromaticity, population inversion .	Outline the factors affecting the LASER	K2			
	Cavity and mode characteristics- types of lasers- solid state, gas, chemical and dve lasers	Explain the different types of LASER.	K3			
	chemical and dye lasers.	Construct the LASER sources.	K3			

4. MAPPING SCHEME for the PO, PSOs and COs

L-Low

M-Moderate

H- High

	Course Title: GROUP THEORY & SPECTROSCOPY												
Course Code: P21CH308MappingPO1PO2PO3PO4PO5PO6PO7PO8PO9PSO1PSO2PSO3PSO4													
CO1	L	М	Н	Н				М	L	M		L	M
CO2	Μ	Η		Μ		М				Н		М	Н
CO3	L	Μ	Μ	Η	Μ				L	М		L	
CO4		L	Μ	Μ	Н			L		L	Н		L
CO5		L	Μ	Μ	Н	Μ	Μ			L	Н		
CO6	Μ	Н		Μ						Н		М	

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. K. Sugumar

ELECTIVE COURSE: II

BIO-INORGANIC CHEMISTRY

SEMESTER : III CREDITS : 4

CODE : P21CH3:2 TOTAL HOURS : 75

Hours/week:5

1. COURSE OUTCOMES

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain the role of metal complexes, alkali and alkaline earth metals in living systems	K5	Ι
2	Illustrate various membrane transport mechanisms in biological systems	K4	II
3	Categorize metalloproteins as redox agents and oxygen carriers based on their structure and functions	K4	III
4	Justify the role of various metalloproteins in photosynthesis	K5	III
5	Summarize the physiological and biochemical functions of minerals and their toxicity	K5	IV
6	Correlate the structure and mode of action of therapeutic drugs	K4	V

2A. SYLLABUS

UNIT-I METALS IN BIOLOGY 15 Hours

An overview of metals in Biology - Essential metals –their fate and conversion in Biological systems. Bio- organometallic chemistry – Metal ion Complexation – Thermodynamics and Kinetics – Electron transfer reactions.

1.2 Biological role of alkali metals - Alkali and alkaline earth metals complexes: Complexes of β diketone, crown ethers, cryptands and spiranes; Template Effect, macro-cyclic effect, macro-cyclic effect.

UNIT-II TRANSPORT OF METALS 15 Hours

Structure, characteristics and composition of cell membrane- The fluid model - Membrane Transport: Active and passive transport, Ping-Pong model of facilitated diffusion- Ionophores, Transporter proteins- Ion pumps – Mechanism of Na⁺ and K ⁺ pumps- Gated transport -voltage gated transport. Types of ports in ion transport – uniport- symport – Antiport. Gap Junctions

UNIT – III

METALLOPROTEINS

15 Hours

3.1 Bio-Redox agents: Fe-S proteins-Ferredoxin and Rubredoxin, HIPIPs-Functions and Structure , Non-heme iron proteins (Ferritin, Hemosiderin)

3.2 Metals as Carriers - Iron Containig Oxygen Carriers –Myoglobin – Hemoglobin – Structure and Prosthetic group –Mechanism of reversible binding of dioxygen and Cooperativity –CO binding to Fe and model Complexes containing Cobalt.- Structure and Function of Vitamin-B₁₂

3.3 Oxygen uptake proteins: Cytochrome P-450 enzyme.

3.4 Photosynthesis- Light phase and dark phase reactions, Photosystem I and II. Nitrogen Fixation- Invivo Copper proteins: Blue copper proteins(Cupredoxins)-Type I-Plastocyanin - Type III-Hemocyanin. Non blue copper proteins-Type II-Galactoseoxidase and Superoxidase dimutase .Some other copper protein -Ceruloplasmin.

UNIT- IVMETAL DIETARY REQUIREMENT AND TOXICITY15 Hours

Minerals in Diet – Requirement of various minerals in Physiological and biochemical functions-Classification of minerals according to their functions in the body – Digestion and Absorption of minerals – Mechanism of Iron Absorption – Ferroprotein secretion.

4.2 Toxicity Due to Metals - Bio-chemistry of toxic Metals Pb, Cd, Hg, Al, Fe, Cu, Pu -Detoxification by metal chelates.

UNIT-VMETALS IN MEDICINE15HoursStructure, Mode of action, Bio – availability and solubility and advantages and side effects of
the following drugs:

- 5. 1. Cancer therapy: Cis-platin and its mode of action.
- 5. 2. Radiotherapy: Radio-pharmaceuticals- Technetium. Chemotherapy basics and applications
- 5.3. Anti-rheumatic agents: Gold containing drugs and their action.
- 5.4. Psychopharmacological drugs: Lithium drugs and their mode of action.
- 5.5. Contrast enhancing agents for MRI: MRI imaging, Synthesis of Gadolinium based contrast agents.

2B.TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Alkali metals in biology	https://link.springer.com/referenceworkentry/10.10 07/978-3-319-39193-9_154-1
2	Ions transport	https://www.intechopen.com/books/ion-channels- in-health-and-sickness/introductory-chapter-ion- channels
3	oxygen uptake	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2 554684/pdf/bullwho00238-0086.pdf https://www.sciencedirect.com/science/article/abs/ pii/S1380732301800029
4	Detoxification method	https://www.scribd.com/read/149973523/A- Textbook-on-EDTA-Chelation-Therapy-Second- Edition#
5	Metals in medicine	https://www.researchgate.net/publication/2308121 00_Metals_in_Medicine

2C. TEXT BOOKS:

- 1. Asim K. Das. "Bio-Inorganic chemistry", Books and Allied Publishers, 2007. (Unit I-IV)
- 2. Subbiah Balaji, "Nanobiotechnology", MJP Publishers, Chennai, 2010. (Unit-V)

2D. REFERENCE BOOKS:

- 1. Stephen J. Lippard, Jeremy Mark Berg, "Principles of Bioinorganic Chemistry", University Science Books, 1994.
- 2. James E. Dabrowiak, "Metals in Medicine (Inorganic Chemistry: A text book series)", Willey Black well, 2017.K.J. Laidler, "Chemical Kinetics", Tata McGraw-Hill, New Delhi, 2003.

3. SPECIFIC LEARNING OUTCOMES (SLOs)

Unit/ Section	Course Content	Learning outcomes	Blooms Taxonomy Level of Transaction
Ι	MF	CALS IN BIOLOGY	
	An overview of metals in Biology - Essential metals – their fate and conversion in Biological systems. Bio-organometallic chemistry - Metal ion Complexation - Thermodynamics and Kinetics - Electron transfer reactions.	Inspect the role of metal complexes in living systems.	K5
	Biological role of alkali metals - Alkali and alkaline earth metals complexes: Complexes of β- diketone, crown ethers, cryptands and spiranes; Template Effect, macro-cyclic effect, macro-cyclic	Distinguish the role of alkali metals, alkaline earth metals and organometallic compounds in biological systems.	К5
UNIT-II	effect. TRANSPOR	RT OF METALS	
2.1	Structure, characteristics and composition of cell membrane- The fluid model - Membrane Transport: Active and passive transport, Ping-Pong model of facilitated diffusion- Ionophores, Transporter proteins- Ion pumps – Mechanism of Na ⁺ and K ⁺ pumps- Gated transport -voltage gated transport.	Examine the different mechanismsof membrane transport in biological systems.	K4
2.2	Types of ports in ion transport – uniport- symport – Antiport. Gap Junctions.		K4
Unit - III	METALLO	OPROTEINS	
3.1	Bio-Redox agents: Fe-S proteins- Ferredoxin and Rubredoxin, HIPIPs-Functions and Structure, Non-heme iron proteins (Ferritin, Hemosiderin)	Inspect the role of biomolecules that act as redox agents with relation to their structure.	K4

	Metals as Carriers - Iron Containing Oxygen Carriers – Myoglobin – Hemoglobin –	Distinguish the metal complexes that act as oxygen carriers based on their structure and functions	
3.2	Structure and Prosthetic group – Mechanism of reversible binding of dioxygen and Cooperativity – CO binding to Fe and model		K4
	Complexes containing Cobalt - Structure and Function of Vitamin-B ₁₂ . Oxygen uptake proteins:	Justify the significance of Cyt-450.	
3.3	Cytochrome P-450 enzyme		K5
3.4	Photosynthesis-Light phase and phase reactions,darkphase reactions,Photosystem I and II.NitrogenFixation-InvivoCopperproteins:Blue-copperproteins(Cupredoxins)-TypeI-Plastocyanin-TypeIIIHemocyanin.Non-bluecopperproteins-	11 1	K5

	oxidase and Superoxidedismutase. Some other copper protein - Ceruloplasmin.	
U nit - 4	METAL DIETARY REQUIREMENT	
4.1 M	1 1	hirement of various heir digestion and human body. K5
4.2	Toxicity Due to Metals - Bio- Evaluate the	toxicity and fect of metals and spectively. K5
U nit - 5	METAL DIETARY REQUIREMENT	T AND TOXICITY
5.1	Cancer therapy: Cisplatin and its mode of action.Explain the mode cisplatin.	e of action of K4
5.2	Radiotherapy: Radio- pharmaceuticals- Technetium. Chemotherapy – basics and applicationsDifferentiate radio Chemotherapy in	1.0
53	Anti-rheumatic agents: Gold Illustrate the action rheumatic agents.	n of anti- K3
5.4	Psychopharmacological drugs: Summarize the imp Lithium drugs and their mode of psychopharmacolo action.	
55	Contrast enhancing agents for MRI: MRI imaging, Synthesis of Gadolinium based contrast agents.Outline the synth agents.	hesis of contrast K2

4.MAPPING SCHEME for COs, POs and PSOs

L-Low M-Moderate									H- High	L				
	Course Title: BIO-INORGANIC CHEMISTRY													
Course Code:P21CH3:2														
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
CO1	Μ	Μ	Μ	L	Μ	-	-	-	-	Μ	L	Μ	-	
CO2	Μ	L	Μ	Н	Μ	-	-	-	-	Н	Μ	L	L	
CO3	Н	Н	Μ	Μ	Н	-	-	-	-	Μ	Н	Μ	L	
CO4	Μ	Μ	Μ	-	Н	-	-	-	-	Н	Μ	-	L	
CO5	L	Μ	L	Μ	Μ	-	-	Н	-	Μ	L	Н	-	
CO6	Н	Μ	Μ	Н	Н	-	-	Н	-	Н	L	L	Н	

5.COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. A. Mary Pamila

Core Practical: V

PHYSICAL CHEMISTRY PRACTICAL (NON ELECTRICAL)

(Lab. Cum Theory)

Semester : I1I Credits : 3

Code : P21CH3P5 Total Hrs :90 Hours/week:6

1.COURSE OUTCOMES:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level					
1	Determine the Arrhenius parameters from kinetics data						
2	Evaluate the influence of ionic strength on rate constant	K5					
3	Recommend the optimal conditions to automotive antifreeze using colligative properties						
4	Choose specific and selective adsorbents for industrial and environment related problems using Adsorption isotherms	K5					
5	Measure qualitative and quantitative parameters of components in drugs, cosmetics, food and beverages, polarimetrically						
6	Assess the heat of solution for solute and solvent in a given mixture	K5					

2A. SYLLABUS

NON-ELECTRICAL EXPERIMENTS:

- 1. Comparison of strength of acids by the study of kinetics of hydrolysis of an ester.
- 2. Evaluation of E_a and A by studying the kinetics of acid catalysed hydrolysis of ethyl acetate.
- 3. Determination of molecular weight by Rast method.
- 4. Construction of phase diagram of a congruent system.
- 5. Determination of critical solution temperature of phenol-water system and study of the effect of NaCl on miscibility temperature.
- 6. Comparison of the strength of acids by the kinetic study of iodination of acetone.
- 7. Effect of an inert salt on the kinetics of clock reaction between I⁻ and $S_2O_3^{2-}$.
- 8. Construction of adsorption isotherm for the adsorption of oxalic acid and charcoal.
- 9. Polarimetric study of the kinetics of acid catalysed inversion of sucrose.
- 10. Determination of heat of solution of a substance (benzoic acid or ammonium oxalate) by the measurement of its solubility as a function of temperature.

2B.TEXT BOOKS:

1. J.N.Gurthu and R.Kapoor, "Advanced Experimental Chemistry", S. Chand and Co., 1987.

2. Sundaram, Krishnan, Raghavan, "Practical Chemistry (Part II)", S.Viswanathan and Co.Pvt. Ltd., 1996.

2C.REFERENCE BOOKS:

1. David P. Shoemaker, Carl W. Garland and Joseph W. Nibler, "Experiments in Physical Chemistry", 5th Edition, McGraw- Hill Book company, 1989.

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
1.1	• Comparison of strength of acids by the study of kinetics of hydrolysis of an ester	Determine the rate, order, molecularity and frequency factor of the given reaction.	К5
	 Evaluation of E_a and A by studying the kinetics of acid catalysed hydrolysis of ethyl acetate Comparison of the strength of acids have 	Explain the influence of ionic strength on rate constant	К5
	 Comparison of the strength of acids by the kinetic study of iodination of acetone Effect of an inert salt on the kinetics of 	Justify the charge of the active species involved in the reaction.	К5
	clock reaction between I^{-} and $S_2O_3^{2^-}$.	Evaluate the acid strength by following the kinetics of Iodination of acetone.	K5
	• Determination of molecular weight by Rast method.	Illustrate the colligative properties.	K5
		depression constant (K_f) of a given solvent.	K5
		Determine the transition temperature of given salt hydrate.	K5
		Estimate the molecular weight of unknown compound	K5
	 Construction of phase diagram of a congruent system Determination of critical solution 	Determine the congruent melting point by constructing the phase diagram.	K5
	temperature of phenol-water systemand study of the effect of NaCl on miscibility temperature	Evaluate the critical solution temperature of partially miscible liquid systems.	K5

	Evaluate the effect of impurities on CST.	K5
• Construction of adsorption isotherm for the adsorption of oxalic acid and	Explain the factors affecting surface reactions	K5
charcoal.	Compare physisorption and chemisorption	K5
	Choose the suitable adsorption isotherms to predict thekinetics	K5
Polarimetric study of the kinetics of acid catalysed inversion of sucrose	Explain the mechanism of inversion of sugar	K5
	Evaluate the kinetic parameter of chemical reactions by polarimetry.	K5
Determination of heat of solution of a substance (benzoic acid on		K5
ammonium oxalate) by the measurement of its solubility as a function of temperature.	Predict the feasibility of the	K5

4.MAPPING OF POs, PSOs and Cos H- High; M- Moderate; L- Low

Course Title: PHYSICAL CHEMISTRY PRACTICAL

Course Co	Course Code:P21CH3P5												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	М	М	Н		М	Н		Н	Н	Н	М
CO2	Η	Н	М	Μ	Н		М	Н		Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н		Н	Н		Н	Н	Н	М
CO4	Н	Н	Η	Н	Н		Η	Н		Н	Н	Н	М
CO5	Η	Н	Н	Н	Н		Н	Н		Η	Η	Η	М
CO6	Н	Н	L	М	Н		М	Н		Н	Н	Н	М

5.COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment
- 2. Model Exam 1 & 2
- 3. Viva -Voce
- 4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr . N. Mohan

Core Practical: VI

PHYSICAL CHEMISTRY PRACTICAL (Electrical)

Semester : III Credits : 3

Code : P21CH3P6 Total Hrs :90 Hours/week:6

1.COURSE OUTCOMES:

At the end of this course, the students will be able to:

S.No.	Course Outcomes	Level
1	Utilize the potentiometer and conductivity meter to estimate the	K3
	strength of various acids, bases, halides and other salts in the given	
	mixtures	
2	Compare the reliability of results for a given experiment by	K5
	Conductometric and Potentiometric methods	
3	Construct different types of electrochemical cells	K6
4	Prioritize the methods of analysis for an experiment in a given set of	K5
	conditions	
5	Analyse the solubility product of the given salt by conductometric	K4
	and potentiometric methods	
6	Demonstrate the kinetics of reactions by Conductometric method	K2

2A. SYLLABUS

ELECTRICAL EXPERIMENTS:

- 1. Conductometric determination of dissociation constant of a weak acid.
- 2. Potentiometric determination of pK_a of an acid.
- 3. Measurement of single electrode potentials of Zn^{2+}/Zn and Cu^{2+}/Cu electrodes.
- 4. Potentiometric redox titration of $KMnO_4$ with KI or Fe^{2+} or Ce^{4+} and determination of standard redox potential.
- 5. Potentiometric estimation of mixture of halides.
- 6. Conductometric estimation of mixture of halides
- 7. Conductometric estimation of the components of buffer.
- 8. Conductometric estimation of mixture of weak and strong acids.
- 9. Conductometric precipitation titration of $BaCl_2$ with MgSO₄ and K₂SO₄.
- 10. Conductometric titration of NH₄Cl and HCl against NaOH.
- 11. Conductometric titration of mixture of alkali against HCl.
- 12. Determination of solubility product by
 - a) Conductometric method b) Potentiometry Concentration cell method
 - c) Potentiometry Chemical cell method.
- 13. Potentiometric estimation of mixture of weak and strong acids.

14. Conductometric study of the kinetics of saponification of ester- (Internal/ Demonstration only)

2B.TEXT BOOKS:

- 1. J.N. Gurthu and R. Kapoor, "Advanced Experimental Chemistry", S. Chand and Co.,1987.
- 2. Sundaram, Krishnan, Raghavan, "Practical Chemistry (Part II)", S.Viswanathan and Co.Pvt.,1996.

2C.REFERENCE BOOKS:

1.David P.Shoemaker, Carl W.Garland and Joseph W.Nibler, "Experiments in Physical Chemistry", 5th Edition, McGraw- Hill Book company, 1989.

S. No	Course Content	Course Content Learning Outcomes			
1	Conductometric determination of dissociation constant of a weak acid.	Examine the dissociation constant of weak acids by conductometric method.	К3		
2	Potentiometric determination $ofpK_a$ of an acid.	Determine the dissociation constant of weak acids by potentiometric method.	К3		
3	Measurement of single electrode potentials of Zn^{2+} / Zn and Cu^{2+} /Cu electrode	Measure electrode potentials of various electrodes	K6		
4	Potentiometric redox titration of KMnO ₄ with KI or Fe^{2+} or Ce^{4+} and determination of standard redox potential.	Interpret potentiometric redox titrations for the estimation of the given analyte.	К5		
5	Potentiometric estimation of mixture of halides.	Estimate the mixture of halides by potentiometry.	K4		
6	Conductometric estimation of mixture of halides	Estimate mixture of halides by conductometric method.	K4		

3. SPECIFIC LEARNING OUTCOMES (SLOs)

7	Conductometric estimation of the components of buffer	Estimate the amount of different components in buffer mixtures.	K4
8	Conductometric estimation of mixture of weak and strong acids	Evaluate the concentration of mixture of acids by conductometric method.	K5
9	Conductometric precipitation titration of BaCl ₂ with MgSO ₄ and K ₂ SO ₄	Interpret conductometric precipitation titration for the estimation the given analyte.	K5
10	Conductometric titration of NH4Cl and HCl against NaOH.	Estimate the NH ₄ Cl and HCl present in a mixture conductometrically.	K4
11	Conductometric titration of mixture of alkali against HCl	Estimate the components present in a mixture of bases by conductometric method	K4
12	Determination of solubility product by a) Conductometric method b) Potentiometry - Concentration cell method c) Potentiometry - Chemical cell	Evaluate the solubility product of sparingly soluble salts by conductometric and potentiometric method	K5
13	method. Potentiometric estimation of mixture of weak and strong acids	Estimate the components of mixture of weak and strong acids by potentiometric method	K4
14	Conductometric study of the kinetics of saponification of ester- (Internal/ Demonstration only)	Identify the order of saponification of ester by following the kinetics conductometrically.	K2

4. MAPPING SCHEME for the PO, PSOs and COs L-Low M-Moderate

	ourse Title: PHYSICAL CHEMISTRY PRACTICAL ourse Code : P21CH3P6												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Н	М	L	-	-	-	Н	М	М	Н
CO2	Н	Н	М	Н	Н	L	L	-	-	Н	Н	Н	Н
CO3	Н	Н	Н	М	М	-	-	L	L	Н	М	L	Н
CO4	Н	Н	М	Н	Н	-	L	М	М	Н	М	L	М
CO5	М	Н	-	Н	Н	L	-	-	-	М	Н	-	Н
CO6	М	Н	М	М	Н	М	L	-	L	Н	М	М	L

H- High

5. Course Assessment Methods

Direct

1. Continuous Assessment

2. Model Exam 1 & 2

3. Viva -Voce

4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. J. R. Beula Thavamani Esther Rani

PROJECT PREPARATORY COURSE

Generic Elective:

(Theory)

Semester : III Credits: 1

1.COURSE OUTCOMES:

At the end of this project, the students will be able to:

Sl.	Course Outcomes	Level	Unit
No			
1	Describe the Basic Elements of Research	K2	Ι
2	Choose the right sources of literature and the right tools for analysis and interpretation	K2	II
3	Scheme a suitable methodology for the project work	K3	III
4	Identify a problem for the project work.	K3	IV
5	Prepare an Original Document	K3	V

2. SYLLABUS

Unit I : Elements of Research

Basic elements of Research – Objectives – Types of research – Steps involved in research – Identifying a problem for project- Evolving strategies for solving – Designing feasible experiments – planning and scheduling - Developing the hypothesis.

Unit II: Research Design

Preparing the research design - Determining sample design - Collecting the data - Execution of the project - Analysis of data - Hypothesis testing - Generalizations and interpretation - Preparation of the report

Unit III: Review of Literature

Sources of literature- primary – secondary – tertiary – importance and characters of Monographs, Journals, Notes and Communications. Methods of literature survey – Abstracts and Indexing – Computer aided searches – Use of Search engines and advanced searches using Google Scholar, Scifinder– PubMed , RSC, PDB etc. Ordering and scheming the literature review – Identification of gaps in literature

Unit IV: Project report and Presentation

Planning a project report – criteria for selection of the titles and subtitles –Scientific language for writing – Tenses and voices for the Introduction –Review and Report. Language editors and raters and their usage- Bibliography preparation – styles and types – Methods of including references in MsWord – Mendeley Cite and Microsoft End note for reference. Simple tips for usage of MS word, Excel, power point, Origin and OneNote for project report preparation

Unit V: Originality and Research Ethics

Research Ethics - Codes and Policies for Research Ethics - Promoting Ethical Conduct in Science - Animal Used In Research - Ethical Issues In Agricultural Research

Intellectual Property Rights (IPR): Introduction and the need for IPR – Patents – Copyrights – Trademarks – Geographical Indications – industrial Designs – IP Administration in India – Plagiarism and its Detection - Redundant publications - Conflicts of interest - Research misconduct – Fabrication – Falsification – Originality Checker tools and databases online and offline

REFERENCES

1. Research and Writing across the disciplines - PRamadass and A. Wilson Aruni, MJP Publishers, Chennai, 2009.

Code: P21CH3PJ Total Hrs : 15 Hours/ week:1

3 Hours

3 Hours

3 Hours

3 Hours

3 Hours

2. A Guide to Research and Publication Ethics A Text Book As per UGC Guidelines for UG, PG, MPhil and PhD Partha Prathim Ray, New Delhi Publishers, 2022,

Course Content	Learning Outcomes	Blooms Taxonomic Levels of Transaction
Choosing a suitable area of research	Discover a suitable topic relevant to real life challenges	K2
	Predict open ended Problems	K3
	Develop analytical thinking	К3
	Apply various tools to cite Literature	К3
Objectives and Methodology	Devise the methodology	K4
	Plan for the execution of the project work	K4
	Sketch the work plan	K3
Analysis of Result	Solve the problem through various techniques and methodologies	K6
Discussion based on data analyzed	Compile and interpret project findings	K6
Report Preparation	Justify results in logical and scientific way	K6
	Summarize the findings	K5
Viva-Voce	Defend his findings	K5
	Justify the conclusion	K6
Communicating to Journal	Develop critical thinking	K6
	Plan for collaborations	K4
	Prepare research article	K6

3. SPECIFIC LEARNING OUTCOMES (SLOs)

MAPPING SCHEME for the PO, PSOs and COs

4.

M-Moderate

H- High

Course Title: PROJECT PREPARATORY COURSE Course Code: P21CH3PJ

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Н	-	М	Н	Μ	Μ	М	-	Н	Н	L	-
CO2	Н	М	М	Н	Н	Н	М	-	-	Н	Н	-	М
CO3	Н	Н	Н	Н	Н	Η	-	М	Η	Н	Н	L	Н
CO4	-	-	Н	L	L	Η	-	Η	Η	Н	М	Н	-
CO5	Н	Η	Н	Н	Н	М	М	М	Μ	Н	Н	М	Н
CO6	Н	М	Н	М	М	Н	Н	Н	-	Н	Н	Н	Н

5. Course Assessment Methods

Direct

Internal Tests 1 & 2

Course Coordinator: Dr. S. Angeline Vedha

Core Course: IX

INORGANIC SPECTROSCOPY

Semester : IV Credits:5 Code : P21CH409 Total Hrs: 90 Hours /week:6

1. COURSE OUTCOMES

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Explain the metal-ligand interaction in transition metal complexes through electronic spectra	K5	Ι
2	Justify the structure and bonding of coordination compounds using IR and Raman Spectroscopy	K5	II
3	Analyze the splitting pattern of NMR signals with respect to different nuclei present in inorganic compounds.	K4	III
4	Analyze the EPR spectra of Inorganic compounds based on the effect of spin-orbit coupling and crystal field effects.	K4	IV
5	Examine the effect of magnetic and quadrupole fields on Mossbauer spectra of simple Molecules.	K4	V
6	Deduce the structure of coordination compounds using data derived from Electronic, IR, Raman, NMR, ESR and Mossbauer spectroscopic techniques.	K5	I - V

2A. SYLLABUS

UNIT-I ELECTRONIC SPECTROSCOPY 18 HOURS

Electronic Spectroscopy of complexes- characteristics of d-d transitions, selection rules for d-d transitions- Term symbols for d – ions, Use of Orgel diagrams for d^{1-10} octahedral and tetrahedral complexes, Tanabe-Sugano diagrams for d¹and d⁶ octahedral complexes only. Effect of Jahn -Teller distortion and spin - orbit coupling on spectra. Charge transfer spectra (LMCT and MLCT)- Intensity of Charge transfer transitions in inorganic and coordination compounds , Electronic absorption spectra of low spin and strong field complexes.

UNIT-II IR ANDRAMAN SPECTROSCOPY 18 Hours

Combined uses of IR and Raman Spectroscopy in the structural elucidation of simple molecules like H_2O , $ClF_3 NO_3^{-}$, and ClO_3^{-} . Effect of Co-ordination on ligand vibrations – uses of group vibrations in the structural elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate, nitrate,

sulphate and dimethyl sulphoxide. Effect of isotopic substitution on the vibrational spectra of molecules. Differentiation of coordinated water and lattice water. Applications of IR to identify terminal and bridging carbonyl group.

UNIT-III NMR SPECTROSCOPY 18 Hours

Applications of NMR to inorganic compounds-(spin-spin coupling involving different nuclei ${}^{1}H,{}^{31}P,{}^{13}C$) NMR of metal hydrides(H¹ NMR)- Metal carbonyls(C¹³ NMR)- F¹⁹, P³¹ NMR. Effect of quadrupolar nuclei (${}^{2}H,{}^{10}B,{}^{11}B$) on the ${}^{1}H$ NMR spectrum. NMR of paramagnetic molecules – isotopic shifts, contact and Pseudo-contact interactions- lanthanide shift reagents.

UNIT- IV EPR SPECTROSCOPY 18 HOURS

Basic principle – characteristics of 'g' –Hyperfine splitting –selection rules – factors affecting the magnitude of the 'g' values. 'g' value of transition metal ions –dependence on spin – orbit coupling and crystal field effects. EPR of d¹ to d⁹ systems of first transition series. Tetragonally distorted copper complexes – Zero-field splitting and Kramer's degeneracy. Solid state EPR – spin-lattice relaxation – spin-spin relaxation – exchange processes.

UNIT-V Magneto-chemistry & Mossbauer Spectroscopy 18 HOURS

5.1 Magneto-chemistry

Determination of magnetic susceptibility by Guoy and Faraday methods. Magnetic properties of low spin and high spin octahedral complexes of first row transition metals- Curies law, Curies-Weiss law, Curie temperature and Neel temperature, Types of Magnetism- Paramagnetism, Diamagnetism, Ferro and anti-ferromagnetism.

5.2 Mossbauer Spectroscopy:

Principle- Doppler effect –Recoil energy- isomer shift – quadrupole effect – magnetic interactions - magnetic field on spectra –simple applications to iron and tin compounds.

2B.TOPICS FOR SELF-STUDY:

S.No	Topics	Web link
1	Microstates in electronic spectroscopy	https://www.youtube.com/watch?v=oUm493PIPJA
2	Transition Metal Cyclopentadienyl	https://www.youtube.com/watch?v=52oh47-Kti4
	Nitrosyl Complexes	
3	Fluxional behavior in NMR	https://www.youtube.com/watch?v=teXjVQM2fsw
	spectroscopy	
4	Spin orbit coupling	https://www.youtube.com/watch?v=Np6KRP-tl-
		o&pbjreload=101
5	Mossbauer spectrum- spin cross over &	https://www.youtube.com/watch?v=pbMNfO-
	Zeeman splitting	Z5iA

2C.TEXT BOOK(S):

1. B.K. Sharma, "Spectroscopy", Krishna Prakashan, New Delhi, 1993. (Unit I-V)

2.

- 3. P.S. Sindhu, "Molecular Spectroscopy" Tata McGraw Hill, 2000.
- 4. H. Kaur, "Spectroscopy" Pragati Publications, Meerut, 2001.
- 5. V.B.Pathania, "Spectroscopy" Campus Books, New Delhi, 2002.

2C.REFERENCE BOOKS:

1.R. S. Drago, "Physical Methods in Inorganic Chemistry", East West Publishers,

New Delhi, 1965.

- 2. EAVEbsworth, "Structural Methods in Inorganic Chemistry", ELBS, Oxford, 1988.
- **3.** A. Abdul Jameel "Application of Physical Methods to Inorganic compounds" JAN Publication, Trichy, 2003.
- **4.** James E. Huheey, Ellen A Keiter and Richard L. Keiter, "Inorganic Chemistry: Principles of Structure and Reactivity", Pearson Education, India, 2014.

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic Levels of Transaction
	Unit- I ELECTRON	NIC SPECTROSCOPY	
1	Electronic Spectroscopy of complexes - characteristics ofd- d transitions - selection rules for d-d transitions	Identify the types and the rules governing the transitions in d-block elements	К3
	Term symbols for d – ions	Categorize the term symbols of various microstates in d-block ions	K4
	Use of Orgel diagrams for d ¹⁻¹⁰ octahedral and tetrahedral complexes	Analyze the relative energies of electronic terms in transition metal complexes	K4
	Tanabe-Sugano diagrams for d ¹ and d ⁶ octahedral complexes only	Explain the absorptions in the electronic spectra of coordination compounds	K5
	Effect of Jahn -Teller distortion and spin - orbit coupling on spectra	Examine the effect of Jahn -Teller distortion and spin - orbit coupling on the electronic transitions	K4
	Charge transfer spectra(LMCT and MLCT) - Intensity of Charge transfer transitions in inorganic and coordination compounds	Examine the interaction between MOs of metal and ligand in excited state	K4
	Electronic absorption spectra of low spin and strong field complexes	Compare the absorption spectra of low spin, strong field complexes	K4
	Unit- II IR AND RA	MAN SPECTROSCOPY	
2	Combined uses of IR and Raman Spectroscopy in the structural elucidation of simple molecules like H ₂ O, ClF ₃ , NO ₃ ⁻	Categorize the structure of simple molecules using IR and Raman spectroscopy	K4

	and ClO ₃ ⁻	Analyze the offect of econdination	17.4
	Effect of Co-ordination on ligand vibrations	Analyze the effect of coordination of the ligand stretching frequencies	K4
	Uses of group vibrations in the structural elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate, nitrate, sulphate and dimethyl sulphoxide	Deduct the structure of metal complexes containing different types of ligands	K5
	Effect of isotopic substitution on the vibrational spectra of molecules	Assess the effect of isotopic substitution	K5
	Differentiation of coordinated water and lattice water	Distinguish coordinated and lattice water molecules	K4
	Applications of IR to identify terminal and bridging carbonyl group	Compare the vibrational frequencies of coordinate carbonyl group using IR	K5
	Unit- III NMR SP	ECTROSCOPY	
3	Applications of NMR to inorganic compounds-(spin- spin coupling involving different nuclei ¹ H, ³¹ P, ¹³ C)	Classify the spin-spin coupling among various nuclei in inorganic compounds	K4
	NMR of metal hydrides (H ¹ NMR), Metal carbonyls (C ¹³ NMR), F ¹⁹ , P ³¹ NMR	Analyze the NMR of different nuclei in inorganic compounds	K4
	Effect of quadrupolar nuclei (² H, ¹⁰ B, ¹¹ B) on the ¹ H NMR spectrum	Categorize the splitting pattern by coupling with quadrupolar nuclei	K4
	-	Examine the NMR of paramagnetic compounds	K4

Unit- IV EPR	SPECTROSCOPY		
EPR Spectroscopy - Basic principle - characteristics of 'g' - Hyperfine splitting - selection rules	Analyze the interaction between magnetic moments of nucleus and electrons in atoms and the rules governing it	K4	
Factors affecting the magnitude of the 'g' values - 'g' value of transition metal ions - dependence on spin – orbit coupling and crystal field effects	Examine the effect of spin orbit coupling and crystal field effects on the magnitude of g value in ions of d-block	K4	
EPR of d ¹ to d ⁹ systems of first transition series	Categorize the EPR of 1 st row d- block compounds	K4	
Tetragonally distorted copper complexes	Inspect the effect of tetragonal distortion (elongation) in octahedral copper complexes	K4	
Zero-field splitting and Kramer's degeneracy	Analyze the effect of magnetic field on EPR spectra	K4	
Solid state EPR - spin-lattice relaxation – spin-spin relaxation – exchange processes	Examine the effect of relaxation process on EPR spectra	K4	
Unit- V Mag	neto-chemistry & Mossbauer Spectroscopy		
Magneto-chemistry-DeterminationofmagneticsusceptibilitybyGuoyandFaradaymethods	Apply of the different methods to determine magnetic susceptibility	K3	
Magnetic properties of low spin and high spin octahedral complexes of first row transition metals	Analyze the magnetic properties of 1 st row d-block elements	K4	
Curies law, Curies-Weiss law, Curie temperature and Neel temperature	Illustrate the effect of magnetization in a paramagnetic material	K2	
TypesofMagnetism-Paramagnetism, Diamagnetism,	Outline the different types of magnetism and their characteristics	K2	

	Ferro and anti-ferromagnetism		
5.2		Examine the basic principles and effects of Mossbauer spectroscopy	K4
	Magnetic interactions - magnetic field on spectra	Explain the effect of magnetic field on spectra	K2
	Simple applications to iron and tin compounds	Apply the principles of Mossbauer spectroscopy to iron and tin compounds	К3

4.MAPPING OF COs with POs and PSOs

L-l	Low	M-Moderate						H- H	ligh				
	Course Title: INORGANIC SPECTROSCOPY Course Code : P21CH409												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	H	-M	H	M	-	L	-	-	Н	-	M	М
CO2	Н	Н	L	М	М	L	Н	L	М	Н	Н	М	Н
CO3	Н	Н	L	М	М	L	Н	L	М	Н	Н	М	Н
CO4	Н	М	L	L	L	L	М	-	L	М	М	L	М
CO5	Н	L	L	L	L	-	L	-	L	L	-	-	L
CO6	Н	М	М	М	М	М	Н	L	М	-	М	М	Н

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect Course-end survey

Course Coordinator: Dr. J. R. Beula Thavamani Esther Rani

Elective Course – III A

DATA ANALYSIS AND SELECTED ANALYTICAL TECHNIQUES

Semester: IV Credits: 4

Code: P21CH4:A Total Hours: 75 Hours/week:5

1.COURSE OUTCOMES:

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Justify different hypothetical tests to confirm the reliability of measured data	K5	Ι
2	Explain the principle and applications of various electro analytical techniques	K4	II
3	Analyze the Chromatogram of different chromatographic techniques	K4	III
4	Apply the analytical, spectral and microscopic techniques for structure interpretation	K3	IV
5	Determine the Crystal parameters and the crystal structures	K5	V
6	Analyze the structural composition and morphology of molecules	K4	V

2A. SYLLABUS

UNIT -I DATA ANALYSIS & IPR 15 Hours

1.1 Mean – Median – Standard deviation – Test of hypothesis T-test F-test - Correlation and Regression – Least Square method for curve fitting - Significant Figures in scientific measurements.

Handling numeric data: Spread Sheet software – Creating a Spread Sheet – Basic functions and formulae – Creating Charts, Tables and Graphs.

12 Intellectual Property Rights (IPR): Introduction and the need for IPR – Patents – Copyrights
 – Trademarks – Geographical Indications – industrial Designs – IP Administration in India –
 Plagiarism and its Detection.

UNIT-II ELECTROANALYTICAL TECHNIQUES-I 15 Hours

2.1 Cyclic Voltammetry – Basic principle and Experimental technique, Types of Electrodes, Ion selective electrodes, Typical cyclic Voltammogram- reversible, irreversible and quasi-reversible systems.

2.2 Factors affecting limiting current – residual current, migration current, diffusion current (i_d), Kinetic current, half-wave potential, Ilkovic equation, - Applications example: electrochemical oxidation of ascorbic acid.

UNIT-III ELECTROANALYTICAL TECHNIQUES-II 15 Hours

3.1 Differential Pulse Voltammetry (DPV) – Basic principle and technique, applications. Analysis of metal ions in a mixture. Stripping Voltammetry.

3.2 Amperometry – Principle, Instrumentation, electrodes, titration curves and Applications.

UNIT-IV CHROMATOGRAPHIC TECHNIQUES 15 Hours

4.1. High Performance Liquid Chromatography (HPLC): Principle, Theory, Instrumentation. Various types – adsorption, partition (reverse phase), partition (normal phase), ion-exchange and size exclusion chromatography – detectors. Interpretation of detector output and Applications.

4.2 Gas Liquid Chromatography (GLC): Principle, Theory, Instrumentation – Description of the technique – Schematic diagram of a gas chromatograph, a typical chromatogram, detectors – flame ionization detector, electron capture detector and applications of GLC.

4.3 Gas Chromatography-Mass Spectrometry (GCMS): – Principle, theory, instrumentation and applications

UNIT – V Crystalline Structure and Surface Morphology 15 Hours

5.1 X-ray Diffraction Techniques - Crystal symmetry – Combination of symmetry elements – Crystal classes – Screw axis and Glide planes – diffraction pattern of crystalline and amorphous materials — Instrumentation of X-ray diffractometer – Examination of XRD pattern-Scherrer's equation – Calculation of Crystal size and prediction of planes – Determination of Cubic and Hexagonal Structures.

5.2 Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM): Principle, Instrumentation and Applications.

5.3 Photo Electron Spectroscopy (PES), Electron Spectroscopy for Chemical Analysis (ESCA) and Auger Electron Spectroscopy: Principle, Techniques and applications.

Topics for Self StudyTopics	Links
AC polarography Cyclic	https://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.7b00361
Voltammetry	https://www.youtube.com/watch?v=utPPQZP_mrU
SEM	http://www.fhi-
	berlin.mpg.de/acnew/department/pages/teaching/pages/teachin
	g wintersemester 2009_2010/dangsheng_su scanning_ele_
	ctron_microscopy 100129.pdf
	https://www.youtube.com/watch?v=GY9lfO-tVfE
TEM	https://www.youtube.com/watch?v=zkr3JmhjKbg
X-Ray Diffraction powder	https://www.youtube.com/watch?v=lwV5WCBh9a0
X-Ray Diffraction – single	https://www.youtube.com/watch?v=suVNYD1nCm4
crystal	
GC-Instrumentation	https://www.youtube.com/watch?v=PV4NYBUaUrQ
HPLC- Instrumentation	https://www.youtube.com/watch?v=kz_egMtdnL4
C Programming For Beginners	https://www.youtube.com/watch?v=8PopR3x-VMY

2B.TOPICS FOR SELF STUDY

2C.TEXT BOOKS

- 1. H.H. Willard, L.L. Merritt and John A. Dean, "*Instrumental Methods of Analysis*", CBS Publishers, 2004 (Unit-I)
- **2.** R. Gopalan, P.S. Subramanian, K. Rengarajan, "*Elements of Analytical Chemistry*", Sultan Chand and Sons, New Delhi, 1997. (Unit II-IV)
- **3.** Doughlas A. Skoog, Donald M.West, F. Jeames Holler, Stanley, R.Crouch, *"Fundamentals of Analytical Chemistry"*, Thomas Books, Bangalore, 2004. (Unit II V)

2D. REFERENCE BOOKS:

- 1. Gary D. Christian, "Analytical Chemistry", John Wileyand Sons, Singapore, 2004.
- 2. B.K. Sharma, "*Instrumental Methods of Chemical Analysis*", Goel Publishing House, Meerut, 1999.
- 3. G.L.D. Krupadanam et al., "Analytical Chemistry", University Press, Hyderabad, 2001.

3.SPECIFIC LEARNING OUTCOMES(SLOs)

Unit	Course Content			
	UNIT I: DATA ANALYSIS & IPR			
1.1	Mean – Median – Standard deviation – Test of hypothesis, T- test F-test	Analyse the data by different test of hypothesis	K4	
	Correlation and Regression – Least Square method for curve fitting -	Compare different curve fitting methods	K4	
	Significant Figures in scientific measurements.	Examine the significant figures in scientific measurements.	К3	
	Handling numeric data: Spread Sheet software – Creating a Spread Sheet – Basic functions and formulae – Creating Charts, Tables and Graphs.	Evaluate data by creating schematic charts	K5	
1.2	Intellectual Property Rights (IPR): Introduction and the need for IPR	Describe about intellectual property rights	K2	
	Patents – Copyrights – Trademarks	Compare the differences among patents, copyrights and trademarks	K2	
	Geographical Indications – industrial Designs – IP Administration in India	Illustrate the Geographical Indications, Industrial design and IP Administration in India	K2	
	Plagiarism and its Detection.	Interpret the methods of plagiarism checking and	K2	

		detection.	
	UNIT II: ELECTROANALYTICA	L TECHNIQUES-I	
2.1	Cyclic Voltammetry – Basic	Explain about experimental	K2
	principle and Experimental	techniques of cyclic voltammetry	
	technique, Types of Electrodes, Ion	Classify the types of electrodes	K2
	selective electrodes		
	Typical cyclic Voltammogram-	Analyze cyclic voltammogram	K4
	reversible, irreversible and quasi-	for reversible, irreversible and	
	reversible systems.	quasi-reversible processes	
2.2	Factors affecting limiting current –	Discuss the different factors,	K2
	residual current, migration current,	which are affecting limiting	
	diffusion current (i _d), Kinetic current	current	
	Ilkovic equation, - Applications	Inspect the Ilkovic equation to	K4
	example: electrochemical oxidation	determine the concentration of	
	of ascorbic acid.	electroactive species.	
		Deduce the mechanism of	K4
		electrochemical reactions	
	UNIT III: ELECTROANALYTICA	AL TECHNIQUES-II	
3.1	Differential Pulse Voltammetry	Describe the principle and	K2
	(DPV) – Basic principle and	techniques of Differential Pulse	
	technique	Voltammetry.	
	DPV- Applications - Analysis of	Analyze different metal ions	K4
	metal ions in a mixture	from its mixture	
	Stripping Voltammetry	Relate the principle and	K2
		quantitative determination of	
		specific ions.	
3.2	Amperometry – Principle and	Summarize the principle and	K2
	Instrumentation techniques	instrumentation of Amperometry	
		techniques	
	Applications of Amperometry	Experiment the electroactive	K4
		species both qualitatively and	
		quantitatively.	
	UNIT IV: CHROMATOGRAPHIC	TECHNIQUES	
4.1	High Performance Liquid	Discuss the principle and	K2
	Chromatography (HPLC): Principle,	instrumentation of HPLC	
	Theory, Instrumentation		
	Types – adsorption, partition	Classify the different types of	K2
	(reverse phase), partition (normal	chromatographic techniques	
	phase), ion-exchange and size		
	exclusion chromatography		
		1	

	Interpretation of detector output and Applications.	Interpret the chromatogram to separate, identify, and quantify each component in a mixture	K2
4.2	Gas Liquid Chromatography (GLC): Principle, Theory, Instrumentation–	Express the principle of GLC	K2
	Description of the technique	Sketch the instrumentation of GLC	K3
	Schematic diagram of a gas chromatograph, a typical chromatogram	Review the different types of chromatograms	K2
	detectors – flame ionization detector, electron capture detector	Compare different detectors to evaluate different set of samples	K2
	Applications of GLC.	Construct the GLC technique chromatogram to separate, identify, and quantify vaporizable compounds	К3
	GCMS – Principle, theory, instrumentation, Applications	Report the principle, instrumentation and application of GCMS technique.	К3
	UNIT V: CRYSTALLINE STR	UCTURE AND SURFACE MORPH	OLOGY
5.1	X-ray Diffraction Techniques : Crystal symmetry – Combination of symmetry elements - Crystal classes – Screw axis and Glide planes – diffraction pattern of crystalline and amorphous materials-	Relate symmetry elements with different forms of crystals.	К2
	Instrumentation of X-ray diffractometer	Discuss the instrumentation of X-ray diffractometer	K2
	Examination of XRD pattern- Scherrer's equation – Calculation of Crystal size and prediction of planes – Determination of Cubic and Hexagonal Structures.	Determine the type of crystal system from XRD data	K5
5.2	Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM): Principle,	Explain the principle and instrumentation of SEM and TEM.	К3

	Instrumentation and Applications	Correlate the SEM & TEM technique to explore the surface morphology and internal composition of materials	K4
5.3	Photo Electron Spectroscopy (PES), Electron Spectroscopy for Chemical Analysis (ESCA) and Auger Electron Spectroscopy: Principle, Techniques	Write the principle of PES, ESCA and Auger electron spectroscopy techniques.	K3

4.MAPPING SCHEME for the PO, PSOs and Cos L-Low M-Moderate H- High

	Course Title: DATA ANALYSIS AND SELECTED ANALYTICAL TECHNIQUES Course Code: P21CH4:A												
Mappi	PO	PO	PO	PO	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
ng	1	2	3	4									
CO1	Н	Н	М	-	Η	Н	L	Η	Η	Н	-	Н	-
CO2	Η	-	-	Н	-	-	Н	-	-	М	L	-	Н
CO3	Η	Н	Н	Н	М	-	М	-	Н	-	Н	М	Н
CO4	Н	Н	М	Н	Н	-	Н	-	-	Н	-	Н	Н
CO5	Η	Н	-	Н	-	Н	L	М	Н	М	-	Н	Н
CO6	Н	Н	Н	Н	-	L	L	М	Н	-	-	Н	Н

5. Course Assessment Methods

DIRECT:

- 1. Continuous Assessment Test (Model Exams) I, II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

INDIRECT:

1. Course-end survey

Course Coordinator: Dr. T. Arunachalam

ELECTIVE COURSE:III B

APPLICATION OF CHEMICAL ANALYSIS

SEMESTER : IV CREDITS :4

CODE : P21CH4:B TOTAL HOURS : 75 Hours /week:5

1.COURSE OUTCOMES:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Categorize and analyze pesticides and fertilizers by analytical methods	K4	Ι
2	Investigate quality of soil	K5	II
3	Estimate the various components present in the coal by Proximate and Ultimate analysis	K5	II
4	Apply the knowledge of electrochemistry in mitigating corrosion	K5	III
5	Estimate the chemical substances in the given sample by Neutron activation analysis and Isotope dilution analysis	K5	IV
6	Explain the various chemical reactions involved in the clinical analysis of blood	K5	V

2A. SYLLABUS

UNIT-I ANALYSIS OF PESTICIDES AND FERTILIZERS 15 Hours

1.1 Pesticides: General introduction, analysis of pesticides in general with reference to DDT, Dieldrin,Malathion, Parathion, BHC by different analytical methods such as titrimetric, colorimetric,chromatography and electroanalytical methods.

1.2 Fertilizers: Sampling and sample preparation, determination of water, total nitrogen, urea, total

phosphates, potassium, acid or base forming quality.

UNIT-II SOIL ANALYSIS AND COAL ANALYSIS 15 Hours

2.1 Soil analysis- Classification and composition, pH and conductivity, analysis of constitutents such as nitrogen, phosphorous, potassium and micro constitutents (Zn and Cu).
2.2 Coal analysis- Proximate analysis (moisture content, ash content, volatile matter, fixed carbon).Ultimate analysis (carbon, hydrogen, sulphur, nitrogen, oxygen content). Combustion of

carbonaceous fuel- Flue gas. Calorific value and its units, Bomb calorimeter.

UNIT-III CORROSION AND CORROSION ANALYSIS 15 Hours

Definition, draw backs and theories of corrosion-dry and wet corrosion, Different types of corrosion-Pit, Soil, chemical and electrochemical, intergrannular, waterline, microbial

corrosion, measurement of corrosion by different methods, factors affecting corrosion, passivity, galvanic

series, protection against corrosion

UNIT-IV RADIOANALYTICAL TECHNIQUES 15 Hours

Neutron sources, Neutron activation analysis, principle, methodology and application for trace analysis Isotope dilution analysis-principle and application, radioactive dating based on carbon-14 and lead isotopes.

UNIT-V CLINICAL ANALYSIS

General composition of blood, Collection and storage of blood samples Qualitative tests for reducing sugar. Estimation of blood glucose, urea, uric acid, blood urea- nitrogen, total serum protein, serum albumin, serum creatinine, serum phosphate, serum bilirubin, serum cholesterol.

15 Hours

2b.TEXT BOOKS:

- 1. Gunter Sweig. Analytical Methods for pesticides and plant growth regulators and food additives, Vol.II, Academic Press, London.2002.
- 2. B. K. Sharma, Industrial chemistry, Krishna Educational Publishers, 16th Edition, 2014
- 3. Alka L. Gupta, Analytical chemistry, Pragati Prakashan, 2014.,
- 4. O.P. Vermani and A. K. Narula , Applied Chemistry-Theory and Practice , New Age International Ltd, 2012.

2c.REFERENCE BOOK:

1. V. M. Balsaraf, Applied Chemistry I and II, I K International Publishers, 2010.

S.No.	Topics	Web Links
1	Analysis of Pesticides and Fertilizers	https://www.india.gov.in/topics/agriculture/fertilizers- pesticides
2	Soil Analysis	https://www.youtube.com/watch?v=K4occL4Bsx4
3	Corrosion And Corrosion Analysis	https://www.chemistryworld.com/news/cracking- down-on-corrosion-with-hexigone- inhibitors/4011384.article
4	Radioactive dating based on carbon-14 and lead isotopes.	https://youtu.be/8QnsA_1pEd8
5	General composition of blood, Collection and storage of blood samples	https://youtu.be/yj7bfZKlIp8 https://youtu.be/NsZEnY6x8XE

2D.Topics for Self-Study:

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
	Unit – I:		
	Pesticides: General introduction of pesticides	Definition and classification of pesticides	K3
1.1	Analysis of pesticides in general with reference to DDT, Dieldrin, Malathion, Parathion, BHC	Apply different analytical techniques in analysis of pesticides	K4
1.2	Fertilizers: Sampling and sample preparation	Explain the process of soil sampling	K2
	Unit-II		
	Soil analysis - Classification and composition, pH and conductivity	Describe composition and nature of soil.	K2
2.1	Analysis of constitutents such as nitrogen, phosphorous, potassium and micro constitutents (Zn and Cu).	Predict the amount of nutrients present in soil.	K2
	Coal analysis- Proximate analysis (moisture content, ash content, volatile matter, fixed carbon). Ultimate analysis (carbon, hydrogen, sulphur, nitrogen, oxygen content).	Analyze moisture content, ash content, volatile matter, fixed carbon, carbon, hydrogen, sulphur, nitrogen, oxygen content in coal	K3
2.2	Combustion of carbonaceous fuel- Fule gas. Calorific value and its units	Explain the components and Calorific value of Fule gas	К2
	Bomb calorimeter.	Estimate the heats of combustion in various chemical reactions	K5
	Unit-III		
	Definition, draw backs and theories of corrosion-dry and wet corrosion	Describe corrosion and its theories	K2
3.1	Different types of corrosion-Pit, Soil, chemical and electrochemical, intergrannular, waterline, microbial corrosion	Classify types of corrosion	K3

			I
3.2	Measurement of corrosion by different methods, factors affecting corrosion, passivity, galvanic series, protection against corrosion	Evaluate the intensity of corrosion and finding solutions to minimize its effect.	К5
	Unit – IV		
	Neutron sources- Neutron activation analysis, principle, methodology	Illustrate the principle of Neutron activation analysis	K2
4.1	Application for trace analysis	Analyze the trace element in the given sample	K4
	Isotope dilution analysis-principle and application	Estimate the chemical substances in the given sample by Isotope dilution method	K5
4.2	Radioactive dating based on carbon- 14 and lead isotopes.	Deduct the age of the organic based samples using carbon-14 and lead isotopes	K5
	Unit – V:		
	General composition of blood	Explain the composition of blood	K2
5.1	Collection and storage of blood samples	Explain the method of Collecting and storing of blood samples	K2
	Qualitative tests for reducing sugar.	Analyze the reducing sugar in give blood samples	K4
5.2	Estimation of blood glucose, urea, uric acid, blood urea-nitrogen, total serum protein, serum albumin, serum creatinine, serum phosphate, serum bilirubin, serum cholesterol.	Estimate the blood glucose, urea, uric acid, blood urea- nitrogen, total serum protein, serum albumin, serum creatinine, serum phosphate, serum bilirubin, serum cholesterol using prescribed chemical tests	K5

4.MAPPING of COs with POs and PSOs

L-Low

M-Moderate

H- High

	Course Title: APPLICATION OF CHEMICAL ANALYSIS Course Code : P21CH4:B												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Н	М	-	-	L	-	Н	L	М	-
CO2	Н	Н	М	Н	М	-	-	L	-	Н	М	М	-
CO3	L	Н	Н	Н	Н	-	Η	-	-	Н	М	-	-
CO4	Н	Н	Н	М	L	-	-	-	-	Н	Η	L	-
CO5	L	Н	Н	Н	Н	-	Н	-	-	Н	М	-	-
CO6	L	-	Н	Н	Н	-	Н	-	-	Н	М	-	-

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test (Model Exams) I,II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Practical Examination

Indirect

1. Course-end survey

Course Coordinator: Dr. Catharine Meena

ELECTIVE COURSE: IV APPLICATIONS OF DRUG DESIGN & DISCOVERY

SEMESTER : IV CREDITS : 4

CODE : P21CH4:4 TOTAL HOURS : 90 Hours/ Week:6

1. COURSE OUTCOMES

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Correlate the pharmacokinetics and pharmacodynamics of processes from Drug to Hit	K4	Ι
2	Evaluate the different modes of drug - receptor interactions	K5	Π
3	Propose a Retro-synthetic strategy for the drug molecule	K6	III
4	Employ the principals involved in simple QM & MM Calculations and QSAR procedures for a given drug molecule	K3	IV
5	Analyze the Steps involved in a docking Scheme	K4	IV
6	Create and Interconvert Molecular Representations in different electronic formats for further computation and Topological Analysis	K6	V

2A. SYLLABUS

UNIT-I DRUG DESIGN AND DISCOVERY

18 hours

Historical background- -drug targets: lipids, carbohydrates, proteins ,enzymes, and nucleic acids as drug targets and receptors. Receptor Pharmocology –Agonists and Antagonists(partial and full)-Allosteric Modulators – Pharmacokinetics and pharmacodynamics: administration, absorption, distribution, metabolism, elimination of drugs-bioavailability of drugs-side effects- Case study : serotonin and dopamine receptors and transferring drugs.

UNIT -II DRUG IDENTIFICATION AND VALIDATION 18 hours

Steps in drug discovery – Lead identification- Hits- Drug validation-Natural products as drugs – molecular recognition in drug design – thermodynamic considerations – physical basis and inter molecular interactions between drugs and targets like electrostatic interactions – ionic bonds-hydrogen bonds – Inductive interactions – dispersive forces. Stereochemistry in drug designing – stereospecificity of drug targets – Eudesmic ratio – Examples of Eutomers and Distomers

UNIT - III RETROSYNTHETIC STRATEGIES FOR DRUG SYNTHESIS 18 hours

Introduction to retrosynthetic analysis and disconnection approach – synthons acceptor and donor – synthetic equivalents- umpolungs – planning a synthesis – relay and convergent routes-Guidelines for disconnection – one group C-X and C-C disconnections – Chemoselectivity. Two group C-C disconnections in dicarbonyls – Case Study : Synthesis of Amelfolide.

UNIT- IV COMPUTER AIDED DRUG DESIGN 18 hours

Molecular modeling in drug design – Energy Minimization methods – both Molecular Mechanics and Quantum mechanical Methods –Energy minimization –Conformational analysis –Structure based and Ligand based Drug design –QSAR – parameters –Quantitative models of QSAR – Hansch methods – free Wilson model -3D pharmacophore modeling – Docking – Introduction-Preparation of protein and ligands-Types of docking- rigid and flexible methods of docking - Online docking tools- Post docking analysis.

UNIT -V CHEM INFORMATICS

Introduction- Molecular representation and Topological indices -2D & 3D, SMILES-ROSDAL-MDL number, Z-Matrix and Cartesian coordinates-Types of database-Online Cheminformatics database-Chemspider-MOLBASE-ADMET property calculator, DruLiTo, Episuite and molinspiration.

18 hours

S.No	Topics	Web Links
•		
1	Target based Drug Design – video Lesson	https://www.youtube.com/watch?v=Ir2qIuFM
		RkE
2	Computer Aided Drug Design Some case	https://www.researchgate.net/publication/2689
	studies	24374_Success_Limitation_and_Future_of_Co
		mputer_Aided_Drug_Designing
3	AutoDock Exercises	http://autodock.scripps.edu/faqs-help/tutorial
4	Drug Likeliness Tools for practice	http://www.niper.gov.in/pi_dev_tools/DruLiTo
		Web/DruLiTo_index.html

2B.TOPICS FOR SELF-STUDY:

2C.TEXT BOOKS

1. Andrew R. Leach, Valerie J Gillet, An Introduction to Cheminformatics, Revised Edition, Springer, Netherland, 2007. (Unit I, II, IV, V)

2. Stuart Warren "Organic Synthesis The Disconnection Approach" Wiley; 2nd Edition, 2008 (**Unit III**)

2D.REFERENCE BOOKS

1. Larsen et al, Text book of Drug Design and Discovery, $4^{\rm th}$ Edition, London and Newyork , Taylor

and Francis, 2004.

2. Graham L. Patrick, An Introduction to Medicinal Chemistry, 4th Edition, Oxford University Press, 2009.

3. Johann Gasteiger, Thomas Engel, Cheminformatics : A Textbook, Wiley VCH, Weinheim, 2003.

2E.WEB LINKS:

To download protein Structures and small molecules : <u>https://www.rcsb.org/</u> Online Platform for Molecular Description : http://www.scbdd.com/chemdes/

3.SPECIFIC LEARNING OUTCOMES (SLOs)

Unit/Section	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction
Ι	Drug Design A	And Discovery	
	Historical background	Recall the various methods & stages of drug design adopted from time to time.	K1
	Drug targets: lipids, carbohydrates, proteins, enzymes, and nucleic acids as drug targets and receptors.	Classify the Targets and receptors based on their chemical and biological	K2
	Receptors Pharmocology –	Relate receptors based on types of interactions	K3
	Agonists and Antagonists (partial and full)- Allosteric Modulators	Correlate the activity of different possible drug molecules	K4
	Pharmacokinetics and pharmacodynamics: administration, absorption, distribution, metabolism, elimination of drugs	Explain the fate of adrug candidate in human body.	K2
	Bioavailability of drugs-side effects-	List out rules that connect Properties of candidates to their bioavailability	K2
	Case study: serotonin and dopamine receptors and transferring drugs.	Recollect the principles involved in the design of a suitable drug using transferring receptors	K2
II	Drug Identificat	tion And Validation	
	Steps in drug discovery – Lead identification- Hits- Drug validation	Construct a step wise plan for the design of a known drug	K3

	Natural products as drugs	List out the various types of natural sources for drug design	K2			
	Molecular recognition in drug design – thermodynamic considerations –	Summarize the role of thermodynamic parameters in the drug target interactions.	K5			
	Physical basis and inter molecular interactions between drugs and targets like electrostatic interactions – ionic bonds- hydrogen bonds- Inductive interactions – dispersive forces	Identify the role played by different types of Molecular interactions between drugs & Targets.	К3			
	Stereochemistry in drug					
	designing – Stereospecificity of	Apply the Eudesmic				
	drug targets – Eudesmic ratio –	ratios in appropriate	К3			
	Examples of Eutomers and	cases of drug design.				
	Distomers					
III	Retrosynthetic Strategie					
	Introduction to retrosynthetic analysis and disconnection approach	Differentiate the retro- synthetic Scheme from a conventional Synthetic Scheme	K4			
	Synthons acceptor and donor – synthetic equivalents- umpolungs	Create a Synthon and Synthetic Equivalents for a Targeted Molecule.	K6			
	Planning a synthesis – relay and convergent routes-	Compute the percentage yield in different routes of a synthesis. Choose the appropriate route while planning a synthesis	K6			
	Guidelines for disconnection – one group C-X and C-C disconnections	Create a synthetic strategy through one group disconnections.	K6			

	Chemoselectivity	Evaluate possible routes of synthesis based on selectivity Principles.	K5		
	Two group C-C disconnections in dicarbonyls –	Create a synthetic strategy through two group disconnections.	K6		
	Case Study : Synthesis of Amelfolide.	Recollect the application of the disconnection approach in synthesis of Amelfolide.	K2		
IV	Computer Aided D				
	Molecular modeling in drug design – Energy Minimization methods – both Molecular Mechanics and Quantum mechanical Methods	Apply the basics theoretical background of Molecular Modelling Methods to simple molecular calculations.	К3		
	Energy minimization – Conformational analysis	Compare the methods used in different Programs to identify conformers <i>insilico</i>	K2		
	Structure based and Ligandbased Drug design –QSAR – parameters –	Utilise Physical & Chemical Parameters to find out Structure – Activity Relationships	К3		
	Quantitative models of QSAR – Hansch methods – free Wilson model -3D pharmacophore modeling	Illustrate the Qualitative models for relevant Drug candidates.	K2		
	Docking – Introduction- Preparation of protein and ligands-Types of docking- rigid and flexible methods of docking	Analyse the steps involved in the docking scheme.	K4		
	-Online docking tools- Post docking analysis.	Utilize the free docking tools – Autodock and Hex.	K3		
V	Chem Inform				

Introduction to Cheminformatics	Describe the features of cheminformatics.	К2
Molecular representation and Topological indices -2D & 3D, SMILES-ROSDAL-MDL number, Z-Matrix and Cartesian coordinates-	Construct 2D & 3D representations of molecules using Software Tools or Online Programs	K6
Types of database-Online Cheminformatics database- Chemspider-MOLBASE-	Analyse relevant information from databases useful for Drug Design.	K4
ADMET property calculator, DruLiTo, Episuite and molinspiration.	Correlate bio-activity of candidates reported in literature to ADMET properties using the different Soft ware to	K4

4. MAPPING SCHEME for the PO, PSOs and COs

L-Low

M-Moderate

H- High

Course Title: APPLICATIONS OF DRUG DESIGN & DISCOVERY
Course Code:P21CH4:4MappingPO1PO2PO3PO4PO5PO6PO7PO8PO9PS01PS02PS03PS04CO1H-MHL---HM--

CO1	Н	-	М	Н	L	-	-	-	-	Н	М	-	-
CO2	Н	М	М	Н	L	-	-	-	-	Н	L	L	-
CO3	Н	Н	-	М	L	-	L	L	L	Н	Н	-	Н
CO4	М	Н	L	Н	М	М	L	-	-	М	-	М	М
CO5	М	М	М	Н	М	Н	М	L	L	М	М	L	L
CO6	М	М	L	L	Н	Н	М	-	L	Н	М	L	М

5. COURSE ASSESSMENT

METHODS DIRECT:

1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book

- 2. Seminar
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Course Coordinator: Dr . T. Nalini

Elective: V

COMPUTER AIDED MOLECULAR CALCULATIONS (PRACTICAL)

Semester: IV Credits: 3 Code: P21CH4:P Total Hrs :60 Hours /week:4

1. COURSE OUTCOMES:

At the end of this course, the students will be able to

S.No.	Course Outcomes	Level
1	Construct the chemical structure of molecules using computational tools (K6)	K6
2	Analyze chemical structures using software such as Mercury and JMOL (K4)	K4
3	Interpret the properties of drugs using QSAR study, PDB search, and Regression analysis (K5)	K5
4	Determine different chemical quantities (UV spectra, Adsorption and Toxicity value) using computational software such as DruLiTo, Chemdraw and Argus Lab (K5)	К5
5	Predict the structure and properties of molecules using appropriate computational tools (K5)	K5
6	Inspect the binding efficiency of Pro-drug molecules using docking studies (K4)	K4

2A. SYLLABUS

EXPERIMENTS:

- 1. Calculation of ADMET properties of some drugs using DruLiTo (Drug likeliness toxicity)
- 2. Calculation of the topological and molecular parameters from chemdraw and Chem-3D.
- 3. Use mathematica and online equation editors to type the given derivation (At least two pages)

4. Retrieving chemical and biological information from online data bases (Swiss prot, NCI, PDB, CCDC).

- 5. Use of online compound collection data bases (zinc.docking.org, molinspiration)
- 6. Analyse the hydrogen bonding interaction in the given host guest molecules using HBAT.
- 7. Regression analysis of the given set of data (MS-Excel)
- 8. Docking: Small molecule docking using Chemdraw.
- 9. QSAR a) Calculation of Clog P values
 - b) Effect of functional group on activity

c) Drawing QSAR plot based on the QSAR results.

10. Molecular visualization and interconversion using Hg-Mercury, JMOL, chemissian,

11. Prediction of UV-Spectra of the given molecules using Argus Lab.

2B.TEXT BOOKS:

1. Anand Solomon "Molecular Modeling and Drug Design" MJP Publishers, Chennai, 2008.

2. K.V. Raman "Computers in Chemistry" Tata McGraw Hill, New Delhi, 1993.

2C.REFERENCES BOOKS:

- 1. Kishore Arora "Computer Applications in Chemistry", Anmol Publications, New Delhi, 2004.
- 2. Andrew R. Leach, "Molecular Modeling Principles & Applications", Prentice Hall, 2nd Edition, 2008.

3. SPECIFIC LEARNING OUTCOMES(SLOs)

S.No	Course Content	Learning Outcomes	Blooms Taxonomic levels of Transaction	
1.	Calculation of ADMET properties of some drugs using DruLiTo (Drug likeliness toxicity)	Evaluate the nature of drug using ADMET properties	K5	
2.	Calculation of the topological and molecular parameters from Chemdraw and Chem-3D	Predict the molecular topology to understand their reactivity	K6	
3.	Use mathematical and online equation editors to type the given derivation (At least two pages)	Utilize online tools for writing equations and fitting into the document	K3	
4.	Retrieving chemical and biological information from online data bases (Swiss prot, NCI, PDB, CCDC)	Examine the protein functions by the details obtained from the database	K4	
		Deduce the details for molecular docking studies	K4	
5.	Use of online compound collection data bases (zinc.docking.org, molinspiration)	Choose the suitable drug from the online data base	K3	
6.	Analyse the hydrogen bonding interaction in the given host guest molecules using HBAT		K4	

7.	Regression analysis of the given set of data (MS-Excel)	Apply regression analysis and interpret the given data	K3
8.	Docking: Small molecule docking using Chemdraw	Infer docking studies of simple molecules	K4
9.	QSAR a) Calculation of Clog P values b) Effect of functional group on activity c) Drawing QSAR plot based on the QSAR results	Interpret the property of drugs using structure activity relationship	К5
10.	Molecular visualization and interconversion using Hg-Mercury, JMOL, Chemissian.	Analyze the structure of molecules with the software	K4
11.	Prediction of UV-Spectra of the given molecules using Argus Lab.	Develop the UV-spectra for a given molecule	K3

4. MAPPING SCHEME for the POs, PSOs and COs

		H - I	High;			M - N	Iodera	te;		L -]	Low		
Course Title: COMPUTER AIDED MOLECULAR CALCULATIONS													
Course Coo	le: P21	CH4:	P										
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	М	L	L	Н	-	-	-	М	-	-	Н
CO2	-	-	L	Н	М	-	-	-	-	L	-	-	Н
CO3	-	-	L	М	М	Н	-	-	-	-	-	М	М
CO4	-	М	М	Н	М	Н	-	-	-	L	-	-	М
CO5	-	Н	L	Н	М	Н	-	-	-	-	-	Н	L
CO6	М	-	-	М	L	Н	-	-	-	М		L	М

5. Course Assessment Methods

Direct

1. Continuous Assessment

2. Model Exam 1 & 2

3. Viva -Voce

4. End Semester Examination

Indirect

1. Course-end survey

Course Coordinator: Dr . S. Jegan Jenifer

Core Project

CORE PROJECT

Semester : IV Credits: 4

1.COURSE OUTCOMES:

At the end of this project, the students will be able to:

S.No.	Course Outcomes	Level
1	Choose an appropriate problem and suitable methodology with respect to the challenges in the field	K5
2	Survey literature sources for adapting alternate or new methodologies	K4
3	Compile project findings for presenting the solution to broader audience	K5
4	Practice ethical and professional values	K5
5	Justify the findings with relevant scientific evidences	K6
6	Propose new, sustainable and innovative solutions for real time applications	K6

2.SPECIFIC LEARNING OUTCOMES (SLOs)

Course Content	Learning Outcomes	Blooms Taxonomic Levels of Transaction
Choosing a suitable area of research	Discover a suitable topic relevant to real life challenges	K2
	Predict open ended Problems	K3
	Develop analytical thinking	K3
	Apply various tools to cite Literature	K3
Objectives and Methodology	Devise the methodology	K4
	Plan for the execution of the project work	K4
	Sketch the work plan	K3
Analysis of Result	Solve the problem through various techniques and methodologies	K6

Code: P21CH4PJ Total Hrs: 135 Hours/ week: 9

Discussion based on data analyzed	Compile and interpret project findings	K6
Report Preparation	Justify results in logical and scientific way	K6
	Summarize the findings	K5
Viva-Voce	Defend his findings	K5
	Justify the conclusion	K6
Communicating to Journal	Develop critical thinking	K6
	Plan for collaborations	K4
	Prepare research article	K6

3. MAPPING SCHEME for the PO, PSOs and COs

L-Low	M-Moderate	H- High
-------	------------	---------

	Course Title: CORE PROJECT (Theory cum Project) Course Code: P21CH4PJ												
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	-	М	Н	М	М	М	-	Н	Н	L	-
CO2	Н	М	М	Н	Н	Н	М	-	-	Н	Н	-	М
CO3	Н	Н	Н	Н	Н	Н	-	М	Н	Н	Н	L	Н
CO4	-	-	Н	L	L	Н	-	Н	Н	Н	М	Н	-
CO5	Н	Н	Н	Н	Н	М	М	М	М	Н	Н	М	Н
CO6	Н	М	Н	М	М	Н	Н	Н	-	Н	Н	Н	Н

4.COURSE ASSESSMENT METHODS

- 1.Reviews -1 & 2
- 2. Viva -Voce (Internal)
- 3. Viva -Voce (External)
- 4. Project Report

Elective Cour	rse -I	FORENSIC CHEMISTRY	
Semester	: I		Course Code : P21CH1:C
Credits	:4		Total Hours : 60
			Hours/Week: 4

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Analyze the common adulterants in food	K4	Ι
2	Apply the basic analytical instrument techniques toidentify the chemical substances.	K3	II
3	Distinguish the discovery of a committed crime, identification of suspects, and the gathering of evidence	K4	III
4	Examine the suspects by their fingerprints, DNA andbody fluids	К3	III
5	Detect forgery in bank cheques / drafts and educationalrecords	K5	IV
6	Explain the basic principles to detect the gold purity in22 carat ornaments and gold-plated jewels	K3	IV
7	Detect the steroid consumption among athletes and racehorses.	K5	V

2A. Syllabus

Unit– I

Food Adulteration

12 Hours

- 1.1 Contamination of wheat, rice, dhal, milk, butter, etc. with c lay, sand, stone, water and toxic chemicals (e.g. Kasseri dhal with metanil yellow).
- 1.2 Food poisons: natural poisons (alkaloids, nephrotoxins), pesticides (DDT, BHC, Follidol), chemical poisons (KCN). First aid and Antidotes for poisoned persons.
- 1.3 Heavy metal (Hg, Pb, Cd) contamination of Sea food. Use of neutron activation analysis in detecting poisoning (e.g., As in human hair)

Unit II Transportation

12 Hours

- 2.1 Drunken driving: Breath analyzer for ethanol. Incendiary and timed bombs in road and railway track chemistry ks. Defusing live bombs.
- 2.2 Hit -and-go traffic accidents: Paint analysis by AAS, Soil of toxic and corrosivechemicals (e.g., conc.acids) from tankers.

Unit III Crime Detection

- 3.1 Accidental explosions during manufacture of matches and fire -works (as in Sivakasi). Human bombs, possible explosives (gelatin sticks, RDX). Metal detector devices and other security measures for VVIP. Composition of bulletsand detection of powder burns.
- 3.2 Scene of crime: finger prints and their matching using computer records. Smell tracks and police dogs. Analysis of blood and other body fluids in rape cases. Identification of blood types. DNA finger printing for tissue identification in disembered bodies. Blood stains on clothing. Cranial analysis (head and teeth).

Unit IV Forgery and Counterfeiting

- 4.1 Detecting forgery in bank cheques / drafts and educational records (mark lists, certificates), using UVlight. Alloy analysis using AAS to detect counterfeit coins. Checking silverline wetter mark in currency notes.
- 4.2 Jewellery : Detection of gold purity in 22 carat ornaments, detecting gold plated jewels, authenticity of diamonds (natural, synthetic, glassy).

Unit V

Medical Aspects

12 Hours

12 Hours

- 5.1 AIDS : Cause and prevention . Misuse of scheduled drugs. Burns and their treatment by plastic surgery.
- 5.2 Metabolite analysis using mass spectrum gas chromotography. Detectingsteroid consumption among athletes and race horses.

S.No.	Topics	Web Links
1	Food Adulteration	https://www.youtube.com/watch?v=l0Bt hUI_MMA
2	How do Breath analyzers work? Chemistry behind the breathalyzer Alcohol testing Devices In English.	https://www.youtube.com/watch?v=Mw WAKQV-vqw
3	Types of Security Metal Detector	https://www.youtube.com/watch?v=xM Wu7rLos6U
4	GoldTestingMachineVideoDemonstration30+MetalsDetection MaxsellAurum #DemoGoldTester	https://www.youtube.com/watch?v=pwR q Wm1do
5	Innovating how Steroids are Detected in Urine	https://www.youtube.com/watch?v=xNg sltHWZfo

2B. Topics for Self-Study

2C. Text Book

 P.C. Dikshit, Textbook of Forensic Medicine and Toxicology- 2 edition, Peepee Publishers and Distributors (P) Ltd, 2013

2D. Recommended Reference Books

- 1. K. S Narayan Reddy The Essentials of Forensic Medicine and Toxicology- 33rd edition, Jay Pee Brothers, 2014.
- 2. Jay Seigal, Forensic Chemistry: Fundamentals and Applications, John Wiley & Sons 2015.

12 Hours

3. Mapping (CO, PO, PSO)

FORENSIC CHEMISTRY										Code :]	P21CH	l:C	
	P01	P02	P03	P04	P05	P06	P07	PO8	P09	PSO1	PSO2	PSO3	PSO4
CO1	Н		Н		М	Н	-	L	-	Н	-		М
CO2	Н		Н		Н	Н	-	L	-	Н	Н		Н
CO3	Н		Н		L	Н	-	М	-	Н	-	М	-
CO4	Н		Н	М	Н	Н	-	Н	-	Н	Н	М	H-
CO5	Н		Н	М	L	Н	-	М	-	Н	-		-
CO6	Н		Н		L	Н		Н	-	Н	-		Н
CO7	Н		Н	М	Н	Н		Н		Н			М

L-Low

M-Moderate

H- High

1. Course Assessment Methods

DIRECT

- 1. Continuous Assessment Tests I & II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type orProduct Demonstration etc. (as applicable)
- 3. End Semester Examination

INDIRECT

1. Course-end survey

Course Co-ordinator: Dr. S. Megarajan

Head, Department of Chemistry: Dr J. Princy Merlin

ELECTIVE COURSE: III

POLYMER CHEMISTRY

Semester : IV Credits :4 Course Code: P21CH4:C Total Hrs.: 60 Hours/Week: 5

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Distinguish polymers based on their structures	K2	Ι
2	Evaluate molecular mass of polymers by adoptingvarious methodologies	K5	Ι
3	Interpret kinetics and mechanism of polymerizationprocesses	К3	II
4	Predict the suitable methodology for polymerizationprocess	К3	III
5	Describe about thermo/thermosetting polymers, elastomers and conducting polymers	K1	IV
6	Appraise an appropriate processing method to preparea polymer.	K4	V

2A. Syllabus

Unit-IIntroduction to Polymer12 Hours

- 1.1. Monomers, Oligomers, Polymers and their characteristics.
- **1.2.** Classification of polymers: Natural synthetic, linear, cross linked andnetwork; plastics, elastomers, fibres, Homopolymers and Co-polymers.
- **1.3.** Bonding in polymers: Primary and secondary bonding forces in polymers ; cohesive energy and decomposition of polymers.
- 1.4. Determination of Molecular mass of polymers: Number Average molecular mass (Mn) and Weight average molecular mass (Mw) of polymers and determination by (i) viscosity (ii) Light scattering method, (iii) Gel Permeation Chromatography.

(iv) Osmometry and ultracentrifuging.

Unit– II Kinetics and Mechanism for Polymerization 12 Hours

- 2.1. Chain growth polymerization: Cationic, anionic, free radical polymerization, Stereo regular polymers : Ziegler Natta polymers.
- 2.2. Polycondensation non-catalysed, acid-catalysed polymerization, molecular weight distribution Step growth polymers.

Unit– III **Techniques of Polymerization and Polymer Degradation 12 Hours**

3.1. Bulk, Solution, Emulsion, Suspension, Melt polycondensation, solution polycondensation interfacial and gas phase polymerization.

3.2. Types of Polymer Degradation, Thermal degradation, mechanical degradation, photo degradation, Photo stabilizers.

Unit – IV **Industrial Polymers**

- 4.1. Raw material, preparation, fibre forming polymers, elastomeric material.
- 4.2. Thermoplastics : Polyethylene, Polypropylene, polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene, nylon and polyester.
- 4.3. Thermosetting Plastics: Phenol formaldehyde and epoxide resin.
- 4.4. Elastomers : Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene. Conducting Polymers : Elementary ideas ; examples : polysulphur nitriles, polyphenylene, poly pyrrole and poly acetylene.

Unit– V **Introduction to Polymer Processing** 12 Hours

- 5.1. Compounding: Polymer Additives: Fillers, Plasticizers antioxidants and thermal stabilizers fire retardants and colourants.
- Processing Techniques: Calendaring, die casting, compression moulding, injection moulding, blow 5.2. moulding, extrusion moulding and reinforcing.

2B.	Topics	for	Self-Study
-----	--------	-----	------------

S.No.	Topics	Web Link
1	Types of polymerization	https://www.youtube.com/watch?v=JmkHAY5EyCE
2	Polymerization	https://www.youtube.com/watch?v=rVjfjLZ noFg
3	Conducting Polymers	https://www.youtube.com/watch?v=HE2zR QVhImw
4	Polymers In Medicines and Surgery - Polymers - Engineering Chemistry	https://www.youtube.com/watch?v=noCPq onPWLQ

12 Hours

2C. Text Books

- 1. V.R. Gowariker, Polymer Science, Wiley Eastern, 1995.
- 2. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience, 1971.

2D. Recommended Reference Books

- 1. G.S. Misra, Introductory Polymer Chemistry, New Age International (Pvt)Limited, 1996.
- 2. A. Kumar and S. K. Gupta, Fundamentals Polymer Science and Engineering, Tata McGraw-Hill, 1978.

3. Mapping (CO, PO, PSO)

	POLYMER CHEMISTRY						CODE: P21CH4:C						
L	-Low IOd	P02	P03	M-Mo	derate SOd	PO6	I- Higl CO	P08	P09	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	M	-	-	-	Н	-	Н	-	-	Н
CO2	Н	Н	Н	M	-	-	-	Н	-	Н	-	-	Н
CO3	Н	Н	Н	М	-	-	-	Н	-	Н	-	-	Н
CO4	Н	Н	Н	М	-	-	-	Н	-	Н	-	-	Н
CO5	Н	Н	Н	М	-	-	-	М	-	Н	-	-	Н
CO6	Н	Н	Н	М	-		-	М	-	Н	-	-	Н

4. Course Assessment MethodsDIRECT

1. Continuous Assessment Tests - I & II

2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type orProduct Demonstration etc. (as applicable)

3. End Semester Examination

INDIRECT

1. Course-end survey

Course Co-ordinator

: Dr. M. Frankline Philips

Head, Department of Chemistry

: Dr J. Princy Merlin

Elective Course III

AGRICULTURAL CHEMISTRY

Semester: IVCredits: 4

Course Code: P21CH4:D Total Hours: 90 Hours/Week: 5

1. Course Outcomes

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	To classify soil based on their chemical compositionand physical properties	K2	Ι
2	To analyze the soil pH and fertility.	K4	Ι
3	To understand the types of fertilizers and their mechanism of action	K1	II
4	To prepare manures from organic waste	K4	II
5	To know about the different types of chemicals usedin pest control.	K2	III & IV
6	To understand the activity of plant growth regulators	K1	V

2A Syllabus

Unit I

Soil Chemistry

18 Hours

- **1.1.** Soil analysis, Composition of soil: Organic and Inorganic constituents, Soil acidity, buffering capacity of soils. Liming of soil.
- 1.2. Absorption of cations and anions, availability of soil nutrients to plants.

Unit II

Fertilizers and Manures

18 Hours

- 2.1. Effect of Nitrogen, potassium and phosphorous on plant growth commercialmethod of preparation of urea, triple superphosphate. Complex fertilizers and mixed fertilizers their manufacture and composition.
- 2.2. Secondary nutrients micronutrients and their functions in plants. Use of fertilizers: urea, DAP, Super phosphate, Gypsum, NPK-mixed fertilizers, Optimal addition of Fertilizers to obtain estimated yield.
- 2.3. Bulky organic manures Farm yard manure handling and storage, Oilcakes, Blood meal fish manures.

Unit IIIPesticides and Insecticide18 Hours

3.1. Pesticides – classification of Insecticides, fungicides, herbicides as organic andinorganic – general methods of application and toxicity, Safety measures when using pesticides.

3.2. Insecticides: Plant products – Nicotine, pyrethrin – Inorganic pesticides – borates, Organic pesticides – D.D.T. and BHC, Plant derivatives: pyrethrine, Nicotine and rotenone, Synthetic organic: carbophos, carbaryl, p-DCB, dimethoate, butachlor, Endrin, Aldrin (Chemical name, Structures and uses).

Unit IV	Fungicides and Herbicides	18 Hours

- 4.1. Fungicides: Inorganic (Bordeaux Mixture) and organic (dithiocarbamate),Industrial fungicides: creosote fractions.
- 4.2. Herbicides and weedicides: Selective and non-selective, 2, 4- Dicholorophenoxyacetic acid and 2,4, 5-Tricholorophenoxyaceticacid (structure and function)
- 4.3. Intenerated pest management, Sex attractants for insect control, Sustainable agriculture.

UNIT V Plant Growth Regulators 18 Hours

- 5.1. 3-Indole acetic acid: naphthalene acetic acid: Ethepon (2-chloroethyl phosphoric acid): Alar (succinicacid-2, 2-dimethyhydrzine :) their function.
- 5.2. Plant hormones: Gibberlin, Cyclocel, Phosphon, dwarfing compound (CCC:2- Chlorethyltrimethyl ammonium chloride). Defoliants.

.No.	Topics	Web Links
1	Soil Chemistry	https://youtu.be/M7YRIdk5q70
2	Soil biology, chemistry and physics	https://youtu.be/ogSlDL9JtJI
3	Understanding our Soil: The Nitrogen Cycle, Fixers andFertilizers	https://youtu.be/A8qTRBc8Bws
4	Mode of action: Herbicides and Insecticides	https://youtu.be/QtC14bq42aw
5	How does Pesticide work?	https://youtu.be/n7nG-gHcv4I

2B. Topics for Self-Study

2C. Text Books

- 1. Brian Bechdal, Textbook of Soil Science, Callisto Reference, United States.2016.
- 2. Ranjan Kumar Basak, Fertilizers A Text book, Kalyani Publishers, 2007.
- 3. Rakshit A., Manures, Fertilizers and Pesticides, CBS Publishers, 2015.
- 4. P.C. Das, Manures and Fertilizers, Kalyani Publishers, 2009.
- 5. N.K. Roy, Chemistry of Pesticides, CBS Publishers, 2016.

2D. Recommended Reference Books

- 1. G.T. Austin, Shreve's Chemical Process Industries-5th edition, Mc-Graw-Hill, 1984.
- 2. B.A. Yagodin, Agricultural Chemistry- Volumes I & II, Mir Publishers, Moscow, 1976.

3. Mapping (CO, PO, PSO)

	AGRICULTURAL CHEMISTRY									CODE:P21CH4:D			
	P01	P02	P03	P04	P05	P06	P07	PO8	604	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	М	Н	L	М	М	М	М	Н	М	М	М
CO2	Н	Н	М	Н	L	М	М	М	М	Н	М	М	М
CO3	Н	Н	Н	М	Н	Н	М	М	М	Н	М	М	М
CO4	Н	Н	Н	Н	Н	Н	М	М	М	Н	М	М	М
CO5	Н	Н	Н	М	М	М	М	М	М	Н	М	М	М
CO6	Н	Н	Н	М	М	М	М	М	М	Н	М	М	М

L-Low

M-Moderate

H- High

4. Course Assessment Methods

DIRECT

- 1. Continuous Assessment Tests I & II
- 2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Proto-type or Product Demonstration etc. (as applicable)
- 3. End Semester Examination

INDIRECT

Course-end survey

Course Co-ordinator

: Dr J.Christy Ezhilarasi

Head, Department of Chemistry

: Dr J. Princy Merlin