Programme Outcomes and Programme Specific Outcomes MSc Data Science

Programme Outcomes

Upon completion of MSc in Data Science degree, graduates will possess the following data science skills and abilities.

PO1: Possess a theoretical understanding, explain and critically assess the key concepts and techniques from the disciplines defining modern data science and analytics.

PO2: Critically evaluate emerging data analysis technologies and how they can be applied to heterogeneous data at volume, scale and types, in order to get insight for business, scientific or social innovation.

PO3: Analyse in depth how data analysis techniques can be applied to a range of interdisciplinary research areas.

PO4: Effectively use modern data science programming languages and technologies to scrape, clean, organize, explore, visualize, and model large volumes and varieties of data.

PO5: Evaluate, select, combine and apply advanced skills, data science tools and techniques in the related areas of artificial intelligence to the design of solutions to data science and analytics tasks.

PO6: Prepare for careers as data scientists by proposing, planning, developing, evaluating and creating a commercially and/or research-wise relevant project and/or product for business, science and society.

PO7: Develop professional communication skills (e.g., writing, presentations, interviews, email etiquette, etc.), effective time and resource management skills as well as leadership and team working skills towards meeting organizational goals.

PO8: Understand, value and safeguard social, legal and ethical use of data that increasingly challenge and confront data scientists while developing data science systems.

PO9: Learn effectively and independently to acquire new knowledge and skills for the purpose of continuing professional development in related areas of data science.

Programme Specific Outcomes

PSO1: Show mastery over different applications of data analytics namely web analytics, customer analytics, supply chain analytics and social network analytics.

PSO2: Build software applications using new languages and tools such as Neo4J, Tableau, Julia, SpaCy and Rasa

PSO3: Develop a disruptive entrepreneurship spirit and integrate with the data science community.

PSO4: Identify and assess the needs of an organization for a data science task by conducting a needs assessment and communicating data science options and limitations that could meet organizational needs.

BISHOP HEBER COLLEGE (AUTONOMOUS), TIRUCHIRAPPALLI-620 017 M. Sc., Data Science (Applicable to Candidates admitted from the Academic Year 2021-2022 onwards)

Som	Course	Course Title	Course	Hours	Cradita	Marks		
Sem	Course	Course fille	Code	/Week	creuits	CIA	ESE	Total
	Core I	Mathematical Foundation for Data Science	P21DS101	5	4	25	75	100
	Core II	Problem Solving using Python and R	P21DS102	5	4	25	75	100
	Core III	NoSQL Database Management	P21DS103	5	4	25	75	100
I	Elective I	Essential Statistics for Data Science/ Design and Analysis of Algorithms/ Software Engineering	P21DS1:1/ P21DS1:A/ P21DS1:B	5	4	25	75	100
	Core Practical I	Problem Solving using Python and R Lab	P21DS1P1	4	2	40	60	100
	Core Practical II	NoSQL Database Management Lab	P21DS1P2	4	2	40	60	100
	Core Practical III	Data Visualization Lab	P21DS1P3	3	2	40	60	100
	Core IV	Time Series Analysis and Forecasting	P21DS204	4	4	25	75	100
	Core V	Data and Visual Analytics	P21DS205	4	4	25	75	100
	Core VI	Practical Machine Learning	P21DS206	4	4	25	75	100
	Elective II	Natural Language Processing/ Multivariate Analysis	P21DS2:2/ P21DS2:A	4	4	25	75	100
II	Elective III	Health Care Data Analytics/ Basics of Bioinformatics	3	4	25	75	100	
	Core Practical IV	Data and Visual Analytics Lab	3	2	40	60	100	
	Core Practical V	Practical Machine Learning Lab	P21DS2P5	2	2	40	60	100
	Core Practical VI	Natural Language Processing Lab	P21DS2P6	3	2	40	60	100
	VLO	RI/MI	P17VL2:1/ P17VL2:2	2	2	25	75	100
	Core VII	Principles of Deep Learning	P21DS307	5	4	25	75	100
	Core VIII	Big Data Management and Analytics	P21DS308	5	4	25	75	100
	Core IX	Social Media Analytics	P21DS309	4	4	25	75	100
III	Elective IV	Computer Vision/ Computational Genomics	P21DS3:4/ P21DS3:A	4	4	25	75	100
	Core Practical VII	Big Data Management and Analytics Lab	P21DS3P7	5	2	40	60	100
	Core Practical VIII	Social Media Analytics Lab	P21DS3P8	5	2	40	60	100
	Core Practical IX	Principles of Deep Learning Lab	P21DS3P9	4	2	40	60	100
	Core X	Programming using Javascript	P21DS410	5	4	25	75	100
	Elective V	Supply Chain Management/ Customer Relationship Management	P21DS4:5/ P21DS4:A	5	4	25	75	100
IV	Core Practical X	Programming using Javascript Lab	P21DSP10	5	3	40	60	100
	Core Project	Core Project	P21DS4PJ			40	60	100
			Total Cre	edits	90			

PROGRAMME ARTICULATION MATRIX

Course	Programme Outcomes													
Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4	
P21DS101	Н	Н	Н	-	М	М	М	Н	-	Н	Н	-	-	
P21DS102	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS103	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	-	-	
P21DS1:1	Н	Н	Н	-	М	М	М	Н	-	Н	Н	-	-	
P21DS1P1	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS1P2	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS1P3	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS204	Н	Н	Н	-	М	М	М	Н	-	Н	Н	Н	L	
P21DS205	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS206	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS2:2	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS2:3	Н	Н	Н	Н	М	М	М	Н	М	Н	Н	Н	М	
P21DS2P4	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS2P5	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS2P6	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS307	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	-	
P21DS308	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS309	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	-	
P21DS3:4	Н	Н	Н	Н	М	М	М	Н	L	Н	Н	Н	М	
P21DS3P7	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS3P8	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS3P9	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS410	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS4:5	L	L	L	М	Н	Н	Н	Н	Н	Н	Н	Н	М	
P21DSP10	Н	Н	Н	Н	М	М	М	Н	-	Н	Н	Н	М	
P21DS4PJ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	

CORE I: MATHEMATICAL FOUNDATION FOR DATA SCIENCE								
Semester	Ι	Hours/Week	5					
Course Code	P21DS101	Credits	4					

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Solve systems of linear equations by use of the matrix	K5	Ι
CO2	Determining basis and understanding linear mappings of vector spaces	K5	Ι
CO3	Determine the Orthogonality and Projections	K5	II
CO4	Evaluate eigenvectors and eigenvalues	K5	III
CO5	Explain the properties gradients and PDE	K6	IV
CO6	Summarize different probability distributions	K6	V

2. A. SYLLABUS

UNIT - I: Linear Algebra

Systems of Linear Equations – Matrices - Solving Systems of Linear Equations - Vector Spaces - Linear Independence - Basis and Rank - Linear Mappings - Affine Spaces.

UNIT - II: Analytic Geometry

Norms - Inner Products - Lengths and Distances - Angles and Orthogonality - Orthonormal Basis - Orthogonal Complement - Inner Product of Functions - Orthogonal Projections - Rotations

UNIT - III: Matrix Decompositions

Determinant and Trace - Eigenvalues and Eigenvectors - Cholesky Decomposition – Eigen decomposition and Diagonalization - Singular Value Decomposition Matrix Approximation - Matrix Phylogeny -

UNIT – IV: Vector Calculus

Differentiation of Univariate Functions - Partial Differentiation and Gradients - Gradients of Vector-Valued Functions - Gradients of Matrices - Useful Identities for Computing Gradients - Backpropagation and Automatic Differentiation - Higher-Order Derivatives - Linearization and Multivariate Taylor Series

UNIT – V: Probability and Distributions

Probability and Distributions: Construction of a Probability Space - Discrete and Continuous Probabilities - Sum Rule, Product Rule, and Bayes' Theorem - Summary Statistics and Independence - Gaussian Distribution.

S.No.	Topics	Web Links
1	Mathematics for Data Science	https://www.coursera.org/specializations/mathema
		tics-for-data-science
2	Mathematics for Machine Learning	coursera.org/specializations/mathematics-
	Specialization	machine-learning
3	Topics in Mathematics of Data	https://ocw.mit.edu/courses/mathematics/18-s096-

B. TOPICS FOR SELF-STUDY

Science	topics-in-mathematics-of-data-science-fall-2015/

C. TEXT BOOK(S)

1. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, "*Mathematics for Machine Learning*", Cambridge Press, 2019 (Chapters 2, 3, 4,5,6)

D. REFERENCE BOOKS

- 1. Gilbert Strang, "Introduction to Linear Algebra", 3ed, Cambridge Press, 2003.
- 2. M. D. Weir, J. Hass, and G. B. Thomas, "Thomas' calculus", Pearson, 2016.

E. WEB LINKS

- 1. https://elitedatascience.com/learn-math-for-data-science
- 2. https://machinelearningmastery.com/gentle-introduction-linear-algebra/'

Unit/ Section	Торіс	Learning outcomes								
Ι	Linear Algebra									
1.1	Vectors	Understand the vectors and its linkage to	V 1							
		understanding data features	K1							
1.2	System of Linear Equations	Represent the linear equations as matrices	K2							
		Evaluate the different matrix operations	K5							
		and types	K.J							
1.3	Solving system of Linear	Prescribe the solution for a system of	K6							
	Equations	linear equations to Row Echelon form	RO							
	Vect	or Spaces								
1.4	Vector Spaces	Summarize different properties of vector	K6							
		spaces and subspaces	no							
1.5	Linear Independence	Assess vectors of a vector space as a linear	K5							
		combination	110							
		Explain the properties of linear	К3							
		independent sets	110							
1.6	Basis and Rank	Determine the basis vectors and learning	K5							
		about its properties								
Determine the rank of a matrix										
	Linear	• Mappings								
1.7	Linear Mappings	Analyze the properties of linear mappings	K4							
		Formulate linear mappings as matrices	K4							
		Assess the image and kernel of a linear	K5							
		mapping								
1.8	Affine subspaces	Differentiate affine subspaces from vector	K5							
		spaces								
		Explain the properties of affine mappings	K5							
<u> </u>	A	nalytical Geometry								
2.1	Norms and distances	Explain the different types of norms and	K4							
		distances								
	Inner	Products								
2.2	Dot Products	Determine the properties of dot products	K5							
		of vectors	-							
2.3	General Inner Products	Determine inner products from bilinear	K3							
		mappings	-							

		Determine symmetric and positive definite	T 7 4		
		matrices from inner products	К4		
		Determine lengths and distances from	W2		
		inner products	K3		
	Angles an	nd Orthogonality			
2.4	Angles	Determine angles of vectors	K3		
2.5	Orthogonality	Summarize the orthogonal and	TT C		
		orthonormal vectors and its properties	K6		
2.6	Orthonormal Basis	Explain orthogonal and orthonormal basis	nal and orthonormal basis K5		
		and its properties			
2.7	Orthogonal Complement	Describe the orthogonal complement of a	I KA		
		vector space	K 4		
	Orthogo	onal Projections			
2.8	Projections	Assess the Projections onto n-dimensional	V5		
		subspaces	K5		
		Formulate the Gram-Schimdt	VC		
		Orthogonalization	K6		
	ŀ	Rotations			
2.9	Rotations	Determine the n-dimensional rotations	K5		
		Design the rotation matrix	K6		
III	M	latrix Decompositions			
3.1	Determinant and Trace	Determine determinant of a matrix	K3		
		Determine the trace of a matrix	K4		
	Eigen Ve	ector and Spaces			
3.2	Eigen vectors and Spaces	Computing eigen values, eigen vectors and	T Z 4		
		eigen spaces,	K 4		
	Cholesky	v Decomposition			
3.3	Cholesky Decomposition	Explain the Cholesky Decomposition of a	17.5		
		matrix	К5		
	Eigen Deco	omposition and Diagonalization			
3.4	Diagonisable Matrices	Construct the diagonisable matrices	K6		
		Compute Eigen Decomposition of a	T Z 4		
		matrix	K 4		
	Singular Va	alue Decomposition			
3.5	SVD Theorem	Understand the underlying principles of	17.4		
		the SVD Theorem	K 4		
3.6	Constructing an SVD	Explain the steps to construct a SVD	K5		
		Differentiate the between Eigen	VC		
		decomposition and SVD	KO		
	Matrix A	Approximations			
3.7	Spectral Norm	Explain the Spectral norm of a matrix and	V5		
	-	related properties	КJ		
IV		Vector Calculus			
4.1	Differentiation of Univariate	Evaluate the difference quotient of a	V 2		
	functions	univariate function	КЭ		
		Assess the properties of the derivative of	КЭ		
		a function	κZ		
		Differentiate the Taylor's function	K4		
		Assess the differentiation rules	K2		
	Partial Differentia	l Equations and Gradients			
4.2	Partial Derivatives	Evaluate the partial derivatives of a	TZ 4		
		function	К4		
		Assess the properties of Gradients	K5		

		Understand the basic rules of Partial	K)		
		differential equation	KZ		
		Evaluate the chain rule of differentiation	K5		
4.3	Gradients of vector valued	Assess the gradients of a vector valued	V_{5}		
	functions	function	KJ		
		Explain the properties of Jacobian Matrix	K5		
4.4	Gradient Matrices	Explain the steps for gradient of vectors	K1		
		with respect to matrices	Κ4		
		Summarize the gradient of matrices with	K6		
		respect to Matrices	KU		
	Back	propagation			
4.5	Gradients in a Deep Network	Formulate the gradients of a deep neural	K6		
		network	RO		
4.6	Automatic differentiation	Design the automatic differentiation	K6		
	Higher O	rder Derivatives			
4.7	Higher Order derivatives	Compute higher order partial derivatives	K3		
		Evaluate the differentiation of	K5		
		multivariate Taylor Series	K.J		
V	Pro	obability Distributions			
5.1	Probability Space	Understand sample space, event and	K3		
		computing probabilities	K3		
		Describe the properties of a random	КA		
		variables	IX 4		
	Discrete and Co	ontinuous probabilities			
5.2	Discrete Probabilities	Assess the joint probabilities	K5		
		Compile the features of probability mass	K6		
		function	RO		
5.3	Continuous probabilities	Discriminate the probability density			
		function and cumulative distribution	K5		
		function			
	Baye	es Theorem			
5.4	Bayes Theorem	Understand the sum and product rule	K3		
		Evaluate the Bayes Theorem	K5		
		Analyze the likelihood and posterior	K4		
		probabilities			
	Summary Statis	stics and Independence			
5.8	Expected Value	Explain the expected value of a	K5		
	~ .	probabilistic function			
5.9	Covariance	Assess the Covariance	K5		
		Evaluate the variance and correlation of	K5		
		random variables			
5.10	Statistical Independence	Describe the statistical independence of	K4		
		two random variables			
5.11	Inner products	Explain the inner products of two random	K4		
		variables			
E 10	Gaussia	In Distribution			
5.12	Gaussian distribution	Assess the mean and covariance of	K5		
		Gaussian Distribution			
		Formulate the marginal and conditional	K6		
		probabilities of Gaussian Distribution	~		
E 10	Other nam	ned distributions			
5.13	Bernoulli Distribution	Assess the mean and covariance of	K5		
		Bernoulli Distribution			

5.14	Binomial Distribution	Compute the mean and covariance of Gaussian Distribution	K6
5.15	Beta Distribution	Analyze the mean and covariance of Beta Distribution	K4

L-l	L-Low		M-Moderate						H- H	ligh			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н			Н			L			L			Н
CO2	Н	L	Н				L			L	Μ		
CO3	Μ	Μ		Н	Μ		L		Н			Μ	Н
CO4	Μ	L		Н	Μ			L	Н		Μ		
CO5	H		Н	Н	Μ			Μ					Н
CO6	Н		Н		Н		Н	Н	Н	Н		Μ	Н

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. P. S. Eliahim Jeevaraj

CORE II: PROBLEM SOLVING USING PYTHON AND R								
Semester	Ι	Hours/Week	5					
Course Code	P21DS102	Credits	4					

S.No.	Course Outcomes	Level	Unit
CO1	Understand python basic syntax, usage of built in functions	K3	Ι
CO2	Understand conditional and looping statements and build user defined functions	K3	Ι
CO3	Manipulate files using Python	K3	II
CO4	Develop object oriented programs in Python	K4	III
CO5	Access internet and database data	K5	IV
CO6	Understand R basic data structures and develop programs	K3	V

After the successful completion of this course the students will be able to

2. A. SYLLABUS

UNIT - I: Python Basics, Functions, Loops and Strings

Variables – Getting Inputs – Conditions – Catching exceptions – Function calls – Built-in functions – Type conversion functions and math functions – Parameters and arguments – While statement – Infinite loops -Continue statement – For loops – Strings -Slice - The in operator – String comparison – String methods- parsing strings – Format operator.

UNIT - II: Files and Lists

Opening files – Text files – Reading files – Searching through files – Writing files – Traversing list – List operations – List slice – List methods – Deleting elements – Built-in list functions – Objects, value and aliasing – List arguments.

UNIT - III: Dictionaries, Tuples and OOP

Dictionaries – Files and dictionaries – Looping and dictionaries – Tuples – Comparing tuples – Tuple assignments – Dictionaries and tuples – Tuples as keys in dictionaries – Creating objects – Encapsulation – Classes as types – Object lifecycle – Instances – Inheritance.

UNIT – IV: Internet Programming

Regular expressions – Character matching – Extracting data – Escape character – Designing simple web browser using sockets – Retrieving images using HTTP – Retrieving web pages using urllib – Reading binary files using urllib – Accessing data from databases

UNIT – V: Programming with R

Variables - Vector, matrix, arrays - List - Data Frames - Functions - Strings - Factors - Loops - Packages - Date and Time - Files - Making packages

S.No.	Topics	Web Links
1	Introduction to Python Programming	https://www.udacity.com/course/introduction-to-
		pythonud1110
2	Introduction to Python	https://www.coursera.org/projects/introduction-to-
		python
3	Introduction to Python	https://realpython.com/learning-paths/python3-

		introduction/
4	R Programming	https://www.coursera.org/learn/r-programming

C. TEXT BOOK(S)

- 1. Allen B. Downey, —Think Python: How to Think like a Computer Scientist, 2nd edition, Updated for Python O_Reilly Publishers, 2016
- 2. Charles R. Severance, Python for Everybody: "Exploring data using Python 3", Schroff Publishers, 1ed, 2017, ISBN 978-9352136278.
- 3. Richard Cotton, "Learning R", O'Reilly, 2013

D. REFERENCE BOOKS

- 1. Zed Shaw's, Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code, Addison-Wesley Professional; 3 edition, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, Introduction to Programming in Python: An Inter -
- disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Wesley J Chun, Core Python Programming, 2nd edition, Prentice Hall, 2009
- 4. Colin Gillespie, Robin Lovelace, and Efficient R Programming: A Practical Guide to Smarter Programming," O'Reilly Media, Inc.", 2016
- 5. Paul Teetor, R Cookbook-Proven Recipes for Data Analysis, Statistics, and Graphics, O'Reilly Media, 2011

E. WEB LINKS

- <u>https://www.kaggle.com/learn/python</u>
- <u>https://www.dataquest.io/course/introduction-to-data-analysis-in-r/</u>

Unit/ Section	Торіс	Learning outcomes	Blooms Taxonomy Level of Transaction
Ι	Python I	Basics, Functions, Loops and Strings	
1.1	Python basics	 Understand python variables and assignment 	K1
		Built in Functions	
1.2	Built in Functions and other important functions	• Understand python built in functions	K1
		• Understand conversion and math functions	K1
1.3	Conditional and looping statements	• Build if, else statements within programs and understand outputs	K3
		• Build while and for loops for understanding looping concept	K3
		User Defined Functions	
1.4	User Defined Functions	Understanding functions structures	K2
		 Understanding parameters and arguments 	K2
		Manipulating strings	
1.5	Handling strings	• Understanding strings data type	K1
		Applying string slicing	K2
		• Applying string comparison,	K3

		parsing and string formatting	
II		Files and Data Structures	
2.1	Handling files	• Understand syntax to read and write files	K2
		• Using io library functions to check file and folder existence	K3
		Lists	
2.2	List data structure	• Understanding list data structure and operations	K1
		• Applying list slicing and items deletion	K2
		Lists and loops	
2.3	Using lists in loops	Using list comprehension in programs	K3
		Dictionaries	
2.4	Dictionary data structure	Understanding dictionary data structure	K1
		Loops and Dictionaries	
2.5	Using dictionaries in loops	Applying dictionary comprehension in programs	K2
		Tuples	
2.6	Tuples data structure	• Understanding tuples data structure	K1
2.7	Tuple Operations	Applying tuples operations	K1
		Dictionaries and Tuples	
2.8	Dictionaries and Tuples	 Applying tuples as keys in dictionaries 	K2
III	0	OP and Internet Programming	
3.1	Objects and Classes structure	• Understanding objects and classes	K4
		Understanding inheritance	K5
		Creating objects and Classes	K4
3.2	Regular Expressions	• Understanding pattern matching in strings	K4
		• Applying re module functions for pattern matching in various examples	K5
		Accessing data using urllib	
3.3	Retrieving images in web	Using HTTP to retrieve images	K3
3.4	Retrieving web pages	• Using urllib module to retrieve web pages	К3
	A	ccessing data from databases	
3.5	Extracting data from databases	Using modules to extract data from SQL databases	K4
IV	Fu	inctional Programming with R	
4.1	R data structures	Understand R data types	K2
		Understand R data structures	K2
		Functions	
4.2	User defined Functions	Creating user defined functions R libraries	K3

4.3	R libraries	Using R libraries	K2
		• Creating user defined R libraries	K6
V		Data Analysis using R	
5.1	Working with data frames	 Creating dataframes and exploring 	K3
5.2	Data Visualization using ggplot2	• Creating plots with ggplot2 and understanding the characteristics of the different functions	K4
5.3	Creating Documentation and Reports	 Creating documents and reports using RMarkdown 	K5
5.4	Creating Dashboards using shiny	• Using shiny to create dashboards and applying best practices for enhanced UI	K6

L-Low		M-Moderate						H- High					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	Н	Μ	L	Μ	Μ	Μ	Μ	Μ	-	Н	Н
CO2	Η	Н	Μ	L	-	L	-	L	Μ	Μ	-	Μ	-
CO3	Н	Н	Н	Н	Μ	Μ	L	-	-	Н	Н	Н	М-
CO4	Η	Н	Н	Н	Η	Μ	L	Μ	Μ	Н	Н	Μ	Н
CO5	H	Μ	-	Μ	L	Μ	-	Н	Μ	Н	Н	Μ	-
CO6	Μ	Μ	-	Н	Μ	L	-	-	L	Н	Н	Н	Μ

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project, Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Prof. K. Jemimah

Core III: NoSQL DATABASE MANAGEMENT				
Semester	Ι	Hours/Week	5	
Course Code	P21DS103	Credits	3	

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Construct the Queries and sub queries in SQL	K6	Ι
CO2	Construct queries to retrieve the data from more than one tables using different techniques.	K6	II
CO3	Design and Analyse different techniques and operations in Mango DB	K6	III
CO4	Assess various operators and clause to generate unstructured data	K5	IV
CO5	Choose different indices to retrieve data	K5	IV
CO6	Construct databases using SQL, MongoDB and Neo4J	K6	V

2. A. SYLLABUS

UNIT 1- Structured Query Language-I

ER Model: Entity types, Attribute types, Relationship types - Weak entity types, Ternary relationship types - Examples of ER model. Enhanced ER model: Specialization/Generalization -Categorization - Aggregation - Examples of EER. Relational DB Process and outcome approach -Simple Queries on one table – First look at joins – Sub queries.

UNIT 2- Structured Query Language-II

Self Joins: Self relationships, Questions involving Both – Multiple relations between tables – Set operations - Aggregate Operations - Window functions - Efficiency considerations: Indexing and Join Techniques.

UNIT 3- MongoDB-I

Introduction: MongoDB document, collection and database - Basic Operations - Datatypes -Creating, deleting, updating documents: insert, batch insert, remove, find, findone, update – arrays – insert - Updating multiple documents

UNIT 4- MongoDB-II

Comparison operators - OR and NOT queries - Querying arrays - Querying on embedded documents - WHERE queries - Limits, skips and sort - Compound Index - Unique index - Sparse Index – Pipeline aggregation: MATCH, PROJECT, GROUP and UNWIND clauses.

UNIT 5- Neo4J and Cypher

Labelled Property Graph Model - Querying graphs using Cypher: CREATE AND ASSERT, MATCH, WHERE and RETURN clauses- ORDER BY - WITH clause - Case Study: Telent.net Social recommendations application.

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Database Architecture	https://www.youtube.com/watch?v=W6P58yb-edE
2	Normalization	https://www.guru99.com/database-

12 Hours

12 Hours

12 Hours

12 Hours

12 Hours

		normalization.html
3	DynamoDB	https://www.tutorialspoint.com/dynamodb/index.h
		<u>tm</u>
4	Apache HIVE	https://data-flair.training/blogs/apache-hive-
		tutorial/

C. TEXT BOOKS

- 1. Clare Churcher. *Beginning SQL Queries: From Novice to Professional*, APress, 2ed, 2016. ISBN 978-1-4842-1954-6
- 2. Wilfried Lemahieu, Seppe vanden Broucke and Bart Baesens. *Principles of Database Management: The Practical Guide to Storing, Managing and Analyzing Big and Small Data*, Cambridge University Press, 2018. ISBN 978-1-107-18612-5 (Chapter 3 ER diagram only)
- 3. Kristina Chodorow, MongoDB: The Definitive Guide, 2ed, Oreilly Publishers
- 4. Ian Robinson, Jim Webber and Emil Eifrem. Graph Databases: New Opportunities for connected data. 2ed, Oreilly Publishers. ISBN 978-1491930892.

D. REFERENCES BOOKS

- Eric Redmond; Jim R. Wilson. Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement. Pragmatic Bookshelf. 2012. ISBN: 1934356921Pramod J. Sadalage; Martin Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Addison-Wesley. 2012 ISBN: 0321826620
- 2. Adam Fowler. NoSQL for Dummies. John Wiley. 2015. ISBN 978-1-118-90574-6
- 3. Guy Harrison. Next Generation Databases. APress. 2016. 978-1-484213-30-8
- 4. Thomas M. Connolly and Carolyn E. Begg. Database Systems: "A Practical Approach to Design, Implementation, and Management", 6th Edition, Pearson, 2015.

E. WEB LINKS

- 1. <u>https://www.simplilearn.com/introduction-to-nosql-databases-tutorial-video</u>
- 2. https://www.w3schools.com/sql/

Unit/	Course Content	Learning outcomes				
Section		0				
I	Struct	ured Query Language-I				
1.1	ER Model: Entity types, Attribute	Construct Entity Relationship Model to	КЭ			
	types, Relationship types	structure the relational Data base	K2			
1.2	Weak entity types, Ternary	Classify the Strong and Weak entity sets				
	relationship types – Examples of		K4			
	ER model					
1.3	Specialization/Generalization	Categorize the data into specialized and	IZ 4			
	Categorization	Generalized	K 4			
1.4	Aggregation – Examples of EER	Summarize the data in the table	K2			
	Rela	ational DB Approach				
1.5	Simple Queries on one table	Build simple SQL query	K3			
1.6	Sub queries	Compile the sub query to retrieve data	VC			
		from the table	KO			
1.7	First look at joins	Explain the join concept	K5			
II	Structu	red Query Language-II				
2.1	Joins-Types of Joins	Assess the various joins to get data from	V_{5}			
		more than one table	КЛ			
2.2	Multiple relations between tables	Determine the relationship among the	V5			
		tables in the database	КJ			

2.3	Set operations	Experiment with set operators	K3			
	Group Functions					
2.4	Aggregate Operations	Analyse the aggregate function in group	IZ A			
		by clause	K 4			
2.5	Window functions	Explain the window functions	K2			
2.6	Efficiency considerations:	Apply indexing technique for effective	V2			
	Indexing	performance	КЭ			
2.7	Join Techniques	Adapt joins technique to get data	K6			
III		MongoDB-I				
3.1	Introduction: MongoDB	Relate SQL with NoSQL Data base	K1			
3.2	Document, collection and	Illustrate the document, collection in	КЭ			
	database	NoSQL	κ2			
3.3	Basic Operations	Construct NoSQL query with basic	<i>V</i> 2			
		operations	КЭ			
3.4	Datatypes	Categorize the datatypes in NoSQL	K4			
	Creating, de	eleting, updating documents				
3.5	Insert, batch insert, remove, find,	Construct document and perform	VC			
	find one, update	CURD operations	KO			
3.6	Arrays	Adapt array to store the data in table	K6			
3.7	Updating multiple documents	Examine the updating for multiple	17.4			
		document	K 4			
IV		MongoDB-II	1			
4.1	Comparison operators – OR and	Assess OR and NOT operators	17.5			
	NOT queries	1	КЭ			
4.2	Querying arrays	Develop query using Array in NoSQL	K3			
	Em	bedded Document				
4.3	Querying on embedded documents	Compile the NoSQL query for	W.C			
		embedded document	K6			
4.4	WHERE queries – Limits, skips	Explain to filter the collections in the	17.5			
	and sort	document	КЭ			
4.5	Compound Index	Apply the compound index	K3			
4.6	Unique index – Sparse Index	Explain the types of Index	K2			
4.7	Pipeline aggregation: MATCH,	Evaluate the pipeline functions				
	PROJECT, GROUP and		K5			
	UNWIND clauses.					
V	N	eo4J and Cypher				
5.1	Introduction to Graph Database	Explain how to access nodes and	WЭ			
	-	relationships in a native graph database	K2			
5.2	Data Modelling with Graphs	Apply different models with graph	K3			
	Queryi	ng Graphs				
5.3	An Introduction to Cypher	Illustrate the cypher	K2			
5.4	Create and Assert, Match, Where	Apply various operations in graph	V2			
	and Return Clause	database	КЭ			
5.5	ORDER BY	Examine the order by in graph database	K4			
5.6	WITH clause	Construct the graph data model to design				
		the questions in the form of cypher	K6			
		queries using with clause				
5.7	Case Study: Telent.net Social	Analyse the graph model in social	IZ A			
	recommendations application.	recommend applications	K 4			

L-J	Low					M-Mo	oderate	•				H- H	ligh
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	Н	Μ	L	Μ	Μ	Μ	Μ	Μ	-	Н	Н
CO2	Н	Н	Μ	L	-	L	-	L	Μ	Μ	-	Μ	-
CO3	Н	Н	Н	Н	Μ	Μ	L	-	-	Н	Н	Н	М-
CO4	Н	Н	Н	Н	Н	Μ	L	Μ	Μ	Н	Н	Μ	Н
CO5	Н	Μ	-	Μ	L	Μ	-	Н	Μ	Н	Н	Μ	-
CO6	Μ	Μ	-	H	Μ	L	-	-	L	H	H	H	Μ

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felichiah

ELECTIVE-1: ESSENTIAL STATISTICS FOR DATA SCIENCE						
Semester	Ι	Hours/Week	5			
Course Code	P21DS1:1	Credits	4			

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Experiment the methods of descriptive statistics and variability.	K5	Ι
CO2	Assess and examine the different tests of the statistical inferences	K5	II
CO3	Build the nonparametric statistics methods	K6	III
CO4	Classify and Construct the different types of regression methods for data analytics	K6	IV
CO5	Analyze the different properties of the regression methods.	K6	V
CO6	Evaluate all possible regression on given data sets.	K6	V

2. A. SYLLABUS

Unit I: Descriptive Statistics

Introduction to Statistics - Organizing Data Using Tables and Graphs- Measures of Central Tendency: Mode – Median – Mean. Measures of Variability: Variability – Range - Interquartile Range - Standard Deviation.

Unit II: Inferential Statistics – I

Sampling Distribution of Means: Sampling Distribution - Central Limit Theorem. Hypothesis Testing: Hypothesis Testing Steps - Effect Size for a Z-Test - Assumptions – Errors – Power. One-Sample t Test: t-Statistics – t- Distributions - One-Sample t Test – Effect Size – Assumptions. Two-Sample t Test: Independent Samples Design: Calculations – Hypothesis Testing – Effect Size – Assumptions. Two-Sample t Test: Related Samples Design: Calculations – Hypothesis Testing – Effect Size – Effect Size – Assumptions.

Unit III: Inferential Statistics - II

Confidence Interval versus Point Estimation: Introduction- Point Estimates - Confidence Intervals – One Sample t- Test - Two-Sample t Test: Independent Samples Design – Repeated Measure Design - Degree of Confidence Vs. Degree of Specificity One-Way Analysis of Variance: Introduction – Variance – F- statistics – Hypothesis Testing with F- Statistic - F- Distribution Table - Notations for ANOVA - Calculations – Hypothesis Testing – Effect Size – Assumptions. Chi-Square: Chi-Square - Chi-Square Statistic – Assumptions- Goodness of Fit - Goodness of Fit for Known Proportions-Goodness of Fit for No Preference – Test of Independence - Nonparametric Statistics for Ordinal Data: Mann-Whitney U Test - Kruskal-Wallis H Test. Correlation: Introduction – Scatter Plot -Pearson Product Moment Correlation - Hypothesis Testing - Coefficients of Determination and Non determination – Interpretation and Uses of The Pearson Correlation.

Unit IV: Regression Analysis - I

Regression Model - Goals of Regression Analysis - Statistical Computing in Regression Analysis -Simple Linear Regression – Multiple Linear Regression – Logistic Regression – Poisson Regression

Unit V: Regression Analysis - II

Detection of Outliers and Influential Observations: Detection of Outliers in Multiple Linear Regression - Detection of Influential Observations in Multiple Linear Regression - Test for Meanshift Outliers - Graphical Display of Regression Diagnosis. Model Selection: Effect of Underfitting and Overfitting - All Possible Regressions – Stepwise Selection. Model Diagnostics: Test Heteroscedasticity - Detection of Regression Functional Form

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Statistical Thinking for Data Science	https://www.edx.org/course/statistical-thinking-
	and Analytics	for-data-science-and-analytic
2	Linear Regression for Business	https://www.coursera.org/learn/linear-regression-
	Statistics	business-statistics
3	Learning Statistics with R	https://learningstatisticswithr.com/
4	15 Types of Regression	https://www.listendata.com/2018/03/regression-
		analysis.html

C. TEXT BOOKS

1. Cheryl Ann Willard, "Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis", Routledge, 2020. (Unit – I – III)

2. Xin Yan & Xiaogang Su, "*Linear Regression Analysis : Theory and Computing*", World Scientific Pulishing Ltd, 2009. (Unit – IV: Chapter 1,2,3, 8.5,8.6; Unit – V: Chapters 4.2,4.3, 4.4, 4.5, 5.1-5.3, 6.1, 6.2)

D. REFERENCE BOOKS

1. John.E.Freund, Irwin Miller, Marylees Miller "Mathematical Statistics with Applications", 8th, Prentice Hall of India, 2014

2. Ross, Sheldon. M, "Introduction to Probability and Statistics for Engineers and Scientists", Academic Press, 2009

3. D.C Montgomery, E.A Peck and G.G Vining, "Introduction to Linear Regression Analysis", John Wiley and Sons, 2003.

4. S. Chatterjee and AHadi, "Regression Analysis by Example", 4th Ed., John Wiley and Sons, Inc, 2006

E. WEB LINKS

- https://www.listendata.com/2018/03/regression-analysis.html
- <u>https://www.coursera.org/learn/linear-regression-business-statistics</u>

Unit/ Section	Course Content	Learning outcomes	Blooms Taxonomy Level of Transaction
Ι	D	escriptive Statistics	
1.1	Introduction to Statistics	Identify the types of Measurement	K3
1.2	Organizing Data Using Tables and Graphs	Construct a grouped frequency table.	К3
1.3	Measures of Central Tendency: Mode – Median – Mean	Determine mean, median, mode.	K5
1.4	Measures of Variability: Variability	Analyze the common measures of variability.	K5
1.5	Range	Determine the range on scores.	K5
1.6	Interquartile Range	Determine the interquartile range.	K5
1.7	Standard Deviation	Compare population standard	K4

		deviation and sample standard						
	deviation.							
II	Inferential Statistics – I							
	Sa	mpling Distribution of Means						
2.1	Sampling Distribution	Recall Sampling distribution of	К2					
		mean.	112					
2.2	Central Limit Theorem	Discuss the central Limit Theorem.	K6					
	Hyp	pothesis Testing						
2.3	Hypothesis Testing Steps	Apply hypothesis testing on given	К3					
2.4		data.						
2.4	Effect Size for a Z-Test	Outline the effect size for Z-Test	<u>K3</u>					
2.5	Assumptions	Recall the assumptions for the <i>z</i> -test	KI					
2.6	Errors	List two types of error that are	K1					
2.7	Description	possible on decisions.	TZ A					
2.7	Power	Analyze the power of Statistical test	K4					
2.0		One-Sample t Test	17.1					
2.8	t-Statistics	Recall t-Statistics						
2.9	t- Distributions	Infustrate t-Distributions	K2					
2.10	One-Sample t Test	Apply One Sample 1 Test to find	V2					
		sample is representative of a	КJ					
2 11	Effect Size	Determine the effect size for One						
2.11	Effect Size	sample T Test	K3					
2 12	Assumptions	Recall the assumptions for One						
2.12	Assumptions	Sample T Test	K 1					
	Two-Samp	le t Test: Independent Samples Design						
2.13	Calculations	Recall Standard Error of Difference						
2.110		for Two Sample T test of	K1					
		independent Sample.						
2.14	Hypothesis Testing	Make use of Two-sample T Test in						
		hypotheses testing for independent	K3					
		sample						
2.15	Effect Size	Determine the effect size for Two						
		Sample T test of independent	K5					
		Sample.						
2.16	Assumptions	List the Assumptions of the	K1					
		independent samples t test						
0.15	Two-Sample t T	est: Related Samples Design						
2.17	Calculations	Recall Standard Error of Difference	T7 4					
		for Two Sample T test of related	K1					
0.10		Sample.						
2.18	Hypotnesis Testing	Make use of 1 wo-sample 1 lest in	V2					
		somplos	K3					
2 10	Effect Size	Determine the effect size for Two						
2.19	Effect Size	Sample T test of related Sample	K5					
2 20	Assumptions	List assumptions of the repeated						
2.20	Assumptions	measures for Two Sample T test of	К2					
		related Sample.	112					
III		Inferential Statistics – II						
	Confider	nce Interval versus Point Estimation						
3.1	Point Estimates	Recall point estimates for sample T	T7 4					
		tests.	KI					

3.2	Confidence Intervals	Outline confidence interval for	K2
33	One Sample t- Test	Apply confidence interval for one	
5.5	One Sample t- Test	sample t test	K3
34	Two-Sample t Test: Independent	Apply confidence interval for two	
5.1	Samples Design	sample test of independent samples.	K3
3.5	Repeated Measure Design	Identify confidence interval for two	
		sample test of Repeated Measure	K3
		Design.	
3.6	Degree of Confidence Vs. Degree	Relate degree of confidence to	K)
	of Specificity	degree of specificity	K2
	One-W	Yay Analysis of Variance	
3.7	Introduction	Define one-way analysis of	K 1
		variance.	IX1
3.8	Variance	List the types of total variance.	K2
3.9	F- statistics	Illustrate F-Statistics.	K2
3.10	Hypothesis Testing with F-	Apply hypothesis testing with F-	КЗ
	Statistic	Statistic on given scenario.	K 5
3.11	F- Distribution Table	List the features of F-Distribution	к2
		table	112
3.12	Notations for ANOVA	Make use of the notions for analysis	K3
		of variance.	KJ
3.13	Calculations	Explain the calculations needed for	K)
		conducting an analysis of variance	K 2
3.14	Hypothesis Testing	Apply hypothesis protocol for	K3
		ANOVA	K 5
3.15	Effect Size	Recall the popular measure of effect	K 1
		size for ANOVA	KI
3.16	Assumptions	List the assumption for ANOVA	K1
		Chi-Square	
3.17	Chi-Square	Recall Chi-Square.	K1
3.18	Chi-Square Statistic	Recall Chi-Square Statistic	K1
3.19	Assumptions	List the assumptions of Chi-Square	K1
3.20	Goodness of Fit - Goodness of Fit	Apply goodness of fit for known	КЗ
	for Known Proportions	proportions.	II.5
3.21	Goodness of Fit for No Preference	Apply goodness of fit for no	K3
		preference.	iii.
3.22	Test of Independence	Make use of Chi-Square in testing	К3
		for independence of variables	110
	Nonparamet	tric Statistics for Ordinal Data	
3.23	Mann-Whitney U Test	Apply Mann-Whitney U Test on	К3
		given problem.	
3.24	Kruskal-Wallis H Test	Apply Kruskal-Wallis H Test on	K5
		given problem	
		Correlation	
3.25	Introduction	Contrast positive correlation with	K2
2.2.5		negative correlation	
3.26	Scatter Plot	Illustrate Scatter Plots.	K3
3.27	Pearson Product Moment	Examine linear relationships	T T 4
	Correlation	between variables using Pearson	K4
2.20		Product Moment Correlation.	
3.28	Hypothesis Testing	Apply hypotheses testing with the	K5
		relationship between two variables	

		in a population			
3.29	Coefficients of Determination and	Illustrate Coefficients of			
	Non determination	Determination and Non	K3		
		determination			
3.30	Interpretation and Uses of The	Explain the uses of the Pearson	<i>V</i> 5		
	Pearson Correlation.	Correlation.	KJ		
IV	Re	gression Analysis – I			
4.1	Regression Model	Classify the types of regression			
		model.	174		
4.2	Goals of Regression Analysis	List the goals of regression analysis	K1		
4.3	Statistical Computing in	outline statistical softwares that			
	Regression Analysis	have been developed to make the	K2		
		regression analysis			
4.4	Simple Linear Regression	Show that the least squares			
		estimator b1 is an unbiased estimate	K3		
		of β	110		
4.5	Multiple Linear Regression	Discuss Least Squares Estimates of			
		the Multiple Regression Pa-	K2		
		Rameters.			
4.6	Logistic Regression	Evaluate logistic regression model.	K6		
4.7	Poisson Regression	Evaluate Poisson regression model.	K6		
V	Reg	gression Analysis – II			
5 1	Detection of Ou	itliers and Influential Observations	[
5.1	Detection of Outliers in Multiple	Define standardized residual.	K1		
5.0	Linear Regression				
5.2	Detection of Influential	Explain Detecting influential	КЭ		
	Deservations in Multiple Linear	recreasion	KZ		
5.2	Test for Mean shift Outliers	A pply mean shift outliers to			
5.5	Test for Mean-shift Outliers	Apply mean-smit outliers to			
		observation is suspected to be an	K3		
		outlier			
5.4	Graphical Display of Regression	Demonstrate the methods of			
5.1	Diagnosis	graphical display of regression	K3		
		diagnosis	110		
		Model Selection			
5.5	Effect of Underfitting and	Justify that over fitting or under			
	Overfitting	fitting affects			
	C	the generalization ability of a model	K5		
		to new observations.			
5.6	All Possible Regressions	Apply all possible regression on	K2		
		data sets .	К3		
5.7	Stepwise Selection	Apply stepwise selection algorithms	V2		
		on data set.	<u>К</u> Э		
		Model Diagnostics			
5.8	Test Heteroscedasticity	Evaluate White's test for	K6		
		Heteroscedasticity.	<u>NU</u>		
5.9	Detection of Regression	Calculate the Nonlinear Effect via	K 5		
	Functional Form	Additive Models.	КJ		

L-	Low			M-M	Iodera	te		H-	High				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Μ			Μ	L	Μ			Μ				
CO2	Μ	H				Μ	L			Н			Н
CO3	Μ					Μ			Μ				
CO4	Μ		Μ						Н	Н			М
CO5	Μ	Н	Μ	Μ		Н			Н	Н		Μ	Μ
CO6	Μ	Н		Μ		Н							

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. A. Santhanasamy

CORE PRACTICAL I: PROBLEM SOLVING USING PYTHON AND R LAB						
Semester	Ι	Hours/Week	4			
Course Code	P21DS1P1	Credits	4			

S.No.	Course Outcomes	Level	Activity
CO1	Write simple Python programs using Python data structures	K6	1-5
CO2	Manipulate files using Python	K6	6
CO3	Develop object oriented programs in Python	K6	7-8
CO4	Access internet and database data	K6	9-12
CO5	Write R programs for data visualization	K6	13
CO6	Creating dashboards using Tableau	K6	14-15

2. SYLLABUS

Develop applications that will demonstrate the following Python and R programming features

- Functions
- String processing
- List processing
- Dictionaries
- Tuples
- File processing
- Regular Expressions
- OOP
- Retrieving webpages from web
- Data visualization in Matplotlib, Seaborn and R
- Database programming
- Concurrent programming

Exercise	Торіс	Learning outcomes	Level
1	Python Basics and Conditions	Applying conditional statements to programs	K6
2	Python Loops	Applying loops to Python Programs	K6
3	Python Functions and Modules	Creating user defined functions and using modules	K6
4	Python String Processing	Manipulating strings in Python	K6
5	List Processing in Python	Using lists in programs	K6
6	Python File Processing	Reading and writing files	K6
7	Python Regular Expressions	Applying pattern matching to strings	K6
8	Object Oriented Bank in Python	Creating Python classes and objects	K6
9	Functional Programming	Using map, filter and reduce	K6

		functions in programs	
10	Retrieving Data from Web and	Retrieving data from webpages	K6
	Parsing	using urllib	
11	Database Programming Using	Extracting data from SQL	K6
	Sqlite3	databases using python libraries	
12	2D and 3D Data Visualization	Creating data visualizations using	K6
	Using Seaborn	seaborn library	
13	Animated Data Visualization	Creating interactive visualizations	K6
	Using R	using R libraries	
14	Dashboard Visualization Using	Creating dashboards and repots	K6
	Tableau	using Tableau	KU
15	Concurrent Programming in	Creating concurrent programs for	K6
	Python	multiprocessing	K0

L-Low	M-Moderate									H- High			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1		Η			Η	Η	Η	Η				Н	
CO2		Η			Η	Η	Η	Η		Н	Н	Н	Н
CO3		Η			Η	Η	Η	Η		Н		Н	Н
CO4		Η			Η	Η	Η	Η		Н	Н	Н	
CO5		Н			Η	Η	Н	Н				Н	Н
CO6		Η			Η	Η	Η	Η					

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Prof. K. Jemimah

CORE PRA	CTICAL II:	NoSQL]	MENT LAB	
Semester	Ι		Hours/Week	4
Course Code	P21DS1P2		Credits	4

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Leve l	Exercise Covered
CO1	Build a Table using SQL Queries and perform the basic operation	K6	1,2
CO2	Construct a SQL queries to evaluate various operators	K6	3,4
CO3	Evaluate the result using Subquery and Join techniques	K6	5,6,7,8
CO4	Assess the basic Queries in NoSQL using Mango DB	K5	9,10,11
CO5	Review the SQL, NoSQL and Neo 4J Graph data base	K5	12
CO6	Design a Graph database for Movie and Flight Data	K6	13,14

2. SYLLABUS

S.No	List of Exercises
1	Designing and Querying My Restaurant Database
2	India Weather Analytics Using Historical Data Part-I
3	India Weather Analytics Using Historical Data Part-II
4	Retail Sales Analytics Part-I
5	Retail Sales Analytics Part-II
6	Retail Sales Analytics Part-III
7	University Course Enrolment Data Analytics
8	Retail Sales Analytics Part-IV
9	Student Information System Design using MongoDB Part-I
10	Student Information System Design using MongoDB Part-II
11	Ecommerce Product CatLog Design Using MongoDB
12	Neo4J Play Ground Exercise
13	Designing Movie Graph Database using Neo4J
14	Designing Flight Graph Database Using Neo4J

Exercise	Course Content	Learning outcomes			
1	Designing and Querying My Restaurant Database	Create a new table, insert tuples satisfying the constraints and perform queryprocessing.	K6		
2	India Weather Analytics Using Historical Data Part-I	Evaluate the selection, filtering and aggregate functions to analyse the historical data of India Weather Information	К5		
3	India Weather Analytics Using Historical Data Part-II	Determine further India Weather Dataset with additional query operators	K5		

		such as GROUPBY, HAVING and ORDERBY	
4	Retail Sales Analytics Part-I	Create analytics on retail sales of a particular enterprise	K6
5	Retail Sales Analytics Part-II	Assess multiple tables in retail sales dataset	K5
6	Retail Sales Analytics Part-III	Compile Group function and Aggregate function in retail dataset	K6
7	University Course Enrolment Data Analytics	Design document in NoSQL for university course enrollment	K6
8	Retail Sales Analytics Part-IV	Develop queries for subquery	K6
9	Student Information System Design using MongoDB Part-I	Create student information system design using mongo DB	K6
10	Student Information System Design using MongoDB Part-II	Analyze various operators in mango DB	K4
11	Ecommerce Product CatLog Design Using MongoDB	Create a Collection in mongo DB for product catalog for heterogenous data	K6
12	Neo4J Play Ground Exercise	Outline the Neo4J for movie graph dataset	K2
13	Designing Movie Graph Database using Neo4J	Create a graph database for Actors and Movies in which actors played roles. You will write queries in Cypher and find answers to all queries.	K6
14	Designing Flight Graph Database Using Neo4J	Develop graph data base for Flight Transportation system	K6

L-Low

M-Moderate

H-High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	Н	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	H	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	Н	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felciah

CORE PRACTICAL III: DATA VISUALIZATION LAB						
Semester	Ι	Hours/Week	3			
Course Code	P21DS1P3	Credits	3			

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Leve l	Exercise Covered
CO1	Connect and prepare data using Tableau Desktop	K6	1
CO2	Explore and Analyze data using Data Prep tools	K6	2,3
CO3	Share insights through Tableau Public	K6	4
CO4	Prepare and model data using Power BI and Power Query	K5	5,6
CO5	Visualise and analyse data using Power BI tools	K5	7,8
CO6	Deploy and manage deliverables using Power BI service	K6	9

2. SYLLABUS

Develop applications that will demonstrate the following concepts using Tableau and PowerBI **Tableau**

- 1. Connecting to data sources and data preparation: create and modify data connections, manage data properties
- 2. Understanding Tableau concepts: Dimensions and Measures, Discrete and continuous fields, Aggregation, Calculations
- 3. Exploring and analysing data: Create basic charts, Organise data and apply data filters, apply analytics to worksheet, creating maps
- 4. Sharing insights: Formatting view of presentation, modifying dashboards and storytelling

Power BI

- 5. Data Preparation: Getting data from different sources, Data Profiling, Cleaning, Transforming and loading the data
- 6. Modelling the data: Design and develop a data model, create measures using DAX, Optimise model performance
- 7. Visualising the data: Create reports and dashboards, improve reports for usability
- 8. Analysing the data: Enhance reports to delineate insights, perform advanced analysis
- 9. Deploying and Maintaining deliverables: Managing the datasets, create and manage workspaces

No	Activity	Learning Outcome	Level
Lab 1	Understanding Tableau Public	Understand the Tableau environment and its	K3
	workspace	different functions	
Lab 2	Connecting to different data	Connect to different data sources and file	K3
	sources	types	
Lab 3	Connecting to data sources	Connect to different data sources and file	K3
	(Part 2)	types	

Lab 4	Data Preparation methods	Applying different data preparation methods to the datasets	K4
Lab 5	Creating dashboards and stories	Creating stories and dashboards with the datasets	K5
Lab 6	Publishing the data visualizations to the web	Publishing the created dashboards to Tableau Public	K3
Lab 7	Understanding Power BI workspace	Understanding the PowerBI Desktop environment and different options	K3
Lab 8	Connecting to a data sources using PowerBI	Connect to different data sources and file types	K3
Lab 9	Building reports with PowerBI	Creating dashboards and reports with the datasets and transforming data using Power Query	K5
Lab 10	Shaping and model data	Creating DAX Functions for shaping and modelling data	K6

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	L	Μ	Μ	Μ	L	-	-	Η	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Η	Η	-	Μ
CO3	Н	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	H	L	L	Μ	Μ	Н	Н	H	Μ
CO6	H	Μ	Μ	L	Η	L	L	L	Μ	Н	Η	-	-

6. COURSE ASSESSMENT METHODS

DIRECT:

- 5. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 6. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 7. Pre/Post Test, Viva, Report for each Exercise.
- 8. Lab Model Examination & End Semester Practical Examination

INDIRECT:

2. Course end survey (Feedback)

Name of the Course Coordinator: Dr. Janani Selvaraj

CORE IV: TIME SERIES ANALYSIS AND FORECASTING					
Semester	II	Hours/Week	5		
Course Code	P21DS204	Credits	4		

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Solve the stationarity, trending and detrending of time series data	K6	1
CO2	Assess the features of the ARMA Models and estimation techniques	K5	2
CO3	Explain the ARIMA models and SARMA Models	K6	3
CO4	Summarize the characteristics of Spectral behaviour and periodic		4
COT	behaviour of the time series	no	•
CO5	Compile the behaviour of smoothing in DLMS	K6	5
CO6	Design the Timeseries models using R for different time series data	K6	All

2. A. SYLLABUS

UNIT I - BASIS TIME SERIES MODELS

Examples of Nature of Time series data – Time series statistical models – Measures of dependence - Stationary. Time series regression – Detrending and differencing – Smoothing a time series

UNIT II - AR MODELS, FORECASTING AND ESTIMATION

Auto Regressive models – Moving Average models - ARMA models – Auto Correlation Function - Partial Auto Correlation Function – Forecasting algorithms – **Estimation:** Yule-Walker, Method of moments, MLE and LSE

Unit III - ARMA AND GARMA MODELS

Basics of ARIMA models: random models with drift, Steps to fitting ARMA model – **Multiplicative Seasonal ARIMA models:** Mixed, SARMA – Generalized Auto Regressive Conditionally Heteroscedastic (GARCH) models

UNIT IV - SPECTRAL ANALYSIS HOURS

Cyclical Behaviour and Periodicity: concepts, Periodic Series, Star Magnitude - **The Spectral Density:** Periodic stationary process–Periodogram: Spectral analysis as ANOVA, Principal Component Analysis

UNIT V - STATE SPACE MODELS

Dynamic Linear Models – Examples of DLMs – Filtering DLM – **Smoothing DLM:** Kalman, Lag One covariance – Forecasting DLM – Maximum Likelihood Estimator for DLMs

B. TOPICS FOR SELF - STUDY

S.No.	Topics	Web Links
1	Forecasting hierarchical or	https://otexts.com/fpp2/hierarchical.html
	grouped time series	
2	Autoregression Models for	https://machinelearningmastery.com/\autoregressio
	Time Series Forecasting	n-models-time-series-forecasting-python/
	With Python	
3	Time Series ARIMA Model	https://sites.google.com/site/econometricsacademy/
	using R	econometrics-models/time-series-arima-models
4	Simple Exponential	https://towardsdatascience.com/
	Smoothing for Time Series	simple-exponential-smoothing-749fc5631bed

12 HOURS

12 HOURS

12

12 HOURS

12 HOURS

C. TEXT BOOKS

1. Shumway and Stoffer. Time Series Analysis and its applications, with examples in R. 4ed, Springer. 2016.

D. REFERENCES BOOKS

- 1. Brockwell& Davis. Introduction to Time Series and Forecasting, 3rd edition, Springer. 2016
- 2. Cryer& Chan. Time Series Analysis with Applications in R, Springer. 2008
- 3. Prado & West. Time Series: Modeling, Computation, and Inference Chapman & Hall. 2010
- 4. Petris, Petrone, Campagnoli. Dynamic Linear Models with R, Springer. 2009
- 5. Ruppert& Matteson. Statistics and Data Analysis for Financial Engineering with R examples, 2ed, Springer. 2016

E. WEB LINKS

- 1. <u>https://machinelearningmastery.com/autoregression-models-time-series-forecasting-python/</u>
- 2. <u>https://sites.google.com/site/econometricsacademy/</u>econometrics-models/time-series-arima-models

Unit/ Section	Course Content	Learning outcomes	Level				
Ι	BASIS TIME SERIES MODELS						
1.1	Nature of Time series data	Analyze the different types of Times series and its characteristics.	K4				
1.2	Time series statistical models	Compare the different statistical model of times series data.	K6				
1.3	Measures of dependence	Assess the measure of dependence for different statistical model of time series data.	K5				
1.4	Stationary	Evaluate the stationarity property for time series models.	K5				
1.5	Time series regression	Investigate the regression for time series data	K4				
1.6	Detrending and differencing	 Formulate the detrending model for Time series data. Devise the differencing method for time series data. 	K6				
1.7	Smoothing a time series	Construct the smoothing filters for time series models	K6				
II	AR MODELS	, FORECASTING AND ESTIMATION					
2.1	Auto Regressive models	Compare the features of AR Models	K4				
2.2.	Moving Average models	Analyze the characteristics of MA Models	K5				
2.3	ARMA models	Summarize the working methods of ARMA Models	K6				
2.4	Auto Correlation Function - Partial Auto Correlation Function	Explain the role of Autocorrelation and partial auto correlation function for time series	K6				
2.5	Forecasting algorithms	Compile the forecasting algorithm for time series data.	K6				
2.6	Estimation: Yule-Walker, Method of moments, MLE and LSE	Specify the features of different estimation algorithms of time series data.	K6				
III	AR	MA AND GARMA MODELS					
3.1	Basics of ARIMA models:	Explain the basics of ARIMA models of Time	K3				

	random models with drift, Steps to fitting ARMA model	series data		
3.2	MultiplicativeSeasonalARIMAmodels:Mixed,SARMA	Compile the features of the SARIMA and Multiplicative SARIMA model for time series data.	K6	
3.3	Generalized Auto Regressive Conditionally Heteroscedastic (GARCH) models	Evaluate the characteristics of GARCH Model.	K5	
IV	SPE	CTRAL ANALYSIS		
4.1	Cyclical Behaviour and Periodicity: concepts, Periodic Series, Star Magnitude	 Examine the concepts of periodicity Evaluate the cyclical behaviour of the time series. Assess the properties of Star Magnitude 	K3 K6 K5	
4.2	Periodic stationary process	Discriminate the periodic stationary process over the stationary process	K5	
4.3	Periodogram	Outline the periodogram of the time series data	K6	
4.4	Spectral analysis as ANOVA	Construct the ANOVA for the spectral analysis of Time series data	K6	
4.5	Spectral analysis as Principal Component Analysis	Develop the PCA for the spectral analysis of time series data.	K6	
V	S	STATE SPACE MODELS		
5.1	Dynamic Linear Models- Examples of DLMs	Illustrate the Dynamic Linear Models (DLM)	K3	
5.2	Filtering DLM	Create the filtering of DLM for the time series data	K6	
5.3	Smoothing DLM: Kalman Filter	Evaluate the role of Kalman Filter in smoothing.	K5	
5.4	Lag One covariance	Construct the smoothing filter using Lag One covariance	K6	
5.5	Forecasting DLM	Design the forecasting algorithm using Kalman filter for DLMs	K6	
5.6	MaximumLikelihoodEstimator for DLMs	Evaluate the features of the MLE for DLMs	K6	

4. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Η	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	\mathbf{M}	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Н	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	I	Μ	Η	Η	Η	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 1. Course evaluation survey
- 2. Faculty feedback about the course.

Name of the Course Coordinator: Dr. P. S. Eliahim Jeevaraj

CORE V: DATA AND VISUAL ANALYTICS					
Semester	II	Hours/Week	5		
Course Code	P21DS205	Credits	4		

On successful completion of this course, students will be able to:

S.No.	Course Outcomes	Level	Unit
CO1	Test the NumPy functions for array processing	K6	Ι
CO2	Create time series plots using the Date and Time classes	K6	II
CO3	Interpret the Plotting of the dataset and time series	K6	III
CO4:	Perform data aggregation and group operations	K6	IV
CO5	Create and use Series and Data Frames for data wrangling	K6	V
CO6	Create various plots using Matplotlib and Seaborn	K6	v

2. A. SYLLABUS

Unit-1. NumPy and Pandas Basics

Why Python for Data analysis – Essential Python libraries – ndarray – Universal functions – Data processing using arrays – File I/O with arrays – Random number generation – Series, Data Frames – Indexing, re-indexing, sorting, ranking – Summarizing descriptive statistics – Handling missing data – Hierarchical indexing

Unit-2. Data Loading and Wrangling

Data Loading: reading and storing data in text format, binary format – Data Wrangling: Combining and merging data sets – Reshaping – Pivoting – Data transformation – String manipulation

Unit-3. Plotting and Visualization using Matplotlib

Figures – Subplots – Colors – Ticks – Label – Legends – Annotation – Saving plots to file – Plots: Line, Bar, Histogram, Density Plots – Scatter Plots

Unit-4. Data Aggregation and Group Operations

Iterating over groups – Selecting columns – Grouping with Series and functions – Data aggregation: Column wise aggregation, returning aggregated data – General-Split-Apply-Combine – Quantile and bucket analysis – Pivot table and cross tabulation

Unit-5. Time Series

Date and Time – Time Series – Date Range, Frequencies and Shifting – Periods and period arithmetic – Resampling and frequency coversion – Time Series Plotting

S.No	Topic Title	Web Link
1	Facebook Data Analysis	https://www.kaggle.com/sd2beatles/deep-analysis- sql-and-statistical-test-included
2	Clothing Fit Dataset for Size Recommendation	https://www.kaggle.com/agrawaladitya/step-by-step- data-preprocessing-eda
3	UCI Adult dataset	https://www.kaggle.com/kashnitsky/a1-demo- pandas-and-uci-adult-dataset
4	Wikipedia Time series analysis	https://www.kaggle.com/kashnitsky/a9-demo-time- series-analysis

B. TOPICS FOR SELF-STUDY

C. TEXT BOOKS

1. Wes. Mc Kinney, "Python for Data Analysis", 2nd Edition, Schroff Publishers, 2013. ISBN 9789352136414

D. REFERENCES

1. Cyrille Rossant. "Learning IPython for interactive Computing and data visualization", First edition [Packt]

2. Jake VanderPlas ,Python Data Science Handbook - Essential Tools for Working with Data, O'Reily, 2016

3. Zhang.Y ,An Introduction to Python and Computer Programming, Springer Publications,2016

E. WEB LINKS

- https://www.kaggle.com/agrawaladitya/step-by-step-data-preprocessing-eda
- <u>https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset</u>

Unit	Торіс	Topic Learning Outcome							
Ι	NumPy and Pandas Basics								
1.1	Python for Data analysis	Why Dataset analysis? And Why and What Python							
1.2	Essential Python libraries	Illustrate Python libraries which is used for Data Science	K2						
1.3	Universal	Utilize universal function (or ufunc for short) is							
	functions	a function that operates on ndarrays in an element-by-							
		element fashion, supporting array broadcasting, type							
		casting, and several other standard features							
1.4	Data processing	Discover data processing tasks without writing	K4						
	using arrays	complex loops							
1.5	File I/O with	Test for file read and write using array							
	arrays								
1.6	Random number	Analyze pseudo-random number generator for various	K4						
	generation	distributions.							
1.7	Series, Data	Appraise the single list with index. Examine a dataframe	K5,K4						
	Frames	using collection of series that can be used to analyse the							
		data							
1.8	Indexing, re-	Find NA/NaN in locations having no value in the	K1,						
	indexing, sorting,	previous index.	K3						
	ranking	Plan to index and reindex using Indexing, reindexing,							
		sorting, ranking.							
1.9	Summarizing	Examine summarizing and organizing the data so they	K4						
	descriptive	can be easily understood.							
	statistics								
1.10	Handling missing	Determine missing values for a number of reasons such	K5						
	data	as observations that were not recorded and data							
		corruption.							
1.11	Hierarchical	Discover to incorporate multiple index levels within a							
	indexing	single index.							

II	Data Loading and Wrangling									
2.1	Data Loading:	Motive the ability to read, manipulate, and write data to								
	reading and	and from CSV files using Python is a key skill to master								
	storing data in	for any data scientist or business analysis.								
	text format,									
	binary format									
2.2	Data Wrangling:	Measure the processing of data in various formats like -								
	Combining and	merging, grouping, concatenating etc. for the purpose of								
	merging data sets	analysing or getting them ready to be used with another								
		set of data.								
2.3	Reshaping	Examine 'reshape()' function, that takes a single								
		argument that specifies the new shape of the array.								
2.4	Pivoting	Analyze Pivoting for reshape a DataFrame by	K4							
		column/index values.								
2.5	Data	how we can combine data from different sources into a								
	transformation	unified dataframe								
2.6	String	List the manipulation of string like concatenation,								
	manipulation	<pre>isupper(), join(), lower(), etc.</pre>								
III	Plotting and Visualization using Matplotlib									
3.1	Figures	Create graph using figure() in Python.	K6							
3.2	Subplots	Create subplots by the use of subplot() function in								
		pyplot module.								
3.3	Colors	Discuss colouring plot by python colour code.								
3.4	Ticks	Create Ticks value to show specific points on the								
		coordinate axis.								
3.5	Label	Assess plot axis label	K5							
3.6	Legends	Analyze legend for describing area and elements of the								
		graph								
3.7	Annotation	Utilize annotate() function to draw an arrow connecting								
		two points on the plot.								
3.8	Saving plots to	Recommend savefig() function to save plot in to file	K5							
	file									
3.9	Plots: Line, Bar,	List basic graphics primitives to draw plot	K4							
	Histogram,									
	Density Plots									
3.10	Scatter Plots	Evaluate the data as a collection of points.	K5							
IV		Data Aggregation and Group Operations								
4.1	Iterating over	Discover data cluster using Iterating over groups	K4							
	groups									
4.2	Selecting	Select multiple columns using loc, iloc, etc	K3							
	columns									
4.3	Grouping with	Create series group using groupby() function	K6							
	Series and									
	functions									
4.4	Data aggregation:	Examine summarization using computing aggregations	K4							
	Column wise	like sum(), mean(), median(), min(), and max(), in								

	aggregation	which a single number gives insight into the nature of a							
		potentially large dataset.							
4.5	Data aggregation:	Plan statistical method for data aggregation.							
	returning								
	aggregated data								
4.6	General-Split-	Create group by three step Split-Apply-Combine.							
	Apply-Combine								
4.7	Quantile and	Examine quantile() function to get values at the given							
	bucket analysis	quantile over requested axis.							
4.8	Pivot table and	Create cross-tabulation table for show the frequency							
	cross tabulation	with which certain groups of data appear							
V	Time Series								
5.1	Date and Time	Examine date and time parameter for time series.	K4						
5.2	Time Series	Discover statistical descriptive by statistical tests and	K4						
		several linear model classes: autoregressive, AR,							
		autoregressive moving- average, ARMA, and vector							
		autoregressive models VAR.							
5.3	Date Range	Model a large range of dates for various offsets are pre							
		computed							
5.4	Frequencies and	Evaluate percentage change from sample to sample.	K5						
	Shifting								
5.5	Periods and	Dissect the time elapsed between two values of the same	K4						
	period arithmetic	magnitude.							
5.6	Resampling and	Survey the Convenience method for frequency	K4						
	frequency	conversion and resampling of time series							
	conversion								
5.7	Time Series	Visualize trends in counts or numerical values	K4						
	Plotting	over time.							

4. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Н	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	Н
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Н	Μ	Н	Н
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Н	-	Н
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Η	Н	Н	Н
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	Η	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- Course evaluation survey
 Faculty feedback about the course.

Name of the Course Coordinator: Dr. B. Karthikeyan

CORE VI: PRACTICAL MACHINE LEARNING					
Semester	II	Hours/Week	5		
Course Code	P21DS206	Credits	4		

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Unit
CO1	Perceive the Types of ML and develop Perceptron model	K6	Ι
CO2	Develop a supervised ML model for the given business problem	K5	II
CO3	Assess the pre-processing methods and reduce dimensions of data	K6	III
CO4	Evaluate the training and the testing of the designed ML model	K6	IV
CO5	Develop an unsupervised ML model for the given business problem	K5	V
CO6	Deploy machine learning models into production environment	K6	All

2. A. SYLLABUS

Unit-1. ML Basics and Perceptron

Three types Machine Learning – Three steps of ML process – Perceptron neural network – Adaline neural network – Stochastic gradient descent neural network

Unit-2. Supervised Learning classifiers

Logistic regression – Support vector machines – Kernel SVM – Decision Trees – K-Nearest Neighbour classifier – Random Forest – Linear Regression–Sentiment Analysis of Movie Reviews using Logistic Regression - Developing a web application with Flask

Unit-3. Pre-processing and Dimensionality Reduction

Pre-processing: Missing data, categorical data, feature scaling, feature selection. Dimensionality reduction: Principal Component Analysis, Linear Discriminant Analysis, Kernel PCA

Unit-4. Model evaluation

Pipelines - K-fold cross validation - Grid search - Confusion matrix, Precision, Recall, ROC curves, Scoring metrics – Majority vote classifier – Bagging, Bootstrapping, Adaptive Boosting

Unit-5. Unsupervised Learning classifiers and Multilayer NN

K-Means, K-Means++, Finding optimal no. of classifiers - Agglomerative Hierarchical clustering, Density based clustering -Multilayer Neural Network: Feed forward, Back Propagation Training, Multilayer Perceptron

B. TOPICS FOR SELF STUDY

SNo	Topic Title	Web Link
1	Kaggle Machine Learning	https://www.kaggle.com/learn/overview
2	IBM ML with Python:	https://www.edx.org/course/machine-learning-with-python-
	Practical introduction	<u>a-practical-introduct</u>
3	Predictive Analytics using	https://www.edx.org/course/predictive-analytics-using-
	Machine Learning	machine-learning
4	Google AI	https://ai.google/education/

C. TEXT BOOK(S)

1. Sebastian Raschka, "Python Machine Learning", First Edition, [PACKT], 2015.

D. REFERENCES BOOK(S)

1. Andreas C Muller and Sarah Guido, Introduction to Machine Learning with Python, Shroff Publishers, ISBN 978935213451

- Joel Grus, "Data Science from Scratch", First Edition, O'Reilly,2015
 Gavin Hackeling, "Mastering machine learning with scikit-learn", First Edition, [PACKT], 2014

E. WEB LINKS

- <u>https://www.edx.org/course/predictive-analytics-using-machine-learning</u>
- https://www.edx.org/course/machine-learning-with-python-a-practical-introduct

Unit	Торіс	Topic Learning Outcomes I						
Ι	Machine Learning Bas	ics and Perceptron						
1.1	Three types Machine	Select a machine learning model, given business, scientific	K2					
	Learning	and societal use cases.						
1.2	Three steps of ML	Explain machine learning steps based on the given use	K2					
	process	cases.						
1.3	Perceptron neural	Draw Perceptron Neural Network for AND, OR and NOT	K3					
	network	logic gate operations.						
		Create Perceptron in <i>sklearn</i> for a simple dataset that	K5					
		contains 4 samples for 2 numerical input features and						
		corresponding y values, perform training and testing for an						
1.4	A deline neurol	Differentiate Adeline from Dereentron neural network	K)					
1.4	Adame neural	Differentiate Adamie from Perceptron neural network.	κ2					
15	Stochastic gradient	Differentiate Percentron Adaline and Stochastic Gradient	к2					
1.5	descent neural network	Descent Neural Networks	112					
	deseent neural network	Create a dataset, perform training, testing and print error	K6					
		rates for SGD Neural Network using <i>sklearn</i> , for the given						
		use case.						
II	Supervised Learning C	lassifiers	•					
2.1	Types of Supervised	Identify the type of supervised ML, given use cases.	K2					
	ML and ML pipeline	Identify the steps of ML pipeline for classification and	K2					
		regression problems.						
	Classes and mother la	The ment and instantists MI madels as in a delease	W2					
2.2	of ML models	Call methods and properties of ML models in sklearn.	KS K2					
	or will models	Can methods and properties of ML models in skieam.	КJ					
	nackage							
2.3	Linear Regression in	Identify input features and target from dataset preprocess	K6					
2.5	Scikit Learn	data, split dataset for training & testing, create	110					
		LinearRegression model using <i>sklearn</i> , perform training						
		and testing and print MSE, SSE and R2 errors, for the	K6					
		given regression problem.						
		Create Ridge Regression model in sklearn, for the given	K6					
		use case, by following ML pipeline steps.						
		Create LASSO Regression model in sklearn, for the given	K6					
		use case, by following ML pipeline steps.						
		Create Polynomial Regression model in sklearn to						
		represent non-linearity assumption, for the given use case,						
		by following ML pipeline steps.						
2.4	Perceptron using Scikit	Identify input features and target from dataset, preprocess	K6					
	Learn	data, split dataset for training & testing, create Perceptron						
		using <i>sklearn</i> , perform training and testing and print						
		classification accuracy for the given classification						
1	1							

		problem.	
2.5	Logistic regression	Compare LR against Perceptron based on the given use cases.	K2 K3
		Compute Sigmoid activation function value given weights and values of an input sample.	K2
		Explain how LR can be used to predict probability values, with use cases.	K4
		Choose if the given ML model suffers from Overfitting or	
		Underfitting; Also select if the model has high/low variance or high/low bias	K3
		Explain how regularization solves overfitting issue of a ML model.	K5
		Create LR model in <i>sklearn</i> by following ML system design pipeline and compare against Perceptron and select the best model, for a given use case.	
26	Comment and the second	Comment CV/M and inst LD and Demonstration	V2
2.0	Support vector machines and Kernel	Lonpare SVM against LR and Perceptron.	K2 K2
	SVM	syntax of SVC classifier,	K2
		Interpret parameters and their values, Ggiven <i>sklearn</i>	K2
		syntax of SVC for Kernel SVM	K 2
		Create SVM model in <i>sklagra</i> by following ML system	K6
		design pipeline and select the best model among	KU
		Perceptron, LR and SVM models, for the given use case.	
2.7	Decision Trees	Find the best split of DT node using Entropy value.	K4
		Create a DT manually using ID3 algorithm for the	K4
		specified depth, given a dataset.	K4
		Create a DT manually using C4.5 algorithm for the	
		specified depth, given a dataset.	K1
		given parameter values.	K4
		Create syntax for <i>sklearn</i> DecisionTreeRegressor class, given parameter values.	K4
		Create Decision Tree model in <i>sklearn</i> by following ML system design pipeline, compare its performance against other ML models and select the best model for a since the	K4
		case.	K5

2.8	Random Forest	Select Random Forest or Decision Tree approach based on	K5
		the business objective. Create manually CART decision tree for the given use	K5
		case.	K5
		Create manually Random Forest using CART trees for the	
		given use case.	K4
		Create syntax for <i>sklearn</i> RandomForestClassifier class, given parameter values.	K4
		Create syntax for <i>sklearn</i> RandomForestRegressor class, given parameter values,	K5
		Create Random Forest classification model in <i>sklearn</i> by	
		following ML system design pipeline, compare its	K5
		performance against Decision Tree classification model	
		and select the best model, for a given use case.	
		Create Random Forest regression model in <i>sklearn</i> by following ML system design pipeling, compare its	
		performance against Decision Tree regression model and	
		select the best model. For a given use case.	
2.9	K-Nearest Neighbour	Classify ML methods into parametric and non-parametric	K2
	classifier	Classify ML methods into Easy Learners and Lazy	К2
		Learners.	K2 K3
		Select the best value for k for KNN classifier.	K5
		Create a KNN model syntax using <i>sklearn</i> , given values	
		for number of neighbors and distance metric.	K5
		For the given use case, build dataset, create KNN model	
		and evaluate its performance.	
2.10	Sentiment Analysis of	Create feature vectors manually by computing term	K4
	Movie Reviews using	frequency, inverse document frequency and TF-IDF	
	Logistic Regression	values, for the given use case.	K4
		Create feature vectors automatically with TfidfVectorizer	W.C
		class for the given use case.	K6
		Regression model for the movie reviews dataset	
2.11	Developing a web	Create a simple website and deploy a machine learning	K6
	application with Flask	model using Flask.	
	Pre-processing and Di	mensionality Reduction Methods	W2
5.1	Handling missing data	Find missing values and replace with mean / median /	K3
	and categorical data	Apply LabelEncoder to ordinal attributes in order to	K4
		represent string values to integers.	174
		Apply One Hot Encoder to nominal attributes to represent	K4
		categorical data.	

3.2	Feature scaling and	Compute normalized values using min max scaling.	K3
	feature selection	Compute standardized values using standard scaling.	K3
		Apply MinMaxScaler and StandardScaler to preprocess	K5
		data.	K5 V4
		compute important features using L2 and L1	К4
		Compute important features using Pandom Forest	
		algorithm	
33	Principal Component	Compute Covariance matrix Figen vectors and Figen	K1
5.5		values of a given matrix	114
	7 mary 515	For <i>load digits</i> dataset from <i>sklearn</i> reduce original	К5
		dimension (1797x64) into low dimension (1797x7) using	110
		PCA algorithm and print its shape.	K5
		Create PCA model in sklearn for a small N+1 dimensional	
		matrix, print N principle component vectors and the	
		variance each principle components holds (called	K5
		explained_variance_ratio value in <i>sklearn</i>).	
		Create PCA model in sklearn and visualize data in low	
		dimensions using matplotlib for the given use case (For ex.	
		Breast Cancer dataset from <i>sklearn</i>).	
3.4	Linear Discriminant	Explain Singular Valued Decomposition with an example.	K2
	Analysis	Create LinearDiscriminantAnalysis model for a small N+1	
		dimensional matrix, print N components and	K4
		explained_variance_ratio value.	
		Create LinearDiscriminantAnalysis model in sklearn and	K5
		visualize data in low dimensions using matplotlib for the	
		given use case (For ex. Iris dataset in <i>sklearn</i>).	
2.5	W IDCA		77.4
3.5	Kernel PCA	Create a syntax for KernelPCA for the values of the input	K4
		Paduce original dimension (1707x64) into low dimension	K1
		(1797x7) using KernelPCA algorithm and print its shape	Λ4
		for load digits dataset from sklearn.	К5
		Create and visualize <i>make moons</i> dataset using PCA and	
		KernelPCA models.	
IV	Model Evaluation	1	1
4.1	PipelineE	Create Pipeline in sklearn, given the requirements for	K4
	_	transformers and estimators.	
		Create a Pipeline for a ML model, perform training and	K6
		testing and show its performance values, for the given	
		business use case.	
4.2	Uoldout validation	Divide the detest for training validation and testing based	K3
4.2		on the performance requirement	K3
1	1	i di die perioritatiee requirement.	1

-			
4.3	K-fold cross validation	Explain the working of Kfold cross validation, Stratified Kfold CV, Leave one out CV and Shuffle split CV.	K4
		Create a ML model and compute the CV score (which may be classification accuracy or error) using	K6
		sklearn.model selection, for the given use case.	K6
		Create a Pipeline for a ML model and compute the CV	
		classification accuracy or error using	
		<i>sklearn.model_selection</i> , for the given use case.	
4.4	Grid search	Create a syntax for a GridSearchCV model for the given	K4
		parameter values.	V5
		use case, with various parameters values for the chosen	КJ
		ML model and select best parameter values: then create	
		that ML model with the best parameter values and show	
		performance results.	
4.5	Confusion matrix, Precision and Recall	Create a confusion matric based on the performance values of a ML system.	K5
		Compute manually precision and recall values of a ML	K3
		system. For example, given the sequence of predictions of	
		an email spam classifier.	K4
		Evaluate the performance of a ML model using precision,	
		recarr and iscore values in skiearn.	
4.6	ROC curve	Plot ROC curve with AUC values for the ML models	K5
7.0	KOC CUIVE	compare performances of many ML models using sklearn	K.
		and give recommendations to business clients.	
4.7	Majority vote classifier	Explain the concepts of majority voting classifier.	K2
		Given a simple dataset of 5 samples with 2 input numerical	
		features for X matrix and output vector y values, create	K6
		VotingClassifier in sklearn with atleast 2 ML classifiers,	
		and testing and verify output y manually	К5
		Create a VotingClassifier for the given classification	ix.
		problem and report the performance results.	
4.8	Bootstrapping	Explain bootstrapping with random replacement policy	K2
49	Bagging	Create BaggingClassifier model with 10 decision trees	К5
т.)	Dugging	perform training and testing for a simple dataset.	
		Create BaggingClassifier model with Bootstrapping	K5
		feature with 10 decision trees, perform training and testing	
		for a simple dataset.	K5
		Create BaggingClassifier model with 10 SVC classifiers,	
		perform training and testing for a simple dataset.	K6
		Leasting for the business use case. Compare its performance	
		against other ML classifiers	
		ugunist other fill enussiners.	

4.10	Adaptive Boosting	Create AdaBoostClassifier with 5 estimators for a simple	K5
		dataset.	
		Create GradientBoostingClassifier with 10 estimators for a simple dataset.	K5
		Create XGBoost classifier with 10 estimators for a simple	K5
		Create AdaBoostClassifier model perform training and	K6
		testing for the business use case. Compare its performance	110
		against Gradient boosting and bagging ensemble	
		classifiers.	
V	Unsupervised Learning	g Classifiers and Multilaver NN	
5.1	K-Means	Identify and recommend the appropriate ML strategy	K4
		(which may be classification, regression or clustering	
		approach) for the given business or scientific or societal	
		application.	K5
		Given a small dataset with 2 numerical features with 4	
		samples and values for 2 centroids, apply manually	K5
		KMeans algorithm and predict 2 clusters (You can use	
		Euclidean distance).	
		Create the syntax of KMeans model in sklearn (assume	K5
		input samples X are already available) and no. of clusters	17.5
		to predict. Also, perform training and testing on X. Print	KS
		Create KMeans model and predict the optimal number of	K6
		clusters using Flbow method, given input samples X	KU
		Create KMeans model and predict the optimal number of	
		clusters and evaluate the quality of clusters using	
		Silhouette Coefficients, given input samples X.	
		Create and develop KMeans clustering system in <i>sklearn</i>	
		for the business use case and provide recommendations to	
		users.	
5.2	K-Means++	Create and develop KMeans++ clustering system in	K6
		sklearn for the business use case and provide	
		recommendations to users.	
5.3	Agglomerative	Perform manually hierarchical clustering using single	K4
	Hierarchical clustering	linkage and show clusters of students, for a one	
		dimensional data representing marks of students (say, 5	V A
		Students), Perform manually hierarchical clustering using complete	Λ4
		linkage and show clusters of students for a one	КЛ
		dimensional data representing marks of students (say 5	174
		students).	
		Perform manually hierarchical clustering using single	K4
		linkage, draw Dendrogram and choose the number of	
		clusters, for a one dimensional data representing marks of	K6
		students (say, 5 students).	
		Plot Dendrogram for the given input samples and choose	
		the clusters using <i>scipy</i> package.	
		Apply agglomerative clustering using <i>sklearn</i> package for	
		the given business use case and predict N clusters.	
5.4	Density based	Create clusters by applying DBSCAN algorithm in sklearn	K5
	clustering	and visualize clusters, for a given dataset.	

5.5	Feed Forward Multilayer Neural Network	Draw a Single layer neural network with input layer and output layer. The dataset represents details of 5 persons. The 3 input features are 'smoking, 'obesity' and 'exercise' with values 0 or 1. The target or output feature is 'diabetic' which can have a value 0 or 1. Draw a Multilayer neural network for XOR operations and differentiate from Perceptron. Draw the architectural diagram of Multilayer Perceptron neural network with bias input nodes, given input samples X and target output y values and the size of the hidden layer. Create syntax for MLPClassifier in sklearn given parameter values. Create MLPClassifier, perform preprocessing, training and testing. Print the performance values of classification metrics. Also print the learnt weight matrix and bias vector values, for the given business use case.	K4 K4 K3 K6
5.6	Back Propagation	Compute predicted output and propagate error for one	K/
5.0	Training	iteration, given a simple Multilayer Perceptron having just one hidden layer with values for input sample, weights and desired output. Design a ML system using MLPClassifier and compare its performance against other classifiers, for the given use case.	K6

4. Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	L		L									
CO2	Н	Μ	L	Η								Н	Н
CO3	Н	Μ		Η	Н	Н						Н	Н
CO4	Η	Μ		Η	Η	Η						Н	
CO5	Η					Η		Η		М			Н
CO6	Η						Η		Η		Н		

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 1. Course evaluation survey
- 2. Faculty feedback about the course.

Name of the Course Coordinator: Dr. K. Rajkumar

Elective II: NATURAL LANGUAGE PROCESSING						
Semester	II	Hours/Week	5			
Course Code	P21DS2:2	Credits	4			

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Experiment with text pre-processing and classification	K6	Ι
CO2	Create language models and POS tagging	K6	Π
CO3	Evaluate the context free grammars and parse sentences	K6	III
CO4	Validate the meaning of sentences	K6	IV
CO5	Explain the Dependency parsing	K6	IV
CO6	Design NLP applications	K6	V

2. A. SYLLABUS

UNIT I-Text Pre-processing, Classification and Evaluation 12 Hours

Text tokenization, normalization, Lemmatization and Stemming – Minimum Edit Distance between two strings – Bigram, Trigram and NGrams – Perplexity – Smoothing Methods – Naïve Bayes Classifier – Binary Naïve Bayes for Sentiment Analysis and Spam Detection – Precision, Recall, F1-score, Cross Validation - Bootstrapping.

UNIT II- Language Modeling

Term Document Matrix and Word Word Matrix – Cosine Similarity – TFIDF weighting – Positive PMI – Skip Gram with Negative Sampling – Neural Network Unit – Feed Forward Neural Network – Neural Network for Language Model - English word classes for POS Tagging – Penn Treebank POS Tagget – POS Tagging Process – HMM POS Tagger – Viterbi Decoding algorithm for HMM.

UNIT III- Context Free Grammars

Context Free Grammars: Definition – Grammar rules for English – Tree Banks as Grammars – Grammar equivalence and normal forms – Lexical Grammars – Syntactic Parsing: Types of Ambiguities - CKY Parsing Algorithm – Chunking – Probabilistic CFG for Disambiguation and Language Modeling – Probabilistic CKY Parsing Algorithm for PCFGs – Probabilistic Lexicalized CFGs: Collins Parser – Parser Evaluation Methods.

UNIT IV- Dependency Parsing

Dependency Parsing: Dependency Relations from Universal Dependency Set – Dependency Tree – Shift Reduce Parsing – Arc Eager Transition Based Parsing – Edge Factored Parsing model using MST – First Order Logic for meaning representation: elements, variables, quantifiers, lambda notation, inference – Event Representation – Event Time Representation – Representation and Inference using Description Logic

UNIT V- NLP Applications

NLP Applications: Named Entity Recognition – Word Sense Disambiguation - Factiod Question Answering – Rule based and corpus based chatbots – Dialogue State Architecture for chatbots.

12 Hours

12 Hours

12 Hours

12 Hours

B. TOPICS FOR SELF-STUDY:

S.No.	Topics	Web Links
1	Natural language processing with Deep	https://www.youtube.com/watch?v=OQQ-
	Learning	W_63UgQ&list=PL3FW7Lu3i5Jsnh1rnUwq_Tcyl
		Nr7EkRe6
2	Latent structure models for NLP	https://deep-spin.github.io/tutorial/acl.pdf
3	Chatbots	https://www.analyticssteps.com/blogs/learn-
		everything-about-machine-learning-chatbots
4	Language Interpretability Tool (LIT)	https://github.com/PAIR-code/lit

C. TEXT BOOK

1. Jurafsky and Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, 3ed. 2020.

D. REFERENCES BOOKS

- 1. Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python– Analyzing Text with the Natural Language Toolkit.
- 2. Indurkhya, Nitin and Fred Damerau, Handbook of Natural Language Processing, 2ed, 2010, Chapman & Hall/CRC.
- 3. Christopher Manning and HinrichSchutze, Foundations of Statistical Natural Language Processing, MIT Press.

E. WEB LINKS

- 1. <u>https://london.ac.uk/sites/default/files/study-guides/introduction-to-natural-language-processing.pdf</u>
- 2. <u>http://www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20</u> with%20Python.pdf

Unit/	Course Content	Learning outcomes	Level							
Section			Lever							
Ι	Text Pre-processing									
1.1	Text tokenization, normalization,	Apply various methods to pre-	К3							
	Lemmatization and Stemming	process the text								
1.2	Minimum Edit Distance between	Compare the distance between the	V A							
	two strings	two string	N 4							
1.3	Bigram, Trigram and NGrams	Evaluate the precision for words	V5							
		using grams	КJ							
1.4	Perplexity, Smoothing Methods	Choose to evaluate the probability	<i>V</i> 2							
		of each test sentence	K3							
	Classi	fication and Evaluation								
1.5	Naïve Bayes Classifier	Analyse feature vector in a sentence	K4							
1.6	Binary Naïve Bayes for Sentiment	Categorize the sentence for								
	Analysis and Spam Detection	detecting spam and to analyse	K4							
		sentiment of words								
1.7	Precision, Recall, F1-score, Cross	Evaluate the measure for words	V_{5}							
	Validation - Bootstrapping.		КЭ							
II	La	anguage Modelling								
2.1	Term Document Matrix and Word	Illustrate the space vector to	K2							

	Word Matrix	represent features	
2.2	Cosine Similarity	Explain the cosine similarity	K2
2.3	Skip Gram with Negative Sampling	Analyse the gram sampling	K4
	Neural Net	twork for Language Model	
2.4	Neural Network Unit – Feed Forward Neural Network	Outline the neural network unit	K2
2.5	Neural Network for Language Model	Apply the model in neural network for language	К3
2.6	English word classes for POS Tagging	Categorize the words for POS tagging	K4
2.7	POS Tagging Process – HMM POS Tagger – Viterbi Decoding algorithm for HMM.	Choose proper tag for context related words	K5
III	Con	text Free Grammars	
3.1	Definition – Grammar rules for English	Define grammar rules	K1
3.2	Tree Banks as Grammars	Illustrate tree grammars	K2
3.3	Grammar equivalence and normal forms	Construct grammar equivalence	К3
3.4	Lexical Grammars – Syntactic Parsing	Examine the parsing grammar	K4
	Ту	pes of Ambiguities	
3.5	CKY Parsing Algorithm	Explain the parsing algorithms	K2
3.6	Chunking – Probabilistic CFG for Disambiguation and Language Modelling	Analyze CFG for language modelling	K4
3.7	Probabilistic CKY Parsing Algorithm for PCFGs	Adapt CKY algorithm for parsing	K6
3.8	Probabilistic Lexicalized CFGs: Collins Parser – Parser Evaluation Methods	Evaluate the probability for various parsing methods	K5
IV	De	ependency Parsing	
4.1	Dependency Relations from Universal Dependency Set	Explain dependency parsing	K2
4.2	Dependency Tree	Construct dependency tree	K3
4.3	Shift Reduce Parsing	Examine the shift reducing parsing	K4
4.4	Arc Eager Transition Based Parsing	Outline the Arc eager based parsing	K2
4.5	Edge Factored Parsing model using MST	Make use of Edge model for MST	K3
4.6	First Order Logic for meaning representation	Explain first order logic	K5
4.7	Representation and Inference using Description Logic	Adapt description logic	K6
V	N	NLP Applications	·
5.1	Named Entity Recognition	Classify entities referred according to their type	K4
5.2	Word Sense Disambiguation	Explain the WSD	K5
5.3	Rule based and corpus based chatbot	Analyze the rule-based corpus	K4
5.4	Dialogue State Architecture for chatbots.	Build architecture for chatbots	K6

4. MAPPING (CO, PO, PSO)

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	Н	Н	Н	H	-	-	Μ	Н	Н	Μ	-
CO2	Μ	H	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	H	Μ	Н	Н	Н	Н	-	-	Н	Н	Μ	-	-
CO4	H	H	L	Н	Μ	H	-	Μ	Н	Н	Н	-	
CO5	H	Μ	H	Μ	Η	H	-	-	Μ	Н	Н	-	-
CO6	Н	Н	Н	Μ	Μ	Н	Н	-	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. Janani Selvaraj

ELECTIVE-3: HEALTH CARE DATA ANALYTICS								
Semester	II	Hours/Week	3					
Course Code	P21DS2:3	Credits	4					

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
CO1	Explain the Coding system of Electronic Health Records	K5	Ι
CO2	Develop the algorithms for Biomedical Analysis	K5	Ι
CO3	Design the Algorithm for Healthcare Data using NLP, SMA	K6	III
CO4	Construct the predictive models for Healthcare Data	K6	IV
CO5	Analyze the role of Analysis in Pervasive Health	K5	V
CO6	Design the Computer-Assisted Medical Image Analysis Systems	K6	V

2. A. SYLLABUS

Unit-1. Introduction

Introduction to Healthcare Data Analytics- Electronic Health Records–Components of EHR-Coding Systems- Benefits of EHR- Barrier to Adopting EHR Challenges-Phenotyping Algorithms.

Unit-2. Analysis

Biomedical Image Analysis- Mining of Sensor Data in Healthcare- Biomedical Signal Analysis-Genomic Data Analysis for Personalized Medicine.

Unit-3. Analytics

Natural Language Processing and Data Mining for Clinical Text- Mining the_Biomedical- Social Media Analytics for Healthcare.

Unit-4. Advanced Data Analytics

Advanced Data Analytics for Healthcare– Review of Clinical Prediction Models- Temporal Data Mining for Healthcare Data- Visual Analytics for Healthcare- Predictive Models for Integrating Clinical and Genomic Data- Information Retrieval for Healthcare- Privacy-Preserving Data Publishing Methods in Healthcare.

Unit-5. Applications

Applications and Practical Systems for Healthcare– Data Analytics for Pervasive Health- Fraud Detection in Healthcare- Data Analytics for Pharmaceutical Discoveries- Clinical Decision Support Systems- Computer-Assisted Medical Image Analysis Systems- Mobile Imaging and Analytics for Biomedical Data

B. TOPICS FOR SELF-STUDY

S.No.	Topics	Web Links
1	Electronic Data Warehouse (EDW)	https://www.osplabs.com/healthcare-analytics/

2	Big Data in Health care	https://www.wipro.com/healthcare/advanced-
		healthcare-data-analytics/
3	Health Care Economics	https://healthcare.business.uconn.edu/certificate-
		health-care-analytics/

C. TEXT BOOK(S)

- 1. Chandan K. Reddy and Charu C Aggarwal, "Healthcare data analytics", Taylor & Francis, 2015
- 2. Hui Yang and Eva K. Lee, "Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, Wiley, 2016.

D. REFERENCE BOOKS

- 1. Vikas Kumar, Healthcare Analytics Made Simple: Techniques in healthcare computing using machine learning and Python, Packt Publishing, 2018
- 2. Ross M. Mullner, Edward M. Rafalski, Healthcare Analytics Foundations and Frontiers, Routledge, 2019.

E. WEB LINKS

- <u>https://onlinedegrees.sandiego.edu/classes/advanced-health-care-analytics/</u>
- <u>https://www.hci.net.in/courses/advanced-post-graduate-diploma-healthcare-decision-analytics/</u>

Unit/ Section	Торіс	Learning outcomes					
Ι		Introduction					
1.1	Introduction to Healthcare Data Analytics	 Understand the concepts of Healthcare Data Analytics 	K3				
1.2	Electronic Health Records	• Explain the concepts of EHR	K4				
1.3	Components of EHR	List the components of EHRDiscuss the features of EHR	K2 K4				
1.4	Coding Systems	Development of Coding Systems algorithm	K5				
1.5	Benefits of <u>EHR</u>	• List the benefits of EHR	K2				
1.6	Barrier to Adopting E <u>H</u> R Challenges	• Discuss the Challenges in EHR	K4				
1.7	Phenotyping Algorithms.	• Design the Phenotyping Algorithms	K6				
II		Analysis - I					
2.1	Biomedical Image Analysis	 Explain the Biomedical Image Analysis 	K5				
2.2	Mining of Sensor Data in Healthcare	• Explore the mechanism to get the data from sensor	K4				
		• Design the algorithm for Mining the sensor data	K6				
	Biomedical Signal Analysis	 Explain the Biomedical Signal Analysis 	K5				
2.3	Genomic Data Analysis for Personalized Medicine	 Develop the personalized medicine system using Genomic Data 	K6				
III		Analysis - II					
3.1	NaturalLanguageProcessingandData	• Develop the algorithms for mining text in HER using NLP.	K5				

	Mining for Clinical Text	• Design the data mining tool for Clinical text data	K6
3.2	Mining the_Biomedical	• Design the mining algorithm for Biomedical data	K6
3.3	Social Media Analytics for Healthcare.	• Develop the algorithms for Health care data using Social Media Analysis	K5
IV		Advanced Data Analytics	
4.1	Advanced Data Analytics for Healthcare– Review of	• List the techniques for Advanced Data Analytics for Healthcare	K2
	Clinical Prediction Models	Assess the Clinical Prediction Models	K6
4.2	Temporal Data Mining for Healthcare Data	 Design the temporal data mining algorithms for Healthcare Data 	K6
4.3	Visual Analytics for Healthcare	 Develop the Visual Analytics for Healthcare 	K5
4.4	Predictive Models for Integrating Clinical and Genomic Data	• Design the predictive model using Integrating Clinical and Genomic Data	K6
4.5	Information Retrieval for Healthcare	Apply the Information Retrieval for Healthcare	K4
4.6	Privacy-Preserving Data Publishing Methods in Healthcare.	• Explain the Data publishing methods in Healthcare	K5
V		Programming with R	
5.1	Applications and Practical Systems for Healthcare	• List the applications of the health care data analysis	K2
5.2	Data Analytics for Pervasive Health	Develop the algorithm for Pervasive Health <u>using DA</u>	K5
5.3	Fraud Detection in Healthcare	• Explain the Fraud Detection in Healthcare	K4
5.4	Data Analytics for Pharmaceutical Discoveries	Develop the algorithm for Pharmaceutical Discoveries using DA	K5
5.5	Clinical Decision Support Systems	Design the Clinical Decision Support Systems	K6
5.6	Computer-Assisted Medical Image Analysis Systems	Construct the Computer-Assisted Medical Image Analysis Systems	K6
6.7	Mobile Imaging and Analytics for Biomedical Data	• Design the System for Mobile Imaging and Analytics to the Biomedical Data	K6

4. MAPPING (CO, PO, PSO)

L-l	Low		M-Moderate							H- High			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	Н	Μ	L	Μ	Μ	Μ	Μ	Μ	-	Н	Н
CO2	H	Н	Μ	L	-	L	-	L	Μ	Μ	-	Μ	-
CO3	Н	Н	Н	Н	Μ	Μ	L	-	-	Н	Н	Н	М-
CO4	H	Н	Н	Н	Н	Μ	L	Μ	Μ	Н	Н	Μ	Н

CO5	Н	Μ	-	Μ	L	Μ	-	Н	Μ	Η	Н	Μ	-
CO6	Μ	Μ	-	Η	Μ	L	-	-	L	Η	Н	Η	Μ

5. COURSE ASSESSMENT METHODS

DIRECT:

- 5. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 6. Open Book Test.
- 7. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project, Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 8. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felciah

CORE PRACTICAL IV: DATA AND VISUAL ANALYTICS LAB						
Semester	II	Hours/Week	3			
Course Code	P21DS2P4	Credits	2			

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
1	Create data analytics systems using Numpy	K6	1, 2
2	Create data wrangling systems using Pandas	K6	3-6, 10
3	Create data visualization systems using Seaborn	K6	7
4	Crate time series analysis systems using Pandas time series	K6	8
5	Create interactive dashboards using Tableau	K6	11
6	Build and deploy end to end data analytics product at client site	K6	9, 12

2. SYLLABUS

Activity	Lab Activity Description
1	Data Analytics using NumPy
2	Data Analytics using Advanced NumPy
3	Pandas Indexing and Selection
4	Pandas Grouping and Aggregation
5	Pandas Concatenation, Merging and Join
6	Data Cleaning in Pandas
7	Data Visualization using Seaborn
8	Pandas Time Series Analysis
9	Exploratory Data Analysis on Cardiovascular Data
10	Advanced Data Wrangling in Pandas
11	Interactive Dashboard Creation in Tableau
12	Telecom data analytics system

Activity#	Lab Activity	Learning Outcome	Level
1	Data Analytics using NumPy	Create data analytics platform using NumPy	K6
2	Data Analytics using Advanced NumPy	Create advanced data analytics platform using NumPy	K6
3	Pandas Indexing and Selection	Perform Pandas Indexing and Selection operations	K6
4	Pandas Grouping and Aggregation	Perform Pandas Grouping and Aggregation operations	K6
5	Pandas Concatenation, Merging and Join	Perform Pandas Concatenation, Merging and Join operations	K6
6	Data Cleaning in Pandas	Perform data cleaning on large data	K6
7	Data Visualization using Seaborn	Develop Data Visualization systems using Seaborn	K6
8	Pandas Time Series Analysis	Perform Pandas Time Series Analysis	K6
9	Exploratory Data Analysis on Cardiovascular Data	Develop Exploratory Data Analysis platform on Cardiovascular Data	K6
10	Advanced Data Wrangling in Pandas	Perform Advanced Data Wrangling in Pandas	K6

11	Interactive Dashboard Creation	Create Interactive Dashboard using	K6
	in Tableau	Tableau	
12	Telecom data analytics system	Build and deploy Telecom data analytics	K6
		system	

4. MAPPING (CO, PO, PSO) L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	Н	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. B. Karthikeyan

CORE PRACTICAL V: PRACTICAL MACHINE LEARNING LAB					
Semester	Π	Hours/Week	3		
Course Code	P21DS2P5	Credits	2		

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
1	Practice data and file formats; visualize data and familiarize Colab and	K6	1
	Azure		
2	Build and deploy systems for business problems based on regression	K6	3,4
	models		
3	Build and deploy systems for business problems based on classification	K6	2,5,7,8
	models		
4	Build and deploy systems for business problems based on predictive	K6	6
	analytics		
5	Build and deploy systems for business problems based on tree models	K6	9,10
6	Build and deploy systems for business problems based on clustering	K6	11
	models		

2. SYLLABUS

Activity	Lab Activity Description
1	WarmUp: Familiarity with Data and Visualization
2	Pizza Liking Prediction using kNN
3	Fuel Amount Prediction using Linear Regression
4	House Price Prediction using LR with Regularization
5	Diabetes Classification using Logistic Regression
6	Predictive Analytics for Hospitals
7	Loan Approval Classification using SVM
8	Animal Classification using Decision Trees
9	Employee Hopping Prediction using Random Forests
10	Patients Physical Activities Prediction using Boosting
11	Shopping Mall Customer Segmentation using Clustering

TOPICS FOR SELF STUDY

S.No	Topic Title	Web Link
1	Stock price prediction	https://www.kaggle.com/darkknight91/ge-stock
2	Wake up word detection for Alexa	https://github.com/Picovoice/wake-word-benchmark
3	Jane Street Market prediction	https://www.kaggle.com/c/jane-street-market-
		prediction
4	HuBMap – Hacking the kidney	https://www.kaggle.com/c/hubmap-kidney-
		segmentation

Activity#	Lab Activity	Learning Outcome	Level
1	WarmUp: Familiarity with	Open, process and visualize various data and	K6
	Data and Visualization	files using CoLab and Azure platforms	
2	Pizza Liking Prediction	Build kNN model, perform training and	K6
	using kNN	prediction and compute accuracy values	
3	Fuel Amount Prediction	Perform preprocessing; build LR model,	K6

	using Linear Regression	perform training and prediction; compute MSE and R2 error; compare performance against KNN regressor and SGDregressor models and interpret results	
4	House Price Prediction using LR with Regularization	Perform One Hot Encoding, build LR model, compute RMSE error and compare performance against SGD Regressor, RidgeCV and LassoCV and interpret results	K6
5	Diabetes Classification using Logistic Regression	Create heatmap, build Logistic Regression model, print ROC curve and compare performance against LogisticRegressionCV with L1 and L2 and interpret results	K6
6	Predictive Analytics for Hospitals	Perform prediction, Apply Forward Selection, plot AUC scores and Plot Gain curves and Life curves and interpret results	K6
7	Loan Approval Classification using SVM	Perform EDA, Create LinearSVC model, Print accuracy, confusion matrix and classification report and compare LinearSVC model with SVC and SGDClassifier models	K6
8	Animal Classification using Decision Trees	Create ID3 Decision Tree using Entropy metric, Create CART Decision Tree using Gini metric and Visualize graph using graphviz	K6
9	Employee Hopping Prediction using Random Forests	Create RandomForestClassifier, perform training and testing; Print feature importance values; and Select the best number of trees based on out-of-bag error values	K6
10	Patients Physical Activities Prediction using Boosting	Build GradientBoostingClassifier, fit and predict on test data; Find the best no. of decision trees and learning rate using GridSearch and Cross Validation; Build AdaBoost, LogisticRegressionCV and VotingClassifier; Interpret results and parameter values	K6
11	Shopping Mall Customer Segmentation using Clustering	Perform Skew analysis; Build KMeans model; Apply Elbow method; Perform Cluster Analysis; Perform PCA; Build MeanShift clustering and Agglomerative clustering; Visualize clusters using Dendrogram	K6

4. MAPPING (CO, PO, PSO)

L-	Low					M-M	oderat	e			H- I	Iigh	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	Η	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. K. Rajkuamr

CORE PRACTICAL VI: NATURAL LANGUAGE PROCESSING LAB					
Semester	II	Hours/Week	3		
Course Code	P21DS2P6	Credits	2		

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Activity
1	Design systems to perform NLP preprocessing and document similarity	K6	1 - 5
2	Design NLP systems for spam filtering	K6	6
3	Design NLP systems for sentiment analysis	K6	7
4	Design NLP systems using tagging and named entity recognition	K6	8 - 10
5	Design NLP systems using Context free grammars	K6	11 - 14
6	Design NLP systems using SpaCy	K6	15

2. SYLLABUS

Activity	Lab Activity Description
1	Understanding Large Text Files
2	Computing Bigram Frequencies
3	Computing Document Similarity using VSM
4	Computing Document Similarity using Word2Vec
5	Stemming and Lemmatization on Movie Dataset
6	Spam Filtering using Multinomial Naïve Bayes
7	Sentiment Analysis on Movie Reviews
8	Exploring Part of Speech Tagging on Large Text Files
9	Building Bigram Tagger
10	Named Entity Recognition on Food Recipes Dataset
11	Building Parse Trees
12	Building and Parsing Context Free Grammars
13	Improving Grammar to Parse Ambiguous Sentences
14	Word Sense Disambiguation with Improved Lesk
15	Text Processing using SpaCy

Topics for Self Study

S.No	Topic Title	Web Link
1	Text preprocessing in languages	https://github.com/morkapronczay/meetup-talk-text-
	other than English	preproc
2	Cross-classification of	http://cl.haifa.ac.il/projects/translationese/index.shtml
	translationese	
3	Distinguishing between human	http://cl.haifa.ac.il/projects/pmt/index.shtml
	and machine translation	
4	Native Language Identification	https://github.com/ellarabi/reddit-12

Activity#	Lab Activity	Learning Outcome	Level
1	Large Text Files Processing	Understand Large Text Files	K6
2	Bigram Frequencies	Compute Bigram Frequencies	K6
3	Document Similarity using	Compute Document Similarity using VSM	K6
	VSM		
4	Document Similarity using	Compute Document Similarity using	K6

	Word2Vec	Word2Vec	
5	Stemming and	Perform Stemming and Lemmatization on	K6
	Lemmatization	Movie Dataset	
6	Spam Filtering	Perform Spam Filtering using Multinomial	K6
		Naïve Bayes	
7	Sentiment Analysis	Develop system for Sentiment Analysis on	K6
		Movie Reviews	
8	Part of Speech Tagging on	Explore Part of Speech Tagging on Large Text	K6
	Large Text Files	Files	
9	Bigram Tagger	Build Bigram Tagger	K6
10	Named Entity Recognition	Perform Named Entity Recognition on Food	K6
		Recipes Dataset	
11	Parse Trees	Build Parse Trees	K6
12	Context Free Grammars	Build and Parse Context Free Grammars	K6
13	Parsing Ambiguous	Improve Grammar to Parse Ambiguous	K6
	Sentences	Sentences	
14	Word Sense	Perform Word Sense Disambiguation with	K6
	Disambiguation	Improved Lesk	
15	Text Processing using	Perform text processing using SpaCy	K6
	SpaCy		

4. MAPPING (CO, PO, PSO) L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Н	Μ	Μ	L	Н	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. Janani Selvaraj

CORE VII: PRINCIPLES OF DEEP LEARNING					
Semester	III	Hours/Week	5		
Course Code	P21DS307	Credits	4		

On successful completion of this course, students will be able to:

S.No	Course Outcomes	Level	Unit
1	Understand and apply the foundational concepts of Deep Learning	K4	Ι
2	Solve real world applications using MLP and improve its performance	K5	II
3	Develop CNN models and optimize the performance for CNN	K6	III
	applications		
4	Develop RNN models and optimize the performance for RNN	K6	IV
	applications		
5	Develop Auto encoders and GAN models for real time applications	K6	V
6	Design CNN and RNN architectures for real world applications	K6	V

2. A. SYLLABUS

UNIT I – DEEP LEARING FOUNDATION

Linear algebra: scalar, vector, matrix, tensor – Multiplying matrix and vectors – L1 and L2 norms – Eigen decomposition - Singular Valued Decomposition - Determinant. Linear Regression: Model, Cost function, Loss function - Model improvement: overfitting vs underfitting; bias vs variance; hyper parameter tuning: random, coarse to fine - Logistic regression

UNIT II – MLP, REGULARIZATION AND OPTIMIZATION 12 HOURS

Multilayer perceptron: Layers: Output units: linear, sigmoid, softmax; Hidden units: ReLU, Sigmoid, tangent, RBF - Forward propagation - MLP training with back propagation. Regularization: L1, L2 regularization, Data augmentation, Early stopping, Drop out, Data normalization. Optimization for Training Deep Models: Challenges: Local minima, plateau, saddle points, vanishing and exploding gradients -Algorithms: Minibatch, Stochastic Gradient Descent, RMSProp, Adam.

UNIT III – CONVOLUTIONAL NEURAL NETWORKS

CNN: Convolution, pooling, striding, padding, 1x1 convolution - Popular CNN models: AlexNet, VGG, ResNet - CNN Applications: Transfer Learning, Image classification, face detection, object detection, face/instance recognition.

UNIT IV - RECURRENT NEURAL NETWORKS

Time series analysis - RNN with no outputs - RNN with outputs - Forward propagation - Back propagation Through Time (BPTT) algorithm - Bidirectional RNN - Sequence to sequence RNN - Word Embedding -LSTM, GRU. RNN Application: Sentiment analysis, text generation, machine translation, attention model, speech recognition, video classification.

UNIT V – AUTO ENCODERS AND GENERATIVE MODELS 12 HOURS

Auto-encoder, Denoising Autoencoder; AE Applications: Data compression, retrieval, classification, document clustering, Sentiment analysis. Generative Learning: Variational Auto-encoders, Generative Adversarial Neural Networks; GL Applications: animal face/celebrity face generation, video generation.

B. TOPICS FOR SELF - STUDY

S.No.	Topics	Web Links
<u>1</u>	NPTEL Deep Learning	https://nptel.ac.in/noc/courses/noc21/SEM2/noc21-cs76/
<u>2</u>	Keras Tutorial	https://keras.io/getting_started/
<u>3</u>	Keras Tutorial: Deep Learning in	https://www.datacamp.com/community/
	Python	tutorials/deep-learning-python

12 HOURS

12 HOURS

12 HOURS

<u>4</u>	Machine Learning with Tensorflow	<u>https://www.python-</u> course.eu/tensor flow introduction.php
<u>5</u>	From Solving Equations to Deep Learning: A TensorFlow	https://www.toptal.com/machine-learning/tensorflow- python-tutorial

C. TEXT BOOKS

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville. Deep Learning (Adaptive Computation and Machine Learning series). MIT Press, 2017. ISBN-13: 978-0262035613.
- 2. Charu C. Aggarwal, Neural Networks and Deep Learning, 1ed, Springer International Publishing AG, part of Springer Nature, 2018, ISBN-13: 978-3319944623.

D. REFERENCES BOOKS

1. Francois Chollet. Deep Learning with Python. 1ed, Manning Publications, 2017. ISBN 978-1617294433.

E. WEB LINKS

- 1. www.tensorflow.org / tutorials
- 2. https://www.tensorflow.org/tutorials/generative/autoencoder
- 3. https://towardsdatascience.com/reinforcement-learning-with-python-part-1-creating-the-environment-dad6e0237d2d

Unit / Section	Course Content	Learning Outcomes	Level
I	DEEP LEARING FOUNDATIO	N N	
1.1	Linear Algebra	Apply Linear Algebra concepts to given a	K3
		problem	
1.2	Matrix decomposition	Apply matrix decomposition methods	K3
		image, text, audio and video data	
1.3	Linear regression and Logistic	Create Linear regression and Logistic	K6
	regressions	regression models given business problems	
II	MLP, REGULARIZATION AN	D OPTIMIZATION	
2.1	MLP layers and activation	Configure and create MLP based on the use	K6
	functions	cases	
2.2	Handling overfitting issues	Tune hyper parameters of MLP and create	
		the updated model	
2.3	MLP optimizations	Evaluate the appropriate optimizers and	K5
		create MLP model for the given scenarios	
III	CONVOLUTIONAL NEURAL	NETWORKS	
3.1	CNN layers and convolutions	Design and implement CNN for the image	K6
		classification applications	
3.2	Popular CNN models	Implement transfer learning with the popular	K6
		CNN models	
3.3	CNN Applications	Create CNN for object detection and	K6
		recognition tasks	
IV	RECURRENT NEURAL NETW	VORKS	
4.1	RNN layers, forward and back	Create simple RNN given use cases	K6
	propagation c concepts		
4.2	RNN types	Design and implement various types of	K6
-		RNN including LSTM and GRU	
4.3	RNN applications	Create RNN for applications such as	K6
		sentiment analysis, text generation, machine	
		translation and speech recognition	

V	AUTO ENCODERS AND GENERATIVE MODELS				
5.1	Auto encoder concepts	Create an auto encoder and de-noising auto	K6		
		encoder			
5.2	Applications of auto encoders	Illustrate the various applications of auto	K6		
		encoders			
5.3	Generative learning concepts	Create variational auto encoders and	K6		
		Generative Adversarial Networks			
5.4	Applications for Generative	Develop applications that will recognize	K6		
	learning	faces and generate videos using GANs			

4. MAPPING

L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	\mathbf{M}	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Η	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Н	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	I	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Peer Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

- 1. Course evaluation survey
- 2. Faculty feedback about the course.

Name of the Course Coordinator: Dr. K. RAJKUAMR

CORE VIII: BIG DATA MANAGEMENT AND ANALYTICS				
Semester	III	Hours/Week	5	
Course Code	P21DS308	Credits	4	

1. Course Outcomes

On successful completion of this course, students will be able to

S.No.	Course Outcomes	Level	Unit
1	Perceive Big Data concepts and technologies	K6	Ι
2	Evaluate the Storing and manipulation of data using HDFS	K6	II
3	Construct the very large datasets using Pig	K6	III
4	Create MapReduce using Spark	K6	IV
5	Formulate Data Warehousing operations using Hive	K6	V
6	Create applications using Hadoop	K6	All

2. A. SYLLABUS

Unit-1. Introduction to Big Data

What is Big data – Industrial examples of Big Data: Digital Marketing, fraud, risk, trading, healthcare, medicine, advertising – Big Data Technology: Hadoop, cloud, BI, crowdsourcing analytics – Business Analytics:

Unit-2. MapReduce-I and HDFS

MapReduce model: Weather dataset, Analyzing data with Hadoop, Combiner functions, Hadoop streaming with Python. **Hadoop Distributed File System**: Block, Namenode, Datanode, Caching – File system operations in command line – Java Interface to Basic Hadoop - Reading data and writing data – Anatomy of File Write

Unit-3. MapReduce-II

Steps of developing MapReduce application - Working of MapReduce: Running Jobs, failure, Shuffle and sort, Task execution - MapReduce Types: Input formats - Output formats - MapReduce features: Counters, Sorting, Joins

Unit-IV. Exploring large datasets using Pig

Structure, Statements, Expressions, Types, Schemas, Functions, Macros - User-Defined Functions: Filter UDF, Eval UDF, Load UDF - Data Processing Operators: Loading and Storing Data, Filtering Data, Grouping and Joining Data, Sorting Data, Combining and Splitting Data

Unit-5. Data Warehousing using Hive

Comparison with Traditional Databases - HiveQL: Data Types, Operators and Functions - Tables: Managed Tables and External Tables, Partitions and Buckets, Storage Formats, Importing Data, Altering Tables, Dropping Tables - Querying Data: Sorting and Aggregating, MapReduce Scripts, Joins, Subqueries, Views - User-Defined Functions: Writing a UDF, Writing a UDAF - 6 Elements of Big Data Security

S.No	Topic Title	Web Link
1	HDFS	https://docs.cloudera.com/documentation/enterprise/latest/topics/
		admin_hdfs_config.html
2	MapReduce	https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-
		mapreduce-client/hadoop-mapreduce-client-
		core/MapReduceTutorial.html
3	Spark	https://docs.cloudera.com/documentation/enterprise/latest/topics/

B. TOPICS FOR SELF-STUDY

		spark.html
4	Pig	https://docs.cloudera.com/documentation/enterprise/5-9-
		<u>x/topics/cdh_ig_pig_installation.html</u>
5	Hive	https://docs.cloudera.com/documentation/enterprise/5-8-
		<u>x/topics/hive.html</u>

C. TEXT BOOKS

- Michael Minelli, Michele Chambers and Ambiga Dhiraj. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, 1ed, Wiley CIO Series, 2013. ISBN 9781118147603
- 2. Tom White Hadoop: The Definitive Guide, Fourth Edition, O'reilly Media, 2015.
- 3. Six Elements of Securing Big Data. MapR Ebook https://mapr.com/big-data-security-6-elements/

REFERENCES

- 1. Nathan Marz and James Warren, Big Data Principles and Practice of Scalable Real Time Data Systems, Manning Publications. 2015
- 2. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007
- 3. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, John Wiley& sons, 2012.
- 4. Glenn J. Myatt, Making Sense of Data, Volume I and II. John Wiley & Sons, 2007.
- 5. Mark Grover, Ted Malaska, Jonathan Seidman, Gwen Shapira. Hadoop Application Architecture, Shroff Publishers.2015
- 6. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGrawHill Publishing, 2012.

Unit	Торіс	Topic Learning Outcome	Level			
Ι	Introduction to Bi	ntroduction to Big Data				
1.1	What is Big data	Why need to handle big dataset	K1			
1.2	Industrial	Outline big data in marketing	K2			
	examples of Big					
	Data: Digital					
	Marketing					
1.3	fraud, risk	List the usage of the big data in fraud, risk management.	K1			
	management					
1.4	trading	Explain time to time data analysis	K1			
1.5	healthcare,	Why big data in healthcare	K1			
1.6	medicine	How big data is in medicine	K1			
1.7	advertising	How to advertise with big data	K1			
1.8	Big Data	Discover storing data and running applications on	K4			
	Technology:	clusters of commodity hardware.				
	Hadoop					
1.9	Cloud	Build on demand services using internet.	K3			
1.10	BI	Survey information retrieval from available huge amount	K4			
		of data				
1.11	crowdsourcing	Develop outsourcing for quality and to handle large	K3			
	analytics	amount of data				
1.12	Business	Build statistical report by business analytics.	K3			
	Analytics					
II	MapReduce-I and	HDFS				
2.1	MapReduce	Create combined report for weather from shuffler.	K6			

	model: Weather		
	dataset		
2.2	Analyzing data with Hadoop	Analyze a huge collection of data that comprises both structured data found in traditional databases and unstructured data like text documents, video and audio.	K4
2.3	Combiner functions	Assess an optional class that operates by accepting the inputs from the Map class and thereafter passing the output key-value pairs to the Reducer class.	K5
2.4	Hadoop streaming with Python.	Create stream using programming language that can read from standard input and write to standard output.	K6
2.5	Hadoop Distributed File System: Block	Create sequence of blocks from file which is to store.	K6
2.6	Namenode	Develop the centerpiece of an HDFS file system. It keeps the directory tree of all files in the file system, and tracks where across the cluster the file data is kept. It does not store the data of these files itself.	К3
2.7	Datanode	Build a DataNode stores data in the [Hadoop File System]. A functional filesystem has more than one DataNode, with data replicated	K3
2.8	Caching	Plan the Centralized cache management which is an explicit caching mechanism that allows users to specify paths to be cached by HDFS.	K3
2.9	File system operations in command line	Make use of HDFS command for import file and mapreduce	K3
2.10	Java Interface to Basic Hadoop	Adapt java interface for implement FileSystem represents like client interface to a filesystem in Hadoop, and there are several concrete implementations	K6
2.11	Reading data and writing data	Criticize WORA(Write once Read many) models	K5
2.12	Anatomy of File Write	Define file format	K1
III	MapReduce-II		
3.1	Steps of developing MapReduce application	Divide MapReduce as three stages, namely map stage, shuffle stage, and reduce stage.	K4
3.2	Working of MapReduce: Running Jobs	Create mapper's jobs to process the input data.	K6
3.3	failure	Determine TaskTracker to marks the task when failed.	K5
3.4	Shuffle and sort	Create shuffler for transfer mapper intermediate output to the reducer	K6
3.5	Task execution	Create task from MapReduce for parallel processing	K6
3.6	MapReduce Types: Input formats	Select different input format for block.	K5
3.7	Output formats	Select different output format for Shuffler and reducer.	K5
3.8	MapReduce features: Counters	Measure occurrences of any events.	K5

3.9	Sorting	Build sorting algorithm to automatically sort the output key-value pairs from the mapper by their keys	K6
3.10	Joins	Select join for map the partitioned and sorted according	K5
5.10	Johns	to the keys.	110
IV	Exploring large da	atasets using Pig	
4.1	Structure	Use pig structure for data processing	K1
4.2	Statements	List pig statements for data processing	K1
4.3	Expressions	Use Pig expression to manipulate data.	K1
4.4	Types	Examine four types of data model	K4
4.5	Schemas,	Define dataset schema.	K1
4.6	Functions	Use EVAL functions, Math functions, String functions and Pig built-in functions for data processing	K1
4.7	Macros	Create the code modular and makes Pig Latin code shareable	K6
4.8	User-Defined Functions: Filter UDF	Create UDF for conditions in filter statements in data processing and return Boolean value.	K6
4.9	Eval UDF	Create UDF for FOREACH-GENERATE in data processing	K6
4.10	Load UDF	Create UDF Load function top on Hadoop for	K6
		InputFormat to read data.	
4.11	Data Processing	Elaborate Load Operator and Store Operator for Reading	K6
	Operators:	and Storing Data.	
	Loading and		
	Storing Data		
4.12	Filtering Data	Select the required tuples from a relation based on 'condition'.	K5
4.13	Grouping and	Make up cluster of data using group.	K6
	Joining Data	Create Combine record using Join.	
4.14	Sorting Data	Create data in systematic order like ascending or	K6
		descending order.	
4.15	Combining and	Select combine for join two or more relations.	K6
	Splitting Data	Select Split to split two or more relations.	
V	Data Warehousing	g using Hive	
5.1	Comparison with Traditional Databases	List difference between RDBMS and HIVE	K1
5.2	HiveQL: Data Types	Use Hive data types	K1
5.3	Operators and	Recall Hive operations operators and functions for data	K1
	Functions	storage	
5.4	Tables:Managed	Create Hive vertical table for manipulate data.	K6
	Tables and	Describes the metadata / schema on external files using	
	External Tables	hive	
5.5	Partitions and	Create partitions and these partitions can be further	K6
	Buckets	subdivided into more manageable parts known as	
		Buckets or Clusters.	
5.6	Storage Formats	Compose storage format for input block from HDFS	K6
5.7	Importing Data	Create a directory in HDFS to hold the file and import CSV files into Hive tables.	K6
5.8	Altering Tables	Change the existing table like table name, column name,	K6

		comment, and table properties.	
5.9	Dropping Tables	Delete the table/column data and their metadata	K6
5.10	Querying Data:	Create Querying data for sorting using Order By	K6
	Sorting and	Create aggregate using AVG, SUM, or MAX functions.	
	Aggregating		
5.11	MapReduce	Create Hive script using gedit for MapReduce	K6
	Scripts		
5.12	Joins	Select query for join two or more tables	K5
5.13	Subqueries	Create a subquery for evaluated and returns a result set.	K6
5.14	Views	Evaluate user requirements by generating views.	K6
5.15	User-Defined	create custom functions to process records or groups of	K6
	Functions:	records	
	Writing a UDF		
5.16	Writing a UDAF	create custom Aggregate functions to process records or	K6
		groups of records	
5.17	6 Elements of Big	Justify big data security by the use of six steps.	K5
	Data Security		

4. Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Η	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Η	Η	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Η	Η	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. B. Karthikeyan

CORE IX: SOCIAL MEDIA ANALYTICS					
Semester	III	Hours/Week	4		
Course Code	P21DS309	Credits	4		

1. Course Outcomes

On successful completion of this course, students will be able to:

CO#	Course Outcome	Level	Unit
1	Explain the essentials of graphs for social networks	K6	Ι
2	Measure social network nodes and simulate social network models	K6	II
3	Evaluate the community analysis of social networks	K6	III
4	Measure and model information diffusion and homophily in social	K6	IV
	networks		
5	Develop recommender systems and predict user behaviours	K6	V
6	Build and deploy end to end products into production environment	K6	All

2. A. SYLLABUS

Unit-1. Introduction to SMM and Graph Mining

What is social media mining – New challenges for mining. Graph Essentials: Graph basics – Graph representation – Types of graphs – Connectivity in graphs – Special graphs – Graph algorithms

Unit-2. Social Network Models

Network Measures: Centrality – Transitivity, reciprocity – Balance and status – Similarity. Network Models: Properties – Random graphs – Small world models – Preferential attachment model

Unit-3. Data Mining Basics and Community Discovery

Data Mining Essentials: Data Preprocessing – Supervised Learning Algorithms – Unsupervised Learning Algorithms. Community Analysis: Community detection – Community evolution – Community evaluation

Unit-4. Information Diffusion and Influence in Social Media

Information Diffusion: Herd behaviour – Information cascades – Diffusion of innovations – Epidemics. Influence and Homophily: Measuring Assortativity – Measuring and modelling influence – Measuring and modelling homophily – Distinguishing influence and homophily

Unit-5. Recommendation and Behaviour Analysis in Social Media

Recommendation in Social Media: Challenges – Classical recommendation algorithms – Recommendation using social context – Evaluating recommendations. Behaviour Analysis: Individual behaviour – Collective behaviour. Events Analytics in Social Media.

SNo	Topic Title	Web Link
1	Creating graphs using	https://www.analyticsvidhya.com/blog/2018/09/introduction-
	NetworkX for Airline data	graph-theory-applications-python/
	set	
2	Implementation of Movie	https://www.geeksforgeeks.org/python-implementation-of-
	recommender system	movie-recommender-system/
3	Diving into GraphQL and	https://medium.com/elements/diving-into-graphql-and-neo4j-
	Neo4j with Python	with-python-244ec39ddd94
4	DataCamp Network	https://www.datacamp.com/courses/introduction-to-network-
	analysis using Python	analysis-in-python

B. TOPICS FOR SELF STUDY

C. TEXT BOOK(S)

1. Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Social Media Mining: An Introduction, Cambridge University Press, 2014

D. REFERENCES BOOKS

- 1. Matthew A. Russell. Mining the Social Web. 3rd Edition. O'Reilly Media. 2019
- Jennifer Golbeck. Analyzing the Social Web. Morgn Kaufmann. 2013. ISBN 978-0124055315
- Ricardo Baeza-Yates and BerthierRibeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind Search. 2ed. ACM Press Books, 2011. ISBN 978-0321416919
- 4. Charu C. Aggarwal. Social Network Data Analytics. Springer. 2011

E. WEB LINKS

- https://medium.com/elements/diving-into-graphql-and-neo4j-with-python-244ec39ddd94
- <u>https://www.geeksforgeeks.org/python-implementation-of-movie-recommender-system/</u>

Unit	Торіс	Topic Learning Outcomes	Level			
Ι	Introduction to SMM and G	raph Mining				
1.1	Challenges and methodologies for mining	Identify challenges and methodologies for social media mining	K1			
1.2	Types of SM and marketing opportunities that exist in SM	List social media types and identify marketing opportunities	K2			
1.3	Graph basics	Compute degree and degree distribution of directed and undirected graphs	K3			
1.4	Graph representation	Find adjacency list and edge list Given these lists, create a graph	K4 K6			
1.5	Types of graphs	Given business problem, create weighted and signed graphs for the social network	K6			
1.6	Connectivity in graphs	Find all connectivity in graphs and compute diameter	K4			
1.6	Special graphs	Create various special graphs such as MST, Steiner tree, planner graph, bipartite graph and regular graph for the given business problem	K6			
1.8	Graph traversals	Apply BFS and DFS traversal methods for the given social network	K3			
1.9	Shortest path algorithms	Compute shortest paths using Dijkstra's and Prim's algorithms based on the business use case	K3			
1.10	Network flow algorithms	Analyze maximum messages a social network can handle. Analyze maximum matching between products and users.	K4 K4			
II	Social Network Measures and Models					
2.1	Centrality measures	Apply centrality measures and predict the most central important nodes from social networks	K6			
2.2	Transitivity	Apply transitivity measures and analyse linking behaviour of nodes	K4			
2.3	Reciprocity	Analyze reciprocity of the given social network	K4			
2.4	Balance and status	Determine consistency of relationship in signed	K6			

		graphs	
		Apply similarity measures and predict similar nodes	
2.5	Similarity measures	in a social network	K6
2.6	Properties of real world networks	Discuss the properties of real world networks	K6
2.7	Random graph model	Discuss the types, evolution and properties of random graph model	K6
2.8	Small world model	Discuss the properties of small world model Compare the properties of random graph and small world models	K6
2.9	Preferential attachment model	Discuss the properties of small world model Compare the functionalities of random graph, small world and preferential attachment models Figure out the differences between random graphs,	K6 K4
		regular lattices, and small-world models	174
III	Data Mining Basics and Cor	nmunity Discovery	
3.1	Data pre-processing steps	Given a business problem, identify various features Explain data pre-processing steps, given a use case Select a ML methodology based on the given	K1 K2 K4
3.2	Decision tree learning	Create a decision tree given a dataset representing the use case	K6
3.3	Naïve bayes classifier	Create a Naïve bayes classifier given a dataset representing the use case	K6
3.4	Nearest neighbour classifier	Create a KNN classifier given a dataset representing the use case	K6
3.5	Supervised learning evaluation methods	Compare the evaluation measures for supervised ML classifiers	K4
3.6	KMeans clustering	Predict clusters using KMeans given an use case	K6
3.7	Unsupervised learning evaluation methods	Evaluate quality of clusters from unsupervised ML classifiers	K6
3.8	Member based community detection	Detect communities by applying node similarity, node degree and node reachability methods	K4
3.9	Group based community	Discuss the methods to detect group communities	K2
3.10	Community evolution	Explain how communities evolve over time in social networks	K2
3.11	Community evaluation	Given members of communities, analyze precision, recall, Fscore, purity and NMI measures	K4
IV	Information Diffusion and I	nfluence	
4.1	Information and the	Given a network with activation probabilities, analyse final set of activated nodes using ICM	K4
4.1	Information cascades	Describe the independent cascade model Explain the objectives of cascade maximization	K2 K4
4.2	Diffusion of innovations	Compare innovation diffusion models	K4
		Discuss the mathematical relationship between the SIR and the SIS models Defend why in SIR model, the probability that an	K6 K6
4.3	Epidemics	individual remains infected follows a standard exponential distribution	K3
		Compute in SIRS model, the length of time that an infected individual is likely to remain infected before	K4

		he or she recovers Given a business or societal problem select the	K6										
		appropriate information diffusion model	K 0										
		Sumarize intervention approaches for information											
		diffusion models											
4.4	Maggyming Aggentativity	Compute assortativity for ordinal and nominal	V2										
4.4	Measuring Assortativity	attributes of social network nodes	К3										
15	Magguring influence	Illustrate the types of influence measures in	V A										
4.5	Measuring influence	blogosphere and twitter	K 4										
16	Modelling influence	Select all activated nodes with Linear Threshold	KA										
4.0	Wodening initialice	Model	Λ4										
17	Measuring homophily	Estimate homophily for nominal and ordinal	K6										
4.7	Weasuring noniophity	attributes in a social network	KU										
18	Modelling homophily	Explain the variation of independent cascade model	КЛ										
7.0	wodening noniophity	to model homophily	114										
49	Distinguishing influence and	Determine the source of assortativity in social	K6										
т.)	homophily	networks	K 0										
V	Recommendation and Behav	viour Analysis											
5.1	Challenges of recommender systems	Describe the challenges of recommendation systems	K1										
5.0	Content based	Differentiate content-based recommendation from	17.4										
5.2	recommendation system	collaborative filtering	K4										
5.2	User based collaborative	Due l'est missione metine merine mere hand CE	VC										
5.5	filtering	Predict missing ratings using user based CF	KO										
5.4	Item based collaborative filtering	Predict the most similar items using item based CF	K6										
5.5	Model based collaborative filtering	Predict ratings and items using SVD based CF	K6										
= <	Group based		IZO										
5.6	recommendation	Find and recommend items to group of users	К3										
		Predict ratings and items leveraging social context											
57	Recommendation using	Provide examples where social context can help	K6										
5.7	social context	improve classical recommendation algorithms in	K3										
		social media											
50	Evaluation of recommender	Evaluate the accuracy of predictions	V5										
5.8	systems	Evaluate the accuracy of predictions	КЭ										
5.0	Evaluating relevancy of	Evaluate the valence of recommendations	V5										
5.9	recommendation	Evaluate the relevancy of recommendations	КЭ										
5 10	Evaluating ranking of	Evaluate the contrine of recommendations	V5										
5.10	recommendation	Evaluate the ranking of recommendations	КJ										
	Individual behaviour	List the features for User Community-Joining											
5 1 1	analysis modelling and	Behavior	K1										
5.11	nrediction	Explain the methods for predicting individual	K4										
	prediction	behaviours											
	Collective behaviour	Outline a method for predicting Roy office Revenue											
5.12	analysis, modelling and	for Movies	K5										
	prediction												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
------------	------------	-----	-----	-----	-----	-----	------------	-----	------------	------	------	------	------
CO1	Η	Μ	Η	Η	Η	Η	-	-	Μ	Н	Н	Μ	-
CO2	Μ	Η	Μ	Η	Μ	Μ	-	Μ	Μ	Μ	Μ	-	-
CO3	Η	Μ	Η	Η	Η	Η	-	-	Η	Н	Μ	-	-
CO4	Η	Η	L	Η	Μ	Η	-	Μ	Η	Н	Н	-	
CO5	Η	Μ	Η	Μ	Η	Η	-	-	Μ	Н	Н	-	-
CO6	Η	Η	Η	Μ	Μ	Η	Η	-	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator: Dr. M. Lovelin Pon Felciah

ELECTIVE IV: COMPUTER VISION					
Semester	III	Hours/Week	4		
Course Code	P21DS3:4	Credits	4		

After the successful completion of this course the students will be able to

S. No.	Course Outcomes		Unit
1	Learn image coordinates, transformations and image processing concepts	K2	Ι
2	Apply feature and edge detection methods	K3	II
3	Apply image and video understanding methods on humans	K3	III
4	Apply image alignment and stitching methods on 2D and 3D images	K3	IV
5	Understand and apply motion and pose estimation methods for images	K2	IV
6	Understand the applications of computer vision	K2	V

2. A. SYLLABUS

Unit-I

What is Computer Vision? - Geometric primitives and transformations – Sampling and aliasing – Color spaces. Image processing: Point operators - Linear filtering – Nonlinear filtering – Bilateral filtering - Interpolation - Geometric transformations

Unit-II

Feature detection and matching: Feature detectors, descriptors, matching and tracking – Edge detection - Contour detection - Contour tracking - Image segmentation using Normalized cut

Unit-III

Image recognition: Bag of words feature based image classification - Face recognition - Face detection - Pedestrian detection - Instance segmentation - Panoptic segmentation - Pose estimation - Video understanding using neural networks - Image captioning - Text to image generation

Unit-IV

Image alignment and stitching: 2D image alignment – RANSAC - 3D image alignment. Image stitching: Parametric motion models - rotational panoramas

Unit-V

Motion and pose estimation: Hierarchical motion estimation - Parametric motion models - Spline based motion - Optical flow: Two frame motion estimation, Multi frame motion estimation. Video object segmentation - Video object tracking - Pose estimation: Linear algorithms, iterative algorithms

S.No.	Topics	Web Links
1	Image Annotation	https://blog.roboflow.com/vgg-image-annotator/
2	From Traditional Vision to Deep Learning	https://nptel.ac.in/courses/106/106/106106224/
3	Homography Properties	https://nptel.ac.in/courses/106/105/106105216/

B. TOPICS FOR SELF-STUDY

4	Video Understanding using CNN and RNN	https://nptel.ac.in/courses/106/106/106106224/
5	Beyond Image Captioning	https://nptel.ac.in/courses/106/106/106106224/

C. TEXT BOOKS

1. Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2021. ISBN 978-3030343712

D. REFERENCES BOOKS

- 1. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, NY. 2006
- Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2019). Dive into deep learning. Corwin Publishers. 2019 Brown, M. S. ICCV 2019 tutorial on understanding color and in-camera image processing pipeline for computer vision. 2019. https:// www.eecs.yorku.ca/~mbrown/ICCV2019_Brown.html

E. WEB LINKS

- 1. . https://www.coursera.org/learn/introduction-computer-vision-watson-opencv
- 2.https://www.coursera.org/learn/advanced-computer-vision-with-tensorflow
- 3. https://www.coursera.org/learn/deep-learning-in-computer-vision
- 4. https://www.kaggle.com/dansbecker/intro-to-dl-for-computer-vision
- 5. https://www.edx.org/learn/computer-vision
- 6. https://www.udacity.com/course/introduction-to-computer-vision--ud810

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Course Content	Learning outcomes	Blooms Taxonomy Level of Transaction
Ι			
1.1	Computer Vision	Describe Computer Vision and its applications	K2
1.2	Geometric primitives	Use geometric primitives to detect simple geometric shapes present inside an image.	К3
		Determine x,y coordinate values of rectangle from image having rectangle on it	K6
		Identify shape within shape from the image using geometric shapes	K4
1.3	2D transformations and 3D transformations	Verify the 2D Translation of a triangle with dx=a and dy=b by considering the point of a triangle $a(x1,x2)$, $b(y1,y2)$, c(z1,z2).	K6
		Construct a python CV code to implement 3D object that have coordinates points P ($x1$, $x2$, $x3$), Q ($y1$, y2, $y3$), R ($z1$, $z2$, $z3$), T (1 , 1 , 1) and the scaling parameters are 3 along with x- axis, 4 along with y-axis and 4 along with z-axis. Apply scaling to find the new coordinates of the object	К5

		Apply the scaling parameter 2 towards X axis and 3 towards Y axis and obtain the new coordinates of the object for the given object with coordinate points A (0, 3), B (3, 3), C (3, 0), D (0, 0).	К3
		Invent the new pixel position for the point has coordinates in the x, y, z direction i.e., $(x1, x2, x3)$. The translation is done in the x-direction by 3 coordinate and y direction by 3 coordinates and in the z- direction by two coordinates.	К5
		Use 3D geometric transformation for the given 3D object with coordinate points A(0, 3, 1), B(3, 3, 2), C(3, 0, 0), D(0, 0, 0). Apply the translation with the distance 1 towards X axis, 1 towards Y axis and 2 towards Z axis	К3
		Find the translated pixel for a polygon with three point $A=(2,5)$, $B=(2,10)$ and $C=(10,2)$ with tx=2 and ty-2.	K1
1.4	3D rotations 3D to 2D projections	Illustrate the 3D rotation of a triangle for the given coordinate (2,2),(8,2),(5,5) and rotated by 90 degree	К3
		Invent the new coordinates of the point P (2, 3, 4) in x, y, z-direction and the Rotation angle is 180 degrees using 3D rotation in x, y, z direction.	K5
		Construct horizontal projection of binary image in OpenCV	K5
		Design a vertical and Horizontal image projection using Python CV	K5
1.5	Lens distortions	Construct the Python CV code to removing lens distortion effects from an image	K5
1.6	Sampling and aliasing	Analyze the effect of up sampling, down sampling and aliasing over the image in digitization process	K5
1.7	Color Spaces	Describe the representation of three-color components red, green and blue for the given color image	K2
1.8	Point operators - Pixel transforms	Justify your answer can two different images have the same histogram	K6
		Determine Histogram processing is called as an efficient tool for graphical representation of the total distribution in a given digital image	K6
		Describe the gamma correction for the given color image for different values of gamma and comment on the output result.	К2
1.9	Color transforms	Justify the result for the color transform model to read the color image. Convert the RGB format to YIQ format (NTSC).	K6

		Filter only the Y component (high-pass	
		filtering) Do not disturb the I and O	
		components Now convert the filtered V	
		components. Now convert the intered i	
		component, I component and q	
		component back to the KGB format and	
		check the result	
		Formulate the HSI coordinates from the	К5
		given color image represented in terms of	
		RGB components	
1.10	Compositing and matting	Compose two images according to a given mask image using Python script	K5
		Design a python script to performs alpha	К5
		blending and masking of different types	IX.J
		image	
1 1 1	Histogram equalization	Europein the Histogram Equalization of	VL
1.11	A subjections Taxal	Explain the Histogram Equalization of	K0
	Application: Tonal	automatic contrast and brightness	
	adjustment	adjustment of a color photo.	
1.12	Linear filtering - Separable	Analyze the impact of convolving the	K4
	filtering	image with the mask that performs	
	C	averaging operation which results in	
		blurring the image	
1.13	Examples of linear filtering	Verify the smoothing behavior of	K6
		Gaussian filter with varying levels of	
		smooth factor σ .	
1 14	Band-pass and steerable	Examine the significance of a low pass	К3
1.1.1	filters	filter over pass hand as it allows a signal	113
	inters	with a frequency range zero to cut off	
		with a frequency range zero to cut off,	
		Isn't it a kind of pass band filter.	IZ O
		Apply Band-pass filtering using (DOG)	K3
		Difference of Gaussians to smoothen the	
		image	
		Construct a Band pass filter from a low	K5
		and high pass filter	
1.15	Interpolation	Create a Python CV script to perform	
		interpolation for the slanting tower	K5
		picture to straighten by rotate it with	
		suitable angle and crop the image to	
		eliminate non defined region. Show the	
		initial and final images and the correction	
		applied (in degrees).	
		Use Nearest Neighbor interpolation for	К3
		the Image of 3X3 nixel (total 9 nixels)	
		to increase the size of image up to 6X6	
		and pixels should have the same DCD	
		value of the nivel in original	
		value as that of the pixel in original	
		Innage.	U O
		Apply bicubic interpolation to the 2×2	K3
		image and upscale it by a factor of 2	
		Explain Resizing of images in Open CV	К3
		python using different interpolation	
		methods	
		Apply bilinear interpolation to the 2×2	K3
		image and upscale it by a factor of 2	

1.16	Geometric transformations	Apply an affine transformation to the image which combines several of these operations scaling, translation and	K3
1.17	Non-linear filtering	rotationAnalyze median filter vs, an averaging	K4
	Bilateral filtering	filter for the Original 5×5 test image	
		having impulsive noise added (middle	
		filter with boundary values extended	
		symmetrically. Notice how this filter,	
		while reducing the effect of the shot	
		noise, spreads the error and greatly	
		attenuates the effect of the sharp edge in	
		the original image.	17 5
		Create a code to removing impulse noise from the Lenne image using the median	К5
		filter Lenna with 40% additive impulse	
		noise.	
		Analyze the Image erosion and dilation	K4
		after two passes of a 3×3 minimum filter	
		and Image after two passes of a 3×3	
		maximum filter.	170
		Use Bilateral filtering to perform	K3
1 18	Parametric transformations	Apply parametric transformation to	К3
1.10		detect deformable contour in the image	K5
1.19	Mesh-based warping	Design a code to morphing two different	K5
	Application	human faces using mesh based wraping	
1.20	Feature-based morphing	Apply Morphing techniques for	K4
		manipulating two image shapes using	
т	EE A TI	Image reatures	
2.1	FEATURE detectors	Use feature point detector to detect evel	K3
2.1	Feature descriptors	and mouth portions of hand-drawn	110
	L	sketch with their overlaid control lines	
		Compare one or more key point detectors	K4
		and their performance	
		Determine which part of the image has a	K6
		large variation in intensity as corners by	
		image using Harris Corner Detector	
		Apply SIFT to detect corners, blobs,	K3
		circles in an image	
		Design an Adaptive non-maximal	K6
		suppression (ANMS) for homogeneous	
		spatial key point distribution	TZ A
		Multiscale oriented patches using RRICK	K 4
		algorithm	
		Apply Affine invariance feature point	К3
		detection to detect key point from an	
		image	
		Design a code to Detect uniform intensity	K2
		region using MESR Algorithm	

2.2	Feature matching	Describe Point Matching for computing	K2
	Feature tracking	disparity between images	
		Explain Detection and matching feature	K3
		points across neighboring frames and	
		chain them into feature tracks.	
		Apply nearest neighbor matching to	K3
		match image features using nearest	
		neighbor distance ratio	
		Illustrate an optimal 2D translation and	K3
		rotation between the first image and all	K5
		subse quant images using least squares	
		with RANSAC for robustness	
		Explain Resample of all the images onto the	К3
		first image's coordinate frame using either	115
		bilinear or bicubic resampling and	
		optionally crop them to their common	
		area.	
		Explain matching of features between	K3
		images using Euclidian distance	
		Discuss Brute-Force Matching with SIFT	K6
		detector	
		Design Face recognition using feature	K5
		matching	
		Discuss Feature tracking using affine	K4
		motion model	
2.3	Edge detection	Discuss the effect of first order derivative	K4
		gradient operators for edge detection	
		Create a python script to detect edges	K5
		with RANSAC	TZ C
		Invent the discontinuity in the image	КЭ
		and give justification why it outperforms	
		then gradient edge detectors	
		Discuss the behavior of the second order	К2
		Derivative for a step and ramp edges	112
		Construct the LOG filter to detect	К3
		isolated points and line in an image	
		Explain Color edge detection using	К3
		gradient operator	
2.4	Edge linking	Apply Chain code approximation method	K3
	-	of edge linking	
		Discuss Matching of two contours using	K2
		arc length parametrization	
		Examine the edge points in an image that	K3
		lie along the straight line or circle using	
		Hough Transform	
2.5	Application: Edge editing	Create a python script to restore images	K5
	and enhancement	by enhancing the edges using the	
		tollowing	
		1) gradient operator	
		11) LUG operator	
26	Contour datastian	Determine that in the channel of outcome!	VL
∠.0	Contour detection	Determine that, in the absence of external	V 0

	Contour tracking	forces a snake will always shrink to a	
	Contour tracking	small circle and eventually a single point	
		small choice and eventually a single point,	
		regardless of whether first or second	
		order smoothness (or some combination)	
		is used in a snake-based contour tracker	
		Discuss whether to use a large number of	K2
		contour points or a smaller number	
		interpolated with a B-spline.	
		Apply Active contour snake model to	К3
		detect contour in medical images	110
		Design a Dython CV Script to implement	V5
		Design a Fython CV Script to implement	КJ
		Active shape model to detect shape of	
		objects which iteratively deform to fit to	
		an image	
		Discuss Dynamic snake and condensation	K2
		model for contour detection	
		Explain Interactive Segmentation with	K3
		Intelligent Scissors	_
		Discuss Level Set Segmentation of	K6
		Madical Imagos Based on Local Pagion	KO
		Medical images based on Local Region	
		Statistics and Maximum a Posteriori	
		Probability	
2.7	Image segmentation using	Apply region segmentation to a video	K3
	normalized cut	sequence and use it to track moving	
		regions from frame to frame.	
		Describe similarity graph-based	K2
		segmentation	
		Apply normalized cut criterion to	К3
		measures both the total dissimilarity	110
		between the different groups as well as	
		the total similarity within the groups	
		the total similarity within the groups.	17.0
		Apply GMM segmentation to a video	K3
		sequence and use it to track moving	
		regions from frame to frame.	
III		IMAGE RECOGNITION	
3.1	Face Detection	Determine the size and location of human	
		faces in an arbitrary digital image using	K6
		Segmentation Techniques	
3.2	Bag of Words	Apply the feature extraction and matching	
0.12		to category (class) recognition	
		Download the training and test images	
		from one or more of the detabases a g	
		Coltach 101 Coltach 256 or DASCAL	
		VOC	
		Extract features from each of the training	
		images, quantize them, and compute the <i>tf</i> -	K3
		<i>idf</i> vectors (bag of words histograms).	115
		Choose a classification algorithm (e.g.,	
		nearest neighbor classification or support	
		vector machine) and "train" recognizer.	
		i.e., build up the appropriate data	
		structures (e.g. k-d trees) or set the	
		appropriate classifier parameters	
		Test the algorithm on the test data set	
		rest me argorithm on the test that set	

	-		
		using the same pipeline developed in steps2–4	
3.3	Pedestrian detection	Use OpenCV built-in methods to perform pedestrian detection	К3
		Apply OpenCV pre-trained HOG + Linear SVM model that is used to perform pedestrian detection in both images and video streams	К3
3.4	Face recognition	Identify human face using eigen faces model to build face recognition system	K4
		Identify human face using eigen faces model to build Bayesian face recognition	K4
		Choose a set of facial photographs then detect a face to build face recognition system using i) PCA face subspace ii) multi-resolution neural network iii) boosting based on simple area features, with an optional cascade of detectors	K6
		Construct a python script to detect human using Active appearance and 3D shape model	K3
3.5	pose estimation	Devise a mean-shift segmentation algorithm for color images (Convert image to $L^*a^*b^*$ space, or keep the original RGB colors, and augment them with the pixel (<i>x</i> , <i>y</i>) locations. For every pixel (<i>L</i> , <i>a</i> , <i>b</i> , <i>x</i> , <i>y</i>), compute the weighted mean of its neighbors. Weight the color and spatial scales differently	K5
3.6	Instance recognition Geometric alignment	Use the feature detection, matching, and alignment algorithms to find matching between images for the given query image or region.	К3
		Verify several feature detectors, descriptors, and robust geometric verification strategies, by comparing the results.	K6
3.7	Large databases	Apply feature detectors, descriptors on a large database and verify the result	K3
3.8	Video understanding using neural network	Design a program to stabilize an input video sequence using Neural Network by the following: Compute the translation and rotation between successive frames with robust outlier rejection. Perform temporal high-pass filtering on the motion parameters to remove the low- frequency component (smooth the motion).	K5

		Compensate for the high-frequency motion, zooming in slightly (a user- specified amount) to avoid missing edge pixels. Compute optical flow (spline-based or per-pixel) between two images.	
3.9	Image captioning Text to image generation	Apply CNN and RNN to Caption the scene around the Image Use the following dataset COCO, CUB, <u>Oxford 102 Flowers</u> to generate image from text caption	K3
		Design a Code to capture a picture of a magazine or book page from webcam. Outline a figure or picture on the page with a rectangle, i.e., draw over the four sides to appear in the image. Match features in this area with each new image frame. Replace the original image with an "advertising" insert, warping the new image with the appropriate homography.	K5
3.10	Panoptic segmentation	Create the kind of panograph with a series of interesting overlapping photos.	
		Use the feature detector, descriptor, and matcher developed to match features among the images.	К5
IV	IN	AGE STITCHING	
4.1	2D image alignment	Create a Feature-based image alignment for flip-book animations. Take a set of photos of an action scene or portrait (preferably in motor-drive continuous shooting mode) and align them to make a composite or flip-book animation.	К5
		Apply Pixel based alignment to search the alignment where most pixels are agreed using 2D transformation models	К3
		Design a Python Code to take a pair of images, compute a coarse-to-fine affine alignment and then blend them using either averaging or a Laplacian pyramid. Extend motion model from affine to perspective (homography) to better deal with rotational mosaics.	К5
		Apply Least square formulation to search the alignment where most pixels are agreed using 2D transformation models	К3
4.2	3D image alignment.	Explain Feature-based image alignment for flip-book animations T a k e a set of	K3

		photos of an action scene or portrait and	
		align them to make a composite or flip- book animation.	
		Apply Pixel based alignment to search the	К3
		alignment where most pixels are agreed	
		using D transformatio3n models	
4.3	RANSAC	Apply voting based fitting scheme	K3
		RANSAN Model to perform image	
		alignment	
		Use feature-based alignment with four-	
		point RANSAC forhomographies	
4.4	Image stitching	Construct a python CV code to	K5
		implement image stitching for the given	
		two images well stitch them together to	
		create a simple panorama single row	
		Design a python CV code to implement	K5
		image stitching for the given two images	
		well stitch them together to create a	
		simple panorama multi row	
		Construct a python CV code to	К5
		implement image stitching for the given	
		two images well stitch them together with	
		perspective preserving wrapping to create	
4.5		a simple panorama	17.5
4.5	Rotational panoramas	create full view panoramic mosaics from	KO
		Create image to cylindrical panoramas by	K5
		rotating Camera around center of its	
		origin	
V	MO	FION AND POSE ESTIMATION	
5.1	Hierarchical motion	Discuss Hierarchical motion estimation to	K4
	estimation	estimate motion from one level of	
		Implement and compare the	
		performance of the following correlation	
		algorithms	
		 sum of squared differences 	
		• sum of robust differences	
		• sum of absolute differences	
		• blas-gain compensated squared	
		 normalized cross-correlation 	
		 Fourier-based implementations of 	
		the above measures	
5 2		gradient cross-correlation	120
5.2	Parametric motion models	Explain motion estimation based on Equipier based alignment method	K3
	estimation	Design a code to decompose video	К5
		sequence of a scene	110
		Find the set of dominant (affine or	
		planar perspective) motions, either by	

		computing them in blocks or finding a robust estimate and then iteratively re- fitting outliers. Construct the layers by blending pixels from different frames.	
5.3	Spline based motion - Optical flow: Two frame	Explain Two-Frame Motion Estimation Based on Polynomial Expansion.	K3
	motion estimation, Multi	Discuss Spline-based flow estimation.	K2
	frame motion estimation	<i>Create a Python CV code to implement</i> <i>multiple</i> reference <i>frames</i> -based <i>motion</i> <i>estimation</i> technique for surveillance videos.	K4
5.4	Video object segmentation	Apply CNN to segment a target object through the video	K3
		Describe Primary object segmentation in videos based on region augmentation and reduction	K2
		Construct a code to implement Semi supervised video object segmentation	K5
		Construct a code to implement Multiple object segmentation	K5
5.5	Video object tracking	Design a code to segment a region of interest from video scene and track of its position, motion and occlusion	К5
		Apply Single Object tracking (SOT) using bounding box techniques to track real time video	К3
		<i>Determine the number of objects</i> in each frame using multi tracking model	K6
5.6	Pose estimation: Linear algorithms, iterative	Apply linear algorithm for pose estimation.	К3
	algorithms	Create Python CV code to estimate pose using iterative algorithm.	K5

4. MAPPING (CO, PO, PSO)

L-Low		M-Moderate							H- High				
Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Η	Η	М					М		М		
CO2	Η	Η	Μ	Н	Η	L	L		М	М		М	
CO3	Η	Η	Μ	Н	Μ						М		М
CO4	Η	Η	Μ	Н	Η	Μ	L		М		Н	Н	М
CO5	Н	Η	Н	М	Н	Н	Μ		М	М		Н	Н
CO6	Η	Η	Η	Μ	Η	Η			Η		Н		Μ

5.COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Prof. D. Indra Devi

CORE PRACTICAL VII: BIG DATA MANAGEMENT AND ANALYTICS LAB						
Semester	III	Hours/Week	5			
Course Code	P21DS3P7	Credits	2			

On successful completion of this course, students will be able to:

CO	Course Outcome	Level	Exercise
1	Develop applications using Hadoop	K6	1,2
2	Store and manipulate data using HDFS	K6	3
3	Data manipulation using MapReduce	K6	4,5 & 6
4	Explore very large datasets using Pig	K6	8,9
5	Perform Data Warehousing operations using Hive	K6	10
6	Perform data analytics using Spark	K6	7

2. LIST OF EXERCISES

Develop applications for the following tasks

- 1. Installation and setup of Hadoop
- 2. File management tasks in Hadoop
- 3. Benchmarking and stress testing on Hadoop cluster
- 4. Map Reduce applications for Word Counting
- 5. Stop word elimination using Map Reduce
- 6. Weather data analytics using Map Reduce
- 7. Perform data analytics using Spark
- 8. Perform sort, group, join, project, and filter operations on Pig
- 9. Design vector space model for text collection using Pig
- 10. Create, alter, and drop databases, tables, views, functions, and indexes on Hive

3. SPECIFIC LEARNING OUTCOMES

Exercises	Lab Exercises	Learning Outcome	Level
1	Installation and setup of	DFS,FS	K6
	Hadoop		
2	File management tasks in	Place files in DFS	K6
	Hadoop		
3	Benchmarking and stress	Write file in clustered Data Node	K6
	testing on Hadoop cluster		
4	Map Reduce applications for	Import jar file for MapReduce	K6
	Word Counting		
5	Stop word elimination using	Modify Word Count file as Word	K6
	Map Reduce	Elimination using Eclips	
6	Weather data analytics using	Process .csv file using MapReduce	K6
	Map Reduce		
7	Perform data analytics using	Spark using Scala	K6
	Spark		
8	Perform sort, group, join,	MapReduce using Apache Tez	K6
	project, and filter operations on		
	Pig		
9	Design vector space model for	PigLatin Script	K6
	text collection using Pig		
10	Create, alter, and drop	Data Warehousing	K6
	databases, tables, views,		
	functions, and indexes on Hive		

4. MAPPING (CO, PO, PSO) L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	H	Μ	Μ	-
CO2	Н	Μ	Η	Μ	Μ	Η	Μ	Μ	L	Η	Η	-	Μ
CO3	Н	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Η	Н	Η	Η	Μ	Μ	L	Η	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	H	Н	H	Μ
CO6	Н	Μ	Μ	L	Η	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. B. Karthikeyan

CORE VIII: SOCIAL MEDIA ANALYTICS LAB						
Semester	III	Hours/Week	5			
Course Code	P21DS3P8	Credits	2			

On successful completion of this course, students will be able to:

S. No.	Course Outcome	Level	Activity
1	Create data analytics systems using the data crawled from Twitter	K6	1 - 4
2	Create data analytics systems using the data crawled from Facebook	K6	5,6
3	Create data analytics systems using the data crawled from Linkedin	K6	7
4	Create data analytics systems using the data crawled from GitHub	K6	8, 9
5	Create data analytics systems using the data crawled from Instagram	K6	10, 11
6	Create data analytics systems on bigdata collections	K6	12-14

2. SYLLABUS

Activity	Lab Activity Description
1	Real time crawling of tweets from Twitter and predict trending words
2	Extracting text, screen names, and hashtags from tweets. Generating histograms of words, screen names, and hashtags from tweets
3	Sentiment analysis using nltk.sentiment
4	Creating a basic frequency distribution from the words in tweets. Also, finding the most popular tweets in a collection of tweets
5	Counting the total number of page fans from Facebook. Retrieving the Last N items from the feeds of a Facebook Page
6	Finding the number of likes, shares, and comments on a given Facebook post
7	Retrieving your LinkedIn profile and print your last name. Performing Clustering yourLinkedIn network based on locations of your connections
8	Clustering of job titles of LinkedIn Connections
9	Finding a list of people who have bookmarked a GitHub repo
10	Computing the degree, betweenness, and closeness centrality measures of a graph
11	Working with real time networks data using networkx
12	Detecting communities in large networks using networkx
13	Accessing Google Analytics Platform
14	Creating web apps using Streamlit and Heroku

3. SPECIFIC LEARNING OUTCOMES

Activity#	Lab Activity	Learning Outcome	Level
1	Twitter data analytics	Crawl tweets at real time from Twitter.	K6
1.		Predict trending words from crawled tweets	
	Twitter data analytics	Extract text, screen names, and hashtags from	K6
2.		tweets. Generate histograms of words, screen	
		names, and hashtags from tweets	
3.	Twitter data analytics	Perform Sentiment analysis using	K6
		nltk.sentiment	

4.	Twitter data analytics	Create a basic frequency distribution from the words in tweets. Also, find the most popular tweets in a collection of tweets	K6
5.	Facebook data analytics	Count the total number of page fans from Facebook. Retrieve the Last N items from the feeds of a Facebook Page	K6
6.	Facebook data analytics	Find the number of likes, shares, and comments on a given Facebook post	K6
7.	Linkedin data analytics	Retrieve your LinkedIn profile and print your last name. Perform Clustering your LinkedIn network based on locations of your connections	K6
8.	GitHub data analytics	Find a list of people who have bookmarked a GitHub repo	K6
9.	GitHub data analytics	Compute the degree, betweenness, and closeness centrality measures of a graph	K6
10.	Instagram data analytics	Display your profile picture from Instagram. Display the data of the most recent of your Instagram post	K6
11.	Instagram data analytics	Detect objects from images from Instagram posts	K6
12.	Bigdata analytics of Airline data	Find out nodes and edges	K6
13.	Bigdata analytics of Airline data	Find the shortest path	K6
14.	Design of recommender system for Movie data	Plot graph of ratings	K6

4.MAPPING (CO, PO, PSO)

L-Low			M-Moderate				H- High						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	H	Μ	Μ	L	Н	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. Janani Selvaraj

CORE LAB IX: PRINCIPLES OF DEEP LEARNING LAB							
Semester	III	Hours/Week	4				
Course Code	P20DS3P9	Credits	2				

On successful completion of this course, students will be able to:

S.No	Course Outcomes	Level	Activity
1	Develop Artificial Neural Networks using Perceptron	K6	1-3
2	Develop ANN using Multilayer Perceptron	K6	4-6
3	Create Custom datasets and develop ANN using MLP	K6	7-11
4	Develop Convolutional Neural Networks and advanced CNN	K6	12-15
5	Develop Recurrent Neural Networks, LSTM and GRU	K6	16-19
6	Develop and deploy deep neural networks as web / mobile service	K6	20

2. A. LIST OF EXERCISES

Activity	Lab Activity Description
1	Design of Artificial Neural Network (ANN) for logic gates in Python
2	Tensor operations in Numpy and Keras
3	Design of ANN for logic gates in Keras
4	Design of ANN for regression with hyper parameter tuning
5	Design of ANN for binary classification
6	Design of digits recognition artificial neural network
7	Image corpus creation and binary classification using ANN
8	Text corpus creation and binary classification using ANN
9	Multi-class Classification of Digits and Fashion Apparels using ANN
10	Exploration of NN design choices using MNIST and FMNIST dataset
11	Audio corpus creation and binary classification using ANN
12	Design of CNN for Image Classification using CIFAR-10 Dataset
13	Exploration of CNN design choices for Digit classification using MNIST
14	Digits image dataset creation and Transfer Learning in CNN
15	Design of CNN for Transfer Learning Using Pre-trained Models
16	Text dataset creation and design of RNN for sentiment analysis
17	Design of LSTM and GRU recurrent neural networks for IMDB dataset
18	Design of RNN for word embedding using NLP Pre-trained Models
19	Design of Transformers for machine translation
20	Deployment deep neural networks as web service or mobile service

B. TOPICS FOR SELF STUDY

S.No	Topic Title	Web Link
1	Deep Learning by Andrew Ng	https://www.coursera.org/specializations/deep-learning
2	Introduction to Tensorflow for Deep Learning	https://www.udacity.com/course/intro-to-tensorflow-for- deep-learningud187
3	Keras repository for Deep Learning	http://keras.github.com

4	Voice recognition and
	translation

3. SPECIFIC LEARNING OUTCOMES

Activity#	Lab Activity	Learning Outcome	Level
1	Design of Artificial Neural Network	Build ANN for logic gates	K6
	(ANN) for logic gates in Python		
2	Tensor operations in Numpy and	Perform Tensor operations in Numpy	K6
	Keras	and Keras	
3	Design of ANN for logic gates in	Build ANN for logic gates using	K6
	Keras	Keras	
4	Design of ANN for regression with	Build ANN for regression with hyper	K6
	hyper parameter tuning	parameter tuning	
5	Design of ANN for binary	Build ANN for binary classification	K6
	classification		
6	Design of digits recognition artificial	Build digits recognition artificial	K6
	neural network	neural network	
7	Image corpus creation and binary	Build system for image corpus	K6
	classification using ANN	creation and binary classification	
		using ANN	
8	Text corpus creation and binary	Build system for text corpus creation	K6
	classification using ANN	and binary classification using ANN	
9	Multi-class Classification of Digits	Build system for Multi-class	K6
	and Fashion Apparels using ANN	Classification of Digits and Fashion	
		Apparels using ANN	
10	Exploration of NN design choices	Explore NN design choices using	K6
	using MNIST and FMNIST dataset	MNIST and FMNIST dataset	TT <i>C</i>
11	Audio corpus creation and binary	Build system for Audio corpus	K6
	classification using ANN	creation and binary classification	
10	Desire of CNN for Long a	Using AINN Decilit contains for the decision of CNINI	VC
12	Design of CNN for Image	for Image Classification using	KO
	Datasat	CIEAP 10 Detect	
12	Exploration of CNN design aboves	Explore of CNN design choices for	K6
15	for Digit classification using MNIST	Digit classification using MNIST	KU
14	Digits image dataset creation and	Build system for digits image dataset	K6
14	Transfer Learning in CNN	creation and Transfer Learning in	KO
		CNN	
15	Design of CNN for Transfer	Build system for the design of CNN	K6
15	Learning Using Pre-trained Models	for Transfer Learning Using Pre-	IX0
		trained Models	
16	Text dataset creation and design of	Build system for text dataset creation	K6
	RNN for sentiment analysis	and design of RNN for sentiment	
		analysis	
17	Design of LSTM and GRU recurrent	Build system for the design of LSTM	K6
	neural networks for IMDB dataset	and GRU recurrent neural networks	
		for IMDB dataset	
18	Design of RNN for word embedding	Build system for the design of RNN	K6
	using NLP Pre-trained Models	for word embedding using NLP Pre-	
	_	trained Models	
19	Design of Transformers for machine	Build system for the design of	K6

	translation	Transformers for machine translation	
20	Deployment deep neural networks as	Deploy deep neural networks as web	K6
	web service or mobile service	service / mobile service	

4. MAPPING (CO, PO, PSO) L-Low

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	H	Μ	Μ	L	H	Μ	-	-	L	Μ	Μ	Μ	-
CO4	H	L	Н	Н	H	Н	Μ	Μ	L	Н	Μ	Μ	Н
CO5	Н	Μ	L	Н	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	H	Μ	Μ	L	Η	L	L	L	Μ	Η	Η	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 2. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 3. Pre/Post Test, Viva, Report for each Exercise.
- 4. Lab Model Examination & End Semester Practical Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. K. Rajkuamr

CORE X: PROGRAMMING USING JAVASCRIPT							
Semester	IV	Hours/Week	5				
Course Code	P21DS410	Credits	4				

After the successful completion of this course the students will be able to

CO #	Course Outcomes	Levels	Unit
1	Solve problems using the function programming features	K3	Ι
2	Apply OOP features to develop advanced Javascript code	K4	II
3	Demonstrate and apply Document Object Model and	K5	III
	asynchronous programs		
4	Develop interactive websites using HTML, Javascript and	K5	IV
	AJAX		
5	Create NoSQL databases and perform CRUD operations	K6	V
6	Connecting Mongoose for create databae	K6	V

2. A. SYLLABUS

Unit I: Functional programming

Values, Datatypes: let, const and var, Operators, type conversion and coersion – Expressions, Conditions, Control flow, Loops – Functions: scope, arrow functions, closure, side effects – Recursion

Unit II: Object oriented programming

Objects and Arrays – Higher order functions - Classes – Modules - Overriding, Polymorphism – Symbols, Iterators and Generators – Inheritance – Sets, Maps, Console - Errors, exceptions and assertions – Regular expressions

Unit III: Client-side programming - I

Modules - Asynchronous programming - Javascript and the browser: internet, web, HTML - DOM: document, trees, nodes, attributes, finding and searching, cascading styles, Positioning and animating

Unit IV: Client-side programming - II

Event Handling: Event handler, event and DOM nodes, event objects, propagation, event types – HTTP and Forms: HTTP protocol, Form fields: text, password, checkbox, radio, file, focus, Local storage.

Unit V: Database programming

Node.js: Calling modules, file system module, http module, streams, file server. Creating database using Mongoose – Performing CRUD Operations – Connecting Mongoose to MongoDB – Query processing

B. TOPICS FOR SELF-STUDY

S. No.	Topics	Web Links
1	Java Script	https://javascript.info/
2	Nodejs	https://nodejs.dev/learn/introduction-to-nodejs

C. TEXT BOOK

- 1. MarijnHavarbeke,EloquentJavascript,3ed,2018.https:eloquentjavascript.net/.ISBN: 978-1593279509
- 2. Mozilla Javascript Guide. https://developer.mozilla.org/en-US/docs/Web/JavaScript.

D. REFERENCE BOOK

- 1. David Flanagan, JavaScript The Definitive Guide, 7ed. Oreilly, 2020. ISBN 978-1491952023.
- 2. Ethan Brown, Learning Javascript, 3ed. Oreilly. ISBN 978-1491914915
- 3. Ethan Brown Web Development with Node and Express: Leveraging the JavaScript Stack, 2ed, 2020. ISBN 978-1492053514
- 4. Greg Lim, Beginning Node.js, Express & MongoDB Development, 2020, ISBN 978-9811480287

E. WEBLINKS

- <u>https://javascript.info/</u>
- https://nodejs.dev/learn/introduction-to-nodejs

3. SPECIFIC LEARNING OUTCOMES(SLO)

Unit/ Section	Торіс	Learning outcomes	Level
Ι	Functio	nal programming	
1.1	Values		
1.2	Datatypes: let, const and var	Identify different type data types.	K3
1.3	Operators	Assess the operation with operator	K5
1.4	Type conversion and coersion	How to make type conversions?	K1
1.5	Expressions	Evaluate fragment of code that produces a value	K5
1.6	Conditions		
1.7	Control flow	Justify top to bottom execution	K5
1.8	Loops	Examine iterative execution	K4
1.9	Functions: scope,	Construct the functions different visibility	K6
1.1.	Arrow functions	Classify Arrow function and Normal function	K4
1.11	Closure	Measure reusable states in closures keep the state of outer variables between the multiple function calls.	K5
1.12	Side effects	Modify state of external variable or object property	K6
1.12	Recursion	Assess the function that call by itself.	K5
II	Object ori	ented programming	
2.1	Objects and Arrays	Recommend how to save collection of values and list of values	K5
2.2	Higher order functions	Inspect the function that accepts functions as parameters and/or	K4

		returns a function	
2.3	Classes	Construct data and its accessing	K6
		code	
2.4	Modules	Test independent, reusable code	K6
		for building blocks.	
2.5	Overriding	Recommend which technique is	K5
2.0		used to invoke latest copy of the	110
		function between multiple	
		functions	
2.6	Symbols	Predict which is used to identify	K6
2.0	Symoons	object properties	110
2.7	Iterators and Generators	Recommend the concept of	K5
2.7		iteration directly into the core	IX.
		language and provide a	
		mechanism for customizing the	
		behavior of for of loops	
2.8	Inheritance	Determine the technique for	K5
2.0		methods from base class get	IXJ
		conjed into derived class	
2.0	Sets	Discover a collection of unique	K/
2.7		values	174
2.10	Mana	Determine the method to call a	V5
2.10	Maps	function once for each element in	КJ
		an array	
2.11	Consola	Inspect technique access to the	V A
2.11	Console	hispect technique access to the	Λ4
2.12	Emore	List different types of errors in	V A
2.12	EIIOIS	List different types of errors in Invescript	Λ4
2.12	avantions and assortions	Organiza runtima arrors and	K3
2.15	exceptions and assertions	boundaries	КЭ
2.14	Pagular avpragions	Evaluate a sequence of characters	<i>K</i> 5
2.14	Regular expressions	Evaluate a sequence of characters	КJ
		character combinations in strings	
		for text matching/searching	
TTT	Client sid	lo programming I	
2 1	Modulos	Tost indonendent reveable as de	V6
5.1	Modules	for building blocks	N0
2.0	A gynahronous programming	Formulate the things can harry	Ve
3.2	Asynchronous programming	romutate the things can happen	V0
		mappendentry of the main	
2.2	Interest of the head of	program now	VC
5.5	Javascript and the browser: web,	Discuss UKL parts and Build the	KO
2.4		Create a preserve intervention of the	VC
5.4	DOM: Document	Create a programming interface	KO
2.5		for web documents using COM.	VC
5.5	Trees, Nodes, and Attributes	Determine hierarchical Data	КО
2.5		structure	17.5
3.6	Finding and searching	Perceive how to search and find	КЭ
		the data in tree data structure	
3.7	Cascading styles	Assess CSS design in webpage	K5
3.8	Positioning and animating	Motive the web page to influence	K4
		layout in a powerful way	
IV	Client-side pr	ogramming - II	
4.1	Event Handling: Event handler	Plan to handle HTML events	K3

		using event handler	
4.2	Event and DOM nodes	Compile events that allow	K6
		JavaScript to register different	
		event handlers on elements in an	
		HTML document	
4.3	Event objects	Evaluate properties that describe	K5
		the event that occurred	
4.5	Propagation	Assess how events travel through	K5
		the Document Object Model	
		(DOM) tree.	
4.6	Event types	List the different types of events	K4
		in JavaScript	
4.7	HTTP and Forms: HTTP protocol	Discuss about communication	K6
		between web clients and servers.	
4.8	Password, checkbox, radio, and	List different components in Java	K4
	file	scripts	
4.9	focus	Recommend the method for	K5
		activate keyboard focus.	
4.10	Local storage	Discover the way to store mini	K4
		application in client.	
T 7	D 4 1 4		
V	Database	e programming	
v 5.1	Node.js: Calling modules	Explain complex functionality	K5
v 5.1	Node.js: Calling modules	Explain complex functionality which is used in Notejs	K5
v 5.1 5.2	Database Node.js: Calling modules file system module	Explain complex functionality which is used in Notejs Examine exports functions for	K5 K4
v 5.1 5.2	Database Node.js: Calling modules file system module	Explain complex functionality which is used in Notejs Examine exports functions for working with files and	K5 K4
v 5.1 5.2	Database Node.js: Calling modules file system module	Explain complex functionality which is used in Notejs Examine exports functions for working with files and directories	K5 K4
v 5.1 5.2 5.3	Database Node.js: Calling modules file system module http module	Explaincomplexfunctionalitywhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityfor	K5 K4 K5
v 5.1 5.2 5.3	Database Node.js: Calling modules file system module http module	ExplaincomplexfunctionalityWhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityforrunningUTTER	K5 K4 K5
v 5.1 5.2 5.3	Database Node.js: Calling modules file system module http module	ExplaincomplexfunctionalityWhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityforrunningHTTPserverandmakingHTTP	K5 K4 K5
v 5.1 5.2 5.3	Database Node.js: Calling modules file system module http module	ExplaincomplexfunctionalityWhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityforrunningHTTPrequests.	K5 K4 K5
v 5.1 5.2 5.3 5.4	Database Node.js: Calling modules file system module http module streams	ExplaincomplexfunctionalityWhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityforrunningHTTPrequests.Analyze two object which is used	K5 K4 K5 K4
v 5.1 5.2 5.3 5.4	Database Node.js: Calling modules file system module http module streams	ExplaincomplexfunctionalityExplaincomplexfunctionalitywhich is used in NotejsExamineexportsfunctionsExamineexportsfunctionsworking with files anddirectoriesDeterminethe functionalityDeterminethe functionality forrunningHTTPserverHTTPserver and makingHTTPrequests.Analyze two object which is usedfor request and response.	K5 K4 K5 K4
v 5.1 5.2 5.3 5.4 5.5	Database Node.js: Calling modules file system module http module streams file server	Explain complex functionality which is used in NotejsExamine exports functions for working with files and directoriesDetermine the functionality for running HTTP server and making HTTP requests.Analyze two object which is used for request and response.Elaborate how to allow	K5 K4 K5 K4 K6
v 5.1 5.2 5.3 5.4 5.5	Database Node.js: Calling modules file system module http module streams file server	Explaincomplexfunctionalitywhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethe functionalityforrunningHTTPHTTP serverand makingHTTPrequests.Analyze two object which is usedfor request and response.Elaborate how to allowremote access with file system?	K5 K4 K5 K4 K6
v 5.1 5.2 5.3 5.4 5.5 5.6	Database Node.js: Calling modules file system module http module streams file server Database using Mongoose	ExplaincomplexfunctionalityWhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityforrunningHTTPHTTP serverand makingHTTPrequests.Analyze two object which is usedfor request and response.Elaborate how to allowremote access with file system?Creatingdatabaseusing	K5 K4 K5 K4 K6 K6
v 5.1 5.2 5.3 5.4 5.5 5.6	Database Node.js: Calling modules file system module http module streams file server Database using Mongoose	Explaincomplexfunctionalitywhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethe functionalityforrunningHTTPHTTP serverand makingHTTPrequests.Analyze two object which is usedfor request and response.Elaborate how to allowremote access with file system?CreatingdatabaseMongoose	K5 K4 K5 K4 K6 K6
v 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Database Node.js: Calling modules file system module http module streams file server Database using Mongoose Performing CRUD Operations	ExplaincomplexfunctionalityWhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethefunctionalityforrunningHTTPHTTP serveranalyzetwo objectwhich is usedfor requests.Analyze two objectKinch is usedfor request and response.Elaborate how to allowremote access with file system?CreatingdatabaseusingMongooseEvaluatehowtomanage	K5 K4 K5 K4 K6 K5
v 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Database Node.js: Calling modules file system module http module http module streams file server Database using Mongoose Performing CRUD Operations	Explaincomplexfunctionalitywhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDeterminethe functionalityforrunningHTTPHTTP serverand response.Elaborate how to allowremote access with file system?CreatingCreatingdatabaseusingMongooseEvaluatehowtomanageMongoose Database	K5 K4 K5 K4 K6 K5
v 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Database Node.js: Calling modules file system module http module http module streams file server Database using Mongoose Performing CRUD Operations Connecting Mongoose to	Explaincomplexfunctionalitywhich is used in NotejsExamineExamineexportsfunctionsforworking with files anddirectoriesDetermineDeterminethefunctionalityforrunningHTTPHTTPrequests.Analyze two object which is usedfor request and response.Elaborate how to allowremote access with file system?CreatingdatabaseMongooseEvaluatehowMongoose DatabaseAppraiseexternaldatabase	K5 K4 K5 K6 K5 K5

4. MAPPING (CO, PO, PSO) L-Low M-Mod

M-Moderate

H- High

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	Μ	Μ				Н		H		L	H
CO2	H	Н	L	М	М		L		L	Н		М	
CO3	H	H	H	H	Η		H			H	L		
CO4	Н	Μ	Μ	Μ		L				Μ	H		L
CO5	H	H	Μ	L	Μ			Μ		H		Μ	
CO6	H	Η	Η	Η	Η		L	Μ		H	L		Н

5. COURSE ASSESSMENT METHODS

DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Dr. B. Karthikeyan

ELECTIVE-5: SUPPLY CHAIN MANAGEMENT					
Semester	IV	Hours/Week	5		
Course Code	P21DS4:5	Credits	4		

After the successful completion of this course the students will be able to

S.No.	Course Outcomes	Level	Unit
1	Perceivethe foundations of a supply chain and explore strategies and logistics drivers by which the supply chain of an organization can be managed to enhance its business competitiveness.	K6	Ι
2	Evaluate and Analytically examine the strategic drivers and metrics of supply chain organizations and measure performance improvement	K6	ΙΙ
3	Design and provide a network to support the business decision-making within the context of supply chain management and the real world.	K5	III
4	Plan optimized transportation and logistics activities in supply chain operations	K6	IV
5	Determine the outsourcing decisions by applying the buy-make framework to manage the benefit and risks of outsourcing	K6	V
6	Recommend a proper blend of Logistics and Supply elements thereby confining the wide range of applications in the changing dynamic environment and industry practices	K6	V

2. A. SYLLABUS

Unit-1. Building strategic framework

Supply chain: Definition, 3 streams of knowledge, objectives and importance - Decision phases and process views of a supply chain (SC) - Examples of supply chain - Competitive strategy and SC strategy - 3 steps of achieving strategic fit - Improving SC performance by expanding scope of strategic fit, challenges to achieving strategic fit - Financial measures and drivers of SC performance - Logistical drivers: Roles in SC and decision components - Cross functional drivers: Roles in SC and decision components - Role of infrastructure in SC performance.

Unit-2. Designing SC network

Key factors influencing distribution network design - Design options for a distribution network -Impact of online sales on customer service and cost - Network design decisions: Influencing factors, framework - Capacitated plant location model for network optimization - Gravity location model for network design - Model for demand allocation and locating plants - Global supply chain: Dimensions to evaluate total cost, SC risks, tailored risk mitigation strategies - Discounted cash flow analysis to evaluate network design decision - Decision tree analysis: Basics, Evaluating flexibility at Trip Logistics.

Unit-3. Planning and coordinating demand and supply

Demand forecasting: role, characteristics, components and methods - Static demand forecasting methods - Adaptive demand forecasting methods - Measures of demand forecasting error - Aggregate planning: role, identifying aggregate units, strategies - Aggregate planning using Linear programming - Managing supply and demand to improve synchronization in SC - Lack of SC coordination: Bullwhip effect, effect on performance - Obstacles to coordination in SC - Managerial levers to achieve coordination of demand and supply in SC.

Unit-4. Planning and managing inventories

Cycle inventory terminologies: Lot size, Average flow time, Inventory holding cost, Ordering cost -Computing optimal lot size for single product: Economic order quantity, for Production environment, with Capacity constraint - Lot size based discount schemes: All unit quantity discounts, Marginal unit quantity discount - Trade promotions: Goals, Forward buying, Impact on lot size and cycle inventory - Factors affecting the level of safety inventory - Evaluating required safety inventory: Given a replenishment policy, Desired cycle service level, Desired fill rate -Impact of desired product availability and uncertainty on safety inventory - Impact of supply uncertainty on safety inventory - Factors affecting optimal level of product availability - Managerial levers of inventory to improve SC profitability.

Unit-5. Transportation and cross functional drivers

Modes of transportation in SC - Design options for a transportation network - Transportation and inventory cost trade off - Transportation cost and customer responsiveness trade off - Tailored transportation - Sourcing decisions: In house or Outsource - Sharing risk and reward in SC - Pricing and revenue management for multiple customer segments - Pricing and revenue management for perishable assets - Pricing and revenue management for seasonal demand.

S.No.	Topics	Web Links
1	Digitization of Supply chain	https://www.coursera.org/lecture/process-
		improvement/lecture-4-1-digitization-of-the-supply-
		chain-EFofn
2	Supply chain Analytics	https://nptel.ac.in/courses/110/108/110108056/
3	Artificial Intelligence in Supply	https://towardsdatascience.com/artificial-intelligence-
	Chain Management	in-supply-chain-management-predictive-analytics-
		for-demand-forecasting-80d2d512f155
4	Logistics and Supply chain	http://slmt.in/courses/cilt-international-
	Management	courses/diploma-in-logistics-and-supply-chain-
		management-dlsm/

B. TOPICS FOR SELF-STUDY

C. TEXT BOOKS

1. Sunil Chopra, Peter Meindl and DV Karla. "Supply Chain Management: Strategy, planning and operation", 6th edition, Pearson, 2016. ISBN 978-9332548237 (Excluding Excel Examples)

D. REFERENCES BOOKS

1. David Simchi-Levi and Philip Kaminsky. "Designing and managing the supply chain: Concepts, strategies and case studies", 3rd edition, McGraw Hill, 2007.

E. WEB LINKS

- 1. http://www.supply-chain.com
- 2. http://www.transportlink.com
- 3. http://www.transportlaw.com
- 4. http://www.apics.org
- 5. http://www.clm1.org
- 6. http://www.napm.org

3.SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Course Content	Learning outcomes	Level
Ι	Building strategic framewor	'k	
1.1	Supply chain: Definition, 3 streams of knowledge, objectives and importance	Discuss the goal of supply chain and impact of supply chain decision on success of the firm.	K2

		Describe the various objectives of supply	K2
		Chain Ulustrate the importance of supply shein	V2
		mustrate the importance of suppry chain management	K5
		Identify the supply chain obstacles	K4
		Determine Strategic operational and	K6
		tactical planning of supply chain	R O
1.2	Decision phases and process	Explain decision phases in supply chain	K4
	views of a supply chain	Describe the cycle and push/pull view of	K4
	(SC)	a supply chain	
		Determine the underlying theoretical	K6
		logic for make versus buy decision	
1.3	Examples of supply chain	Discuss in what way do supply chain	K5
		flows affect the success or failure of a	
		firm such as Amazon and list two supply	
		impact on supply chain Profitability	
14	Competitive strategy and SC	Analyze the strategies that are critical to	КД
1.7	strategy	achieving strategic fit for company's	11.7
	Success	overall success.	
1.5	3 steps of achieving	Explain 'Achieving Strategic Fit' in	K4
	strategic fit	supply chains with the help of a suitable	
		example.	
1.6	Improving SC performance	Choose strategic fit between its supply	K5
	by expanding scope of	chain strategy and its competitive strategy	
	strategic fit, challenges to	Explain the Balanced Score Card	K2
	achieving strategic fit	approach of supply chain performance	
	Einensiel measures and	measurement.	V A
17	drivers of SC performance	Apply the key metrics that track the	K 4
1./	unvers of see performance	of each driver	
1.8	Logistical drivers: Roles in	Identify the role of major drivers in	K4
	SC and decision	supply chain	
	components		
1.9	Cross functional drivers:	Recommend the ways to boost up the	K6
	Roles in SC and decision	cross functional drivers roles in SC	
	components	Explain the barriers of cross functional	K2
		drivers	
		Analyze cross functional management is	K4
		effectively managing supply chains	
1.10	Role of infrastructure in SC	Debate Economic impact of inadequate	K6
	performance	infrastructure for sc integration	
II	Designing SC network		
2.1	Key factors influencing	Explain the factors influencing	K2
	distribution network design	distribution network design	R.C.
		Unoose the type of distribution network is	КО
2.2	Design options for a	Examine the design options available for	K3
2.2	distribution network	a distribution network with option in	n.J
		detail	
		Design a suitable distribution network	K5
		utilized for the specialty chemical	
		company is considering expanding its	

		operations into Brazil, when five	
		companies dominate the consumption of	
		specialty chemicals.	
		Construct the role of network design	К5
		decision in a supply chain	110
		Plan different design options available for	К5
		a distribution network with option in	IX.
		detail	
23	Impact of online sales on	Predict the impact of online sales on	K5
2.5	sustomer service and cost	consumers and firms. Give avidence from	KJ
	customer service and cost	consumer alectronics	
		Lustify is a hypiness likely to be more	VC
		Justify is e-business likely to be more	КО
		beneficial in the early part or the mature	
		part of a product's life cycle.	
		Explain the cycle and push/pull view of a	K4
		supply chain.	
2.4	Network design decisions:	Describe planning Networks	K2
	Influencing factors,	Interpret the objectives & process of	K2
	framework	Supply Chain Network optimization	
		models	
		Asses the outcome and benefits of	K6
		Supply Chain Network optimization	
		models.	
		Analyze the benefits are these using bar	K4
		codes and scanners for orders entry as	
		opposed to keyboard encoding into a	
		computer database	
		Describe the current trends in value	К2
		addition happened in Indian companies	112
		Identify factors influencing supply chain	KA
		network decisions	K4
		Outling the advantages and disadvantages	V)
		of distribution network design antions	KZ
		Drepage feature to be considered in	V5
		Propose factors to be considered in	КЭ
		deciding whether to make and supply or	
		to buy and supply for blood pressure	
		measuring kits for hospitals in developing	
		rural markets in India.	
2.5	Capacitated plant location	Explain optimized network.	K2
	model for network	Discuss the various Network	K2
	optimization	optimization models	
		Construct the classification of supply	K5
		chain network design decisions	
		Argue the following statement "Some	K6
		industries are located near the source of	
		raw materials, whereas some near the	
		markets for finished goods"	
2.6	Gravity location model for	Design network decisions using decision	К5
2.0	network design	tree and list its importance	11.0
		Devise a Framework to make a natwork	К5
		design decision	INJ I
		Identify factors to be considered for	K/
		locating a controlized litcher to cost	A 4
1		Tocating a centralized knehell to cook	1

		food for a restaurant chain. Also suggest	
		an appropriate facility location model.	
		State the assumption if any	
		Discuss the optimization models used for	K2
		facility location and capacity allocation	
2.7	Global supply chain:	Determine the role of a third party in	K6
	Dimensions to evaluate total	increasing the supply chain surplus	
	cost, SC risks, tailored risk	Describe global supply chain risk	K2
	mitigation strategies	management strategies	
		Determine the total cost approach to	K6
		supply chain risk modelling	
		Identify the methods to managing risk to	K4
		avoid supply chain breakdown	
		Discuss the Strategies for supply chain	K4
		risk management	
2.8	Discounted cash flow	Outline uncertainty in network design	K2
	analysis to evaluate network	discounted cash flow analysis	
	design decision	Determine the uncertainties and risk	K6
		factors so important in evaluating supply	
		chain design decisions	
2.9	Decision tree analysis:	Write the features of decision tree.	
	Basics, Evaluating	Asses the benefits of using decision nodes	K6
	flexibility at Trip Logistics	by decision making under uncertainty	
		Explain the formation of a decision	K2
		tree based on the Trips logistics	
III	Planning and coordinating of	lemand and supply	
3.1	Demand forecasting: role,	Examine the basic approaches to demand	K3
	characteristics, components	forecasting	
	and methods	Predict the forecast error if demand in 5	K5
		tons out to be 125 litres for a grocery store	
		has experienced a weekly demand of oil	
		of 120,127,114,and 122 litres over the last	
		4 weeks. Forecast demand for period 5	
		using a four period moving average.	
		Evaluate the number of computers the	K6
		store manager should order in each	
		replenishment lot. Demand for computers	
		in a store is 12,000 units per year. The	
		store incurs a fixed order placement,	
		trachenortation and receiving cost of	
		trashsportation and receiving cost of $R_{s} 40.000/2$ each time an order is placed	
		Rs.40,000/- each time an order is placed.	
		Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20% Also explain	
		Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on	
		Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory	
		trashsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the	K6
		trashsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order	K6
		trashsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell	К6
		trashsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in	K6
		trashsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in period 5 turns out to be 125 gallons for	K6 K6
		trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in period 5 turns out to be 125 gallons for a super market has experienced weekly	K6 K6
		trasnsportation and receiving cost of Rs.40,000/- each time an order is placed. Each computer costs the store Rs.5000/- and the holding cost is 20%. Also explain the impact of supply chain uncertainty on safety inventory Asses the role does forecasting play in the supply chain of a build-to-order manufactures such as dell Determine the forecast error if demand in period 5 turns out to be 125 gallons for a super market has experienced weekly demand of milk of 120,127,114 and 122	K6 K6

		demand for period 5 using a four –period	
2.2		moving average.	17.2
3.2	Static demand forecasting	Classify the static and adaptive	K3
	methods	Forecasting methods	17.4
		Explain the basic, six step approach to halp an organization perform affective	K 4
		forecasting	
		Investigate Demand forecasting analysis	K/
		using time series methods	127
3.3	Adaptive demand	Determine the house old electricity	K6
	forecasting methods	demand forecasting using adaptive	
	C	conditional density estimation	
		Formulate the adaptive water demand	K5
		forecasting for near real time management	
		of smart water distribution system	
3.4	Measures of demand	Invent demand forecast accuracy and	K5
	forecasting error	forecast error	
3.5	Aggregate planning: role,	Outline the operational parameters to	K2
	identifying aggregate units,	identify aggregate plan	
	strategies	Select the major cost categories needed as	K6
		input for aggregate planning	T 7 4
		Identify the managerial levers that reduce	K4
		lot size and cycle inventory in a supply	
3.6	A garagata planning using	Explain the role of collaborative planning	V6
5.0	Linear programming	and forecasting for efficient execution of	KU
	Enical programming	supply chains	
		suppry chains.	
		Illustrate the role predictive visibility	K3
		supply chain performance.	
		Explain the different types of costs	K4
		associated with aggregate planning. For	
		each of the cost, enumerate the areas	
		where the cost plays an important role.	T T <
		Discuss the major cost categories needed	K6
		as input for aggregate planning	1/2
		Solve aggregate planning using Linear	К3
37	Managing supply and	Investigate the Synchronization in supply	K4
5.7	demand to improve	chains implications for design and	157
	synchronization in SC	management	
3.8	Lack of SC coordination:	Write a note on the Coordination in a	K1
	Bullwhip effect, effect on	supply chain.	
	performance	Analyze the Bullwhip effect in supply	K4
		chain for the effect on performance	
3.9	Obstacles to coordination in	List the various obstacles to coordination	K1
	SC	and how such obstacles can be minimized	
		in supply chain	
3.10	Managerial levers to achieve	Design the managerial levers that help to	K5
	coordination of demand and	achieve coordination in the supply chain	
TX 7	supply in SC		
	Planning and managing invo	Evolute the number of cost ideas that the	VC
4.1	Cycle inventory	Evaluate the number of cartriages that the	NU

	terminologies: Lot size,	store manager should order in each	
	Average flow time,	replenishment lot for Demand of	
	Inventory holding cost,	cartridges in an electronic store is 1000	
	Ordering cost	units per month. The firm incurs a fixed	
	_	order placement, transportation and	
		receiving costs of Rs.4000/- each time an	
		order is placed. Each cartridge costs	
		Rs.500/- and the retailer has a holding	
		cost of 20 percent.	
		Explain multi-echelon inventory	K4
		management in detail with the help of a	
		suitable example.	
		Explain how to manage supply chain	K4
		cycle inventory.	
		Construct the role of cycle inventory in a	K5
		supply chain and how uncertainty in the	
		supply chain managed	
4.2	Computing optimal lot size	Show how to compute the optimal lot size	K3
	for single product:	and cycle length for the given sequence of	
	Economic order quantity,	items in a cycle	
	for Production environment,	Investigate optimal lot sizes in the	K4
	with Capacity constraint	economic lot scheduling for production	
		environment	
4.3	Lot size based discount	Distinguish the lot size based and volume	K2
	schemes: All unit quantity	based quantity discounts	
	discounts, Marginal unit	Analyze the effect of quantity discounts	K4
	quantity discount	on lot size and cycle inventory	
		Examine the effect of trade promotions on	K4
		lot size and cycle inventory	
4.4	Trade promotions: Goals,	Describe how to Managing Multi-Echelon	K2
	Forward buying, Impact on	Cycle Inventory	
	lot size and cycle inventory	Explain the impact of trade promotions on	K4
		lot size and cycle inventory	
4.5	Factors affecting the level of	State and briefly explain the role of safety	K1
	safety inventory	inventory in supply chain	
4.6	Evaluating required safety	Propose "Relevant deterministic and	K5
	inventory: Given a	Stochastic Inventory Models" and explain	
	replenishment policy,	its relevance in an organization. Also,	
	Desired cycle service level,	briefly explain the important features of	
47	Desired IIII rate	These models.	VC
4.7	Impact of desired product	Evaluate the impact of desired product	KO
	availability and uncertainty	availability and uncertainty on safety	
1.0	Impost of supply upcortainty	Evaluate the Impact of supply upcortainty	VC
4.0	on safety inventory	on safety inventory	K0
49	Factors affecting optimal	Discuss optimal level of product	К2
1.9	level of product availability	availability	112
	F F F F F F F F F F F F F F F F F F F	Determine the optimal level of product	K6
		availability	-
4.10	Managerial levers of	Design the managerial levers that help to	K5
	inventory to improve SC	improve inventory SC profitability	
	profitability		
V	Transportation and cross fu	nctional drivers	
5.1	Modes of transportation in	Discuss the importance of transportation	K6

	SC	in supply chain.	
		Explain the modes of transportation and	K4
		their performance characteristics	
5.2	Design options for a	Design an option for a transportation	K5
	transportation network	network	
5.3	Transportation and	Determine tradeoffs in transportation	K6
	inventory cost trade off -	design network	
	Transportation cost and	Distinguish transportation cost, customer	K2
	customer responsiveness	responsiveness tradeoffs and Tailored	
	trade off - Tailored	transportation	
	transportation		
5.4	Sourcing decisions: In house	Discuss the importance of in-sourcing and	K6
	or Outsource - Sharing risk	out-sourcing with suitable examples	
	and reward in SC	Debate Strategic Alliances and	K6
		Outsourcing	
		Describe the ways that a firm such as	K1
		Wal-Mart form out sourcing	
		decisions	
5.5	Pricing and revenue	Explain the importance of pricing in	K6
	management for multiple	supply chain management and elucidated	
	customer segments	various type of pricing approaches that	
		generate maximum profit	
5.6	Pricing and revenue	Design Perishable assets for pricing and	K5
	management for perishable	revenue management	
	assets		
5.7	Pricing and revenue	Explain pricing and revenue management	K4
	management for seasonal	for seasonal demand	
	demand.		

4. MAPPING (CO, PO, PSO)

L-Low					M-Moderate				H- High				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η												Н
CO2	Н	Н	Μ	Η	Μ	Η	Μ		Μ	Н			Н
CO3	Η	Н	Μ	Η	Μ	Η	Μ	Η	Η	Н	Н	Н	
CO4	Η	Μ	Μ	Μ		Η	Μ	Η	Μ	Н	Н	Н	Μ
CO5	Η	Н	Н	Μ	Μ	Η	Μ	Η	Μ	Н	Н		
CO6	Η	Η	Η	Μ	Η	Η	Η	Η	Η	Н	Н		

5. COURSE ASSESSMENT METHODS DIRECT:

- 1. Continuous Assessment Test: T1, T2 (Theory & Practical Components): Closed Book
- 2. Open Book Test.
- 3. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written).
- 4. Pre-Semester & End Semester Theory Examination

INDIRECT:

1. Course end survey (Feedback)

Name of the Course Coordinator : Prof. D. Indra Devi

CORE LAB X: PROGRAMMING USING JAVASCRIPT LAB									
Semester	III	Hours/Weeks	5						
Course Code	P21DSP10	Credits	3						

On successful completion of this course, students will be able to:

S. No.	Course Outcome	Level	Activity
1	Create data analytics systems using the data crawled from Twitter	K6	1 - 4
2	Create data analytics systems using the data crawled from Facebook	K6	5,6
3	Create data analytics systems using the data crawled from Linkedin	K6	7
4	Create data analytics systems using the data crawled from GitHub	K6	8, 9
5	Create data analytics systems using the data crawled from Instagram	K6	10, 11
6	Create data analytics systems on bigdata collections	K6	12-14

2. SYLLABUS

Develop applications that will demonstrate the following features using Javascript language

- Functional features such as arrays and functions
- Object Oriented features
- Regular expressions
- Static webpages using HTML, CSS and Javascript
- DOM tree traversal and item selection
- HTML forms and event handling
- Dynamic webpages using AJAX and event handling
- Database design using Mongoose
- Database design using MongoDB

3. SPECIFIC LEARNING OUTCOMES

Exercises	Lab Exercises	Learning Outcome	Level
1	Functional features such as arrays and	Arrays, Functions	K6
	functions		
2	Object Oriented features	OOP's	K6
3	Regular expressions	SET, Group	K6
4	Static webpages using HTML, CSS	HTML,CSS, and Javascript	K6
	and Javascript		
5	DOM tree traversal and item selection	DOM	K6
6	HTML forms and event handling	HTML forms	K6
7	Dynamic webpages using AJAX and	AJAX	K6
	event handling		
8	Database design using Mongoose	Mongoose	K6
9	Database design using MongoDB	MongoDB	K6

L-Low			M-Moderate						H- High				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	Μ	Μ	Μ	L	-	-	Н	Μ	Μ	-
CO2	Н	Μ	Н	Μ	Μ	Н	Μ	Μ	L	Н	Н	-	Μ
CO3	Н	Μ	Μ	L	Н	Μ	-	-	L	Μ	Μ	Μ	-
CO4	Н	L	Н	Н	Н	Н	Μ	Μ	L	Η	Μ	Μ	Н
CO5	Н	Μ	L	Η	Н	L	L	Μ	Μ	Н	Н	Н	Μ
CO6	Η	Μ	Μ	L	Η	L	L	L	Μ	Н	Н	-	-

5. COURSE ASSESSMENT METHODS

DIRECT:

- 5. Continuous Assessment Test: T1, T2 (Practical Components): Closed Book
- 6. Cooperative Learning Report, Assignment, Group Discussion, project Report, Field Visit Report, Seminar.
- 7. Pre/Post Test, Viva, Report for each Exercise.
- 8. Lab Model Examination & End Semester Practical Examination

INDIRECT:

6. Course end survey (Feedback)

Name of the Course Coordinator : Dr. B. Karthikeyan