Department of Data Science Programme Outcomes and Programme Specific Outcomes MSc Data Science

Programme Outcomes

Upon completion of MSc in Data Science degree, graduates will possess the following data science skills and abilities.

PO1: Possess a theoretical understanding, explain and critically assess the key concepts and techniques from the disciplines defining modern data science and analytics.

PO2: Critically evaluate emerging data analysis technologies and how they can be applied to heterogeneous data at volume, scale and types, in order to get insight for business, scientific or social innovation.

PO3: Analyse in depth how data analysis techniques can be applied to a range of interdisciplinary research areas.

PO4: Effectively use modern data science programming languages and technologies to scrape, clean, organize, explore, visualize, and model large volumes and varieties of data.

PO5: Evaluate, select, combine and apply advanced skills, data science tools and techniques in the related areas of artificial intelligence to the design of solutions to data science and analytics tasks.

PO6: Prepare for careers as data scientists by proposing, planning, developing, evaluating and creating a commercially and/or research-wise relevant project and/or product for business, science and society.

PO7: Develop professional communication skills (e.g., writing, presentations, interviews, email etiquette, etc.), effective time and resource management skills as well as leadership and team working skills towards meeting organizational goals.

PO8: Understand, value and safeguard social, legal and ethical use of data that increasingly challenge and confront data scientists while developing data science systems.

PO9: Learn effectively and independently to acquire new knowledge and skills for the purpose of continuing professional development in related areas of data science.

Programme Specific Outcomes

PSO1: Show mastery over different applications of data analytics namely web analytics, customer analytics, supply chain analytics and social network analytics.

PSO2: Build software applications using new languages and tools such as Neo4J, Tableau, Julia, SpaCy and Rasa

PSO3: Develop a disruptive entrepreneurship spirit and integrate with the data science community.

PSO4: Identify and assess the needs of an organization for a data science task by conducting a needs assessment and communicating data science options and limitations that could meet organizational needs.

BISHOP HEBER COLLEGE (AUTONOMOUS), TIRUCHIRAPPALLI-620 017 M. Sc., Data Science

(Applicab	le to Candidates	admitted from the	Academic Y	ear 2019-	2020 onwa	ards

G		G	Course	Hours /			Marks	;
Sem	Course	Code	Week	Credits	CIA	ESE	Total	
	Core I	Mathematical Foundation for Data Science	P19DS101	5	4	25	75	100
	Core II	Problem Solving using Python and R	P19DS102	5	4	25	75	100
	Core III	NoSQL Database Management	5	4	25	75	100	
Ι	Elective I	Probability and Statistical Methods Design and Analysis of Algorithms Software Engineering	P19DS1:1 P19DS1:A P19DS1:B	5	4	25	75	100
	Core Practical I	Problem Solving using Python and R Lab	P19DS1P1	5	3	40	60	100
	Core Practical II	NoSQL Database Management Lab	P19DS1P2	5	3	40	60	100
			1			1	Γ	
	Core IV	Regression analysis	P19DS204	4	4	25	75	100
	Core V	Data and Visual Analytics	P19DS205	4	4	25	75	100
	Core VI	Practical Machine Learning	P19DS206	4	4	25	75	100
	Elective II	Natural Language Processing Multivariate Analysis	P19DS2:2 P19DS2:A	4	4	25	75	100
Π	Elective III	Health Care Data Analytics Basics of Bioinformatics	P19DS2:3 P19DS2:B	3	3	25	75	100
	Core Practical III	Data and Visual Analytics Lab	3	40	60	100		
	Core Practical IV	Practical Machine Learning Lab	P19DS2P4	3	3	40	60	100
	Core Practical V	Natural Language Processing Lab	3	3	40	60	100	
	VLO	RI/MI	P17VL2:1 P17VL2:2	2	2	25	75	100
			T	Γ	Γ	1		1
	Core VII	Time Series Analysis and Forecasting	P19DS307	5	4	25	75	100
	Core VIII	Big Data Management and Analytics	P19DS308	5	4	25	75	100
	Core IX	Social Media Analytics	P19DS309	4	4	25	75	100
III	Elective IV	Image and Video Analytics Computational Genomics	P19DS3:4 P19DS3:A	4	4	25	75	100
	Core Practical VI	Big Data Management and Analytics Lab	P19DS3P6	5	3	40	60	100
	Core Practical VII	Social Media Analytics Lab	P19DS3P7	5	3	40	60	100
	Core Project-I	Project Preparation	P19DS3PJ	2	-	-	-	30
	Γ		r			T		
	Core X	Principles of Deep Learning	P19DS410	5	4	25	75	100
	Core X	Web Development using Python	P19DS411	5	4	25	75	100
IV	Elective V	Supply Chain Management Internet of Things	P19DS4:5 P19DS4:A	5	4	25	75	100
	Core Project	Core Project	P19DS4PJ	15	5			100
			Total C	redits	90			

PROGRAMME ARTICULATION MATRIX

Course						Prog	ramme	Outco	mes				
Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
P20DS101	Н	Н	Н	-	М	М	М	Н	-	Н	Н	-	-
P19DS102	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P20DS103	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	-	-
P20DS1:1	Н	Н	Н	-	М	М	М	Н	-	Н	Н	-	-
P19DS1P1	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS1P2	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P20DS204	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS205	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS206	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P20DS2:2	Н	Н	Н	Н	М	М	М	Н	М	Н	Н	Н	М
P19DS2:3	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS2P3	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS2P4	Н	Н	Н	-	М	М	М	Н	-	Н	Н	Н	L
P19DS2P5	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P20DS307	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	-
P19DS308	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS309	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	-
P19DS3:4	Н	Н	Н	Н	М	М	М	Н	L	Н	Н	Н	М
P19DS3P6	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P19DS3P7	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М
P20DS3P8	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	-
P20DS410	L	L	L	М	Н	Н	Н	Н	Н	Н	Н	Н	М
P19DS4:5	L	L	L	М	Н	Н	Н	Н	Н	Н	Н	Н	М
P20DS4PJ	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М

CORE I: MATHEMATICAL FOUNDATION FOR DATA SCIENCE									
Semester	Ι	Hours/Week	5						
Course Code	P19DS101	Credits	4						

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Determining basis and understanding linear mappings of vector spaces	K5	Ι
CO2	Solve systems of linear equations by use of the matrix	K5	II
CO3	Determine the Invertible linear map	K5	II
CO4	Evaluate eigenvectors and eigenvalues	K5	III
CO5	Explain the properties gradients and PDE	K6	IV
CO6	Summarize the applications in Data Science	K6	V

2. A. SYLLABUS

Unit-1. Introduction to Vector Spaces

Vector Spaces: Rn and Cn, lists, Fnand digression on Fields, Definition of Vector spaces, Subspaces, sums of Subspaces, Direct Sums, Span and Linear Independence, bases, dimension.

Unit-2. Linear Maps

Definition of Linear Maps - Algebraic Operations on - Null spaces and Injectivity - Range and Subjectivity - Fundamental Theorems of Linear Maps - Representing a Linear Map by a Matrix -Invertible Linear Maps - Isomorphic Vector spaces - Linear Map as Matrix Multiplication -Operators - Products of Vector Spaces - Product of Direct Sum - Quotients of Vector spaces.

Unit-3. Eigen Values, Eigen Vectors and Inner Product Spaces

Eigenvalues and Eigenvectors - Eigenvectors and Upper Triangular matrices – Eigenspaces and Diagonal Matrices - Inequalities on Linear Spaces - Norms on Linear Spaces - Inner products - Orthogonality – Unitary and Orthogonal Matrices - Norms for matrices

Unit-4. Calculus of several variables and basic Graph Theory

Functions of Several Variables - Limits and continuity in Higher Dimensions – Partial Derivatives – The Chain Rule - Directional Derivative and Gradient vectors - Tangent Planes and Differentials -Extreme Values and Saddle Points - Lagrange Multipliers. Graphs - subgraphs - factors - Paths cycles - connectedness - trees - Euler tours -Hamiltonian cycles - Planar Graphs - Digraphs.

Unit-5. Mathematics applied to Data Science

Singular value decomposition - Handwritten digits and simple algorithm - Classification of handwritten digits using SVD bases - Tangent distance - Text Mining.

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Mathematics for Data Science	https://www.coursera.org/specializations/mathema
		tics-for-data-science

2	Mathematics for Machine Learning Specialization	coursera.org/specializations/mathematics- machine-learning
3	Topics in Mathematics of Data Science	https://ocw.mit.edu/courses/mathematics/18-s096- topics-in-mathematics-of-data-science-fall-2015/

C. TEXT BOOK(S)

- 1. S. Axler, Linear algebra done right, Springer, 2017.
- 2. Eldén Lars, Matrix methods in data mining and pattern recognition, Society for Industrial and Applied Mathematics, 2007.
- 3. M. D. Weir, J. Hass, and G. B. Thomas, Thomas' calculus. Pearson, 2016.
- 4. D. Jungnickel, Graphs, networks and algorithms. Springer, 2014.

D. REFERENCE BOOKS

- 1. E. Davis, Linear algebra and probability for computer science applications, CRC Press, 2012.
- 2. J. V. Kepner and J. R. Gilbert, Graph algorithms in the language of linear algebra, Society for Industrial and Applied Mathematics, 2011.
- 3. D. A. Simovici, Linear algebra tools for data mining, World Scientific Publishing, 2012.
- 4. P. N. Klein, Coding the matrix: linear algebra through applications to computer science, Newtonian Press, 2015.
- 5. J. Patterson and A. Gibson, Deep learning: a practitioner's approach. O'Reilly Media, 2017.
- 6. S. Sra, S. Nowozin, and S. J. Wright, Optimization for machine learning. MIT Press, 2012.M.

E. WEB LINKS

- 1. https://elitedatascience.com/learn-math-for-data-science
- 2. <u>https://machinelearningmastery.com/gentle-introduction-linear-algebra/</u>'

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit	Contents	Learning Outcomes	Level
Ι	Introduction to Vector Spaces		
1.1	Vector Spaces	Elicit the vector space	K5
1.2	Definition of Vector spaces	Define the Vector spaces	K2
1.3	Subspaces	Identify the subspaces	K5
1.4	Sums of Subspaces	Determine the sum of subspaces	K5
1.5	Direct Sums	Explain the Direct Sums in vector spaces	K5
1.6	Span and Linear Independence	Compute the span for the vector spaces	K5
1.7	Bases	Determine the Bases of the vector spaces	K5
1.8	Dimension	Explain the dimension of the vector spaces	K5
II	Linear Maps		
2.1	Definition of Linear Maps	Define the Linear Maps	K2
2.2	Algebraic Operations on Null spaces and Injectivity	Compute the Algebraic Operations on Null spaces and Injectivity	K5
2.3	Algebraic Operations on Range and Subjectivity	Compute the Algebraic Operations on Range and Subjectivity	K5
2.4	Fundamental Theorems of Linear Maps	Explain the Theorems of Linear Maps	K5

2.5	Representing a Linear Map by a Matrix	Represent the Linear Map as a Matrix	K4
2.6	Invertible Linear Maps	Determine the invertible of the Linear Maps	K5
2.7	Isomorphic Vector spaces	Construct the Isomorphic Vector Spaces	K6
2.8	Linear Map as Matrix Multiplication	Determine the Linear Map as Matrix Multiplication	K4
2.9	Operators - Products of Vector Spaces	Explain the Products of Vector Spaces	K5
2.10	Product of Direct Sum - Quotients of Vector spaces	Explain the Product of Direct Sum - Ouotients of Vector spaces	K5
III	Eigen Values, Eigen Vectors and	Inner Product Spaces	
3.1	Eigenvalues and Eigenvectors	Explain the procedure to compute the Eigen Value and Eigen Vectors	K5
3.2	Eigenvectors and Upper Triangular matrices	Determine the Eigen vectors Determine the Upper Triangular Matrices	K5 K5
3.3	Eigenspaces and Diagonal Matrices	Identify the Eigen Spaces using Eigen vectors	K4
3.4	Inequalities on Linear Spaces	Explain the Inequalities on Linear Spaces	K5
3.5	Norms on Linear Spaces - Inner products	Understand the Norms on Linear Spaces	K4
3.6	Orthogonality	Compute the Orthogonality of the Linear Maps	K5
3.7	Unitary and Orthogonal Matrices	Construct the Orthogonal Matrices	K6
3.8	Norms for matrices	Determine the Norm of the matrices	K5
IV	Calculus of several variables and	basic Graph Theory	
4.1	Functions of Several Variables	Understand the functions of Several Variables	K2
4.2	Limits and continuity in Higher Dimensions	Explain the Limits and continuity in Higher Dimensions	K4
4.3	Partial Derivatives	Compute the Partial derivative for the functions	K4
4.4	The Chain Rule	Apply the chain rule for the functions	K5
4.5	Directional Derivative and Gradient vectors	Analyze the gradients and directional derivatives	K5
4.6	Tangent Planes and Differentials	Construct the Tangent Planes and Differentials	K6
4.7	Extreme Values and Saddle Points	Determine the Extreme Values and Saddle Points	K5
4.8	Lagrange Multipliers	Explain the Lagrange Multipliers	K4
4.9	Graphs , Subgraphs & Factors	Define Graphs , Subgraphs & Factors	K2
4.10	Paths, Cycles & Connectedness	Explain the Paths, Cycles & Connectedness	K5
4.11	Trees	Understand the concepts of Tree	K2
4.12	Euler tours & Hamiltonian cycles	Determine the Euler tours & Hamiltonian cycles	K4
4.13	Planar Graphs & Digraphs	Explain the Planar Graphs	K5
V	Mathematics applied to Data Scie	nce	

5.1	Singular value decomposition	Understand the concept of Singular value decomposition	K2
5.2	Handwritten digits and simple algorithm	Explain the algorithm for Handwritten digits	K4
5.3	Classification of handwritten digits using SVD bases	Construct the SVD for Handwritten digits	K6
5.4	Tangent distance	Analyze the tangent distance for SVD	K6
5.5	Text Mining.	Design the algorithm for Text Mining	K6

L-l	Low					M-Mo	oderate)				H- H	ligh
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η			Н			L			L			Н
CO2	Н	L	Н				L			L	Μ		
CO3	Μ	Μ		Н	Μ		L		Н			Μ	Н
CO4	Μ	L		Н	Μ			L	Н		Μ		
CO5	H		Н	Н	Μ			Μ					Н
CO6	Н		Н		Н		Н	Н	Н	Н		Μ	Н

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. P. S. Eliahim Jeevaraj

CORE II: PROBLEM SOLVING USING PYTHON AND R										
Semester	Ι	Hours/Week	5							
Course Code	P19DS102	Credits	4							

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Understand python basic syntax, usage of built in functions	K3	Ι
CO2	Understand conditional and looping statements and build user defined functions	K3	Ι
CO3	Explain the concepts of files using Python	K5	II
CO4	Develop object oriented programs in Python	K6	III
CO5	Access and Design the internet and database data	K6	IV
CO6	Understand R basic data structures and develop programs	K5	V

2. A. SYLLABUS

UNIT - I: Python Basics, Functions, Loops and Strings

Variables – Getting Inputs – Conditions – Catching exceptions – Function calls – Built-in functions – Type conversion functions and math functions – Parameters and arguments –While statement – Infinite loops -Continue statement – For loops – Strings -Slice - The in operator – String comparison – String methods- parsing strings – Format operator.

UNIT - II: Files and Lists

Opening files – Text files – Reading files – Searching through files – Writing files – Traversing list – List operations – List slice – List methods – Deleting elements – Built-in list functions – Objects, value and aliasing – List arguments.

UNIT - III: Dictionaries, Tuples and OOP

Dictionaries – Files and dictionaries – Looping and dictionaries – Tuples – Comparing tuples – Tuple assignments – Dictionaries and tuples – Tuples as keys in dictionaries – Creating objects – Encapsulation – Classes as types – Object lifecycle – Instances – Inheritance.

UNIT – IV: Internet Programming

Regular expressions – Character matching – Extracting data – Escape character – Designing simple web browser using sockets – Retrieving images using HTTP – Retrieving web pages using urllib – Reading binary files using urllib – Accessing data from databases

UNIT – V: Programming with R

Variables - Vector, matrix, arrays - List - Data Frames - Functions - Strings - Factors - Loops - Packages -Date and Time - Files - Making packages

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
-------	--------	-----------

1	Introduction to Python Programming	https://www.udacity.com/course/introduction-to-
		pythonud1110
2	Introduction to Python	https://www.coursera.org/projects/introduction-to-
		python
3	Introduction to Python	https://realpython.com/learning-paths/python3-
		introduction/
4	R Programming	https://www.coursera.org/learn/r-programming

C. TEXT BOOK(S)

- 1. Allen B. Downey, —Think Python: How to Think like a Computer Scientist, 2nd edition, Updated for Python O_Reilly Publishers, 2016
- 2. Charles R. Severance, Python for Everybody: "Exploring data using Python 3", Schroff Publishers, 1ed, 2017, ISBN 978-9352136278.
- 3. Richard Cotton, "Learning R", O'Reilly, 2013

D. REFERENCE BOOKS

- 1. Zed Shaw's, Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code, Addison-Wesley Professional; 3 edition, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, Introduction to Programming in Python: An Inter

disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

- 3. Wesley J Chun, Core Python Programming , 2nd edition, Prentice Hall ,2009
- 4. Colin Gillespie, Robin Lovelace, and Efficient R Programming: A Practical Guide to Smarter Programming," O'Reilly Media, Inc.", 2016
- 5. Paul Teetor, R Cookbook-Proven Recipes for Data Analysis, Statistics, and Graphics, O'Reilly Media, 2011

E. WEB LINKS

- <u>https://www.kaggle.com/learn/python</u>
- https://www.dataquest.io/course/introduction-to-data-analysis-in-r/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Торіс	Learning outcomes	Level			
Ι	Python 1	Basics, Functions, Loops and Strings				
1.1	Python basics	 Understand python variables and assignment 	K1			
		Built in Functions				
1.2	Built in Functions and	• Understand python built in functions	K1			
	other important functions	Understand conversion and math functions	K1			
1.3	Conditional and looping statements	• Build if, else statements within programs and understand outputs	K3			
		Build while and for loops for understanding looping concept	K3			
		User Defined Functions				
1.4	User Defined Functions	Understanding functions structures	K2			
		• Understanding parameters and arguments	K2			
	Manipulating strings					
1.5	Handling strings	• Understanding strings data type	K1			
		Applying string slicing	K2			

		Applying string comparison, parsing	К3
		and string formatting	
		Files and Lists	
2.1	Handling files	• Understand syntax to read and write files	K2
		 Using io library functions to check file and folder existence 	K3
		Lists	
2.2	List data structure	• Understanding list data structure and operations	K1
		Applying list slicing and items deletion	K2
		Lists and loops	
2.3	Using lists in loops	Using list comprehension in programs	К3
III		Dictionaries Tunles and OOP	
3.1	Dictionary data structure	Understanding dictionary data	
0.11		structure	K1
		Loops and Dictionaries	
3.2	Using dictionaries in loops	• Applying dictionary comprehension in	WO
		programs	K2
		Tuples	
3.3	Tuples data structure	• Understanding tuples data structure	K1
3.4	Tuple Operations	• Applying tuples operations	K1
		Dictionaries and Tuples	
3.5	Dictionaries and Tuples	• Applying tuples as keys in dictionaries	K2
	1	Objects and Classes	
3.6	Objects and Classes	Understanding objects and classes	K4
	structure	Understanding inheritance	K5
		Creating objects and Classes	K4
IV		Internet Programming	
4.1	Regular Expressions	• Understanding pattern matching in	
		strings	K4
		• Applying re module functions for	K5
		pattern matching in various examples	
4.2	Detrieving integes in web		K2
4.2	Retrieving images in web	• Using HTTP to retrieve images	К3
4.3	Retrieving web pages	• Using urllib module to retrieve web	K3
	A	pages	
4.4	A Extracting data from	CCessing data from databases	
4.4	databases	• Using modules to extract data from	K4
N/	uatabases	SQL databases	
V	D data stressterres		W0
5.1	R data structures	Understand R data types	K2
		Understand R data structures	K2
		Functions	17.0
5.2	User defined Functions	Creating user defined functions	K3
		R libraries	
5.3	K libraries	Using R libraries	K2
		Creating user defined R libraries	K6

L-l	Low					M-Mo	oderate	•				H- H	ligh
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	Н	Μ	L	Μ	Μ	Μ	Μ	Μ	-	Н	Н
CO2	Н	Н	Μ	L	-	L	-	L	Μ	Μ	-	Μ	-
CO3	H	Н	Н	Н	Μ	Μ	L	-	-	Н	Н	Н	М-
CO4	H	Н	Н	Н	Н	Μ	L	Μ	Μ	Н	Н	Μ	Н
CO5	H	Μ	-	Μ	L	Μ	-	Н	Μ	Н	Н	Μ	-
CO6	Μ	Μ	-	H	Μ	L	-	-	L	Н	H	Н	Μ

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project, Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Prof. K. Jemimah

Core III: NoSQL DATABASE MANAGEMENT					
Semester	Ι	Hours/Week	5		
Course Code	P19DS103	Credits	4		

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Construct the Queries and sub queries in SQL	K6	Ι
CO2	Construct queries to retrieve the data from more than one tables using different techniques.	K6	II
CO3	Design and Analyse different techniques and operations in Mango DB	K6	III
CO4	Assess various operators and clause to generate unstructured data	K5	IV
CO5	Choose different indices to retrieve data	K5	IV
CO6	Construct databases using SQL, MongoDB and Neo4J	K6	V

2. A. SYLLABUS

Unit-1. Data Modeling

DBMS: terminologies, components, roles, advantages and disadvantages – Database architectures: teleprocessing, file server, 2-tier, 3-tier, N-tier, middleware and Transaction processing monitor – Software components of DBMS and Database Manager – Data modeling using ER diagram: Entity, relationship, attributes, keys, strong and weak entities, attributes on relationships, relationship types, cardinality and participation

Unit-2. Structured Query Language

SQL statements: SELECT, WHERE, ORDERBY, GROUPBY and HAVING clauses - Sub Queries – ANY and ALL – JOIN – inner and outer joins – EXISTS and NON EXISTS – UNION, INTERSECT and EXCEPT – Updating databases: INSERT, UPDATE and DELETE – SQL data types – Creating, altering and removing tables – Indexes and views: CREATE and REMOVE.

Unit-3. NoSQL Database Theory

Why NoSQL – Value of Relational Database – Emergence of NoSQL – Aggregate data models – More details on data models: Relationships, Graphs DB, Schemaless DB, Materialized views – Distribution models: Single server, shrading, replication – Consistency: Update, read, relax consistency

Unit-4. NoSQL Databases

Key value databases: What is Key Value store, Features of Key value DB, Suitable use cases, When not to use it – Document databases: Definition, features, Suitable use cases, when not to use – Column family stores: Definition, features, suitable use cases, when not to use – Graph databases: Definition, features, use case, when not to use – Schema migration – Polyglot persistence - Beyond NoSQL – Choosing your database.

Unit-5. MongoDB

Document – Collection – Database - Datatypes – Creating, deleting, updating documents – Querying – Indexing – Aggregation: Pipeline, Aggregation commands – Application design.

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Database Architecture	https://www.youtube.com/watch?v=W6P58yb-edE
2	Normalization	https://www.guru99.com/database-

		normalization.html
3	DynamoDB	https://www.tutorialspoint.com/dynamodb/index.h
		<u>tm</u>
4	Apache HIVE	https://data-flair.training/blogs/apache-hive-
		tutorial/

C. TEXT BOOKS

- 1. Thomas M. Connolly and Carolyn E. Begg. Database Systems: "A Practical Approach to Design, Implementation, and Management", 6th Edition, Pearson, 2015.
- 2. Pramod J. Sadalage; Martin Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of PolyglotPersistence. Addison-Wesley. 2012 ISBN: 0321826620
- 3. Kristina Chodorow, MongoDB: The Definitive Guide, 2ed, Oreilly Publishers

D. REFERENCES BOOKS

1. Eric Redmond; Jim R. Wilson. Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement. Pragmatic Bookshelf. 2012. ISBN: 1934356921

E. WEB LINKS

- 1. <u>https://www.simplilearn.com/introduction-to-nosql-databases-tutorial-video</u>
- 2. https://www.w3schools.com/sql/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit	Contents	Learning Outcomes	Level				
Ι	Data Modelling						
1.1	DBMS: terminologies, components, roles, advantages and disadvantages	Understand the concepts of DBMS	K4				
1.2	Database architectures	Explain the Database architectures	K5				
1.3	Software components of DBMS and Database Manager	List the Software components of DBMS and Database Manager	K2				
1.4	Data modeling using ER diagram	Design the ER Diagram for Data Models	K6				
II	Structured Query Language						
2.1	SQL statements	Use the Sql statements for Data bases	K4				
2.2	Sub Queries	Apply the sub queries for the databases	K5				
2.3	Updating databases	Explain the procedure to update the DB	K5				
2.4	SQL data types	Explain the SQL data types	K5				
2.5	Indexes and views	Create the Indexes and views	K6				
III	NoSQL Database Theory						
3.1	NoSQL	Explain the NoSQL concepts	K5				
3.2	Aggregate data models	Construct the Aggregate data models	K6				
3.3	More details on data models: Relationships, Graphs DB, Schemaless DB, Materialized views	Compare the Data models Assess each data models features	K5 K6				
3.4	Distribution models	Explain the Distribution models.	K5				
3.5	Consistency	Develop the procedure for maintaining the consistency	K4				

IV	NoSQL Databases		
4.1	Key value databases	Explain the Key value databases	K5
4.2	Document databases	Design the Document Databases	K6
4.3	Column family stores	Explain the Column Family Stores	K5
4.4	Graph databases	Construct the Graph Databases	K6
4.5	Schema migration – Polyglot persistence - Beyond NoSQL – Choosing your database	Explain the features of Database Design the custom databases	K5 K6
V	MongoDB		
5.1	Document – Collection	Create the Document in MangoDB	K6
5.2	Database - Datatypes – Creating, deleting, updating documents	Explain the features of MongoDB	K5
5.3	Querying	Construct the Queries for MongoDB	K6
5.4	Indexing – Aggregation: Pipeline, Aggregation commands	Create a index for DB	K6
5.5	Application design	Design the Applications using MongoDB	K6

L-I	Low		M-Moderate								H- H	ligh	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	Н	Μ	L	Μ	Μ	Μ	Μ	Μ	-	Н	Н
CO2	H	H	Μ	L	-	L	-	L	Μ	Μ	-	Μ	-
CO3	H	Н	Н	Н	Μ	Μ	L	-	-	Н	Н	Н	М-
CO4	H	H	Н	Н	Н	Μ	L	Μ	Μ	Н	Н	Μ	Н
CO5	H	Μ	-	Μ	L	Μ	-	Н	Μ	Н	Н	Μ	-
CO6	Μ	Μ	-	Н	Μ	L	-	-	L	Н	Н	Н	М

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felichiah ELECTIVE-1: PROBABILITY AND STATISTICAL METHODS

Semester	Ι	Hours/Week	5
Course Code	P19DS1:1	Credits	4

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Solve problems using Probability	K3	Ι
CO2	Apply Expectation and Regression	K4	II
CO3	Demonstrate and apply Distribution	K5	III
CO4	Develop Estimation using diffe	K5	IV
CO5	Create Hypothesis Testing	K6	V
CO6	Analysis of Variance	K6	V

2. A. SYLLABUS

Unit-1. Probability

Probability Spaces-Combinatorial methods (or) Counting techniques-Elementary Theorem – Conditional Probability –Bayes" theorem-Probability Distributions and Probability Densities.

Unit-2. Expectation and Regression

Mathematical Expectation: Expected value-Moments-Chebyshev's theorem-Moment Generating functions Product Moment-Conditional Expectation-Special Probability Distributions and Probability Densities Functions of Random Variable. Multiple regression-Linear models-Logistic regression-Rates and Poisson regression-Nonlinear curve fitting –correlation.

Unit-3. Distribution

Descriptive Statistics & Sampling Distributions: Population-Sampling-Measures of Central tendency, variations and position –Sampling distributions: Standard Normal Distribution-Chi-Square Distribution-t Distribution –F-Distribution -The Central Limit Theorem.

Unit-4. Estimation

Estimation: Point Estimation: the method of moments and the method of maximum likelihood estimation Interval estimation: estimation of mean, estimation of difference of means, estimation of variance and estimation of ratio of variances.

Unit-5. Hypothesis Testing

Test of Hypothesis-Testing for Attributes –Mean of Normal Population –One-tailed and two-tailed tests, Ftest and Chi-Square test –Analysis of Variance-Nonparametric test.

S.No.	Topics	Web Links
1	Statistical Thinking for Data Science	https://www.edx.org/course/statistical-thinking-
	and Analytics	for-data-science-and-analytic
2	Linear Regression for Business	https://www.coursera.org/learn/linear-regression-
	Statistics	business-statistics
3	Learning Statistics with R	https://learningstatisticswithr.com/

B. TOPICS FOR SELF-STUDY

4	15 Types of Regression	https://www.listendata.com/2018/03/regression-
		analysis.html

C. TEXT BOOKS

1. Cheryl Ann Willard, "Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis", Routledge, 2020. (Unit – I – III)

2. Xin Yan & Xiaogang Su, "*Linear Regression Analysis : Theory and Computing*", World Scientific Pulishing Ltd, 2009. (Unit – IV: Chapter 1,2,3, 8.5,8.6; Unit – V: Chapters 4.2,4.3, 4.4, 4.5, 5.1-5.3, 6.1, 6.2)

D. REFERENCE BOOKS

1. John.E.Freund, Irwin Miller, Marylees Miller "Mathematical Statistics with Applications", 8th, Prentice Hall of India, 2014

2. Ross, Sheldon. M, "Introduction to Probability and Statistics for Engineers and Scientists", Academic Press, 2009

3. D.C Montgomery, E.A Peck and G.G Vining, "Introduction to Linear Regression Analysis", John Wiley and Sons, 2003.

4. S. Chatterjee and AHadi, "*Regression Analysis by Example*", 4th Ed., John Wiley and Sons, Inc, 2006

E. WEB LINKS

- <u>https://www.listendata.com/2018/03/regression-analysis.html</u>
- <u>https://www.coursera.org/learn/linear-regression-business-statistics</u>

3. SPECIFIC LEARNING OUTCOMES(SLO)

Unit/ Section	Торіс	Learning outcomes	Level		
Ι	I	Probability	obbility		
1.1	Probability Spaces	Discover mathematical construct	K4		
		that provides a formal model of a			
		random process			
1.2	Combinatorial methods	Decide dramatically increase the	K5		
		rate at which new compounds are			
		discovered and improved.			
1.3	Counting techniques	Estimate the probability of an	K6		
		event			
1.4	Elementary Theorem	Elaborate the likelihood that a	K6		
		defined event will occur			
1.5	Conditional Probability	Measure likelihood of an event or	K5		
		outcome occurring			
1.6	Bayes theorem	Examine the probability Total	K4		
		Probability Rule			
1.7	Probability Distributions and	Assess representation of a	K5		
	Probability Densities.	continuous probability distribution			
II	Expectat	tion and Regression			
2.1	Mathematical Expectation:	Examine of all possible values	K4		
	Expected value	from a random variable			
2.2	Moments	Evaluate the random variable X	K5		
		denoted by $M_X(t)$			
2.3	Chebyshev's theorem	Formulate the minimum	K6		
		proportion of observations that fall			
		within a specified number of			
		standard deviations from the			
		mean.			

2.4	Moment Generating functions	Assess the real-valued random variable using moment- generating function	K5
2.5	Product Moment	Determine the bivariate correlation	K5
2.6	Conditional Expectation	Choose an arbitrarily large number of occurrences	K5
2.7	Special Probability Distributions	Inspect the picking of an element of S at random	K4
2.8	Probability Densities	Evaluate, whose value at any given sample space can be interpreted.	K5
2.9	Functions of Random Variable	Analyse, How to make precise the idea that a function of a random variable is itself a random variable	K4
2.10	Multiple regression	Examine relationship between a single dependent variable and several independent variables	K4
2.11	Linear models	Measure the response variable	K5
2.12	Logistic regression	Evaluate binary dependent variable	K5
2.13	Rates and Poisson regression	Predict a dependent variable that consists of "count data" given one or more independent variables	K6
2.14	Nonlinear curve fitting	Prove fitting to curves whose parameters appear in the function expression in arbitrary ways	K5
2.15	Correlation.	Justify the degree to which two variables move in coordination	K5
		with one another	
III	D	with one another Distribution	
III 3.1	Descriptive Statistics & Sampling	with one another Distribution Examine most common patterns	K4
III 3.1	Descriptive Statistics & Sampling Distributions	with one another Distribution Examine most common patterns of the analyzed data set.	K4
III 3.1 3.2	Descriptive Statistics & Sampling Distributions Population-Sampling	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population	K4 K4
III 3.1 3.2 3.3	Descriptive Statistics & Sampling Distributions Population-Sampling Measures of Central tendency	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population Determine the typical value for a probability distribution	K4 K4 K5
III 3.1 3.2 3.3 3.4	Descriptive Statistics & Sampling Distributions Population-Sampling Measures of Central tendency variations and position	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population Determine the typical value for a probability distribution Compare each deviation from its expected value	K4 K4 K5 K4
III 3.1 3.2 3.3 3.4 3.5	Descriptive Statistics & Sampling Distributions Population-Sampling Measures of Central tendency variations and position Sampling distributions	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population Determine the typical value for a probability distribution Compare each deviation from its expected value Identify a probability distribution of a statistic obtained from a larger number of samples drawn from a specific population	K4 K4 K5 K4 K3
III 3.1 3.2 3.3 3.4 3.5 3.6	Descriptive Statistics & Sampling Distributions Population-Sampling Measures of Central tendency variations and position Sampling distributions Standard Normal Distribution	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population Determine the typical value for a probability distribution Compare each deviation from its expected value Identify a probability distribution of a statistic obtained from a larger number of samples drawn from a specific population Evaluate a mean of zero and standard deviation of 1	K4 K4 K5 K4 K3 K5
III 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Descriptive Statistics & Sampling Distributions Population-Sampling Measures of Central tendency variations and position Sampling distributions Standard Normal Distribution Chi-Square Distribution	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population Determine the typical value for a probability distribution Compare each deviation from its expected value Identify a probability distribution of a statistic obtained from a larger number of samples drawn from a specific population Evaluate a mean of zero and standard deviation of a sum of the distribution of a sum of the distribution of a sum of the squares of n independent	K4 K4 K5 K4 K3 K5 K4
III 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Descriptive Statistics & Sampling Distributions Population-Sampling Measures of Central tendency variations and position Sampling distributions Standard Normal Distribution Chi-Square Distribution t-Distribution	with one another Distribution Examine most common patterns of the analyzed data set. Survey the process of taking a subset of subjects that is representative of the entire population Determine the typical value for a probability distribution Compare each deviation from its expected value Identify a probability distribution of a statistic obtained from a larger number of samples drawn from a specific population Evaluate a mean of zero and standard deviation of 1 Inspect k degrees of freedom is the distribution of a sum of the squares of n independent Decide the standardized distances of sample means to the population mean	K4 K4 K5 K4 K3 K5 K4 K5

		test statistic in a continuous	
		probability distribution that arises	
		frequently	
3 10	The Central Limit Theorem	Criticize the independent random	K5
5.10	The Central Emilt Theorem.	variables are summed up	KJ
IX/	1	Fatimation	
1V 4 1	Estimation Daint Estimation	Construction the sector of second	175
4.1	Estimation: Point Estimation	Conclude the value of some	КЭ
		property of a population from	
1.0		observations	
4.2	the method of moments	estimate the population	K5
		parameters.	
4.3	the method of maximum	Compose the conditional	K6
	likelihood estimation	probability of observing the data	
		sample	
4.4	Interval estimation: estimation of	Make	K5
	mean	up an interval, or range of values,	
		within which the parameter is	
		most likely to be located.	
4.5	estimation of difference of means	Originate the difference in the	K6
		corresponding sample means	
4.6	estimation of variance	Originate the point estimate of the	K6
		variance of an unknown	
		distribution	
4.7	estimation of ratio of variances	Invent the ratio of means of two	K6
		random variables	
V	Нур	othesis Testing	
5.1	Test of Hypothesis	Assess the plausibility of a	K5
		hypothesis by using sample data	
5.2	Testing for Attributes	Analyze the characteristics of a	K4
		given population	
5.3	Mean of Normal Population	Elaborate approximately normal	K6
	I I I I I I I I I I I I I I I I I I I	as long as the expected number of	-
		successes	
5.4	One-tailed and two-tailed tests	Justify whether a claim is true or	K5
		not, given a population parameter	
5.5	F-test	Survey the F-distribution under	K4
2.0		the null hypothesis	
56	Chi-Square test	Predict to perform when the test	K6
5.0		statistic is chi-squared distributed	
		under the null hypothesis	
57	Analysis of Variance	Analyse variation in a response	КЛ
5.7		variable	11.7
50	Nonperemetrie test	Imaging the required accumptions	V6
5.8	nonparametric test.	to be applying d	NU
		to be analyzed	

L-	Low			M-N	Iodera	te		H-	High				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ		L		Н		Н		Н		L	Μ
CO2	Н		Н	Μ	Μ		L		L	Μ		Н	
CO3	Μ	Н	Н	Н	Η		Н			Н	L		
CO4	Η	L	Μ	Μ		L				Μ	Η		L

CO5	Η	Н		L	Μ	Μ		Μ	Н		Μ	
CO6	Μ		L	Η	Н		L	Μ	Н	Μ		Η

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. A. Santhanasamy

CORE PRACTICAL I: PROBLEM SOLVING USING PYTHON AND R LAB							
Semester	Ι	Hours/Week	5				
Course Code	P19DS1P1	Credits	3				

S.No.	Course Outcomes	Level	Activity
CO1	Write simple Python programs using Python data structures	K6	1-5
CO2	Manipulate files using Python	K6	6
CO3	Develop object oriented programs in Python	K6	7-8
CO4	Access internet and database data	K6	9-12
CO5	Write R programs for data visualization	K6	13
CO6	Creating dashboards using Tableau	K6	14-15

2. SYLLABUS

Develop applications that will demonstrate the following Python and R programming features

- Functions
- String processing
- List processing
- Dictionaries
- Tuples
- File processing
- Regular Expressions
- OOP
- Retrieving webpages from web
- Data visualization in Matplotlib, Seaborn and R
- Database programming
- Concurrent programming

3. SPECIFIC LEARNING OUTCOMES (SLO)

Exercise	Торіс	Learning outcomes	Level
1	Python Basics and Conditions	Applying conditional statements to programs	K6
2	Python Loops	Applying loops to Python Programs	K6
3	Python Functions and Modules	Creating user defined functions and using modules	K6
4	Python String Processing	Manipulating strings in Python	K6
5	List Processing in Python	Using lists in programs	K6
6	Python File Processing	Reading and writing files	K6
7	Python Regular Expressions	Applying pattern matching to strings	K6
8	Object Oriented Bank in Python	Creating Python classes and objects	K6
9	Functional Programming	Using map, filter and reduce	K6

		functions in programs	
10	Retrieving Data from Web and	Retrieving data from webpages	K6
	Parsing	using urllib	
11	Database Programming Using	Extracting data from SQL	K6
	Sqlite3	databases using python libraries	
12	2D and 3D Data Visualization	Creating data visualizations using	K6
	Using Seaborn	seaborn library	
13	Animated Data Visualization	Creating interactive visualizations	K6
	Using R	using R libraries	
14	Dashboard Visualization Using	Creating dashboards and repots	V6
	Tableau	using Tableau	KU
15	Concurrent Programming in	Creating concurrent programs for	V6
	Python	multiprocessing	K0

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1		Н			Н	Н	Н	Η				Н	
CO2		Н			Н	Н	Н	Η		Н	Н	Н	Н
CO3		Н			Н	Н	Н	Н		Н		Н	Н
CO4		Н			Η	Н	Η	Η		Н	Н	Н	
CO5		Н			Η	Η	Н	Η				Н	Н
CO6		Н			Н	Н	Н	Η					

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Prof. K. Jemimah

Semester	Ι	Hours/Week	5
Course Code	P19DS1P2	Credits	3

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Leve l	Exercise Covered
CO1	Build a Table using SQL Queries and perform the basic operation	K6	1,2
CO2	Construct a SQL queries to evaluate various operators	K6	3,4
CO3	Evaluate the result using Subquery and Join techniques	K6	5,6,7,8
CO4	Assess the basic Queries in NoSQL using Mango DB	K5	9,10,11
CO5	Review the SQL, NoSQL and Neo 4J Graph data base	K5	12
CO6	Design a Graph database for Movie and Flight Data	K6	13,14

2. SYLLABUS

S.No	List of Exercises
1	Designing and Querying My Restaurant Database
2	India Weather Analytics Using Historical Data Part-I
3	India Weather Analytics Using Historical Data Part-II
4	Retail Sales Analytics Part-I
5	Retail Sales Analytics Part-II
6	Retail Sales Analytics Part-III
7	University Course Enrolment Data Analytics
8	Retail Sales Analytics Part-IV
9	Student Information System Design using MongoDB Part-I
10	Student Information System Design using MongoDB Part-II
11	Ecommerce Product CatLog Design Using MongoDB
12	Neo4J Play Ground Exercise
13	Designing Movie Graph Database using Neo4J
14	Designing Flight Graph Database Using Neo4J

3. SPECIFIC LEARNING OUTCOMES (SLO)

Exercise	Course Content	Learning outcomes	Level
1	Designing and Querying My Restaurant Database	Create a new table, insert tuples satisfying the constraints and perform queryprocessing.	K6
2	India Weather Analytics Using Historical Data Part-I	Evaluate the selection, filtering and aggregate functions to analyse the historical data of India Weather Information	K5
3	India Weather Analytics Using Historical Data Part-II	Determine further India Weather Dataset with additional query operators such as GROUPBY, HAVING and	K5

		ORDERBY	
4	Retail Sales Analytics Part-I	Create analytics on retail sales of a particular enterprise	K6
5	Retail Sales Analytics Part-II	Assess multiple tables in retail sales dataset	K5
6	Retail Sales Analytics Part-III	Compile Group function and Aggregate function in retail dataset	K6
7	University Course Enrolment Data Analytics	Design document in NoSQL for university course enrollment	K6
8	Retail Sales Analytics Part-IV	Develop queries for subquery	K6
9	Student Information System Design using MongoDB Part-I	Create student information system design using mongo DB	
10	Student Information System Design using MongoDB Part-II	Analyze various operators in mango DB	K4
11	Ecommerce Product CatLog Design Using MongoDB	Create a Collection in mongo DB for product catalog for heterogenous data	K6
12	Neo4J Play Ground Exercise	Outline the Neo4J for movie graph dataset	K2
13	Designing Movie Graph Database using Neo4J	Create a graph database for Actors and Movies in which actors played roles. You will write queries in Cypher and find answers to all queries.	K6
14	Designing Flight Graph Database Using Neo4J	Develop graph data base for Flight Transportation system	K6

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	H	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	H	Μ	Μ	L	Η	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felciah

CORE IV: REGRESSION ANALYSIS					
Semester	II	Hours/Week	4		
Course Code	P19DS204	Credits	4		

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Solve the stationarity, trending and detrending of time series data	K6	1
CO2	Assess the features of the ARMA Models and estimation techniques	K5	2
CO3	Explain the ARIMA models and SARMA Models	K6	3
CO4	Summarize the characteristics of Spectral behaviour and periodic behaviour of the time series		4
CO5	Compile the behaviour of smoothing in DLMS	K6	5
CO6	Design the Timeseries models using R for different time series data	K6	All

2. A. SYLLABUS

Unit-1. Simple Linear Regression

Introduction to regression analysis: Modelling a response, overview and applications of regression analysis, major steps in regression analysis. Simple linear regression (Two variables): assumptions, estimation and properties of regression coefficients, significance and confidence intervals of regression coefficients, measuring the quality of the fit.

Unit-2. Multiple Linear Regression

Multiple linear regression model: assumptions, ordinary least square estimation of regression coefficients, interpretation and properties of regression coefficient, significance and confidence intervals of regression coefficients.

Unit-3. Criteria for Model Selection

Mean Square error criteria, R2 and $\hat{R}2$ criteria for model selection; Need of the transformation of variables; Box-Cox transformation; Forward, Backward and Stepwise procedures.

Unit-4. Residual Analysis

Residual analysis, Departures from underlying assumptions, Effect of outliers, Collinearity, Nonconstant variance and serial correlation, Departures from normality, Diagnostics and remedies.

Unit-5. Non Linear Regression

Introduction to nonlinear regression, Least squares in the nonlinear case and estimation of parameters, Models for binary response variables, estimation and diagnosis methods for logistic and Poisson regressions. Prediction and residual analysis.

S.No.	Торі	cs	Web Links
1	Multivariate	Regression	https://otexts.com/fpp2/hierarchical.html
	Analysis		
2	Autoregression	Models for	https://machinelearningmastery.com/\autoregressio
	Time Series	Forecasting	n-models-time-series-forecasting-python/
	With Python		
<u>3</u>	Simple	Exponential	https://towardsdatascience.com/
	Smoothing for	Time Series	simple-exponential-smoothing-749fc5631bed
	Forecasting		

B. TOPICS FOR SELF - STUDY

C. TEXT BOOKS

- 1. D.C Montgomery, E.A Peck and G.G Vining, Introduction to Linear Regression Analysis, John Wiley and Sons, Inc. NY, 2003.
- 2. S. Chatterjee and AHadi, Regression Analysis by Example, 4th Ed., John Wiley and Sons, Inc, 2006
- 3. Seber, A.F. and Lee, A.J. (2003) Linear Regression Analysis, John Wiley, Relevant_sections from chapters 3, 4, 5, 6, 7, 9, 10.

D. REFERENCES BOOKS

- 1. Iain Pardoe, Applied Regression Modeling, John Wiley and Sons, Inc, 2012.
- 2. P. McCullagh, J.A. Nelder, Generalized Linear Models, Chapman & Hall, 1989

E. WEB LINKS

- 1. https://machinelearningmastery.com/autoregression-models-time-series-forecasting-python/
- 2. https://courses.cornell.edu/preview_course_nopop.php?catoid=31&coid=491740
- 3. https://engineering.purdue.edu/online/courses/applied-regression-analysis

Unit/ Section	Course Content	Learning outcomes	Level
Ι	SIM	PLE LINEAR REGRESSION	
1.1	Introduction to regression analysis: Modelling a response, overview and	Define the Regression Explain the steps involved in Regression	K2
1.1	applications of regression analysis, major steps in regression analysis	Determine the major steps in regression analysis	K4 K5
1.2	Simple linear regression (Two variables): assumptions, estimation and properties of	Construct the Simple Linear Regression Assess the assumptions of regression	K6
	regression coefficients		IX0
1.3	Significance and confidence intervals of regression coefficients, measuring the quality of the fit.	Determine the Significance and confidence intervals of regression coefficients	К5
II	MULT	TIPLE LINEAR REGRESSION	•
2.1	Multiple linear regression model: assumptions, ordinary	Construct the Simple Linear Regression Assess the assumptions of regression	K6
	regression coefficients	coefficients	K6
2.2.	Interpretation and properties of regression coefficient	Explain the interpretation and properties of regression coefficient	K5
2.3	Significance and confidence intervals of regression coefficients	Determine the Significance and confidence intervals of regression coefficients	K5
III	CRITE	RIA FOR MODEL SELECTION	1
3.1	Mean Square error criteria, R2 and R2 criteria for model selection	Explain the Criteria for model selection Design the criteria for model selection	K5 K6
3.2	Need of the transformation of variables	Assess the need of the transformation of variables	K6
3.3	Box-Cox transformation;	Construct the Box-Cox Transformations	K6

3. SPECIFIC LEARNING OUTCOMES

	Forward, Backward and	Explain the procedures for model selections	K5			
	Stepwise procedures.					
IV		RESIDUAL ANALYSIS				
4.1	Residual analysis, Departures from underlying assumptions	Explain the Residual Analysis	K5			
4.2	Effect of outliers, Collinearity	Assess the outliers for of the models	K6			
4.3	Non-constant variance and serial correlation	Determine the Non-constant variance and serial correlation	K5			
4.4	Departures from normality	Evaluate the normality	K5			
4.5	Diagnostics and remedies	Explain the methods for Diagnostics and remedies				
V	NON LINEAR REGRESSION					
•	110	IN LINEAK KEGKESSION				
5 1	Introduction to nonlinear regression, Least squares in	Assess importance of Non-linear regression methods	K6			
5.1	Introduction to nonlinear regression, Least squares in the nonlinear case and estimation of parameters,	Assess importance of Non-linear regression methods Estimate the parameters for nonlinear regression	K6 K5			
5.1	Introduction to nonlinear regression, Least squares in the nonlinear case and estimation of parameters, Models for binary response variables, estimation and diagnosis methods for logistic and Poisson regressions.	Assess importance of Non-linear regression methods Estimate the parameters for nonlinear regression Construct the model for binary response variables Design the logistic and Poisson regressions.	K6 K5 K6			

4. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Н	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Н	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Н	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 1. Course evaluation survey
- 2. Faculty feedback about the course.

Name of the Course Coordinator: Dr. P. S. Eliahim Jeevaraj

CORE V: DATA AND VISUAL ANALYTICS						
Semester	II	Hours/Week	4			
Course Code	P19DS205	Credits	4			

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Test the NumPy functions for array processing	K6	Ι
CO2	Create time series plots using the Date and Time classes	K6	II
CO3	Interpret the Plotting of the dataset and time series	K6	III
CO4	Perform data aggregation and group operations	K6	IV
CO5	Create and use Series and Data Frames for data wrangling	K6	V
CO6	Create various plots using Matplotlib and Seaborn	K6	v

2. A. SYLLABUS

Unit-1. NumPy and Pandas Basics

Why Python for Data analysis – Essential Python libraries – ndarray – Universal functions – Data processing using arrays – File I/O with arrays – Random number generation – Series, Data Frames – Indexing, re-indexing, sorting, ranking – Summarizing descriptive statistics – Handling missing data – Hierarchical indexing

Unit-2. Data Loading and Wrangling

Data Loading: reading and storing data in text format, binary format – Data Wrangling: Combining and merging data sets – Reshaping – Pivoting – Data transformation – String manipulation

Unit-3. Plotting and Visualization using Matplotlib

Figures – Subplots – Colors – Ticks – Label – Legends – Annotation – Saving plots to file – Plots: Line, Bar, Histogram, Density Plots – Scatter Plots

Unit-4. Data Aggregation and Group Operations

Iterating over groups – Selecting columns – Grouping with Series and functions – Data aggregation: Column wise aggregation, returning aggregated data – General-Split-Apply-Combine – Quantile and bucket analysis – Pivot table and cross tabulation

Unit-5. Time Series

Date and Time – Time Series – Date Range, Frequencies and Shifting – Periods and period arithmetic – Resampling and frequency coversion – Time Series Plotting

S.No	Topic Title	Web Link
1	Facebook Data Analysis	https://www.kaggle.com/sd2beatles/deep-analysis- sql-and-statistical-test-included
2	Clothing Fit Dataset for Size Recommendation	https://www.kaggle.com/agrawaladitya/step-by-step- data-preprocessing-eda
3	UCI Adult dataset	https://www.kaggle.com/kashnitsky/a1-demo- pandas-and-uci-adult-dataset
4	Wikipedia Time series analysis	https://www.kaggle.com/kashnitsky/a9-demo-time- series-analysis

B. TOPICS FOR SELF-STUDY

C. TEXT BOOKS

1. Wes. Mc Kinney, "Python for Data Analysis", 2nd Edition, Schroff Publishers, 2013. ISBN 9789352136414

D. REFERENCES

1. Cyrille Rossant. "Learning IPython for interactive Computing and data visualization", First edition [Packt]

2. Jake VanderPlas ,Python Data Science Handbook - Essential Tools for Working with Data, O'Reily, 2016

3. Zhang.Y ,An Introduction to Python and Computer Programming, Springer Publications,2016

E. WEB LINKS

- https://www.kaggle.com/agrawaladitya/step-by-step-data-preprocessing-eda
- <u>https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset</u>

3. SPECIFIC LEARNING OUTCOMES

Unit	Торіс	Topic Learning Outcome			
Ι		NumPy and Pandas Basics			
1.1	Python for Data analysis	Why Dataset analysis? And Why and What Python	K1		
1.2	Essential Python libraries	Illustrate Python libraries which is used for Data Science	K2		
1.3	Universal	Utilize universal function (or ufunc for short) is	K3		
	functions	a function that operates on ndarrays in an element-by- element fashion, supporting array broadcasting, type			
		casting, and several other standard features			
1.4	Data processing using arrays	Discover data processing tasks without writing complex loops	K4		
1.5	File I/O with arrays	Test for file read and write using array	K4		
1.6	Random number generation	Analyze pseudo-random number generator for various distributions.	K4		
1.7	Series, Data	Appraise the single list with index. Examine a dataframe	K5,K4		
	Frames	using collection of series that can be used to analyse the data			
1.8	Indexing, re-	Find NA/NaN in locations having no value in the	K1,		
	indexing, sorting,	previous index.	K3		
	ranking	Plan to index and reindex using Indexing, reindexing, sorting, ranking.			
1.9	Summarizing	Examine summarizing and organizing the data so they	K4		
	descriptive	can be easily understood.			
	statistics				
1.10	Handling missing	Determine missing values for a number of reasons such	K5		
	data	as observations that were not recorded and data corruption.			
1.11	Hierarchical	Discover to incorporate multiple index levels within a	K4		
	indexing	single index.			

II	Data Loading and Wrangling						
2.1	Data Loading:	Motive the ability to read, manipulate, and write data to	K4				
	reading and	and from CSV files using Python is a key skill to master					
	storing data in	for any data scientist or business analysis.					
	text format,						
	binary format						
2.2	Data Wrangling:	Measure the processing of data in various formats like -	K5				
	Combining and	merging, grouping, concatenating etc. for the purpose of					
	merging data sets	analysing or getting them ready to be used with another					
		set of data.					
2.3	Reshaping	Examine 'reshape()' function, that takes a single	K4				
		argument that specifies the new shape of the array.					
2.4	Pivoting	Analyze Pivoting for reshape a DataFrame by	K4				
		column/index values.					
2.5	Data	how we can combine data from different sources into a	K1				
	transformation	unified dataframe					
2.6	String	List the manipulation of string like concatenation,	K4				
	manipulation	<pre>isupper(), join(), lower(), etc.</pre>					
III		Plotting and Visualization using Matplotlib					
3.1	Figures	Create graph using figure() in Python.	K6				
3.2	Subplots	Create subplots by the use of subplot() function in	K6				
		pyplot module.					
3.3	Colors	Discuss colouring plot by python colour code.	K6				
3.4	Ticks	Create Ticks value to show specific points on the	K6				
		coordinate axis.					
3.5	Label	Assess plot axis label	K5				
3.6	Legends	Analyze legend for describing area and elements of the	K4				
		graph					
3.7	Annotation	Utilize annotate() function to draw an arrow connecting	K3				
		two points on the plot.					
3.8	Saving plots to	Recommend savefig() function to save plot in to file	K5				
	file						
3.9	Plots: Line, Bar,	List basic graphics primitives to draw plot	K4				
	Histogram,						
	Density Plots						
3.10	Scatter Plots	Evaluate the data as a collection of points.	K5				
IV		Data Aggregation and Group Operations					
4.1	Iterating over	Discover data cluster using Iterating over groups	K4				
	groups						
4.2	Selecting	Select multiple columns using loc, iloc, etc	K3				
	columns						
4.3	Grouping with	Create series group using groupby() function	K6				
	Series and						
	functions						
4.4	Data aggregation:	Examine summarization using computing aggregations	K4				
	Column wise	like sum(), mean(), median(), min(), and max(), in					

	aggregation	which a single number gives insight into the nature of a	
		potentially large dataset.	
4.5	Data aggregation:	Plan statistical method for data aggregation.	K3
	returning		
	aggregated data		
4.6	General-Split-	Create group by three step Split-Apply-Combine.	K6
	Apply-Combine		
4.7	Quantile and	Examine quantile() function to get values at the given	K4
	bucket analysis	quantile over requested axis.	
4.8	Pivot table and	Create cross-tabulation table for show the frequency	K6
	cross tabulation	with which certain groups of data appear	
V		Time Series	
5.1	Date and Time	Examine date and time parameter for time series.	K4
5.2	Time Series	Discover statistical descriptive by statistical tests and	K4
		several linear model classes: autoregressive, AR,	
		autoregressive moving- average, ARMA, and vector	
		autoregressive models VAR.	
5.3	Date Range	Model a large range of dates for various offsets are pre-	K3
		computed	
5.4	Frequencies and	Evaluate percentage change from sample to sample.	K5
	Shifting		
5.5	Periods and	Dissect the time elapsed between two values of the same	K4
	period arithmetic	magnitude.	
5.6	Resampling and	Survey the Convenience method for frequency	K4
	frequency	conversion and resampling of time series	
	conversion		
5.7	Time Series	Visualize trends in counts or numerical values	K4
	Plotting	over time.	

4. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Н	-
CO2	Μ	Η	Μ	Η	Μ	Μ	I	Μ	Μ	Μ	Μ	•	Η
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Н	Μ	Н	Н
CO4	Η	Η	L	Η	Μ	Η	I	Μ	Η	Η	Η	I	Η
CO5	Η	Μ	Η	Μ	Η	Η	I	-	Μ	Η	Η	Η	Η
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	Н	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).

4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- Course evaluation survey
 Faculty feedback about the course.

Name of the Course Coordinator: Dr. B. Karthikeyan

CORE VI: PRACTICAL MACHINE LEARNING						
Semester	II	Hours/Week	4			
Course Code	P19DS206	Credits	4			

On successful completion of this course, students will be able to:

S. No.	Course Outcome	Level	Unit
CO1	Perceive the Types of ML and develop Perceptron model	K6	Ι
CO2	Develop a supervised ML model for the given business problem	K5	II
CO3	Assess the pre-processing methods and reduce dimensions of data	K6	III
CO4	Evaluate the training and the testing of the designed ML model	K6	IV
CO5	Develop an unsupervised ML model for the given business problem	K5	V
CO6	Deploy machine learning models into production environment	K6	All

2. A. SYLLABUS

Unit-1. ML Basics and Perceptron

Three types Machine Learning – Three steps of ML process – Perceptron neural network – Adaline neural network – Stochastic gradient descent neural network

Unit-2. Supervised Learning classifiers

Logistic regression – Support vector machines – Kernel SVM – Decision Trees – K-Nearest Neighbour classifier – Random Forest – Linear Regression–Sentiment Analysis of Movie Reviews using Logistic Regression - Developing a web application with Flask

Unit-3. Pre-processing and Dimensionality Reduction

Pre-processing: Missing data, categorical data, feature scaling, feature selection. Dimensionality reduction: Principal Component Analysis, Linear Discriminant Analysis, Kernel PCA

Unit-4. Model evaluation

Pipelines - K-fold cross validation - Grid search - Confusion matrix, Precision, Recall, ROC curves, Scoring metrics – Majority vote classifier – Bagging, Bootstrapping, Adaptive Boosting

Unit-5. Unsupervised Learning classifiers and Multilayer NN

K-Means, K-Means++, Finding optimal no. of classifiers - Agglomerative Hierarchical clustering, Density based clustering -Multilayer Neural Network: Feed forward, Back Propagation Training, Multilayer Perceptron

B. TOPICS FOR SELF STUDY

SNo	Topic Title	Web Link
1	Kaggle Machine Learning	https://www.kaggle.com/learn/overview
2	IBM ML with Python:	https://www.edx.org/course/machine-learning-with-python-
	Practical introduction	a-practical-introduct
3	Predictive Analytics using	https://www.edx.org/course/predictive-analytics-using-
	Machine Learning	machine-learning
4	Google AI	https://ai.google/education/

C. TEXT BOOK(S)

1. Sebastian Raschka, "Python Machine Learning", First Edition, [PACKT], 2015.

D. REFERENCES BOOK(S)

1. Andreas C Muller and Sarah Guido, Introduction to Machine Learning with Python, Shroff Publishers, ISBN 978935213451

- Joel Grus, "Data Science from Scratch", First Edition, O'Reilly,2015
 Gavin Hackeling, "Mastering machine learning with scikit-learn", First Edition, [PACKT], 2014

E. WEB LINKS

- <u>https://www.edx.org/course/predictive-analytics-using-machine-learning</u>
- <u>https://www.edx.org/course/machine-learning-with-python-a-practical-introduct</u>

3. SPECIFIC LEARNING OUTCOMES

Unit	Торіс	Topic Learning Outcomes	Level
Ι	Machine Learning Basics and Perceptron		
1.1	Three types Machine Learning	Select a machine learning model, given business, scientific and societal use cases.	K2
1.2	Three steps of ML process	Explain machine learning steps based on the given use cases.	K2
1.3	Perceptron neural network	Draw Perceptron Neural Network for AND, OR and NOT logic gate operations. Create Perceptron in <i>sklearn</i> for a simple dataset that contains 4 samples for 2 numerical input features and corresponding y values, perform training and testing for an	K3 K5
1.4	Adaline neural network	unknown sample. Differentiate Adaline from Perceptron neural network.	K2
1.5	Stochastic gradient descent neural network	Differentiate Perceptron, Adaline and Stochastic Gradient Descent Neural Networks. Create a dataset, perform training, testing and print error rates for SGD Neural Network using <i>sklearn</i> , for the given use case.	K2 K6
II	Supervised Learning C	lassifiers	•
2.1	Types of Supervised ML and ML pipeline	Identify the type of supervised ML, given use cases. Identify the steps of ML pipeline for classification and regression problems.	K2 K2
2.2	Classes and methods of ML models available in <i>sklearn</i> package	Import and instantiate ML models using sklearn. Call methods and properties of ML models in sklearn.	K3 K3
2.3	Linear Regression in Scikit Learn	Identify input features and target from dataset, preprocess data, split dataset for training & testing, create LinearRegression model using <i>sklearn</i> , perform training and testing and print MSE, SSE and R2 errors, for the given regression problem. Create Ridge Regression model in sklearn, for the given use case, by following ML pipeline steps. Create LASSO Regression model in sklearn, for the given use case, by following ML pipeline steps. Create Polynomial Regression model in sklearn to represent non-linearity assumption, for the given use case, by following ML pipeline steps.	K6 K6 K6
2.4	Perceptron using Scikit Learn	Identify input features and target from dataset, preprocess data, split dataset for training & testing, create Perceptron using <i>sklearn</i> , perform training and testing and print classification accuracy for the given classification	K6

		problem.	
2.5	Logistic regression	Compare LR against Perceptron based on the given use cases.	K2 K3
		Compute Sigmoid activation function value given weights	к2
		Explain how LR can be used to predict probability values,	112
		with use cases.	K4
		Choose if the given ML model suffers from Overfitting or	
		Underfitting; Also select if the model has high/low variance or high/low bias	K3
		Explain how regularization solves overfitting issue of a ML model.	K5
		Create LR model in <i>sklearn</i> by following ML system	
		design pipeline and compare against Perceptron and select the best model, for a given use case.	
2.6	Support vector	Compare SVM against LR and Perceptron.	K2
	SVM	syntax of SVC classifier,	KZ
		Interpret parameters and their values, Ggiven <i>sklearn</i>	K2
		syntax of SVC for Kernel SVM	K2
		Create SVM model in <i>sklearn</i> by following ML system	K6
		design pipeline and select the best model among	
		Perceptron, LR and SVM models, for the given use case.	
2.7	Decision Trees	Find the best split of DT node using Entropy value.	K4
		Find the best split of DT node using Gini Index value.	
		Create a DT manually using ID3 algorithm for the	K4
		specified depth, given a dataset.	K4
		specified depth given a dataset	
		Create syntax for <i>sklearn</i> DecisionTreeClassifier class,	K4
		given parameter values. Create syntax for sklearn DecisionTreeRegressor class	К4
		given parameter values,	IX I
		Create Decision Tree model in <i>sklearn</i> by following ML	K4
		system design pipeline, compare its performance against other ML models and select the best model for a given use	
		case.	K5

2.8	Random Forest	Select Random Forest or Decision Tree approach based on	K5
		the business objective.	K5
		case	K5
		Create manually Random Forest using CART trees for the	110
		given use case.	K4
		Create syntax for <i>sklearn</i> RandomForestClassifier class,	K4
		given parameter values.	
		Create syntax for <i>sklearn</i> RandomForestRegressor class,	K5
		Create Random Forest classification model in <i>sklearn</i> by	
		following ML system design pipeline, compare its	K5
		performance against Decision Tree classification model	_
		and select the best model, for a given use case.	
		Create Random Forest regression model in <i>sklearn</i> by	
		following ML system design pipeline, compare its	
		performance against Decision Tree regression model and	
		select the best model, For a given use case.	
2.9	K-Nearest Neighbour	Classify ML methods into parametric and non-parametric	K2
	classifier	categories.	
		Classify ML methods into Easy Learners and Lazy	K2
		Learners.	K3
		Select the best value for k for KINN classifier.	KS
		for number of neighbors and distance metric	K5
		For the given use case, build dataset, create KNN model	110
		and evaluate its performance.	
2.10	Sentiment Analysis of	Create feature vectors manually by computing term	K4
	Movie Reviews using	frequency, inverse document frequency and TF-IDF	17.4
	Logistic Regression	Values, for the given use case.	K4
		class for the given use case	K6
		Create a sentiment analysis system using Logistic	no
		Regression model for the movie reviews dataset.	
2.11	Developing a web	Create a simple website and deploy a machine learning	K6
TTT	application with Flask	model using Flask.	
	Pre-processing and Di	Eind missing volves and replace with mean (median (K2
3.1	and categorical data	mode values for numerical data	КЭ
	and callgorical data	Apply LabelEncoder to ordinal attributes in order to	K4
		represent string values to integers.	
		Apply One Hot Encoder to nominal attributes to represent	K4
		categorical data.	

3.2	Feature scaling and	Compute normalized values using min max scaling.	K3
	feature selection	Compute standardized values using standard scaling.	K3
		Apply MinimaxScaler and StandardScaler to preprocess	K5 K5
		Compute important features using L2 and L1	KJ KA
		regularization methods	174
		Compute important features using Random Forest	
		algorithm.	
3.3	Principal Component	Compute Covariance matrix, Eigen vectors and Eigen	K4
	Analysis	values of a given matrix.	
		For <i>load_digits</i> dataset from <i>sklearn</i> , reduce original	K5
		dimension $(1/9/x64)$ into low dimension $(1/9/x7)$ using	175
		PCA algorithm and print its shape.	K5
		matrix print N principle component vectors and the	
		variance each principle components holds (called	K5
		explained_variance_ratio value in <i>sklearn</i>).	
		Create PCA model in sklearn and visualize data in low	
		dimensions using matplotlib for the given use case (For ex.	
		Breast Cancer dataset from <i>sklearn</i>).	
3.4	Linear Discriminant	Explain Singular Valued Decomposition with an example.	K2
	Analysis	Create LinearDiscriminantAnalysis model for a small N+1	
		dimensional matrix, print N components and	K4
		explained_variance_ratio value.	
		Create LinearDiscriminantAnalysis model in sklearn and	K5
		given use case (For ex. Iris dataset in <i>sklearn</i>)	
		given use cuse (i of ex. mis dataset in skearn).	
3.5	Kernel PCA	Create a syntax for KernelPCA for the values of the input	K4
		parameters.	
		Reduce original dimension (1797x64) into low dimension	K4
		(1/9/x) using KernelPCA algorithm and print its shape,	V5
		Create and visualize make moons dataset using PCA and	KJ
		KernelPCA models.	
IV	Model Evaluation		I
4.1	PipelineE	Create Pipeline in sklearn, given the requirements for	K4
		transformers and estimators.	
		Create a Pipeline for a ML model, perform training and	K6
		testing and show its performance values, for the given	
		business use case.	
4.2	Holdout validation	Divide the dataset for training, validation and testing based	K3
		on the performance requirement.	
-			
-----	--------------------------	--	------
4.3	K-fold cross validation	Explain the working of Kfold cross validation, Stratified Kfold CV, Leave one out CV and Shuffle split CV.	K4
		Create a ML model and compute the CV score (which may be classification accuracy or error) using	K6
		sklearn.model selection, for the given use case.	K6
		Create a Pipeline for a ML model and compute the CV	
		classification accuracy or error using	
		<i>sklearn.model_selection</i> , for the given use case.	
			77.4
4.4	Grid search	Create a syntax for a GridSearchCV model for the given	K4
		Create and perform GridSearchCV search, for the given	K5
		use case, with various parameters values for the chosen	
		ML model and select best parameter values; then create	
		that ML model with the best parameter values and show	
4.5		performance results.	17.5
4.5	Precision and Recall	of a ML system.	К5
		Compute manually precision and recall values of a ML	K3
		system. For example, given the sequence of predictions of	
		an email spam classifier.	K4
		Evaluate the performance of a ML model using precision,	
		recarr and iscore values in skiearn.	
4.6	ROC curve	Plot ROC curve with AUC values for the ML models.	K5
		compare performances of many ML models using sklearn	110
		and give recommendations to business clients.	
4.7	Majority vote classifier	Explain the concepts of majority voting classifier.	K2
		Given a simple dataset of 5 samples with 2 input numerical	VC
		VotingClassifier in sklearn with atleast 2 ML classifiers	KO
		such as Logistic Regression and SVC, perform training	
		and testing and verify output y manually.	K5
		Create a VotingClassifier for the given classification	
		problem and report the performance results.	
4.8	Bootstrapping	Explain bootstrapping with random replacement policy	K2
10	Bagging	With examples.	K5
4.7	Dagging	perform training and testing for a simple dataset.	K.J
		Create BaggingClassifier model with Bootstrapping	K5
		feature with 10 decision trees, perform training and testing	
		for a simple dataset.	K5
		Create BaggingClassifier model with 10 SVC classifiers,	VC
		Create BaggingClassifier model perform training and	KO
		testing for the business use case. Compare its performance	
		against other ML classifiers.	
1			

4.10	Adaptive Boosting	Create AdaBoostClassifier with 5 estimators for a simple	K5
		dataset.	
		Create GradientBoostingClassifier with 10 estimators for a simple dataset.	K5
		Create XGBoost classifier with 10 estimators for a simple	K5
		Create AdaBoostClassifier model, perform training and	K6
		testing for the business use case. Compare its performance	110
		against Gradient boosting and bagging ensemble	
		classifiers.	
V	Unsupervised Learning	Classifiers and Multilaver NN	
5.1	K-Means	Identify and recommend the appropriate ML strategy	K4
		(which may be classification, regression or clustering	
		approach) for the given business or scientific or societal	
		application.	K5
		Given a small dataset with 2 numerical features with 4	
		samples and values for 2 centroids, apply manually	K5
		KMeans algorithm and predict 2 clusters (You can use	
		Euclidean distance).	
		Create the syntax of KMeans model in sklearn (assume	K5
		input samples X are already available) and no. of clusters	17.5
		to predict. Also, perform training and testing on X. Print	KS
		Create KMeans model and predict the optimal number of	K6
		clusters using Flbow method, given input samples X	KU
		Create KMeans model and predict the optimal number of	
		clusters and evaluate the quality of clusters using	
		Silhouette Coefficients, given input samples X.	
		Create and develop KMeans clustering system in <i>sklearn</i>	
		for the business use case and provide recommendations to	
		users.	
5.2	K-Means++	Create and develop KMeans++ clustering system in	K6
		sklearn for the business use case and provide	
		recommendations to users.	
5.3	Agglomerative	Perform manually hierarchical clustering using single	K4
	Hierarchical clustering	linkage and show clusters of students, for a one	
		dimensional data representing marks of students (say, 5	V A
		Students), Perform manually hierarchical clustering using complete	K 4
		linkage and show clusters of students for a one	КЛ
		dimensional data representing marks of students (say 5	114
		students).	
		Perform manually hierarchical clustering using single	K4
		linkage, draw Dendrogram and choose the number of	
		clusters, for a one dimensional data representing marks of	K6
		students (say, 5 students).	
		Plot Dendrogram for the given input samples and choose	
		the clusters using <i>scipy</i> package.	
		Apply agglomerative clustering using <i>sklearn</i> package for	
		the given business use case and predict N clusters.	
5.4	Density based	Create clusters by applying DBSCAN algorithm in sklearn	K5
	clustering	and visualize clusters, for a given dataset.	

5.5	Feed Forward Multilayer Neural Network	Draw a Single layer neural network with input layer and output layer. The dataset represents details of 5 persons. The 3 input features are 'smoking, 'obesity' and 'exercise' with values 0 or 1. The target or output feature is 'diabetic' which can have a value 0 or 1. Draw a Multilayer neural network for XOR operations and differentiate from Perceptron. Draw the architectural diagram of Multilayer Perceptron neural network with bias input nodes, given input samples X and target output y values and the size of the hidden layer. Create syntax for MLPClassifier in sklearn given parameter values. Create MLPClassifier, perform preprocessing, training and testing. Print the performance values of classification metrics. Also print the learnt weight matrix and bias vector	K4 K4 K3 K6
		metrics. Also print the learnt weight matrix and bias vector values, for the given business use case.	
5.6	Back Propagation Training	Compute predicted output and propagate error for one iteration, given a simple Multilayer Perceptron having just one hidden layer with values for input sample, weights and	K4
		desired output. Design a ML system using MLPClassifier and compare its performance against other classifiers, for the given use case.	K6

4. Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	L		L									
CO2	Н	Μ	L	Η								Н	Н
CO3	Н	Μ		Η	Н	Н						Н	Н
CO4	Η	Μ		Η	Η	Η						Н	
CO5	Η					Η		Η		М			Н
CO6	Η						Η		Η		Н		

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 1. Course evaluation survey
- 2. Faculty feedback about the course.

Name of the Course Coordinator: Dr. K. Rajkumar

Elective II: NATURAL LANGUAGE PROCESSING							
Semester	II	Hours/Week	4				
Course Code	P19DS2:2	Credits	4				

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Experiment with text pre-processing and classification	K6	Ι
CO2	Create language models and POS tagging	K6	II
CO3	Evaluate the context free grammars and parse sentences	K6	III
CO4	Validate the meaning of sentences	K6	IV
CO5	Explain the Dependency parsing	K6	IV
CO6	Design NLP applications	K6	V

2. A. SYLLABUS

Unit-1.NLP Basics

What is NLP - Frequency distributions, Collocations – Unigram, Bigrams – word sense disambiguation – Pronoun resolution – Machine Translation – Textual entilement – Limitations of NLP –Conditional frequency distributions – Plotting distributions – Lexicons – WordNet – Semantic similarity

Unit-2. Text Processing

Accessing text from web and disk – NLP Pipeline – String processing – Text processing with UNICODE – Regular expressions: Metacharacters, Ranges and Closure – Useful applications of Regular applications – Stemming and Lemmatization – Text tokenization using regular expressions – Segmentation –Introduction to Dynamic programming – NetworkX package. Categorizing and Tagging Words: POS tagging – Part of speech Tagset – Reading corpora – Exploring corpora – Regular expression tagging – Look up tagging – Ngram Tagging – Transformation based tagging – Determining category of a word.

Unit-3. Learning to Classify Text and Information Extraction

Document classification – Sequence classification: Greedy approach, Hidden Markov Models and Conditional Random Fields –Recognizing text entailment –Text classifiers: Decision Trees, Naïve Bayes and Maximum Entropy classifiers – Generative vs conditional classifiers. Information Extraction: Architecture – Entity Recognition: Chunking, Chinking – Named Entity Recognition – Relation Extraction

Unit-4. Analysing Sentence Structure

Ambiquity – Context Free Grammar: Simple grammar, writing your own grammar – Parsing with CFGs – Dependence grammar – Valency and Lexicon – Probabilistic CFG – Feature Based Grammars

Unit-5. Analysing Meaning of Sentences

Propositional logic – First order logic – First order theorem proving – Model checking – Quantification – Discourse Processing

B. TOPICS FOR SELF-STUDY:

S.No.	Topics	Web Links
1	Natural language processing with Deep	https://www.youtube.com/watch?v=OQQ-
	Learning	W_63UgQ&list=PL3FW7Lu3i5Jsnh1rnUwq_Tcyl
		Nr7EkRe6
2	Latent structure models for NLP	https://deep-spin.github.io/tutorial/acl.pdf
3	Chatbots	https://www.analyticssteps.com/blogs/learn-
		everything-about-machine-learning-chatbots
4	Language Interpretability Tool (LIT)	https://github.com/PAIR-code/lit

C. TEXT BOOK

1. Jurafsky and Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, 3ed. 2020.

D. REFERENCES BOOKS

- 1. Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python– Analyzing Text with the Natural Language Toolkit.
- 2. Indurkhya, Nitin and Fred Damerau, Handbook of Natural Language Processing, 2ed, 2010, Chapman & Hall/CRC.
- 3. Christopher Manning and HinrichSchutze, Foundations of Statistical Natural Language Processing, MIT Press.

E. WEB LINKS

- 1. <u>https://london.ac.uk/sites/default/files/study-guides/introduction-to-natural-language-processing.pdf</u>
- 2. <u>http://www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20</u> with%20Python.pdf

Unit/ Section	Course Content	Learning outcomes	Level
Ι		NLP Basics	
1.1	Frequency distributions, Collocations	Explain the Collocations	K4
1.2	Unigram, Bigrams – word sense disambiguation	Define Unigram, Bigrams Find the word sense disambiguation	K2 K5
1.3	Pronoun resolution	Explain the Pronoun Resolution	K4
1.4	Machine Translation – Textual entilement	Construct the Machine Translation	K6
1.5	Limitations of NLP	List the limitations of NLP	K2
1.6	Conditionalfrequencydistributions-Plottingdistribution	Develop the Conditional frequency distributions	K6

17	Lexicons – WordNet –	Construct the WordNet	K6
1.7	Semantic similarity		
II		Text Processing	
2.1	Accessing text from web and disk – NLP Pipeline – String processing – Text processing with UNICODE	Assess the Text from Web Evaluate the model for text processing	K6 K5
2.2	Regular expressions: Metacharacters, Ranges and Closure – Useful applications of Regular applications – Stemming and Lemmatization	Apply the Regular Expression Explain the Stemming and Lemmatization	K5 K5
2.3	Text tokenization using regular expressions – Segmentation	Design the algorithm for Text tokenization	K6
2.4	Categorizing and Tagging Words: POS tagging – Part of speech Tagset – Reading corpora – Exploring corpora	Develop the algorithm for POS tagging Design the Tagset for POS	K6 K6
2.5	Regular expression tagging – Look up tagging – Ngram Tagging – Transformation based tagging	Explain the Regular expression tagging	K5
2.6	Determining category of a word.	Determine the category of a word.	K5
III	Learning to Cla	ssify Text and Information Extraction	
3.1	Document classification – Sequence classification: Greedy approach, Hidden Markov Models and Conditional Random Field	Explain the Document Classification Assess the Sequence Classifications	K5 K6
3.2	Recognizing text entailment – Text classifiers: Decision Trees, Naïve Bayes and Maximum Entropy classifiers	Evaluate the Text Classifiers Compare the text classifiers	K6 K6
3.3	InformationExtraction:Architecture–EntityRecognition:Chunking,Chinking–NamedRecognition–RelationExtraction–	Construct the Architecture Information Extraction	K6
IV	ANALYSI	NG SENTENCE STRUCTURE	
4.1	Ambiquity – Context Free Grammar: Simple grammar, writing your own grammar	Explain the Ambiquity Grammar Construct Context Free Grammar	K5 K6
4.2	Parsing with CFGs	Design the Parsing with CFG	K6
4.3	Dependence grammar - Valency and Lexicon	Explain the Dependence Grammar	K5
4.4	Probabilistic CFG – Feature Based Grammars	Construct the Probabilistic CFG	K6
V	ANALYSIN	IG MEANING OF SENTENCES	
5.1	Propositional logic – First order logic – First order theorem proving	Explain the First order logic Verify the theorem on First Order logic	K5 K5
5.2	Model checking –	Explain the Model checking	K5

	Quantification		
5.3	Discourse Processing	Construct the Discourse Processing	K6

4. MAPPING (CO, PO, PSO)

L-I	Jow		M-Moderate						H- High				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	Н	Н	Н	Н	-	-	Μ	Н	Η	Μ	-
CO2	Μ	Н	Μ	Н	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Н	Μ	Н	Н	Н	Н	-	-	Н	Н	Μ	-	-
CO4	Н	Н	L	Н	Μ	Н	-	Μ	Н	Н	Н	-	
CO5	Н	Μ	Н	Μ	Н	Н	-	-	Μ	Н	Η	-	-
CO6	Н	Н	Н	Μ	Μ	Н	Н	-	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. Janani Selvaraj

ELECTIVE-3: HEALTH CARE DATA ANALYTICS						
Semester	Ι	Hours/Week	3			
Course Code	P19DS2:3	Credits	3			

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Explain the Coding system of Electronic Health Records	K5	Ι
CO2	Develop the algorithms for Biomedical Analysis	K5	Ι
CO3	Design the Algorithm for Healthcare Data using NLP, SMA	K6	III
CO4	Construct the predictive models for Healthcare Data	K6	IV
CO5	Analyze the role of Analysis in Pervasive Health	K5	V
CO6	Design the Computer-Assisted Medical Image Analysis Systems	K6	V

2. A. SYLLABUS

Unit-1. Introduction

Introduction to Healthcare Data Analytics- Electronic Health Records–Components of EHR-Coding Systems- Benefits of EHR- Barrier to Adopting E<u>H</u>R Challenges-Phenotyping Algorithms.

Unit-2. Analysis

Biomedical Image Analysis- Mining of Sensor Data in Healthcare- Biomedical Signal Analysis-Genomic Data Analysis for Personalized Medicine.

Unit-3. Analytics

Natural Language Processing and Data Mining for Clinical Text- Mining the_Biomedical- Social Media Analytics for Healthcare.

Unit-4. Advanced Data Analytics

Advanced Data Analytics for Healthcare– Review of Clinical Prediction Models- Temporal Data Mining for Healthcare Data- Visual Analytics for Healthcare- Predictive Models for Integrating Clinical and Genomic Data- Information Retrieval for Healthcare- Privacy-Preserving Data Publishing Methods in Healthcare.

Unit-5. Applications

Applications and Practical Systems for Healthcare– Data Analytics for Pervasive Health- Fraud Detection in Healthcare- Data Analytics for Pharmaceutical Discoveries- Clinical Decision Support Systems- Computer-Assisted Medical Image Analysis Systems- Mobile Imaging and Analytics for Biomedical Data

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Electronic Data Warehouse (EDW)	https://www.osplabs.com/healthcare-analytics/
2	Big Data in Health care	https://www.wipro.com/healthcare/advanced-
		healthcare-data-analytics/

3	Health Care Economics	https://healthcare.business.uconn.edu/certificate-
		health-care-analytics/

C. TEXT BOOK(S)

- 1. Chandan K. Reddy and Charu C Aggarwal, "Healthcare data analytics", Taylor &Francis, 2015
- 2. Hui Yang and Eva K. Lee, "Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, Wiley, 2016.

D. REFERENCE BOOKS

- 1. Vikas Kumar, Healthcare Analytics Made Simple: Techniques in healthcare computing using machine learning and Python, Packt Publishing, 2018
- 2. Ross M. Mullner, Edward M. Rafalski, Healthcare Analytics Foundations and Frontiers, Routledge, 2019.

E. WEB LINKS

- <u>https://onlinedegrees.sandiego.edu/classes/advanced-health-care-analytics/</u>
- <u>https://www.hci.net.in/courses/advanced-post-graduate-diploma-healthcare-decision-analytics/</u>

Unit/ Section	Торіс	Learning outcomes	Level
Ι		Introduction	
1.1	Introduction to Healthcare Data Analytics	• Understand the concepts of Healthcare Data Analytics	K3
1.2	Electronic Health Records	• Explain the concepts of EHR	K4
1.3	Components of EHR	• List the components of EHR	K2
		• Discuss the features of EHR	K4
1.4	Coding Systems	Development of Coding Systems algorithm	K5
1.5	Benefits of <u>EHR</u>	• List the benefits of EHR	K2
1.6	Barrier to Adopting E <u>H</u> R Challenges	• Discuss the Challenges in EHR	K4
1.7	Phenotyping Algorithms.	• Design the Phenotyping Algorithms	K6
II		Analysis - I	
2.1	Biomedical Image	• Explain the Biomedical Image	K5
2.2	Mining of Sensor Data in	Explore the mechanism to get the data	K4
	Healthcare	from sensor	
		• Design the algorithm for Mining the sensor data	K6
	Biomedical Signal Analysis	Explain the Biomedical Signal Analysis	K5
2.3	Genomic Data Analysis for Personalized Medicine	• Develop the personalized medicine system using Genomic Data	K6
III		Analysis - II	
3.1	NaturalLanguageProcessingandData	• Develop the algorithms for mining text in HER using NLP.	K5
	Mining for Clinical Text	 Design the data mining tool for Clinical text data 	K6

3.2	Mining the_Biomedical	• Design the mining algorithm for Biomedical data	K6
3.3	Social Media Analytics for Healthcare.	• Develop the algorithms for Health care data using Social Media Analysis	K5
IV		Advanced Data Analytics	
4.1	Advanced Data Analytics for Healthcare– Review of Clinical Prediction Models	 List the techniques for Advanced Data Analytics for Healthcare Assess the Clinical Prediction Modela 	K2
4.2	Temporal Data Mining for Healthcare Data	 Assess the Chincal Frediction Models Design the temporal data mining algorithms for Healthcare Data 	K6
4.3	Visual Analytics for Healthcare	Develop the Visual Analytics for Healthcare	K5
4.4	Predictive Models for Integrating Clinical and Genomic Data	• Design the predictive model using Integrating Clinical and Genomic Data	K6
4.5	Information Retrieval for Healthcare	• Apply the Information Retrieval for Healthcare	K4
4.6	Privacy-Preserving Data Publishing Methods in Healthcare.	• Explain the Data publishing methods in Healthcare	K5
V		Programming with R	
5.1	Applications and Practical Systems for Healthcare	• List the applications of the health care data analysis	K2
5.2	Data Analytics for Pervasive Health	• Develop the algorithm for Pervasive Health <u>using DA</u>	K5
5.3	Fraud Detection in Healthcare	• Explain the Fraud Detection in Healthcare	K4
5.4	Data Analytics for Pharmaceutical Discoveries	• Develop the algorithm for Pharmaceutical Discoveries <u>using DA</u>	K5
5.5	Clinical Decision Support Systems	 Design the Clinical Decision Support Systems 	K6
5.6	Computer-Assisted Medical Image Analysis Systems	Construct the Computer-Assisted Medical Image Analysis Systems	K6
6.7	Mobile Imaging and Analytics for Biomedical Data	• Design the System for Mobile Imaging and Analytics to the Biomedical Data	K6

4. MAPPING (CO, PO, PSO)

L-Low			M-Moderate							H- High			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	Н	Μ	L	Μ	Μ	Μ	Μ	Μ	-	Н	Н
CO2	H	Н	Μ	L	-	L	-	L	Μ	Μ	-	Μ	-
CO3	Н	Н	Н	Н	Μ	Μ	L	-	-	Н	Н	Н	М-
CO4	Н	Н	Н	Н	Н	Μ	L	Μ	Μ	Н	Н	Μ	Н
CO5	H	Μ	-	Μ	L	Μ	-	Н	Μ	Н	Н	Μ	-
CO6	Μ	Μ	-	Н	Μ	L	-	-	L	Н	Н	Н	Μ

5. COURSE ASSESSMENT METHODS

DIRECT:

- 5. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 6. Open Book Test.
- 7. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project, Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 8. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felciah

CORE III: DATA AND VISUAL ANALYTICS LAB									
Semester	II	Hours/Week	3						
Course Code	P19DS2P3	Credits	3						

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
CO1	Create data analytics systems using Numpy	K6	1, 2
CO2	Create data wrangling systems using Pandas	K6	3-6, 10
CO3	Create data visualization systems using Seaborn	K6	7
CO4	Crate time series analysis systems using Pandas time series	K6	8
CO5	Create interactive dashboards using Tableau	K6	11
CO6	Build and deploy end to end data analytics product at client site	K6	9, 12

2. SYLLABUS

Activity	Lab Activity Description
1	Data Analytics using NumPy
2	Data Analytics using Advanced NumPy
3	Pandas Indexing and Selection
4	Pandas Grouping and Aggregation
5	Pandas Concatenation, Merging and Join
6	Data Cleaning in Pandas
7	Data Visualization using Seaborn
8	Pandas Time Series Analysis
9	Exploratory Data Analysis on Cardiovascular Data
10	Advanced Data Wrangling in Pandas
11	Interactive Dashboard Creation in Tableau
12	Telecom data analytics system

Activity#	Lab Activity	Learning Outcome	Level
1	Data Analytics using NumPy	Create data analytics platform using NumPy	K6
2	Data Analytics using Advanced NumPy	Create advanced data analytics platform using NumPy	K6
3	Pandas Indexing and Selection	Perform Pandas Indexing and Selection operations	K6
4	Pandas Grouping and	Perform Pandas Grouping and	K6
	Aggregation	Aggregation operations	
5	Pandas Concatenation, Merging	Perform Pandas Concatenation, Merging	K6
	and Join	and Join operations	
6	Data Cleaning in Pandas	Perform data cleaning on large data	K6
7	Data Visualization using	Develop Data Visualization systems	K6
	Seaborn	using Seaborn	
8	Pandas Time Series Analysis	Perform Pandas Time Series Analysis	K6
9	Exploratory Data Analysis on	Develop Exploratory Data Analysis	K6
	Cardiovascular Data	platform on Cardiovascular Data	
10	Advanced Data Wrangling in	Perform Advanced Data Wrangling in	K6
	Pandas	Pandas	

11	Interactive Dashboard Creation	Create Interactive Dashboard using	K6
	in Tableau	Tableau	
12	Telecom data analytics system	Build and deploy Telecom data analytics	K6
		system	

4. MAPPING (CO, PO, PSO) L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	Н	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. B. Karthikeyan

CORE PRACTICAL IV: PRACTICAL MACHINE LEARNING LAB					
Semester II Hours/Week 3					
Course Code	P19DS2P4	Credits	3		

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
CO1	Practice data and file formats; visualize data and familiarize Colab and	K6	1
COI	Azure		
CO2	Build and deploy systems for business problems based on regression	K6	3,4
02	models		
CO^{2}	Build and deploy systems for business problems based on classification	K6	2,5,7,8
005	models		
CO4	Build and deploy systems for business problems based on predictive	K6	6
04	analytics		
CO5	Build and deploy systems for business problems based on tree models	K6	9,10
C06	Build and deploy systems for business problems based on clustering	K6	11
	models		

2. SYLLABUS

Activity	Lab Activity Description
13	WarmUp: Familiarity with Data and Visualization
14	Pizza Liking Prediction using kNN
15	Fuel Amount Prediction using Linear Regression
16	House Price Prediction using LR with Regularization
17	Diabetes Classification using Logistic Regression
18	Predictive Analytics for Hospitals
19	Loan Approval Classification using SVM
20	Animal Classification using Decision Trees
21	Employee Hopping Prediction using Random Forests
22	Patients Physical Activities Prediction using Boosting
23	Shopping Mall Customer Segmentation using Clustering

TOPICS FOR SELF STUDY

S.No	Topic Title	Web Link
1	Stock price prediction	https://www.kaggle.com/darkknight91/ge-stock
2	Wake up word detection for Alexa	https://github.com/Picovoice/wake-word-benchmark
3	Jane Street Market prediction	https://www.kaggle.com/c/jane-street-market-
		prediction
4	HuBMap – Hacking the kidney	https://www.kaggle.com/c/hubmap-kidney-
		segmentation

Activity#	Lab Activity	Learning Outcome	Level
1	WarmUp: Familiarity with	Open, process and visualize various data and	K6
	Data and Visualization	files using CoLab and Azure platforms	
2	Pizza Liking Prediction	Build kNN model, perform training and	K6
	using kNN	prediction and compute accuracy values	
3	Fuel Amount Prediction	Perform preprocessing; build LR model,	K6

	using Linear Regression	perform training and prediction; compute MSE and R2 error; compare performance against KNN regressor and SGDregressor models and interpret results	
4	House Price Prediction using LR with Regularization	Perform One Hot Encoding, build LR model, compute RMSE error and compare performance against SGD Regressor, RidgeCV and LassoCV and interpret results	K6
5	Diabetes Classification using Logistic Regression	Create heatmap, build Logistic Regression model, print ROC curve and compare performance against LogisticRegressionCV with L1 and L2 and interpret results	K6
6	Predictive Analytics for Hospitals	Perform prediction, Apply Forward Selection, plot AUC scores and Plot Gain curves and Life curves and interpret results	K6
7	Loan Approval Classification using SVM	Perform EDA, Create LinearSVC model, Print accuracy, confusion matrix and classification report and compare LinearSVC model with SVC and SGDClassifier models	K6
8	Animal Classification using Decision Trees	Create ID3 Decision Tree using Entropy metric, Create CART Decision Tree using Gini metric and Visualize graph using graphviz	K6
9	Employee Hopping Prediction using Random Forests	Create RandomForestClassifier, perform training and testing; Print feature importance values; and Select the best number of trees based on out-of-bag error values	K6
10	Patients Physical Activities Prediction using Boosting	Build GradientBoostingClassifier, fit and predict on test data; Find the best no. of decision trees and learning rate using GridSearch and Cross Validation; Build AdaBoost, LogisticRegressionCV and VotingClassifier; Interpret results and parameter values	K6
11	Shopping Mall Customer Segmentation using Clustering	Perform Skew analysis; Build KMeans model; Apply Elbow method; Perform Cluster Analysis; Perform PCA; Build MeanShift clustering and Agglomerative clustering; Visualize clusters using Dendrogram	K6

4. MAPPING (CO, PO, PSO)

L-	Low					M-M	oderat	e			H- I	Iigh	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	Н	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Η	Μ	Μ	L	Η	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. K. Rajkuamr

CORE PRACTICAL V: NATURAL LANGUAGE PROCESSING LAB					
Semester	II	Hours/Week	3		
Course Code	P19DS2P5	Credits	3		

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
CO1	Design systems to perform NLP preprocessing and document	K6	1 - 5
COI	similarity		
CO2	Design NLP systems for spam filtering	K6	6
CO3	Design NLP systems for sentiment analysis	K6	7
CO4	Design NLP systems using tagging and named entity recognition	K6	8 - 10
CO5	Design NLP systems using Context free grammars	K6	11 - 14
CO6	Design NLP systems using SpaCy	K6	15

2. SYLLABUS

Activity	Lab Activity Description
1	Understanding Large Text Files
2	Computing Bigram Frequencies
3	Computing Document Similarity using VSM
4	Computing Document Similarity using Word2Vec
5	Stemming and Lemmatization on Movie Dataset
6	Spam Filtering using Multinomial Naïve Bayes
7	Sentiment Analysis on Movie Reviews
8	Exploring Part of Speech Tagging on Large Text Files
9	Building Bigram Tagger
10	Named Entity Recognition on Food Recipes Dataset
11	Building Parse Trees
12	Building and Parsing Context Free Grammars
13	Improving Grammar to Parse Ambiguous Sentences
14	Word Sense Disambiguation with Improved Lesk
15	Text Processing using SpaCy

Topics for Self Study

S.No	Topic Title	Web Link
1	Text preprocessing in languages	https://github.com/morkapronczay/meetup-talk-text-
	other than English	preproc
2	Cross-classification of	http://cl.haifa.ac.il/projects/translationese/index.shtml
	translationese	
3	Distinguishing between human	http://cl.haifa.ac.il/projects/pmt/index.shtml
	and machine translation	
4	Native Language Identification	https://github.com/ellarabi/reddit-12

Activity#	Lab Activity	Learning Outcome	Level
1	Large Text Files Processing	Understand Large Text Files	K6
2	Bigram Frequencies	Compute Bigram Frequencies	K6
3	Document Similarity using	Compute Document Similarity using VSM	K6
	VSM		

4	Document Similarity using Word2Vec	Compute Document Similarity using Word2Vec	K6
5	Stemming and	Perform Stemming and Lemmatization on Movie Dataset	K6
6	Spam Filtering	Perform Spam Filtering using Multinomial Naïve Bayes	K6
7	Sentiment Analysis	Develop system for Sentiment Analysis on Movie Reviews	K6
8	Part of Speech Tagging on Large Text Files	Explore Part of Speech Tagging on Large Text Files	K6
9	Bigram Tagger	Build Bigram Tagger	K6
10	Named Entity Recognition	Perform Named Entity Recognition on Food Recipes Dataset	K6
11	Parse Trees	Build Parse Trees	K6
12	Context Free Grammars	Build and Parse Context Free Grammars	K6
13	Parsing Ambiguous Sentences	Improve Grammar to Parse Ambiguous Sentences	K6
14	Word Sense Disambiguation	Perform Word Sense Disambiguation with Improved Lesk	K6
15	Text Processing using SpaCy	Perform text processing using SpaCy	K6

4. MAPPING (CO, PO, PSO)

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	H	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	H	Н	Н	Н	Μ	Μ	L	H	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	H	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. Janani Selvaraj

CORE VII: TIME SERIES ANALYSIS AND FORECASTING					
Semester	III	Hours/Week	4		

	Course Code	P19DS307	Credits	4
--	-------------	----------	---------	---

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Solve the stationarity, trending and detrending of time series data	K6	1
CO2	Assess the features of the ARMA Models and estimation techniques	K5	2
CO3	Explain the ARIMA models and SARMA Models	K6	3
CO4	Summarize the characteristics of Spectral behaviour and periodic behaviour of the time series	K6	4
CO5	Compile the behaviour of smoothing in DLMS	K6	5
CO6	Design the Timeseries models using R for different time series data	K6	All

4. A. SYLLABUS

UNIT I - BASIS TIME SERIES MODELS

Examples of Nature of Time series data – Time series statistical models – Measures of dependence - Stationary. Time series regression – Detrending and differencing – Smoothing a time series

UNIT II - AR MODELS, FORECASTING AND ESTIMATION

Auto Regressive models – Moving Average models - ARMA models – Auto Correlation Function - Partial Auto Correlation Function – Forecasting algorithms – **Estimation:** Yule-Walker, Method of moments, MLE and LSE

Unit III - ARMA AND GARMA MODELS

Basics of ARIMA models: random models with drift, Steps to fitting ARMA model – **Multiplicative Seasonal ARIMA models:** Mixed, SARMA – Generalized Auto Regressive Conditionally Heteroscedastic (GARCH) models

UNIT IV - SPECTRAL ANALYSIS HOURS

Cyclical Behaviour and Periodicity: concepts, Periodic Series, Star Magnitude - **The Spectral Density:** Periodic stationary process–Periodogram: Spectral analysis as ANOVA, Principal Component Analysis

UNIT V - STATE SPACE MODELS

Dynamic Linear Models – Examples of DLMs – Filtering DLM – **Smoothing DLM:** Kalman, Lag One covariance – Forecasting DLM – Maximum Likelihood Estimator for DLMs

S.No. Topics Web Links 1 Forecasting hierarchical or https://otexts.com/fpp2/hierarchical.html grouped time series 2 Autoregression Models for https://machinelearningmastery.com/\autoregressio Time Series Forecasting n-models-time-series-forecasting-python/ With Python Time Series ARIMA Model https://sites.google.com/site/econometricsacademy/ 3 using R econometrics-models/time-series-arima-models 4 Exponential Simple https://towardsdatascience.com/ Smoothing for Time Series simple-exponential-smoothing-749fc5631bed Forecasting

B. TOPICS FOR SELF - STUDY

12 HOURS

12 HOURS

12 HOURS

12 HOURS

12

C. TEXT BOOKS

1. Shumway and Stoffer. Time Series Analysis and its applications, with examples in R. 4ed, Springer. 2016.

D. REFERENCES BOOKS

- 1. Brockwell& Davis. Introduction to Time Series and Forecasting, 3rd edition, Springer. 2016
- 2. Cryer& Chan. Time Series Analysis with Applications in R, Springer. 2008
- 3. Prado & West. Time Series: Modeling, Computation, and Inference Chapman & Hall. 2010
- 4. Petris, Petrone, Campagnoli. Dynamic Linear Models with R, Springer. 2009
- 5. Ruppert& Matteson. Statistics and Data Analysis for Financial Engineering with R examples, 2ed, Springer. 2016

E. WEB LINKS

- 4. https://machinelearningmastery.com/autoregression-models-time-series-forecasting-python/
- 5. https://sites.google.com/site/econometricsacademy/econometrics-models/time-series-arima-models

Unit/ Section	Course Content	Learning outcomes	Level		
Ι	BAS	SIS TIME SERIES MODELS			
1.1	Nature of Time series data	Analyze the different types of Times series and its characteristics.	K4		
1.2	Time series statistical models	Compare the different statistical model of times series data.	K6		
1.3	Measures of dependence	Assess the measure of dependence for different statistical model of time series data.	K5		
1.4	Stationary	Evaluate the stationarity property for time series models.	K5		
1.5	Time series regression	Investigate the regression for time series data	K4		
1.6	Detrending and differencing	 Formulate the detrending model for Time series data. Devise the differencing method for time series data. 	K6		
1.7	Smoothing a time series	Construct the smoothing filters for time series models	K6		
II	AR MODELS	, FORECASTING AND ESTIMATION			
2.1	Auto Regressive models	Compare the features of AR Models	K4		
2.2.	Moving Average models	Analyze the characteristics of MA Models	K5		
2.3	ARMA models	Summarize the working methods of ARMA Models	K6		
2.4	Auto Correlation Function - Partial Auto Correlation Function	Explain the role of Autocorrelation and partial auto correlation function for time series	K6		
2.5	Forecasting algorithms	Compile the forecasting algorithm for time series data.	K6		
2.6	Estimation: Yule-Walker, Method of moments, MLE and LSE	Specify the features of different estimation algorithms of time series data.	K6		
III	ARM	MA AND GARMA MODELS			
3.1	Basics of ARIMA models: random models with drift, Steps to fitting ARMA model	Explain the basics of ARIMA models of Time series data	K3		

	Multiplicative Seasonal	Compile the features of the SARIMA and		
3.2	ARIMA models: Mixed,	Multiplicative SARIMA model for time series	K6	
	SARMA	data.		
	Generalized Auto Regressive			
3.3	Conditionally Heteroscedastic	Evaluate the characteristics of GARCH Model.	K5	
	(GARCH) models			
IV	SPE	CTRAL ANALYSIS		
	Cyclical Pahaviour and	1. Examine the concepts of periodicity	K3	
4.1	Cyclical Bellaviour and	2. Evaluate the cyclical behaviour of the time	K6	
4.1	Series Stor Magnitude	series.		
	Selles, Stal Magilitude	3. Assess the properties of Star Magnitude	K5	
12	Periodic stationary process	Discriminate the periodic stationary process	K2	
4.2	renould stationary process	over the stationary process	КJ	
4.3	Periodogram	Outline the periodogram of the time series data	K6	
4.4	Spectral analysis of ANOVA	Construct the ANOVA for the spectral analysis	V6	
4.4	Spectral analysis as ANOVA	of Time series data	K0	
15	Spectral analysis as Principal	Develop the PCA for the spectral analysis of		
4.5	Component Analysis	time series data.	KU	
V	5	STATE SPACE MODELS		
5.1	Dynamic Linear Models-	Illustrate the Dynamic Linear Models (DLM)	K3	
	Examples of DLMs			
5.2	Filtering DLM	Create the filtering of DLM for the time series	K6	
		data		
5.3	Smoothing DLM: Kalman	Evaluate the role of Kalman Filter in	K5	
-	Filter	smoothing.		
5.4	Lag One covariance	Construct the smoothing filter using Lag One	K6	
-		covariance		
5.5	Forecasting DLM	Design the forecasting algorithm using Kalman	K6	
		THE IOT DLMS		
5.6	Maximum Likelihood	Evaluate the features of the MLE for DLMs	K6	
	Estimator for DLMs			

6. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Н	Η	Η	-	-	Μ	Н	Н	Μ	-
CO2	\mathbf{M}	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Н	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Η	-	
CO5	Η	Μ	Η	Μ	Η	Η	I	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Н	Η	-	-

7. COURSE ASSESSMENT METHODS

DIRECT:

- 5. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 6. Open Book Test.
- 7. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 8. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 3. Course evaluation survey
- 4. Faculty feedback about the course.

Name of the Course Coordinator: Dr. P. S. Eliahim Jeevaraj

CORE VIII: BIG DATA MANAGEMENT AND ANALYTICS						
Semester	III	Hours/Week	4			
Course Code	P20DS308	Credits	4			

1. Course Outcomes

On successful completion of this course, students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Perceive Big Data concepts and technologies	K6	Ι
CO2	Evaluate the Storing and manipulation of data using HDFS	K6	II
CO3	Construct the very large datasets using Pig	K6	III
CO4	Create MapReduce using Spark	K6	IV
CO5	Formulate Data Warehousing operations using Hive	K6	V
CO6	Create applications using Hadoop	K6	All

2. A. SYLLABUS

Unit-1. Introduction to Big Data

What is Big data – Industrial examples of Big Data: Digital Marketing, fraud, risk, trading, healthcare, medicine, advertising – Big Data Technology: Hadoop, cloud, BI, crowdsourcing analytics – Business Analytics:

Unit-2. MapReduce-I and HDFS

MapReduce model: Weather dataset, Analyzing data with Hadoop, Combiner functions, Hadoop streaming with Python. **Hadoop Distributed File System**: Block, Namenode, Datanode, Caching – File system operations in command line – Java Interface to Basic Hadoop - Reading data and writing data – Anatomy of File Write

Unit-3. MapReduce-II

Steps of developing MapReduce application - Working of MapReduce: Running Jobs, failure, Shuffle and sort, Task execution - MapReduce Types: Input formats - Output formats - MapReduce features: Counters, Sorting, Joins

Unit-IV. Exploring large datasets using Pig

Structure, Statements, Expressions, Types, Schemas, Functions, Macros - User-Defined Functions: Filter UDF, Eval UDF, Load UDF - Data Processing Operators: Loading and Storing Data, Filtering Data, Grouping and Joining Data, Sorting Data, Combining and Splitting Data

Unit-5. Data Warehousing using Hive

Comparison with Traditional Databases - HiveQL: Data Types, Operators and Functions - Tables: Managed Tables and External Tables, Partitions and Buckets, Storage Formats, Importing Data, Altering Tables, Dropping Tables - Querying Data: Sorting and Aggregating, MapReduce Scripts, Joins, Subqueries, Views - User-Defined Functions: Writing a UDF, Writing a UDAF - 6 Elements of Big Data Security

B. TOPICS FOR SELF-STUDY

C. TEXT BOOKS

- Michael Minelli, Michele Chambers and Ambiga Dhiraj. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, 1ed, Wiley CIO Series, 2013. ISBN 9781118147603
- 2. Tom White Hadoop: The Definitive Guide, Fourth Edition, O'reilly Media, 2015.

3. Six Elements of Securing Big Data. MapR Ebook https://mapr.com/big-data-security-6-elements/

REFERENCES

- 1. Nathan Marz and James Warren, Big Data Principles and Practice of Scalable Real Time Data Systems, Manning Publications. 2015
- 2. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007
- 3. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, John Wiley& sons, 2012.
- 4. Glenn J. Myatt, Making Sense of Data, Volume I and II. John Wiley & Sons, 2007.
- 5. Mark Grover, Ted Malaska, Jonathan Seidman, Gwen Shapira. Hadoop Application Architecture, Shroff Publishers.2015
- 6. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGrawHill Publishing, 2012.

Unit	Topic Topic Learning Outcome		Level
Ι	Introduction to Bi	g Data	
1.1	What is Big data	Why need to handle big dataset	K1
1.2	Industrial examples of Big Data: Digital Marketing	Outline big data in marketing	K2
1.3	fraud, risk management	List the usage of the big data in fraud, risk management.	K1
1.4	trading	Explain time to time data analysis	K1
1.5	healthcare,	Why big data in healthcare	K1
1.6	medicine	How big data is in medicine	K1
1.7	advertising	How to advertise with big data	K1
1.8	Big Data Technology: Hadoop	Discover storing data and running applications on clusters of commodity hardware.	K4
1.9	Cloud	Build on demand services using internet.	K3
1.10	BI	Survey information retrieval from available huge amount of data	K4
1.11	crowdsourcing analytics	Develop outsourcing for quality and to handle large amount of data	K3
1.12	Business Analytics	Build statistical report by business analytics.	K3
	1		
II	MapReduce-I and	HDFS	T
2.1	MapReduce model: Weather dataset	Create combined report for weather from shuffler.	K6
2.2	Analyzing data with Hadoop	Analyze a huge collection of data that comprises both structured data found in traditional databases and unstructured data like text documents, video and audio.	K4
2.3	Combiner functions	Assess an optional class that operates by accepting the inputs from the Map class and thereafter passing the output key-value pairs to the Reducer class.	K5
2.4	Hadoop streaming with Python.	Create stream using programming language that can read from standard input and write to standard output.	K6

2.5	Hadoop	Create sequence of blocks from file which is to store.	K6
	Distributed File		
	System: Block		
26	Namanada	Develop the conterpiece of an UDES file system. It	V2
2.0	Namenoue	bevelop the centerpiece of all files in the file system, and	КJ
		keeps the directory free of all files in the file data is heart. It	
		tracks where across the cluster the file data is kept. It	
		does not store the data of these files itself.	
2.7	Datanode	Build a DataNode stores data in the [Hadoop File	K3
		System]. A functional filesystem has more than one	
		DataNode, with data replicated	
2.8	Caching	Plan the Centralized cache management which is an	K3
		explicit caching mechanism that allows users to specify	
		paths to be cached by HDFS.	
2.9	File system	Make use of HDFS command for import file and	K3
	operations in	mapreduce	
	command line	1	
2.10	Java Interface to	Adapt java interface for implement FileSystem	K6
	Basic Hadoop	represents like client interface to a filesystem in Hadoop.	
	2 usie linus op	and there are several concrete implementations	
2.11	Reading data and	Criticize $WOR \Delta$ (Write once Read many) models	K5
2.11	writing data	Children work (whice field hearly) models	KJ
2.12	A notomy of Filo	Define file formet	V 1
2.12	Milita Write	Define me format	KI
	white		
III	MapReduce-II		I
3.1	Steps of	Divide MapReduce as three stages, namely map stage,	K4
	developing	shuffle stage, and reduce stage.	
	MapReduce		
	application		
3.2	Working of	Create mapper's jobs to process the input data.	K6
	MapReduce:		
	Running Jobs		
3.3	failure	Determine TaskTracker to marks the task when failed.	K5
3.4	Shuffle and sort	Create shuffler for transfer mapper intermediate output to	K6
5.7	Shame and sort	the reducer	N O
3.5	Task execution	Create task from ManPaduce for parallel processing	K6
3.5	Man Daduaa	Select different input format for block	K0 V5
5.0		Select different input format for block.	КJ
	Types: Input		
0.5	formats		
3.7	Output formats	Select different output format for Shuffler and reducer.	K5
3.8	MapReduce	Measure occurrences of any events.	K5
	features: Counters		
3.9	Sorting	Build sorting algorithm to automatically sort the output	K6
		key-value pairs from the mapper by their keys.	
3.10	Joins	Select join for map the partitioned and sorted according	K5
		to the keys.	
	· ·	· · · · · ·	
IV	Exploring large da	atasets using Pig	
4.1	Structure	Use pig structure for data processing	K1
4.2	Statements	List nig statements for data processing	K1
43	Expressions	Use Pig expression to manipulate data	K1
1.5		Examine four types of data model	K/
4.4	L'abarras	Define detect scheme	K4 V1
4.3	Schemas,	Denne dataset schema.	NI NI

4.6	Functions	Use EVAL functions, Math functions, String functions	K1
	2.6	and Pig built-in functions for data processing.	TT c
4.7	Macros	Create the code modular and makes Pig Latin code shareable	K6
4.8	User-Defined	Create UDF for conditions in filter statements in data	K6
	Functions: Filter	processing and return Boolean value.	
	UDF		
4.9	Eval UDF	Create UDF for FOREACH-GENERATE in data processing	K6
4.10	Load UDF	Create UDF Load function top on Hadoop for	K6
		InputFormat to read data.	
4.11	Data Processing	Elaborate Load Operator and Store Operator for Reading	K6
	Operators:	and Storing Data.	
	Loading and		
	Storing Data		
4.12	Filtering Data	Select the required tuples from a relation based on	K5
	C	'condition'.	
4.13	Grouping and	Make up cluster of data using group.	K6
	Joining Data	Create Combine record using Join.	
4.14	Sorting Data	Create data in systematic order like ascending or	K6
	C	descending order.	
4.15	Combining and	Select combine for join two or more relations.	K6
	Splitting Data	Select Split to split two or more relations.	
V	Data Warehousin	g using Hive	
5.1	Comparison with	List difference between RDBMS and HIVE	K1
	Traditional		
	Databases		
5.2	HiveQL: Data	Use Hive data types	K1
	Types		
5.3	Operators and	Recall Hive operations operators and functions for data	K1
	Functions	storage	
5.4	Tables:Managed	Create Hive vertical table for manipulate data.	K6
	Tables and	Describes the metadata / schema on external files using	
	External Tables	hive	
5.5	Partitions and	Create partitions and these partitions can be further	K6
	Buckets	subdivided into more manageable parts known as	
		Buckets or Clusters.	
5.6	Storage Formats	Compose storage format for input block from HDFS	K6
5.7	Importing Data	Create a directory in HDFS to hold the file and import	K6
		CSV files into Hive tables.	
5.8	Altering Tables	Change the existing table like table name, column name,	K6
		comment, and table properties.	
5.9	Dropping Tables	Delete the table/column data and their metadata	K6
5.10	Querying Data:	Create Querying data for sorting using Order By	K6
	Sorting and	Create aggregate using AVG, SUM, or MAX functions.	
	Aggregating		
5.11	MapReduce	Create Hive script using gedit for MapReduce	K6
	Scripts		
5.12	Joins	Select query for join two or more tables	K5
5.13	Subqueries	Create a subquery for evaluated and returns a result set.	K6
5.14	Views	Evaluate user requirements by generating views.	K6
5.15	User-Defined	create custom functions to process records or groups of	K6

	Functions:	records	
	Writing a UDF		
5.16	Writing a UDAF	create custom Aggregate functions to process records or groups of records	K6
5.17	6 Elements of Big Data Security	Justify big data security by the use of six steps.	K5

4. Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Η	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Н	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. B. Karthikeyan

Semester	III	Hours/Week	4
Course Code	P19DS309	Credits	4

1. Course Outcomes

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Unit
CO1	Explain the essentials of graphs for social networks	K6	Ι
CO2	Measure social network nodes and simulate social network models	K6	II
CO3	Evaluate the community analysis of social networks	K6	III
CO4	Measure and model information diffusion and homophily in social	K6	IV
C04	networks		
CO5	Develop recommender systems and predict user behaviours	K6	V
CO6	Build and deploy end to end products into production environment	K6	All

2. A. SYLLABUS

Unit-1. Introduction to SMM and Graph Mining

What is social media mining – New challenges for mining. Graph Essentials: Graph basics – Graph representation – Types of graphs – Connectivity in graphs – Special graphs – Graph algorithms

Unit-2. Social Network Models

Network Measures: Centrality – Transitivity, reciprocity – Balance and status – Similarity. Network Models: Properties – Random graphs – Small world models – Preferential attachment model

Unit-3. Data Mining Basics and Community Discovery

Data Mining Essentials: Data Preprocessing – Supervised Learning Algorithms – Unsupervised Learning Algorithms. Community Analysis: Community detection – Community evolution – Community evaluation

Unit-4. Information Diffusion and Influence in Social Media

Information Diffusion: Herd behaviour – Information cascades – Diffusion of innovations – Epidemics. Influence and Homophily: Measuring Assortativity – Measuring and modelling influence – Measuring and modelling homophily – Distinguishing influence and homophily

Unit-5. Recommendation and Behaviour Analysis in Social Media

Recommendation in Social Media: Challenges – Classical recommendation algorithms – Recommendation using social context – Evaluating recommendations. Behaviour Analysis: Individual behaviour – Collective behaviour. Events Analytics in Social Media.

SNo	Topic Title	Web Link
1	Creating graphs using	https://www.analyticsvidhya.com/blog/2018/09/introduction-
	NetworkX for Airline data	graph-theory-applications-python/
	set	
2	Implementation of Movie	https://www.geeksforgeeks.org/python-implementation-of-
	recommender system	movie-recommender-system/
3	Diving into GraphQL and	https://medium.com/elements/diving-into-graphql-and-neo4j-
	Neo4j with Python	with-python-244ec39ddd94
4	DataCamp Network	https://www.datacamp.com/courses/introduction-to-network-
	analysis using Python	analysis-in-python

B. TOPICS FOR SELF STUDY

C. TEXT BOOK(S)

1. Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Social Media Mining: An Introduction, Cambridge University Press, 2014

D. REFERENCES BOOKS

- 1. Matthew A. Russell. Mining the Social Web. 3rd Edition. O'Reilly Media. 2019
- Jennifer Golbeck. Analyzing the Social Web. Morgn Kaufmann. 2013. ISBN 978-0124055315
- Ricardo Baeza-Yates and BerthierRibeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind Search. 2ed. ACM Press Books, 2011. ISBN 978-0321416919
- 4. Charu C. Aggarwal. Social Network Data Analytics. Springer. 2011

E. WEB LINKS

- https://medium.com/elements/diving-into-graphql-and-neo4j-with-python-244ec39ddd94
- https://www.geeksforgeeks.org/python-implementation-of-movie-recommender-system/

Unit	Fopic Topic Learning Outcomes						
Ι	Introduction to SMM and G	raph Mining					
1.1	Challenges and methodologies for mining	Identify challenges and methodologies for social media mining					
1.2	Types of SM and marketing opportunities that exist in SM	List social media types and identify marketing opportunities	К2				
1.3	Graph basics	Compute degree and degree distribution of directed and undirected graphs	K3				
1.4	Graph representation	Find adjacency list and edge list Given these lists, create a graph	K4 K6				
1.5	Types of graphs	Given business problem, create weighted and signed graphs for the social network	K6				
1.6	Connectivity in graphs	Find all connectivity in graphs and compute diameter	K4				
1.6	Special graphs	Create various special graphs such as MST, Steiner tree, planner graph, bipartite graph and regular graph for the given business problem	K6				
1.8	Graph traversals	Apply BFS and DFS traversal methods for the given social network	K3				
1.9	Shortest path algorithms	Compute shortest paths using Dijkstra's and Prim's algorithms based on the business use case	K3				
1.10	Network flow algorithms	Analyze maximum messages a social network can handle. Analyze maximum matching between products and users.	K4 K4				
II	Social Network Measures ar	nd Models					
2.1	Centrality measures	Apply centrality measures and predict the most central important nodes from social networks	K6				
2.2	Transitivity	Apply transitivity measures and analyse linking behaviour of nodes	K4				
2.3	Reciprocity	Analyze reciprocity of the given social network	K4				
2.4	Balance and status	Determine consistency of relationship in signed graphs	K6				
2.5	Similarity measures	Apply similarity measures and predict similar nodes	K6				

		in a social network	
2.6	Properties of real world networks	Discuss the properties of real world networks	K6
2.7	Random graph model	Discuss the types, evolution and properties of random graph model	K6
2.8	Small world model	Discuss the properties of small world model Compare the properties of random graph and small world models	K6
2.9	Preferential attachment model	Discuss the properties of small world model Compare the functionalities of random graph, small world and preferential attachment models Figure out the differences between random graphs, regular lattices, and small-world models	K6 K4 K4
III	Data Mining Basics and Cor	nmunity Discovery	1
3.1	Data pre-processing steps	Given a business problem, identify various features Explain data pre-processing steps, given a use case Select a ML methodology based on the given problem scenario	K1 K2 K4
3.2	Decision tree learning	Create a decision tree given a dataset representing the use case	K6
3.3	Naïve bayes classifier	Create a Naïve bayes classifier given a dataset representing the use case	K6
3.4	Nearest neighbour classifier	Create a KNN classifier given a dataset representing the use case	K6
3.5	Supervised learning evaluation methods	Compare the evaluation measures for supervised ML classifiers	K4
3.6	KMeans clustering	Predict clusters using KMeans given an use case	K6
3.7	Unsupervised learning evaluation methods	Evaluate quality of clusters from unsupervised ML classifiers	K6
3.8	Member based community detection	Detect communities by applying node similarity, node degree and node reachability methods	K4
3.9	Group based community detection	Discuss the methods to detect group communities from social networks	K2
3.10	Community evolution	Explain how communities evolve over time in social networks	K2
3.11	Community evaluation	Given members of communities, analyze precision, recall, Fscore, purity and NMI measures	K4
IV	Information Diffusion and I	nfluence	
A 1	Information associates	Given a network with activation probabilities, analyse final set of activated nodes using ICM method	K4
4.1	information cascades	Describe the independent cascade model Explain the objectives of cascade maximization	K2 K4
4.2	Diffusion of innovations	Compare innovation diffusion models	K4
4.3	Epidemics	Discuss the mathematical relationship between the SIR and the SIS models Defend why in SIR model, the probability that an individual remains infected follows a standard exponential distribution Compute in SIRS model, the length of time that an infected individual is likely to remain infected before	K6 K6 K3 K4
		he or she recovers Given a business or societal problem, select the	K6

		appropriate information diffusion model	
		Sumarize intervention approaches for information	
		diffusion models	
4.4	Measuring Assortativity	Compute assortativity for ordinal and nominal attributes of social network nodes	K3
4.5	Measuring influence	Illustrate the types of influence measures in blogosphere and twitter	K4
4.6	Modelling influence	Select all activated nodes with Linear Threshold Model	K4
4.7	Measuring homophily	Estimate homophily for nominal and ordinal attributes in a social network	K6
4.8	Modelling homophily	Explain the variation of independent cascade model to model homophily	K4
4.9	Distinguishing influence and homophily	Determine the source of assortativity in social networks	K6
V	Recommendation and Behav	viour Analysis	
5.1	Challenges of recommender systems	Describe the challenges of recommendation systems	K1
5.2	Content based recommendation system	Differentiate content-based recommendation from collaborative filtering	K4
5.3	User based collaborative filtering	Predict missing ratings using user based CF	K6
5.4	Item based collaborative filtering	Predict the most similar items using item based CF	K6
5.5	Model based collaborative filtering	Predict ratings and items using SVD based CF	K6
5.6	Group based recommendation	Find and recommend items to group of users	K3
5.7	Recommendation using social context	Predict ratings and items leveraging social context Provide examples where social context can help improve classical recommendation algorithms in social media	K6 K3
5.8	Evaluation of recommender systems	Evaluate the accuracy of predictions	K5
5.9	Evaluating relevancy of recommendation	Evaluate the relevancy of recommendations	K5
5.10	Evaluating ranking of recommendation	Evaluate the ranking of recommendations	K5
5.11	Individual behaviour analysis, modelling and prediction	List the features for User Community-Joining Behavior Explain the methods for predicting individual behaviours	K1 K4
5.12	Collective behaviour analysis, modelling and prediction	Outline a method for predicting Box office Revenue for Movies	K5

4. MAPPING

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
------------	-----	-----	------------	-----	-----	------------	------------	-----	------	------	------	------

CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Η	Η	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Η	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Η	Η	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felciah

ELECTIVE IV: IMAGE AND VIDEO ANALYTICS								
Semester	III	Hours/Week	4					
Course Code	P19DS3:4	Credits	4					

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Elaborate the fundamental principles of image and video analysis	K5	Ι
CO2	Choose the mathematical basic equation to transform images into different domain for performing smoothing and sharpening operations	K6	П
CO3	Evaluate a statistical model to solve Image Enhancement, Segmentation and Compression problems	К	III
CO4	Select most relevant information from the original image to construct a feature vector such as texture, color and shape	K6	IV
CO5	Design suitable Classifier for Object Detection, Tracking and Recognition	K5	IV
CO6	Decide suitable image and video analysis approaches for developing solutions to solve real time applications	K6	V

2. A. SYLLABUS

Unit-1 Image Representation and Processing

Digital image representation- Visual Perception- Sampling and Quantization- Basic Relations between Pixels- Mathematical Tools Used in Digital Image Processing: Fundamental Operations – Vector and Matric Operations- Image Transforms (DFT, DCT, DWT, Hadamard).

Unit-2 Image Filtering

Fundamentals of spatial filtering: spatial correlation and convolution-smoothing, blurringsharpening- edge detection - Basics of filtering in the frequency domain: smoothing-blurringsharpening--Histograms and basic statistical models of image.

Unit-3 Colors and Compression

Color models and Transformations – Image and Video segmentation-Image and video demonising-Image and Video enhancement- Image and Video compression.

Unit-4 Object Detection and Tracking

Object detection and recognition in image and video-Texture models Image and Video classification models- Object tracking in Video.

Unit-5 Applications

Applications and Case studies- Industrial- Retail- Transportation & Travel- Remote sensing-Video Analytics in WSN: IoT Video Analytics Architectures.

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Pattern Recognition and Application	https://nptel.ac.in/courses/117/105/117105101/
2	Practical Machine Leaning with Tensor	https://nptel.ac.in/courses/106/106/106106213/
	Flow (Video)	
3	Object Representation and Description	https://www.youtube.com/watch?v=yxID4fgz1C0

|--|

C. TEXT BOOKS

1. R.C. Gonzalez and R.E. Woods. Digital Image Processing. 3rd Edition. Addison Wesley, 2007.

D. REFERENCES BOOKS

- 1. Pratt, W.K. Digital image processing: PIKS scientific inside. 4ed. New York: John Wiley, 2007.
- 2. W. Härdle, M. Müller, S. Sperlich, A. Werwatz. Nonparametric and Semi parametric Models. Springer, 2004.
- 3. Rick Szelisk. Computer Vision: Algorithms and Applications. Springer 2011.
- 4. Jean-Yves Dufour. Intelligent Video Surveillance Systems. Wiley, 2013.
- 5. Caifeng Shan, FatihPorikli, Tao Xiang, Shaogang Gong. Video Analytics for Business Intelligence. Springer, 2012.
- 6. AsierPerallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio GarcíaZuazola. Intelligent Transport Systems: Technologies and Applications. Wiley, 2015.
- 7. BasudebBhatta. Analysis of Urban Growth and Sprawl from Remote Sensing Data. Springer, 2010

E. WEB LINKS

- 1. https://www.coursera.org/learn/digital
- 2. https://nptel.ac.in/courses/106/105/106105032

Unit/ Section	Course Content	Learning outcomes	Level
Ι	Image Representation and Processing		
1.1	Digital image representation	Discuss the fundamental steps involved in Image processing system	K2
		Describe the image representation method	K2
1.2	Visual Perception	Explain the human visual perception system with necessary diagrams.	K4
		Analyze the image formation takes place in eye and state the principle operation of brightness adaption and discrimination	K4
1.3	Sampling and Quantization	Design the image digitization process by sampling and quantization	K5
1.4	Basic relations between Pixels	Analyze the basic relationships between pixels	K4
		Distinguish the following terms: i) Adjacency ii) Connectivity iii) Region iv)Boundary	K4
1.5	Mathematical Tools Used in Digital Image Processing	Examine the following mathematical operations on digital image i) Array versus Matrix operation ii) Linear versus Nonlinear Operations	K4
1.6	Image Transforms (DFT, DCT, DWT, Hadamard)	Create a MATLAB script to construct the forward and inverse 2D DFT for the given image f(m,n)	K5
		Compare the following two properties of 2D-DFT	K2

		i) Convolution	
		ii) Correlation	
		Design the basis function of Haar	K5
		Transform for N=8	-
		Use the Hadamard kernel matrix 4 x 4 for	К3
		the image segment and perform transform	
		with matrix multiplication method	
		Construct 2D DCT for the image of size 2	К5
		X 2 and verify the output after inverse	110
		DCT	
		Determine the approximation and detailed	K6
		coefficient of the Harr Transform which	110
		takes an argument as $2 - dimensional$	
		digital signal 'S'	
		Create discrete cosine transform(DCT)	K5
		matrix for N=4	113
		Design second-level decomposition of the	К5
		input image using a Haar wavelet	113
		Construct the Haar transform $T - HFH^{T}$	К5
		of the 2 x 2 image $F(m n)$ also find the	IX.5
		inverse Haar transform $\mathbf{F} - \mathbf{H}^{\mathrm{T}}\mathbf{T}\mathbf{H}$ of the	
		obtained result	
		Construct the subband modeling using	K5
		DWT	IX.5
П	Image Filtering		
2.1	Fundamentals of spatial	Analyse the impact of convolving the	K4
2.1	filtering	image $f(x, y)$ with the mask $h(x, y)$ that	11 1
	intering	performs averaging operation which	
		results in blurring the image	
		Compare linear and Non-Linear spatial	К2
		Filtering Techniques	
		Explain Image Negative and Log	К2
		transformation Techniques	112
		d'ansionnation reeninques	
		Determine the output image if $f(m, n)$ and	K6
		Determine the output image if $f(m, n)$ and $h(m, n)$ are linearly convolved with zero	K6
		Determine the output image if $f(m, n)$ and $h(m, n)$ are linearly convolved with zero padding of the original image	K6
		Determine the output image if f(m, n) and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain	K6
		Determine the output image if f(m, n) and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image	K6 K4
		Determine the output image if f(m, n) and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3 × 3.5	K6 K4
		Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7	K6 K4
		Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform	K6 K4
		Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N	K6 K4 K6
		Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times.	K6 K4 K6
2.2	Spatial correlation and	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution	K6 K4 K6 K5
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal x(m, n) and h(m,n) and	K6 K4 K6 K5
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal x(m, n) and h(m,n) and comment on the observed result.	K6 K4 K6 K5
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two-	K6 K4 K6 K5 K2
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like $3 \times 3, 5 \times 5$ and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two- dimensional convolution	K6 K4 K6 K5 K2
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two- dimensional convolution (i) Commutative property (ii) Associative	K6 K4 K6 K5 K2
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two- dimensional convolution (i) Commutative property (ii) Associative property (iii) Distributive property	K6 K4 K6 K5 K2
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like $3 \times 3, 5 \times 5$ and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two- dimensional convolution (i) Commutative property (ii) Associative property (iii) Distributive property Determine the correlation between the	K6 K4 K6 K2 K6
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like $3 \times 3, 5 \times 5$ and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two- dimensional convolution (i) Commutative property (ii) Associative property (iii) Distributive property Determine the correlation between the two image matrices $x1[m,n]$ and $x2[m,n]$	K6 K4 K6 K2 K6
2.2	Spatial correlation and convolution	Determine the output image if $f(m, n)$ and h(m, n) are linearly convolved with zero padding of the original image Examine the behavior of Spatial-domain low-pass filtering of the input image using different window sizes like 3×3 , 5×5 and 7×7 Verify the effect of a 5×5 uniform averaging filter to a digital image N times. Formulate the 2D linear convolution between the signal $x(m, n)$ and $h(m,n)$ and comment on the observed result. Compare the following properties of two- dimensional convolution (i) Commutative property (ii) Associative property (iii) Distributive property Determine the correlation between the two image matrices $x1[m,n]$ and $x2[m,n]$	K6 K4 K6 K2 K6 K6

		performing two one dimensional	
2.2	See a sthing hluming	Convolutions	VC
2.3	Smoothing, blurring	Justify the statement Mean filter is an	KO
		noise through simple example	
		Invest the new value of the $pixel(2,2)$ if	<i>V</i> 5
		Invent the new value of the pixel(2,2) if $\frac{1}{2}$	KJ
		shooting is done using a 5x5	
		a) Maan filter b) Weighted average filter	
		a) Median filter d) Min and May filter	
		C) Median Inter (1) Will and Max Inter	VC
		Discuss the limiting effect of repeatedly	KO
		digital image. Japare hander affacts. Is	
		digital image. Ignore border effects. Is	
		filter	
		Inter	IZ A
		Analyze 5 x 5 mean filter in the frequency	K 4
		domain and prove that it behaves like a	
		low pass litter	VC
		Determine the convolution process using $2x^2$ most in the particular of pixels $(2x^2)$ of	KO
		sxs mask in the portion of pixels(2x2) of	
		filtered image	
		Marifa the area othing halosian of	VC
		Verify the smoothing behavior of	Кб
		Gaussian filter with varying levels of	
		smooth factor σ .	K2
		Show the output impact in applying full-	К3
		scale contrast stretch to the image 4×4 ,	
		4bits/pixel image.	
2.4	Sharpening- edge detection	Discuss the effect of first order derivative	K6
		gradient operators for image sharpening	
		Invent the discontinuity in the image	K5
		using canny edge detector and give	
		justification why it outperforms than	
		gradient edge detectors and implement	
		using MATLAB code	
		Discuss the behaviour of the second order	K6
		Derivative for a step and ramp edges	
		Construct the LOG filter to detect isolated	K3
		points and line in an image	TT /
2.5	Basics of filtering in the	Verify that convolution in spatial domain	K6
	frequency domain:	is equal to multiplication in the frequency	
	smoothing-blurring-	domain using MATLAB code	
	sharpening	Use MATLAB code to perform a two-	K3
		dimensional Butterworth low-pass filter	
		of the given image for two different cut-	
		off frequencies	
		Construct a filter for image smoothing in	К3
		trequency domain	
		Explain the various high pass filters used	K4
		in frequency domain	
2.6	Histograms and basic	Justify your answer can two different	K6
	statistical models of image	images have the same histogram	
		Justify Histogram processing is called as	K6
-----	-------------------------------	---	------------
		an efficient tool for graphical	
		representation of the total distribution in a	
		given digital image.	
		Design a statistical model of Histogram	K5
		Equalization to the given image by	
		rounding the resulting image pixels to	
		integers	
		Determine the histogram equalization as	K6
		an idempotent operation for the 5 x 5	RO
		image segment. Plot the graph before and	
		after equation	
		Determine the visual appearance of the	V6
		resulting image by applying global	KU
		histogram a suclimation for the group lovel	
		nistogram equalization for the grey level	
		image $f(x,y)$ of size 256x256 with	
		1 < x, y < 256, which has the following	
		intensities $f(x,y) = r+1$ if $1 \le x, y \le 12$ and	
		$f(x,y)=r$ if $13 \le x, y \le 16$, otherwise	
		$\mathbf{f}(\mathbf{x},\mathbf{y}) = \mathbf{r} + 3.$	
		Determine the mean and standard	K6
		deviation of the image. If an image has	
		gray levels ranging from 0 to 19.	
III	Colors and Compression		1
3.1	Color models and	Describe the representation of three-color	K2
	Transformations	components red, green and blue for the	
		given color image.	
		Classify the foreground and background	K3
		from the given RGB image and segment it	
		using the Global thresholding method	
		Verify the gamma correction for the given	K6
		color image for different values of gamma	
		and comment on the output result.	
		Formulate the CMY coordinates from the	K5
		given color image represented in terms of	
		RGB components	
		Construct a statistical model of histogram	K5
		equalization of the given RGB image	
		Discuss the additive and subtractive color	K6
		model also implement Python OpenCV	110
		code to extract color components	
		Justify the result for the color transform	K6
		model to read the color image. Convert	K 0
		the RGB format to VIO format (NTSC)	
		Filter only the V component (high pass	
		filtering) Do not disturb the Lond O	
		α components. Then convert the filtered V	
		component I component and a	
		component healt to the DCD format or d	
		component back to the KGB format and	
		check the result.	
		$C_{\text{outothermal theorem }} = 1^{1} = 1^{1} = 1^{1} = 1^{1}$	V5
		Construct the median filter for the color	K5
		Construct the median filter for the color image corrupted by salt-and-pepper noise	K5
		Construct the median filter for the color image corrupted by salt-and-pepper noise and try to restore the corrupted image	K5

	segmentation	technique to segment the given image	
		Discuss the Morphological operations	K2
		opening and closing for the given binary	
		image	
		Predict the number of black pixels in the	K5
		resultant image for the given input binary	
		image if hit-or-miss transformation is	
		performed with the structure element [0 1	
		0,1 1 1,0 1 0].	
		Explain watershed segmentation tends to	K4
		over-segmentation problem in images.	
		Mention the solution to overcome the	
		problem	
		Formulate the gradient magnitude and the	K5
		direction of the gradient for the pixel	
		$f(x,y)=2x^2$.	
		Determine the hit and miss transformation	K6
		of Morphological operator on a binary	
		array that represents a portion of a black-	
		and-white image and perform the	
		operations on this piece of image Assume	
		that all the pixels that surround this	
		segment contain a black background	
		Verify that the Prewitt edge detector along	K6
		a horizontal direction can be obtained by	110
		convolving two one-dimensional signals	
		$\begin{bmatrix} 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \end{bmatrix}$ T and then scaling	
		the result by a factor of $1/3$	
		Construct the linear filter masks for the	К5
		following operations:	110
		(a) Detecting horizontal lines	
		(b) Detecting vertical edges	
		Distinguish between image segmentation	K4
		based on thresholding with image	111
		segmentation based on region-growing	
		techniques.	
		Design an Automatic thresholding of grey	K5
		level image using otsu's thresholding	110
		Discuss Multiple object segmentation in	K6
		video using Graph Cut	
		Devise a technique to detect outlier from	K5
		motion segmentation in video	110
		Apply the Region based split-and-merge	К3
		technique to segment the given image	iii)
3.3	Image and video	Discuss the tools available for image and	К2
	demonising	video demonizing	
3.4	Image and Video	Explain the various video enhancement	K2
	enhancement	techniques	
		Distinguish the following enhancement	K4
		operations: i) Contrast stretching ii) Bit-	
		plane slicing	
		Analyze the behavior of piecewise linear	K4
		transformation and grev level transform	
		for image enhancement	

		Determine the output image $g(m, n)$ using	K6
		logarithmic transformation	110
		$g(m n) = [clog_{10}(1+f(m n))]$ by choosing c	
		$a_{1}(i) = 1$ and $c = \frac{1}{\log_{10}(1+1)}$	
		Examine the behavior of image arithmetic	КЗ
		operation such as addition subtraction	ix.
		multiplication and division over an image	
		Judge the impact of zeroing least	K6
		significant and most significant bit planes	K 0
		by reading an eight bit image, set any of	
		the bit planes 0 to 7 to zero in a user	
		defined menner and reconstruct the image	
2.5	Imaga and Vidao	Construct the Huffmen tree and find the	V5
5.5	Compression	construct the Humman tree and find the	KJ
	Compression	number of bits needed for encoding a	
		given message. Calculate number of bits	
		using frequency of characters and number	
		of bits required to represent those	
		characters.	
		Analyze the compression and	K5
		reconstruction of the 8x8 input images for	
		the 256×256 pixel digital image has	
		eight distinct intensity levels also find the	
		minimum number of bits required to code	
		this image in a lossless manner.	
		Examine the efficiency of Huffman code	K4
		for an image clip is formed using six	
		colors—white (W), red (R), yellow (Y),	
		green (G), blue (B) and orange (O). These	
		occur in the clip with the following	
		relative frequencies:	
		$\{0.5, 0.1, 0.05, 0.05, 0.2, 0.1\}$. For the above	
		data, construct a Huffman code that	
		minimizes the average code word length.	
		Explain MPEG Video compression	K4
		standard for monochrome and color	
		compression	
		Formulate the Peak Signal-to-Noise Ratio	К5
		(PSNR) for the original and the	iii.
		reconstructed images. Calculate the PSNR	
		expressed in decibels	
		Evaluate encoding of the word a1 a2 a3	K6
		a4 using arithmetic code and generate the	K 0
		tag for the given symbol with	
		probabilities: $a1 - 0.2$ $a2 - 0.2$ $a3 - 0.4$	
		24-0.2	
		Solve the entropy of the given 2D image	K3
		given by f(m n)	IX.J
IV	Object Detection and Track	ing	<u> </u>
	Object detection and	Predict the key points in objects using	K5
+.1	recognition in image and	Harries corner detection and SUDE	IX.J
	video	Instify why SUDE gives high rehystrose	
		ourresponding to point matching	
		Design a system for detecting Criminal	V5
		Design a system for detecting Criminals	КЭ
1		using Kegion based CINN	

		Examine Histogram of Gradients in 8×8	K3
		cells for object detection	
		Discuss Object detection using bounding	K6
		box technology in Real Time Traffic	
		monitoring system	
		Determine the object detection in real	K6
		time video surveillance system	
4.2	Texture models	Discriminate the texture from the given 4	K6
		x4 image segment with grey levels (N)	
		$=0,1,2,3$ and $d=\{1,0\}$ by assuming	
		direction operator as i) next pixel on right	
		side, ii) next pixel on diagonal, iii) next	
		pixel on perpendicular also calculate its	
		homogeneity and uniformity to construct a	
		test feature vector.	
		Discuss the vehicle detection system in	K6
		real time video based on texture analysis	
		Explain Image segmentation using texture	K4
		extraction	
		Invent Statistical texture feature for drugs	K5
		classification	
		Discuss the common statistical features	K2
		derived from co-occurrence	
		probabilities	
		Create a 2D texture mask of size 5 x 5	K5
		with the following 1D filter	
		i) E5E5	
		ii) E5R5/R5E5	
		iii) S5S5	
		iv) L5R5/R5L5	
4.3	Image and Video	Devise a Model based video classification	K5
	classification models	using SVM	TT C
		Discuss the performance evaluation of	K6
		deep feature learning for RGB image and	
		Video classification	17.4
		Explain Gaussian mixture models of color	K 4
		and texture features for image	
		Algorithm	
		Algorium Decign on offective architecture for image	V5
		classification using CNN	KJ
		Create a unified framework for multi-label	K5
		image classification	KJ
		Create a model to classify images into	К5
		their appropriate class with deep learning	
		using CIFAR-10 dataset	
		Predict the classes using SVM classifier	K5
		for the Breast cancer as Benign,	
		Malignant, or Normal image by applying	
		Otsu thresholding for segmentation,	
		Preprocessing done by applying	
		two-dimensional median filter and	
		histogram equalization for getting more	
		enhanced image. Then extract desired	

		features from the images for	
		classification.	
4.4	Object tracking in Video	Compare the various object tracking	K4
		techniques used in video processing	
		Create a model to detecting human motion	K5
		in video surveillance system	
		Distinguish between automatic detection	K4
		and motion-based object detection in a	
		video	
		Construct a model for Motion-Based	K3
		Multiple Object Tracking with suitable	
		example.	
		Choose a suitable object tracking	K6
		technique to perform Human gesture	
*7	A 10 /0	tracking and recognition	
V 5 1	Applications	Design a sector for estadour and locio in	V.F
5.1	Applications and Case	Design a system for category analysis in	КЭ
	studies- Retain	tachniques. Suggest a quitable cluster	
		algorithm	
		Construct a model for value and store	K3
		brand identification in food products using	KJ
		Python OpenCV	
		Develop a system for product	К5
		identification method for a mixed-reality	iii.
		web shopping system	
		Analyze the RFID Performance	K4
		Evaluation in a Retail Store	
		Construct Image analytics method to	K3
		monitor retail store	
		Construct an Automated Shopping Trolley	K3
		for Super Market Billing System	
		Devise a deep learning pipeline for	K5
		product recognition on retail store shelves	
		Develop an IoT based retail shopping	K5
		system	
		Create a model for RFID Based Smart	K5
		Shopping and Billing	
5.2	Industrial	Identify fault detection in industrial	K4
		process using suitable image processing	
		Technique.	
		Explain Image pattern recognition in	K4
		industrial inspection	
5.3	Transportation & Travel	Propose a technique to detect traffic sign	K5
		In real time traffic monitoring system	V5
		Predict the presence of Pedestrian in	КЭ
		Design a system for detecting driver	V5
		drowsings using image processing	КЭ
		techniques Suggest a suitable algorithm	
		for each step	
		Determine the discontinuity in the video	K6
		frame to perform motion segmentation in	120
1	1	I mane to perform motion beginemation m	1

		Transportation system	
		Design a system for recognition of	K5
		number plates in vehicle using image	
		processing techniques. Suggest a suitable	
		algorithm for each step	
		Illustrate the applications of vision based	K3
		intelligent transportation system	
5.4	Remote sensing	Design Remote sensing image	K5
		classification using Deep Learning	
		Describe the wiener filter is helpful to	K2
		reduce the mean square error when	
		Satellite image is corrupted by motion	
		blur and additive noise	
		Select the suitable preprocessing	K6
		techniques to remove the distortion from	
		the images taken from WSN Video	
		surveillance system and reconstruct the	
		same	
		Plan spatial resolution requirements for	K5
		crop identification using optical image	
		sensing	
		Propose Remote sensing in precision	K5
		agriculture	
		Design an edge based and texture-based	K5
		model for segmenting the remote sensing	
		image and give implementation using	
		MATLAB	
5.5	Video Analytics in WSN	Design a Distributed visual target-	K5
		surveillance system in wireless sensor	
		networks	
		Predict Rank preserving	K5
		Discriminate analysis for human	
		behaviour recognition through wireless	
		sensor networks	
		Discuss Border patrol through	K6
		advanced wireless sensor networks	
		Propose an intelligent car park management	K5
		System based on wireless sensor networks	
		application using wireless sonsor	V5
		networks	KJ
5.6	IoT Video Analytics	Devise an efficient algorithm for media	K5
5.0	Architectures	hased surveillance system in IoT	
		Explain IoT based smart video	K4
		surveillance system	174
		Design a Video Analytics based	K5
		Intelligent Indoor Positioning System	
		Using IoT	

4. MAPPING (CO, PO, PSO)

L-Low		M-Moderate						H- 1	High				
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η												
CO2	Н	Н	L		М	М							М

CO3	Η		Μ	Н	Μ						Η	
CO4	Η	Η	Μ		Η	Μ					Η	
CO5	Η	Η			Η	Η		М	М		Н	Н
CO6	Η	Н	Η	Μ	Н	Н		Η		Н		

5.COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Prof. D. Indra Devi

CORE PRACTICAL VI: BIG DATA MANAGEMENT AND ANALYTICS LAB							
Semester	III	Hours/Week	5				
Course Code	P20DS3P6	Credits	3				

On successful completion of this course, students will be able to:

CO	Course Outcome	Level	Exercise
CO1	Develop applications using Hadoop	K6	1,2
CO2	Store and manipulate data using HDFS	K6	3
CO3	Data manipulation using MapReduce	K6	4,5 & 6
CO4	Explore very large datasets using Pig	K6	8,9
CO5	Perform Data Warehousing operations using Hive	K6	10
CO6	Perform data analytics using Spark	K6	7

2. LIST OF EXERCISES

Develop applications for the following tasks

- 1. Installation and setup of Hadoop
- 2. File management tasks in Hadoop
- 3. Benchmarking and stress testing on Hadoop cluster
- 4. Map Reduce applications for Word Counting
- 5. Stop word elimination using Map Reduce
- 6. Weather data analytics using Map Reduce
- 7. Perform data analytics using Spark
- 8. Perform sort, group, join, project, and filter operations on Pig
- 9. Design vector space model for text collection using Pig
- 10. Create, alter, and drop databases, tables, views, functions, and indexes on Hive

Topics for Self Study

S.No	Topic Title	Web Link
1	HDFS	https://docs.cloudera.com/documentation/enterprise/latest/topics/
		admin_hdfs_config.html
2	MapReduce	https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-
		mapreduce-client/hadoop-mapreduce-client-
		core/MapReduceTutorial.html
3	Spark	https://docs.cloudera.com/documentation/enterprise/latest/topics/
		spark.html
4	Pig	https://docs.cloudera.com/documentation/enterprise/5-9-
		x/topics/cdh_ig_pig_installation.html
5	Hive	https://docs.cloudera.com/documentation/enterprise/5-8-
		<u>x/topics/hive.html</u>

3. Specific Learning Outcomes

Exercises	Lab Exercises	Learning Outcome	Level
1	Installation and setup of	DFS,FS	K6
	Hadoop		
2	File management tasks in	Place files in DFS	K6
	Hadoop		
3	Benchmarking and stress	Write file in clustered Data Node	K6
	testing on Hadoop cluster		
4	Map Reduce applications for	Import jar file for MapReduce	K6

	Word Counting		
5	Stop word elimination using	Modify Word Count file as Word	K6
	Map Reduce	Elimination using Eclips	
6	Weather data analytics using	Process .csv file using MapReduce	K6
	Map Reduce		
7	Perform data analytics using	Spark using Scala	K6
	Spark		
8	Perform sort, group, join,	MapReduce using Apache Tez	K6
	project, and filter operations on		
	Pig		
9	Design vector space model for	PigLatin Script	K6
	text collection using Pig		
10	Create, alter, and drop	Data Warehousing	K6
	databases, tables, views,		
	functions, and indexes on Hive		

4. MAPPING (CO, PO, PSO) L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	L	Μ	Μ	Μ	L	-	-	Η	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Η	Η	-	Μ
CO3	Н	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	H	Μ	Μ	Н
CO5	H	Μ	L	H	H	L	L	Μ	Μ	H	Η	Н	Μ
CO6	H	Μ	Μ	L	Η	L	L	L	Μ	H	H	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. B. Karthikeyan

CORE PRACTICAL VII: SOCIAL MEDIA ANALYTICS LAB						
Semester	III	Hours/Week	4			
Course Code	P19DS3P7	Credits	3			

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
1	Create data analytics systems using the data crawled from Twitter	K6	1 - 4
2	Create data analytics systems using the data crawled from Facebook	K6	5,6
3	Create data analytics systems using the data crawled from Linkedin	K6	7
4	Create data analytics systems using the data crawled from GitHub	K6	8,9
5	Create data analytics systems using the data crawled from Instagram	K6	10, 11
6	Create data analytics systems on bigdata collections	K6	11 - 15

2. SYLLABUS

Activity	Lab Activity Description
1	Real time crawling of tweets from Twitter and predict trending words
2	Extracting text, screen names, and hashtags from tweets. Generating histograms of words, screen names, and hashtags from tweets
3	Sentiment analysis using nltk.sentiment
4	Creating a basic frequency distribution from the words in tweets. Also, finding the most popular tweets in a collection of tweets
5	Counting the total number of page fans from Facebook. Retrieving the Last N items from the feeds of a Facebook Page
6	Finding the number of likes, shares, and comments on a given Facebook post
7	Retrieving your LinkedIn profile and print your last name. Performing Clustering your LinkedIn network based on locations of your connections
8	Finding a list of people who have bookmarked a GitHub repo
9	Computing the degree, betweenness, and closeness centrality measures of a graph
10	Displaying your profile picture from Instagram. Displaying the data of the most recent of your Instagram post
11	Objects detection from images from Instagram posts
	Using USA Airline flight dataset, perform the following tasks
	Install NetworkX package
12	• Display the head (top-5 rows) using DataFrame
	• Display the nodes and edges
	Plot the graph
13	Using USA Airline flight dataset, find the shortest path based on the airtime between the airports AMA and PBI
	Developing a Movie Recommender System that suggests movie IDs that are most similar
	to a particular movie ID
14	• Display the head (top-5 rows) of DataFrame
	• Display mean rating of all movies
	• Display count rating of all movies
	Plot the graph of ratings column
15	Developing a Movie Recommender System that suggests movie IDs that are most similar to a particular movie ID

• Ana	lyze the correlation of two movies
• Sug	gest similar movies for a given movie

Topics for Self Study

S.No	Topic Title	Web Link
1	Network analysis code and	www.cl.cam.ac.uk/~dm754/stna/stna-examples.zip
	data	
2	NodeXL	http://nodexl.codeplex.com/
3	Pajek	http://pajek.imfm.si/doku.php
4	Folium	https://folium.readthedocs.io/en/latest/
	Graph-Tool	https://graph-tool.skewed.de/

3. Specific Learning Outcomes

Activity#	Lab Activity	Learning Outcome	Level
1.	Twitter data analytics	Crawl tweets at real time from Twitter. Predict trending words from crawled tweets	K6
2.	Twitter data analytics	Extract text, screen names, and hashtags from tweets. Generate histograms of words, screen names, and hashtags from tweets	K6
3.	Twitter data analytics	Perform Sentiment analysis using nltk.sentiment	K6
4.	Twitter data analytics	Create a basic frequency distribution from the words in tweets. Also, find the most popular tweets in a collection of tweets	K6
5.	Facebook data analytics	Count the total number of page fans from Facebook. Retrieve the Last N items from the feeds of a Facebook Page	K6
6.	Facebook data analytics	Find the number of likes, shares, and comments on a given Facebook post	K6
7.	Linkedin data analytics	Retrieve your LinkedIn profile and print your last name. Perform Clustering your LinkedIn network based on locations of your connections	K6
8.	GitHub data analytics	Find a list of people who have bookmarked a GitHub repo	K6
9.	GitHub data analytics	Compute the degree, betweenness, and closeness centrality measures of a graph	K6
10.	Instagram data analytics	Display your profile picture from Instagram. Display the data of the most recent of your Instagram post	K6
11.	Instagram data analytics	Detect objects from images from Instagram posts	K6
12.	Bigdata analytics of Airline data	Find out nodes and edges	K6
13.	Bigdata analytics of Airline data	Find the shortest path	K6
14.	Design of recommender system for Movie data Part-1	Plot graph of ratings	K6
15.	Design of recommender	Analyze correlation of two movies and	K6

system for N	Aovie data	suggest similar movies for a given movie	
Part-2			

4.MAPPING (CO, PO, PSO)

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	Н	Μ	Μ	L	Η	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Η	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	Н	L	L	L	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. Janani Selvaraj

CORE VII: PRINCIPLES OF DEEP LEARNING						
Semester	III	Hours/Week	4			
Course Code	P20DS307	Credits	4			

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Examine the basics of Tensorflow and its models	K6	Ι
CO2	Explain the characteristics of Convolutional Neural Networks	K6	II
CO3	Depict the architecture and use of the Autocoders	K6	III
CO4	Evaluate the Sequence analysis using Tenserflow	K5	III
CO5	Summarize the features of the Recurrent Neural Network	K6	IV
CO6	Construct the CNN using Deep reinforcement learning	K6	V

2. SYLLABUS

UNIT I - TENSORFLOW BASICS

TensorFlow: variables, operations, placeholder Tensors, sessions - Navigating variable scopes and shared variables - Managing models over CPU and GPU - Logistic Regression in TensorFlow-Training Logistic Regression model – Visualizing using Tensor Board – Building multilayer model in TensorFlow

UNIT II - CONVOLUTIONAL NEURAL NETWORKS HOURS

Shortcomings of Feature Selection – Width, height and depth of layers – Filters and feature maps – Describing convolutional layer - Max pooling - Architectural Description of Convolution Networks - Recognizing handwritten digits using CNN for MNIST dataset -Image preprocessing pipelines -Training with Batch normalization

UNIT III - AUTOENCODERS AND SEQUENCE ANALYSIS

Embedding - Principal Component Analysis - Architecture of Autoencoders - Implementing autoencoders in TensorFlow-Denoising - Word2Vec framework for language modelling. Sequence Analysis: seq2seq problem – Dependency parsing – Beam search

UNIT IV - RECURRENT NEURAL NETWORKS

Single neuron and fully connected recurrent layer - Challenges of vanishing gradients - LSTM architecture - TensorFlow primitives for RNN models - Implementing Sentiment analysis Model -Solving seq2seq tasks with RNN - Augmenting RNN with Attention - Designing Neural Translation Network

UNIT V - DEEP REINFORCEMENT LEARNING

Reinforcement Learning: Markov Decision Processes, Policy, Future return, Discounted future return, Balancing Explore-Exploit dilemma, Annealed e-Greedy - Policy learning and Value learning - Solving Pole Cart problem with Policy Gradients - QLearning -Deep QNetworks - Deep Q Recurrent Networks - UNREAL Learning

TOPICS FOR SELF - STUDY

S.No.	Topics	Web Links		
1	Keras Tutorial	https://keras.io/getting_started/		
2	Keras Tutorial: Deep Learning in	https://www.datacamp.com/community/		
	Python	tutorials/deep-learning-python		

12 HOURS

12

12 HOURS

12 HOURS

12 HOURS

3	Machine Learning with Tensorflow	https://www.python- course.eu/tensor_flow_introduction.php		
4	From Solving Equations to Deep Learning: A TensorFlow	https://www.toptal.com/machine- learning/tensorflow-python-tutorial		

Text Books

- 1. Nikhil Buduma, Nicholas Locascio. Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms. O'Reilly Media. 2017.
- 2. Ian Goodfellow, YoshuaBengio, Aaron Courville. Deep Learning (Adaptive Computation and Machine Learning series). MIT Press, 2017.

References

1. Francois Chollet. Deep Learning with Python. 1ed, Manning Publications, 2017. ISBN 978-1617294433.

Web Links

- 1. www.tensorflow.org / tutorials
- 2. https://www.tensorflow.org/tutorials/generative/autoencoder
- 3. https://towardsdatascience.com/reinforcement-learning-with-python-part-1-creating-the-environment-dad6e0237d2d

3. SPECIFIC LEARNING OUTCOMES

Unit/ Section	Course Content	Learning outcomes	Level
Ι]]	TENSORFLOW BASICS	
1.1	TensorFlow: variables, operations, placeholder Tensors, sessions	Explain the features of the TensorFlow	K4
1.2	Navigating variable scopes and shared variables	Characterize the navigating variable and shared variable of TenserFlow.	K4
1.3	Managing models over CPU and GPU	Develop the models using CPU and GPU	K6
1.4	Logistic Regression in TensorFlow - Training Logistic Regression model	Evaluate the Logistic Regression using TensorFlow	K5
1.5	Visualizing using Tensor Board	Depict the model using Tensor Board	K6
1.6	Building multilayer model in TensorFlow	Design the multilayer model in TensorFlow	K6
II	CONVOLU	UTIONAL NEURAL NETWORKS	
2.1	Shortcomings of Feature Selection	Evaluate the disadvantages of the conventional feature selection	K5
2.2.	Width, height and depth of layers	Analyze the Width, height and depth of layers in CNN	K5
2.3	Filters and feature maps	Assess the filters and feature maps in CNN	K5
2.4	Describing convolutional layer	Explain the role of convolutional layers in CNN	K6
2.5	Max pooling	Diagnose the max pooling methods of CNN	K4
2.6	Architectural Description of Convolution Networks	Design the architecture of CNN	K6
2.7	Recognizing handwritten digits using CNN for MNIST	Formulate the CNN for Recognizing handwritten digits from MNIST dataset	K6

-	1-44		
2.0		Coto coniza Ima comune consiste a sinclines	VC
2.8	Training preprocessing pipelines	Categorize image preprocessing pipelines	KO
2.9	Iraining with Batch	Analyze the training of CININ using batch	K4
TTT	normalization	normalization	
	AUTOENCO	DERS AND SEQUENCE ANALYSIS	175
3.1		Explain the features of embedding	K5 175
3.2	Principal Component Analysis	Assess the characteristics of PCA	K5 VC
3.3	Architecture of Autoencoders	Design the architecture of Autoencoders	K6
3.4	Implementing autoencoders in TensorFlow	Construct the autoencoders with TensorFlow	K6
3.5	Denoising	Describe the denoising methods for autoencoders	K4
3.6	Word2Vec framework for language modelling.	Develop the Autoencoders for Word2Vec framework for language modelling	K6
3.7	Sequence Analysis: seq2seq problem	Formulate the Sequence Analysis using TensorFlow	K6
3.8	Dependency parsing	Explain the steps of Dependency parsing	K4
2.0	Desmo second	Interpret the Beam Search method for sequence	175
3.9	Beam search	analysis.	KS
IV	RECUR	RENT NEURAL NETWORKS	
	Single neuron and fully	Euclain the characteristics of single Neuron	K4
4.1	Single neuron and fully	Construct the Fully connected requirement lower	
	connected recurrent layer	Construct the Fully connected recurrent layer	K6
4.2	Challenges of vanishing gradients	Evaluate the challenges of vanishing gradients	K4
4.3	LSTM architecture	Explain the components of LSTM architecture.	K5
4.4	TensorFlow primitives for RNN models	Describe the TensorFlow primitives for RNN models	K2
4.5	Implementing Sentiment analysis Model	Design the Sentiment analysis Model using TensorFlow	K6
4.6	Solving seq2seq tasks with RNN	Formulate the solution for seq2seq tasks	K6
4.7	Augmenting RNN with Attention	Assess the augmenting RNN	K4
4.8	Designing Neural Translation Network	Design the Neural Translation Network using RNN	K6
V	DEEP R	EINFORCEMENT LEARNING	
	Reinforcement Learning:		
	Markov Decision Processes,	Describe the Reinforcement Learning	K3
5.1	Policy, Future return,	Explain the Markov Decision Process.	K5
	Discounted future return,	Compare the different types of return	K5
	Balancing Explore		
5.0	Exploit dilemma, Annealed e-	Assess the exploit dilemma of DRL	K5
5.2	Greedy	Characterize the Annealed e-Greedy	K4
5.3	Policy learning and Value learning	Distinguish the Policy learning and Value learning	K5
5.4	Solving Pole Cart problem with Policy Gradients	Prescribe the solution for pole cart problem using policy gradients	K6
5.5	QLearning	Explain the properties of QLearning	K4
		Assess the features of Deep ONetworks from	T7 7
5.6	Deep QNetworks	conventional Neural network	K5
5.7	Deep Q Recurrent Networks	Compare the Deep QRecurrent Networks over Deep QNetworks	K6

5.8	UNREAL Learning	Explain the characteristics of unreal learning	K5
-----	-----------------	--	----

H- High

M-Moderate

4. MAPPING

L-Low

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Η	Η	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Η	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Η	Η	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 1. Course evaluation survey
- 2. Faculty feedback about the course.

Name of the Course Coordinator: Dr. K. RAJKUAMR

CORE-XI: WEB DEVELOPMENT USING PYTHON								
Semester	V	Hours/Week	5					
Course Code	P19DS411	Credits	4					

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Develop a Flask extension using best practices	K6	Ι
CO2	Implement various authentication methods	K5	II
CO3	Learn how to develop Jinja2 templates	K6	III
CO4	Build tests for your applications and APIs	K6	III
CO5	Develop RESTful APIs and secure REST API's	K6	VI
CO6	Deploy highly available applications that scale on Heroku and AWS using Docker or VMs	K6	V

9. A. SYLLABUS

Unit-1. Models, Templates and Web Forms

Simple Application Structure. Creating Models with SQLAlchemy: CRUD operations, Relationships, Constraints and Indexes. Creating Views with Templates: Jinja, Creating views. Web Forms: Basics, Custom validation, Posting comments.

Unit-2. Controllers and Databases

Creating Controllers and Advance Application Structure. Using NoSQL with Flask: NoSQL, RDBMS vs. NoSQL, MongoDB: CRUD operations, Relationships. Email support - Large Application Structure

Unit-3. Authentication, Blog posts and Followers

User Authentication: Methods, Flask Login, OpenID, OAuth, Role Based Access Control. User Roles – User Profiles - Blog Posts – Followers - User Comments

Unit-4. REST and Extensions

Building RESTful API: REST, Authentication, Get, post, put and delete requests. Creating Asynchronous Tasks: Running, monitoring and remembering. Flask Extensions: Caching, Assets and Admin. Building your own extensions: Creating and Modifying.

Unit-5. Testing, Deployment and Version Control

Testing and Performance: Unit Testing, Interface Testing and Test Coverage. Deployment: Deploying on Heruku, AWS and Docker, Version Control with Git

S.No.	Topics	Web Links
1	Django	https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
2	Pyramid	https://www.tutorialspoint.com/python_web_development_libraries
		/python_web_development_libraries_pyramid_framework.htm
3	Turbogears	https://www.fullstackpython.com/turbogears.html
4	Web2Py	https://www.tutorialspoint.com/web2py/index.htm

B. TOPICS FOR SELF - STUDY

C. TEXT BOOKS

6. Daniel Gaspar, Jack Stouffer. Mastering Flask Web Development: Build enterprise-grade, scalable Python_web applications. 2ed. Packt Publishing Ltd. 2018. ISBN 978-1788995405.

7. Miguel Grinberg. Flask Web Development, 2ed. Shroff Publishers. 2018. ISBN 9789352136995

D. REFERENCES BOOKS

- 1. Italo Maia. Building Web Applications with Flask. Packt Publishing Ltd. 2015. ISBN 978-1784396152.
- 2. Shlabh Aggarwal. Flask Framework Cookbook. Packt Publishing Ltd. 2014.

E. WEB LINKS

- 1. <u>https://www.tutorialspoint.com/web2py/index.htm</u>
- 2. https://www.tutorialspoint.com/python_web_development_libraries/python_web_development_libraries_pyramid_framework.htm

8. SPECIFIC LEARNING OUTCOMES

Unit/ Section	Course Content	Learning outcomes							
Ι	MODELS,	TEMPLATES AND WEB FORMS							
1.1	Simple Application Structure. Creating Models with Creating.	Develop the simple web applications	K6						
1.2	SQLAlchemy: CRUD operations, Relationships, Constraints and Indexes.	Construct the index for web applications using CRUD in SQLAlchemy	K6						
1.3	Views with Templates: Jinja, Creating views.	Create views using Jinja	K6						
1.4	Web Forms: Basics, Custom validation, Posting comments	Develop the Webforms with validation	K6						
II	CONTROLLERS AND DATABASES								
2.1	Creating Controllers and Advance Application Structure.	Create the controllers for Application structures	K6						
2.2.	Using NoSQL with Flask: NoSQL, RDBMS vs. NoSQL	Develop the web applications with DB connectivity	<u>K6</u>						
2.3	MongoDB: CRUD operations, Relationships. Email support - Large Application Structure	Create the CRUD operations in MongoDB Develop the Large Application Structure	K <u>6</u> <u>K6</u>						
III	AUTHENTICAT	TION, BLOG POSTS AND FOLLOWERS							
3.1	User Authentication: Methods, Flask Login, OpenID, OAuth, Role Based Access Control.	Explain the User AuthenticationDesignthewebapplicationAuthentication	K <u>5</u> <u>K6</u>						
3.2	User Roles – User Profiles - Blog Posts – Followers - User Comments	Assess the user roles in Web applications Design the Blogs	K6 <u>K6</u>						
IV	F	REST AND EXTENSIONS							
4.1	Building RESTful API: REST, Authentication, Get, post, put and delete requests. Creating	Construct the RESTful API	K <u>6</u>						
4.2	Asynchronous Tasks: Running, monitoring and remembering.	Assess the Asynchronous Tasks in API	K <u>6</u>						
4.3	Flask Extensions: Caching,	Design the Flask Extensions	K <u>6</u>						

	Assets and Admin.			
4.4	Buildingyourownextensions:CreatingandModifying	Develop custom extensions	K <u>6</u>	
V	TESTING, DEP	LOYMENT AND VERSION CONTROL		
5.1	TestingandPerformance:UnitTesting,InterfaceTesting and Test Coverage.	Evaluate the Web applications using Testing Strategies	К <u>5</u>	
5.2	Deployment: Deploying on Heruku, AWS and Docker	Deploy the web applications Heruku, AWS and Docker	K6	
5.3	Version Control with Git	Apply the Version Control with Git	K5	

9. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Η	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Η	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Η	-	
CO5	Η	Μ	Η	Μ	Η	Η	I	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

10. COURSE ASSESSMENT METHODS

DIRECT:

- 9. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 10. Open Book Test.
- 11. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 12. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 5. Course evaluation survey
- 6. Faculty feedback about the course.

Name of the Course Coordinator: Dr. B. Karthikeyan

ELECTIVE-5: SUPPLY CHAIN MANAGEMENT						
Semester	IV	Hours/Week	5			
Course Code	P20DS4:5	Credits	4			

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Perceive the foundations of a supply chain and explore strategies and logistics drivers by which the supply chain of an organization can be managed to enhance its business competitiveness.	K6	Ι
CO2	Evaluate and Analytically examine the strategic drivers and metrics of supply chain organizations and measure performance improvement	K6	Π
CO3	Design and provide a network to support the business decision-making within the context of supply chain management and the real world.	K5	III
CO4	Plan optimized transportation and logistics activities in supply chain operations	K6	IV
CO5	Determine the outsourcing decisions by applying the buy-make framework to manage the benefit and risks of outsourcing	K6	V
CO6	Recommend a proper blend of Logistics and Supply elements thereby confining the wide range of applications in the changing dynamic environment and industry practices	K6	v

1. A. SYLLABUS

Unit-1. Building strategic framework

Supply chain: Definition, 3 streams of knowledge, objectives and importance - Decision phases and process views of a supply chain (SC) - Examples of supply chain - Competitive strategy and SC strategy - 3 steps of achieving strategic fit - Improving SC performance by expanding scope of strategic fit, challenges to achieving strategic fit - Financial measures and drivers of SC performance - Logistical drivers: Roles in SC and decision components - Cross functional drivers: Roles in SC and decision components - Role of infrastructure in SC performance.

Unit-2. Designing SC network

Key factors influencing distribution network design - Design options for a distribution network -Impact of online sales on customer service and cost - Network design decisions: Influencing factors, framework - Capacitated plant location model for network optimization - Gravity location model for network design - Model for demand allocation and locating plants - Global supply chain: Dimensions to evaluate total cost, SC risks, tailored risk mitigation strategies - Discounted cash flow analysis to evaluate network design decision - Decision tree analysis: Basics, Evaluating flexibility at Trip Logistics.

Unit-3. Planning and coordinating demand and supply

Demand forecasting: role, characteristics, components and methods - Static demand forecasting methods - Adaptive demand forecasting methods - Measures of demand forecasting error - Aggregate planning: role, identifying aggregate units, strategies - Aggregate planning using Linear programming - Managing supply and demand to improve synchronization in SC - Lack of SC coordination: Bullwhip effect, effect on performance - Obstacles to coordination in SC - Managerial levers to achieve coordination of demand and supply in SC.

Unit-4. Planning and managing inventories

Cycle inventory terminologies: Lot size, Average flow time, Inventory holding cost, Ordering cost -Computing optimal lot size for single product: Economic order quantity, for Production environment, with Capacity constraint - Lot size based discount schemes: All unit quantity discounts, Marginal unit quantity discount - Trade promotions: Goals, Forward buying, Impact on lot size and cycle inventory - Factors affecting the level of safety inventory - Evaluating required safety inventory: Given a replenishment policy, Desired cycle service level, Desired fill rate -Impact of desired product availability and uncertainty on safety inventory - Impact of supply uncertainty on safety inventory - Factors affecting optimal level of product availability - Managerial levers of inventory to improve SC profitability.

Unit-5. Transportation and cross functional drivers

Modes of transportation in SC - Design options for a transportation network - Transportation and inventory cost trade off - Transportation cost and customer responsiveness trade off - Tailored transportation - Sourcing decisions: In house or Outsource - Sharing risk and reward in SC - Pricing and revenue management for multiple customer segments - Pricing and revenue management for perishable assets - Pricing and revenue management for seasonal demand.

S.No.	Topics	Web Links
1	Digitization of Supply chain	https://www.coursera.org/lecture/process-
		improvement/lecture-4-1-digitization-of-the-supply-
		chain-EFofn
2	Supply chain Analytics	https://nptel.ac.in/courses/110/108/110108056/
3	Artificial Intelligence in Supply	https://towardsdatascience.com/artificial-intelligence-
	Chain Management	in-supply-chain-management-predictive-analytics-
		for-demand-forecasting-80d2d512f155
4	Logistics and Supply chain	http://slmt.in/courses/cilt-international-
	Management	courses/diploma-in-logistics-and-supply-chain-
		management-dlsm/

B. TOPICS FOR SELF-STUDY

C. TEXT BOOKS

1. Sunil Chopra, Peter Meindl and DV Karla. "Supply Chain Management: Strategy, planning and operation", 6th edition, Pearson, 2016. ISBN 978-9332548237 (Excluding Excel Examples)

D. REFERENCES BOOKS

1. David Simchi-Levi and Philip Kaminsky. "Designing and managing the supply chain: Concepts, strategies and case studies", 3rd edition, McGraw Hill, 2007.

E. WEB LINKS

- 1. http://www.supply-chain.com
- 2. http://www.transportlink.com
- 3. http://www.transportlaw.com
- 4. http://www.apics.org
- 5. http://www.clm1.org
- 6. http://www.napm.org

3.SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Course Content	Learning outcomes	Level	
Ι	Building strategic framewor	'k		
1.1	Supply chain: Definition, 3 streams of knowledge, objectives and importance	Discuss the goal of supply chain and impact of supply chain decision on success of the firm.	K2	

		Describe the various objectives of supply chain	K2
		Illustrate the importance of supply chain	КЗ
		management	
		Identify the supply chain obstacles.	K4
		Determine Strategic, operational and	K6
		tactical planning of supply chain	
1.2	Decision phases and process	Explain decision phases in supply chain	K4
	views of a supply chain	Describe the cycle and push/pull view of	K4
	(SC)	a supply chain	N/C
		Determine the underlying theoretical	Ко
13	Examples of supply chain	Discuss in what way do supply chain	K5
1.5	Examples of suppry chain	flows affect the success or failure of a	K5
		firm such as Amazon and list two supply	
		chain decisions that have a significance	
		impact on supply chain Profitability.	
1.4	Competitive strategy and SC	Analyze the strategies that are critical to	K4
	strategy	achieving strategic fit for company's	
		overall success.	
1.5	3 steps of achieving	Explain 'Achieving Strategic Fit' in	K4
	strategic fit	supply chains with the help of a suitable	
1.6	Improving SC performance	Choose strategic fit between its supply	V 5
1.0	by expanding scope of	chain strategy and its competitive strategy	KJ
	strategic fit, challenges to	Explain the Balanced Score Card	К2
	achieving strategic fit	approach of supply chain performance	
		measurement.	
	Financial measures and	Apply the key metrics that track the	K4
1.7	drivers of SC performance	performance of the supply chain in terms	
		of each driver.	
1.8	Logistical drivers: Roles in	Identify the role of major drivers in	K4
	SC and decision	supply chain	
19	Cross functional drivers:	Recommend the ways to boost up the	K6
1.7	Roles in SC and decision	cross functional drivers roles in SC	IX0
	components	Explain the barriers of cross functional	K2
		drivers	K2
		Analyze cross functional management is	K4
		effectively managing supply chains	
1.10	Role of infrastructure in SC	Debate Economic impact of inadequate	K6
	performance	infrastructure for sc integration	
II	Designing SC network	1	1
2.1	Key factors influencing	Explain the factors influencing	K2
	distribution network design	distribution network design	N/C
		typically best suited for commodity items	N 0
22	Design options for a	Examine the design ontions available for	КЗ
2.2	distribution network	a distribution network with option in	11.5
		detail	
		Design a suitable distribution network	K5
		utilized for the specialty chemical	
		company is considering expanding its	

		operations into Brazil, when five	
		companies dominate the consumption of	
		specialty chemicals.	
		Construct the role of network design	К5
		decision in a supply chain	110
		Plan different design options available for	К5
		a distribution network with option in	K.
		detail	
23	Impact of online sales on	Predict the impact of online sales on	K5
2.3	sustemar service and cost	consumers and firms. Cive evidence from	K.J
	customer service and cost	consumer alectronics	
		Lustifice is a husiness likely to be more	VC
		Justify is e-business likely to be more	Ко
		beneficial in the early part or the mature	
		part of a product's life cycle.	77.4
		Explain the cycle and push/pull view of a	K4
		supply chain.	
2.4	Network design decisions:	Describe planning Networks	K2
	Influencing factors,	Interpret the objectives & process of	K2
	framework	Supply Chain Network optimization	
		models	
		Asses the outcome and benefits of	K6
		Supply Chain Network optimization	
		models.	
		Analyze the benefits are these using bar	K4
		codes and scanners for orders entry as	
		opposed to keyboard encoding into a	
		computer database	
		Describe the current trends in value	К2
		addition happened in Indian companies	112
		Identify factors influencing supply chain	KA
		network decisions	K 4
		Outline the adventages and disadventages	V2
		of distribution network design antions	κ2
		Of distribution network design options	17.5
		Propose factors to be considered in	КЭ
		deciding whether to make and supply or	
		to buy and supply for blood pressure	
		measuring kits for hospitals in developing	
		rural markets in India.	
2.5	Capacitated plant location	Explain optimized network.	K2
	model for network	Discuss the various Network	K2
	optimization	optimization models	
	-	Construct the classification of supply	K5
		chain network design decisions	_
		Argue the following statement "Some	K6
		industries are located near the source of	
		raw materials whereas some near the	
		markets for finished goods"	
2.6	Gravity location model for	Design network decisions using decision	К5
2.0	network design	tree and list its importance	n.,
		Davisa a Framework to make a notwork	K5
		design decision	KJ (KJ
		Identify factors to be considered for	V A
		locating a control of the location	N 4
		locating a centralized kitchen to cook	

		food for a restaurant chain. Also suggest	
		an appropriate facility location model.	
		State the assumption if any	
		Discuss the optimization models used for	K2
		facility location and capacity allocation	
2.7	Global supply chain:	Determine the role of a third party in	K6
	Dimensions to evaluate total	increasing the supply chain surplus	
	cost, SC risks, tailored risk	Describe global supply chain risk	K2
	mitigation strategies	management strategies	
		Determine the total cost approach to	K6
		supply chain risk modelling	
		Identify the methods to managing risk to	K4
		avoid supply chain breakdown	
		Discuss the Strategies for supply chain	K4
		risk management	
2.8	Discounted cash flow	Outline uncertainty in network design	K2
	analysis to evaluate network	discounted cash flow analysis	
	design decision	Determine the uncertainties and risk	K6
		factors so important in evaluating supply	
		chain design decisions	
2.9	Decision tree analysis:	Write the features of decision tree.	
	Basics, Evaluating	Asses the benefits of using decision nodes	K6
	flexibility at Trip Logistics	by decision making under uncertainty	
		Explain the formation of a decision	K2
		tree based on the Trips logistics	
III	Planning and coordinating of	lemand and supply	
3.1	Demand forecasting: role,	Examine the basic approaches to demand	K3
	characteristics, components	forecasting	
	and methods	Predict the forecast error if demand in 5	K5
		tons out to be 125 litres for a grocery store	
		has experienced a weekly demand of oil	
		1 2	
		of 120,127,114,and 122 litres over the last	
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5	
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average.	
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement,	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed.	К6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also emploin	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory	К6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory	K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order	К6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell	K6 K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in	К6 К6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in period 5 turns out to be 125 gallons for	K6 K6 K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in period 5 turns out to be 125 gallons for a super market has experienced weekly	K6 K6 K6
		of 120,127,114,and 122 litres over the last 4 weeks. Forecast demand for period 5 using a four period moving average. Evaluate the number of computers the store manager should order in each replenishment lot. Demand for computers in a store is 12,000 units per year. The store incurs a fixed order placement, trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in period 5 turns out to be 125 gallons for a super market has experienced weekly demand of milk of 120,127,114 and 122	K6 K6 K6

		demand for period 5 using a four –period	
2.2		moving average.	17.0
3.2	Static demand forecasting	Classify the static and adaptive	K3
	methods	Forecasting methods	17.4
		Explain the basic, six step approach to halp an organization perform affective	K 4
		forecasting	
		Investigate Demand forecasting analysis	K/
		using time series methods	127
3.3	Adaptive demand	Determine the house old electricity	K6
	forecasting methods	demand forecasting using adaptive	
	C	conditional density estimation	
		Formulate the adaptive water demand	K5
		forecasting for near real time management	
		of smart water distribution system	
3.4	Measures of demand	Invent demand forecast accuracy and	K5
	forecasting error	forecast error	
3.5	Aggregate planning: role,	Outline the operational parameters to	K2
	identifying aggregate units,	identify aggregate plan	
	strategies	Select the major cost categories needed as	K6
		input for aggregate planning	T 7 4
		Identify the managerial levers that reduce	K4
		lot size and cycle inventory in a supply	
3.6	A garagata planning using	Explain the role of collaborative planning	V6
5.0	Linear programming	and forecasting for efficient execution of	KU
	Enical programming	supply chains	
		suppry chains.	
		Illustrate the role predictive visibility	K3
		supply chain performance.	
		Explain the different types of costs	K4
		associated with aggregate planning. For	
		each of the cost, enumerate the areas	
		where the cost plays an important role.	T T <
		Discuss the major cost categories needed	K6
		as input for aggregate planning	1/2
		Solve aggregate planning using Linear	К3
37	Managing supply and	Investigate the Synchronization in supply	K4
5.7	demand to improve	chains implications for design and	157
	synchronization in SC	management	
3.8	Lack of SC coordination:	Write a note on the Coordination in a	K1
	Bullwhip effect, effect on	supply chain.	
	performance	Analyze the Bullwhip effect in supply	K4
		chain for the effect on performance	
3.9	Obstacles to coordination in	List the various obstacles to coordination	K1
	SC	and how such obstacles can be minimized	
		in supply chain	
3.10	Managerial levers to achieve	Design the managerial levers that help to	K5
	coordination of demand and	achieve coordination in the supply chain	
TX 7	supply in SC		
	Planning and managing invo	Evolute the number of cost ideas that the	VC
4.1	Cycle inventory	Evaluate the number of cartriages that the	NU

	terminologies: Lot size,	store manager should order in each	
	Average flow time,	replenishment lot for Demand of	
	Inventory holding cost,	cartridges in an electronic store is 1000	
	Ordering cost	units per month. The firm incurs a fixed	
	_	order placement, transportation and	
		receiving costs of Rs.4000/- each time an	
		order is placed. Each cartridge costs	
		Rs.500/- and the retailer has a holding	
		cost of 20 percent.	
		Explain multi-echelon inventory	K4
		management in detail with the help of a	
		suitable example.	
		Explain how to manage supply chain	K4
		cycle inventory.	
		Construct the role of cycle inventory in a	K5
		supply chain and how uncertainty in the	
		supply chain managed	
4.2	Computing optimal lot size	Show how to compute the optimal lot size	K3
	for single product:	and cycle length for the given sequence of	
	Economic order quantity,	items in a cycle	
	for Production environment,	Investigate optimal lot sizes in the	K4
	with Capacity constraint	economic lot scheduling for production	
		environment	
4.3	Lot size based discount	Distinguish the lot size based and volume	K2
	schemes: All unit quantity	based quantity discounts	
	discounts, Marginal unit	Analyze the effect of quantity discounts	K4
	quantity discount	on lot size and cycle inventory	
		Examine the effect of trade promotions on	K4
		lot size and cycle inventory	
4.4	Trade promotions: Goals,	Describe how to Managing Multi-Echelon	K2
	Forward buying, Impact on	Cycle Inventory	
	lot size and cycle inventory	Explain the impact of trade promotions on	K4
		lot size and cycle inventory	
4.5	Factors affecting the level of	State and briefly explain the role of safety	K1
	safety inventory	inventory in supply chain	
4.6	Evaluating required safety	Propose "Relevant deterministic and	K5
	inventory: Given a	Stochastic Inventory Models" and explain	
	replenishment policy,	its relevance in an organization. Also,	
	Desired cycle service level,	briefly explain the important features of	
47	Desired IIII rate	These models.	VC
4.7	Impact of desired product	Evaluate the impact of desired product	KO
	availability and uncertainty	availability and uncertainty on safety	
1.0	Impost of supply upcortainty	Evaluate the Impact of supply upcortainty	VC
4.0	on safety inventory	on safety inventory	KO
4.9	Factors affecting optimal	Discuss optimal level of product	K2
	level of product availability	availability	
	· · · · · · · · · · · · · · · · · · ·	Determine the optimal level of product	K6
		availability	-
4.10	Managerial levers of	Design the managerial levers that help to	K5
	inventory to improve SC	improve inventory SC profitability	
	profitability	- • • •	
V	Transportation and cross fu	nctional drivers	
5.1	Modes of transportation in	Discuss the importance of transportation	K6

	SC	in supply chain.	
		Explain the modes of transportation and	K4
		their performance characteristics	
5.2	Design options for a	Design an option for a transportation	K5
	transportation network	network	
5.3	Transportation and	Determine tradeoffs in transportation	K6
	inventory cost trade off -	design network	
	Transportation cost and	Distinguish transportation cost, customer	K2
	customer responsiveness	responsiveness tradeoffs and Tailored	
	trade off - Tailored	transportation	
	transportation		
5.4	Sourcing decisions: In house	Discuss the importance of in-sourcing and	K6
	or Outsource - Sharing risk	out-sourcing with suitable examples	
	and reward in SC	Debate Strategic Alliances and	K6
		Outsourcing	
		Describe the ways that a firm such as	K1
		Wal-Mart form out sourcing	
		decisions	
5.5	Pricing and revenue	Explain the importance of pricing in	K6
	management for multiple	supply chain management and elucidated	
	customer segments	various type of pricing approaches that	
		generate maximum profit	
5.6	Pricing and revenue	Design Perishable assets for pricing and	K5
	management for perishable	revenue management	
	assets		
5.7	Pricing and revenue	Explain pricing and revenue management	K4
	management for seasonal	for seasonal demand	
	demand.		

4. MAPPING (CO, PO, PSO)

L-Low	7		M-Moderate							H- High			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η												Н
CO2	Η	Н	Μ	Η	Μ	Η	Μ		Μ	Н			Н
CO3	Η	Н	Μ	Η	Μ	Η	Μ	Η	Η	Н	Н	Н	
CO4	Η	Μ	Μ	Μ		Η	Μ	Η	Μ	Н	Н	Н	Μ
CO5	Η	Н	Η	Μ	Μ	Η	Μ	Η	Μ	Н	Н		
CO6	Η	Η	Η	Μ	Η	Η	Η	Η	Η	Н	Н		

5. COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Prof. D. Indra Devi