Post-Graduate Programme in Zoology

Courses of study, Schemes of Examinations & Syllabi (Choice Based Credit System)

DEPARTMENT OF ZOOLOGY

Bishop Heber College (Autonomous) (Nationally Reaccredited at the A⁺ level by NAAC) (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC & Identified as College of Excellence by the UGC)

> TIRUCHIRAPPALLI – 620017 TAMIL NADU, INDIA

> > 2019 - 2020

PG and Research Department of Zoology Bishop Heber College (Autonomous)

Vision

Envisage quality higher education and research in the field of animal sciences with global perspectives by promoting discovery and learning contemporary fields in Zoology inculcating social values for the holistic development and to conserve nature thus contributing for nation building.

Mission

- Bestow quality education emphasizing the cognitive learning and concern towards the animal kingdom.
- Promulgate biodiversity conservation, field training skills, and entrepreneurship in the applied zoological sciences
- Enhance highest level of academic accomplishment with interdisciplinary approach through research, industrial collaboration and amalgamate with reputed national and international universities
- Foster globally competent individuals with interpersonal skills and environmental consciousness for the betterment of the world.

Programme Outcomes – PG – Zoology

On successful completion of the programme the Post graduant of Zoology

will be able to

Knowledge

PO1 - Comprehend and apply accurately and creatively the principles and applications from the core areas in Zoology and its allied field.

PO2 - Develop a holistic approach on the phylogeny with the rich diversity of organisms and their adaptations in ecology and evolutionary significance

PO3-Exhibit academic excellence in research and intellect in the areas of advanced Biological Research and Biodiversity Conservation

Skills

PO4 - Formulate an appropriate solution for complex research problem and publishing the new findings in innovative research

PO5 –Demonstrate diversified professional proficiency gained through various laboratory technical training, field census, internships, industrial and research projects.

PO6 –Exhibit transferable and entrepreneurial skills in collaboration with research institutes and undertake interdisciplinary research.

Attitudes

PO7 - Build trust and blend complementary strengths through communicative competence, encourage healthy risk-taking, and promote wider sense of ownership.

Ethical & Social Values

PO8-Exhibit ethical and social values commit to professional ethics, liability and widen the empathy and love towards the animals

PO9 - Develop methods towards protection of endangered species, pollution control, waste management and pave way for a sustainable environment.

Programme Specific Outcomes

Knowledge and Skills

PSO1-Illustrate the comprehensive knowledge of origin, salient features and functional aspects in system grade of organizations from lower invertebrates to higher chordates

PSO2 -Comprehend the functions of organisms at the level of gene, genome, cell, tissue, organ and development, reproduction and behaviour of different lifeforms and their interrelationships with the environment.

PSO3-Analyze the biochemical, microbiological, Immunological processes and Bioinformatics databases to track evolution and predictions of biomolecules and to test the hypothesis by using statistical tools

PSO4- Identify appropriate resources like animal handling techniques and model organisms required to carry out the projects and apply the technical skills to contribute new scientific discoveries and inventions.

Post – Graduate Programme in Zoology

Structure o	of the (Curriculum
-------------	----------	------------

Parts of the	No. of Courses	Credits		
Curriculum				
Core Course				
	10	50		
(Theory)				
Core Course	5	15		
(Practical)				
Elective	5	18		
Project	1	5		
VLOC	1	2		
-Total	22	90		

M.Sc., Zoology (For the candidates admitted from the academic year 2019 onwards)

					Hours		Marks			
Sem.	Course	Course Code	Course Title	Pre requisites	Per Week	Credits	CI A	ESA	Total	
	Core I	P19ZY101	Functional Morphology of Invertebrates and Chordates		5	5	25	75	100	
	Core II Core III	P19ZY102 P19ZY103	Cell Biology Molecular Biology and		5 5	5 5	25 25	75 75	100 100	
I	Core Prac. I	P19ZY1P1	Bioinformatics Core Practical I	P19ZY102	5	3	40	60	100	
	Core Prac. II	P19ZY1P2	Core Practical II		5	3	40	60	100	
	Elective I	P19ZY1:1/ P19ZY1:A	Microbiology/ Parasitology	P19ZY101	5	4	25	75	100	
	Core IV	P19ZY204	Animal Physiology	P19ZY101	5	5	25	75	100	
	Core V	P19ZY205	Biochemistry	P19ZY102	5	5	25	75	100	
	Core Prac. III	P19ZY2P3	Core Practical III		5	3	40	60	100	
	Core Prac. IV	P19ZY2P4	Core Practical IV		5	3	40	60	100	
Π	Elective II	P19ZY2:1	Immunology		4	4	25	75	100	
	Elective III	P19ZY2:3	Biostatistics		4	2	25/ 40	75/ 60	100	
l	I	I	1	I 5	l	I			l	

			Total			90			2200
	Project	P15ZY4PJ	Project		20	5			100
	IV	P15ZY4:2	Bioinformatics	P19ZY 101					
IV	Elective	192 I 4:A	Science		5	4	25	75	100
		P15ZY4:1/P	Entomology/Fisheries						
			Applied						
	Core X	P15ZY410	Evolution and Animal Behaviour		5	5	25	75	100
	III		A miniar Biotechnology	P19ZY1:1	5	4	25	75	100
	Elective	P197.V3·1	Animal Biotechnology						
	Prac. V	r 172 I SP3			5	3	40	00	100
ш	Core	D107V2D5	Core Practical V		5	2	40	60	100
	Core IX	P19ZY309	Research Methodology and Biotechniques		5	5	25	75	100
	Core VIII	P19ZY308	Genetics		5	5	25	75	100
	Core VII	P19ZY307	Developmental Biology	P19ZY101	5	5	25	75	100
	Core VI	P19ZY306	Environmental Biology		5	5	25	75	100
	VLOC	P17VL2:17 P17VL2:2	KI / MI		Z	2	25	/5	100
	1100				2		05	75	100

CI A- Continuous Internal Assessment

ESA- End Semester Assessment

VLOC- Value added Life Oriented Course

CORE – I : FUNCTIONAL MORPHOLOGY OF INVERTEBRATES AND CHORDATES

Semester: I Credits: 5 Code: P19ZY101 Total Hrs. 75

1. COURSE OUTCOMES:

On completion of the course, the students will be able to

СО	COURSE OUTCOME	Level	Unit
No.			
CO1	Identify the basics of systematics and compare the hierarchy of various animals	K3	Ι
CO2	Analyze the diversity in structure, function and habits of invertebrates	K4	Ι
CO3	Explain the diagnostic characters of different phyla through detailed studies of the various systems and organizations with examples	K5	Π
CO4	Identify the evolutionary significance of the lower order invertebrates by comparing their larval forms	K3	III
CO5	Classify the morphological and functional characters of Chordates	K4	IV
CO6	Explain the structure and functions of integumentary system and compare the anatomy of nervous and urino-genital system	K5	V

2. SYLLABUS

UNIT I - CLASSIFICATION OF ANIMAL KINGDOM

15hrs

15hrs

Broad classification of Animal kingdom - International code of Zoological nomenclature – Symmetry and its significance in animal organization - **Organization of coelom**: Acoelomates - Pseudocoelomates – Coelomate groups (schizocoel, enterocoel, and mesenchyme). **Locomotion**:Amoeboid, flagellar and ciliary movement in Protozoa– **Hydrostatic movement in Coelenterata and Echinodermata.**

UNIT II - DIGESTION, RESPIRATION AND EXCRETION IN THE INVERTEBRATES

Nutrition and Digestion: Patterns of feeding and digestion in lower metazoan, Mollusca and Echinodermata- Filter feeding in Polychaeta.**Organs of respiration**: Gills, book lungs, and trachea – Mechanism of respiration. **Organs of excretion**: Coelomoducts, Nephridia and Malphigian tubules – Mechanism of excretion.

UNIT III-NERVOUS SYSTEM AND LARVAL FORMS OF INVERTEBRATES

15hrs

Nervous system: Primitive nervous system in Coelenterata and Echinodermata- Advanced nervous system in Annelida, Arthropoda (Crustacea and Insecta) and Mollusca (Cephalopoda) –**Larval forms** of Trematoda, Cestoda, Crustacea, Mollusca, Echinodermata and their evolutionary significance.

UNIT IV- FUNCTIONAL MORPHOLOGY OF CHORDATES - 15hrs

Classification of chordates – Origin and evolution of elasmobranchs – **Adaptive radiation** of elasmobranches and bony fishes – Migration in fishes – Origin and evolution of Amphibia – Adaptive radiation in Amphibia – Terrestrialization

UNIT V - STRUCTURE AND FUNCTIONS OF VARIOUS ORGANS IN MAMMALS - 15hrs

Connecting links between reptiles and birds – **Mammals**: Structural peculiarities of prototheria, metatheria and eutheria. – Structure and functions of integument and its derivatives - Origin and evolution of paired fins and limbs. **Evolution of urinogenital system in vertebrates** – Comparative anatomy of brain in vertebrates.

Topics for Self-Study:

S.No.	TOPICS	WEB LINKS
1.	Conjugation in Paramecium	https://www.allamaiqbalcollege.edu.in/uploads/download 2004051131.pdf
2.	Canal system in sponges	https://www.studyandscore.com/studymaterial-detail/phylum-porifera- canal-system-in-sponges-types-of-canal-systems-in-sponges-functions-of- water-current
3	Water vascular system in Echinodermata	https://www.biologydiscussion.com/invertebrate-zoology/phylum- echinodermata/water-vascular-system-of-echinoderms/33754
4.	Parental care in Amphibians	https://www.amu.ac.in/emp/studym/100007686.pdf
5.	Migration in fishes	https://www.onlinebiologynotes.com/migration-in-fishes/

TEXT BOOKS

1. Ruppert E.E., Fox, R.S. and Barnes, R.D. Invertebrate Zoology. 7th Ed., Cenage Learning, Singapore, 2004.

2. Jordan E.L. and Verma P.S., Invertebrate Zoology, 12thedn. Schand& Co. 1995.

3. Kotpal R.L., Agarwal, R.P.R., Khertarpa, Modern text book of Zoology-I – Rastogi Publications. 1989.

4. Jordan E.L, Verma P.S, Chordate Zoology -S.Chand& Company Ltd. 2008

5. KotpalR.L.A, Modern text book of Zoology Vertebrates, Rastogi publications, 2009.

REFERENCES:

1. Linzey, D., Vertebrate Biology, McGraw-Hill, Singapore, 2001.

2. Waterman A.J., Chordate Structure and Function, The Macmillan Publishing Co., 1971.

3. Pough H., Heisher J.B. and McFarlandW.N., Vertebrate Life. Macmillan Publishing Co., New York, 1990.

4. HymanL.H., The Invertebrates, Vol. 1 to7, McGraw Hill Book Co., Inc., New York, 1940.

5. Barrington E.J.W., Invertebrate Structure and Functions, 2nd Ed., Thomas Nelson & Sons Ltd., Middlesex, United Kingdom, 1979.

6. Colbert H. E., Evolution of the Vertebrates, New Delhi, New Age International, 2000.

7. Jollie M, Chordate Morphology, Reinholt Publishing Corporation, New York, 1962.

8. Romer A.S., Hyman's Comparative Vertebrate Anatomy,3rd Ed., The University of Chicago Press, London, 1979.

9. Young J.Z., Life of Vertebrates, Clarendon Press, Oxford, 1950.

10. Sinha, Adhikari, Ganguly, BharatiGoswami,Biology of animals Vol.II., New central book agency (p) ltd., 2004.

Web links:

https://courses.lumenlearning.com/wm-biology2/chapter/invertebrate-chordates/

http://www.opentextbooks.org.hk/ditatopic/35145

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit /Section	CONTENTS	SPECIFIC LEARNING OUTCOMES (SLO)	HIGHEST BLOOM'S TAXONOMIC LEVEL OF TRANSACTION
Ι	CLAS	SIFICATION OF ANIMAL KI	INGDOM
1.1	Broad classification of Animal kingdom International code of	 Classify the various phylum on the basis of their characters List out the rules of zoological nomenclature 	К4

	Zoological nomenclature		
1.2	Symmetry and its significance in animal organization	 Explain the different types of symmetry and its importance 	К5
1.3	Organization of coelom: Acoelomates – Pseudocoelomates – Coelomate groups (schizocoel, enterocoel, and mesenchyme).	 Compare and classify the animals based on their coelomic organization 	K5
1.4	Locomotion : Amoeboid, flagellar and ciliary movement in Protozoa	 Illustrate the mechanism of locomotion in lower order invertebrates with examples 	K2
1.5	Hydrostatic movement in Coelenterata and Echinodermata.	 Elaborate the typeof locomotion in higher order invertebrates 	Кб
II	DIGESTION, RESPIRA	TION AND EXCRETION IN 7	THE INVERTEBRATES
2.1	Nutrition andDigestion: Patterns offeeding and digestion inlower metazoan,Mollusca andEchinodermata	Explain the mechanism and pattern of digestion in various phyla	K5
2.1	Nutrition andDigestion: Patterns offeeding and digestion inlower metazoan,Mollusca andEchinodermataFilter feeding inPolychaeta	 Explain the mechanism and pattern of digestion in various phyla Interpret the mechanism of feeding in Polychaeta 	K5 K5
2.1 2.2 2.3	Nutrition andDigestion: Patterns offeeding and digestion inlower metazoan,Mollusca andEchinodermataFilter feeding inPolychaetaOrgans of respiration:Gills, book lungs, andtrachea	 Explain the mechanism and pattern of digestion in various phyla Interpret the mechanism of feeding in Polychaeta Distinguish the role of respiratory organs in various phylum 	K5 K5 K4
2.1 2.2 2.3 2.4	Nutrition and Digestion: Patterns of feeding and digestion in lower metazoan, Mollusca and EchinodermataFilter feeding in PolychaetaOrgans of respiration: Gills, book lungs, and tracheaMechanism of respiration	 Explain the mechanism and pattern of digestion in various phyla Interpret the mechanism of feeding in Polychaeta Distinguish the role of respiratory organs in various phylum Elaborate the respiratory mechanism in higher order invertebrates 	K5 K5 K4 K6

2.6	Mechanism of	Explain the mechanism	K5
	excretion.	of excretion	
111	NERVOUS SYSTI	EM AND LARVAL FORMS OF I	NVERTEBRATES
3.1	Primitive nervous	➢ Identify the grade of	К3
	system in Coelenterata	nervous system in	
	and Echinodermata	Coelenterates and	
3.2	Advanced nervous	> Justify that Annelids has	K5
3.2	system in Annelida	an advanced type of nervous	K5
	Arthropoda (Crustacea	system	
	and Insecta) and		
	Mollusca (Cephalopoda)		
	(eephalopouu)		
3.3	Larval forms of	List out the various larval	K4
	Trematoda, Cestoda,	forms and its evolutionary	
	Crustacea, Mollusca,	significance	
	Echinodermata and their		
	evolutionary		
	significance.		
IV	FUNCTI	ONAL MORPHOLOGY OF CHO	RDATES
4.1	Origin and evolution of	\succ Explain the origin and	K5
4.1			KJ
4.1	elasmobranchs	evolution of	KJ
4.1	elasmobranchs	evolution of elasmobranchs and the mashanism of adaptive	K3
4.1	elasmobranchs Adaptive radiation of	evolution of elasmobranchs and the mechanism of adaptive radiation	K3
4.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes	evolution of elasmobranchs and the mechanism of adaptive radiation	KU
4.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes	evolution of elasmobranchs and the mechanism of adaptive radiation	KU
4.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of 	K3 K2
4.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with 	K3 K2
4.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin 	K2
4.1 4.2 4.3	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive 	K3 K2 K2
4.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in 	K2 K2
4.1	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians 	K2 K2
4.1 4.2 4.3	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians 	K2 K2
4.1	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians 	K2 K2
4.1 4.2 4.3	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization STRUCTURE AND FU 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians 	K2 K2 K2 NS IN CHORDATES
4.1 4.2 4.3 V 5.1	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization STRUCTURE AND FUE Connecting links 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians NCTIONS OF VARIOUS ORGAN Categorize the animals 	K2 K2 VS IN CHORDATES K4
4.1 4.2 4.3 V 5.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization STRUCTURE AND FU Connecting links between reptiles and	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians NCTIONS OF VARIOUS ORGAN Categorize the animals which serves as the 	K2 K2 VS IN CHORDATES K4
4.1 4.2 4.3 V 5.1	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization STRUCTURE AND FU Connecting links between reptiles and birds 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians NCTIONS OF VARIOUS ORGAN Categorize the animals which serves as the connecting link between 	K2 K2 NS IN CHORDATES K4
4.1 4.2 4.3 V 5.1	elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization STRUCTURE AND FU Connecting links between reptiles and birds	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians NCTIONS OF VARIOUS ORGAN Categorize the animals which serves as the connecting link between the birds and reptiles 	K2 K2 K2 NS IN CHORDATES K4
4.1 4.2 4.3 V 5.1 5.2	 elasmobranchs Adaptive radiation of elasmobranches and bony fishes Migration in fishes Origin and evolution of Amphibia Adaptive radiation in Amphibia– Terrestrialization STRUCTURE AND FU Connecting links between reptiles and birds Mammals: Structural 	 evolution of elasmobranchs and the mechanism of adaptive radiation Illustrate the process of migration in fishes with examples Summarize the origin, evolution and adaptive radiation mechanism in amphibians NCTIONS OF VARIOUS ORGAN Categorize the animals which serves as the connecting link between the birds and reptiles Classify the mammals based on their structural 	K2 K2 K2 VS IN CHORDATES K4 K4

	prototheria, metatheria and eutheria.		
5.3	Structure and functions of integument and its derivatives	 Explain the structure and functions of integumentary system with examples 	К5
5.4	Origin and evolution of paired fins and limbs	 Examine the evolutionary pattern of fins and limbs 	K4
5.5	Evolution of urinogenital system in vertebrates	 Interpret the evolutionary significance of urinogenital system in mammals 	К5
5.6	Comparative anatomy of brain in vertebrates	 Compare the anatomy of brain and its functions in mammals 	K4

4. Mapping Scheme for the PO, PSOs and COs

P19ZY101	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	н	Μ	н	н	н	Μ	-	-	н	Μ	Μ	н
CO2	М	-	-	-	-	Μ	Н	Н	-	Μ	Μ	Η	Η
CO3	Н	Н	Н	Μ	Μ	-	Η	Μ	-	н	н	-	Μ
CO4	-	М	Μ	Η	Н	Η	-	Η	Η	Μ	Η	Η	-
CO5	-	Μ	Н	М	-	Μ	Μ	-	н	-	-	Μ	Μ
CO6	Н	М	-	Н	Н	М	-	М	-	Н	М	Н	Н

L-Low M-Moderate H-High

Direct

5. COURSE ASSESSMENT METHODS

1. Continuous Assessment Test I,II
2. Assignment, Group Presentation, Poster preparation
3. End Semester Examination
Indirect
1. Course-end survey

Core Course: II CELL BIOLOGY

Semester : 1 Credits : 5

1. Course Outcomes:

On completion of the course, the students will be able to

CO.	COURSE OUTCOMES	Level	Unit
No			
CO1	Distinguish prokaryotic and eukaryotic cells through basic structural organizations. Analyzing membrane structures and protein transport.	K4	Ι
CO2	Examine the functional significance of mtiochondria, NPC, Intra cellular traffic and cytoskeleton structure	K4	II
CO3	Analyze cell-cell interaction, receptor based signal transduction, cell cycle and its control systems with check points	K4	III
CO4	Identify the mode of cell growth, death through apoptosis and tissue maintenance.	K4	III
CO5	Explain the significance of stem cells, types and its mechanism of self renewal and potency, stem cell characterization and IPS generation with application.	K5	IV
CO6	Evaluate the molecular pathogenesis of cancer, role of oncogene/ tumor viruses, survival and death pathways and recent treatment strategies.	K5	V

2. SYLLABUS

Unit – I

PROKARYOTIC & EUKARYOTIC CELLS

Prokaryotic and eukaryotic cells. **Membrane structure:** lipid composition-protein components-principles of Membrane transport-carrier proteins-Ion channels and membrane potential - Cell junctions-Extra cellular matrix. **Intracellular compartments:** Endoplasmic reticulum, Golgi complex and lysosomes- Transport and sorting of proteins-vesicular transport-secretory pathways.

Unit – II

STRUCTURE & FUNCTION OF CELLUAR ORGANELLES

Structure and functional significance of Mitochondria. Structure of Nucleus - Nuclear pore complexes – Transport of molecules between the nucleus and cytosol. **Cytoskeleton**: Centriole - Dynamic structure of microfilaments, intermediate filaments and microtubules - molecular motors-cytoskeleton and cell behavior.

Unit – III

CELL COMMUNICATION & CELL CYCLE

Cell communication: General principles- G-protein linked receptors–enzyme linked receptors-pathways of intracellular signal transduction.**Cell cycle control and cell death**:

15 Hrs

Code: P19ZY102

Total Hrs:75

15 Hrs

15 Hrs

Unit – IV 15 Hrs

overview of cell cycle-control system – apoptosis-extracellular control of cell growth- Tissue

STEM CELLS

maintenance and renewal.

Stem cells: Types- Molecular Basis of Pluripotency - Stem Cell Niches - Mechanisms of Stem CellSelf-Renewal - Generation of Induced Pluripotent Stem Cells -Characteristics and Characterization of Pluripotent stem Cells- Application of Embryonic stem Cells.

15 Hrs

Unit – V

CANCER BIOLOGY

Biology of cancer: Development and causes of cancer-properties of cancer cells- Tumor viruses–Oncogenes - Tumor suppressor genes- Molecular basis of cancer- Cell behavior-Molecular Approaches to Cancer Treatment - Apoptosis

Topics	s for Sen -Study.	
S.No	Topics	Weblinks
1.	Senescence	https://www.ncbi.nlm.nih.gov/books/?term=Senescence
2.	SiRNA	https://www.ncbi.nlm.nih.gov/books/?term=SiRNA
3.	Cell adhesion	https://www.ncbi.nlm.nih.gov/books/?term=Cell+adhesion
4.	Molecular chaperons	https://www.ncbi.nlm.nih.gov/books/?term=Molecular+chaperons
5.	Protein folding	https://www.ncbi.nlm.nih.gov/books/?term=Protein+folding

Topics for Self -Study:

Text Books

1. Alberts, B., Johnson, A. and Lewis, J. Molecular Biology of the Cell. 4th Ed., 2002New York: Garland,.

2. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology, 8th Ed., 2001Lippincott Williams & Wilkins, A Wolter Kluwer Business, Philadelphia,

References

1.Lodish H., Berr, A. and Paul, M. Molecular Cell Biology,2003. New York: W.H. Freeman, 2.CooperG.M. and Hausman, R.E., The Cell - A Molecular Approach. 4th Ed.,, 2007 Sinauer Associates Inc.USA.

3.KarpG. Cell and Molecular Biology,2008 G. John Wiley & Sons,.

4.SheelerP. andBianchi, D.E., Cell and Molecular Biology, 3rd Ed., 2009.JohnWiley Indian Edition, New Delhi,

5.Becker, W.M., Kleinsmith, L.J., Hardin, J. and Bertoni, G.P., The World of Cell, 6th Ed., 2007Pearson Education

Web Links:

file:///C:/Users/welcome/Downloads/Molecular_Biology of the Cell 6th Editio.pdf https://nptel.ac.in/courses/102/103/102103012/ https://onlinecourses.swayam2.ac.in/cec20_ma13/preview_

3. Specific Learning Outcomes (SLO):

			Blooms
Unit	Course Contents	Specific Learning Outcomes (SLO)	Taxonomy levels
			of Transaction
	DD O M		
1	PROKA	ARYOTIC & EUKARYOTIC CELLS	
1.1	ProkaryoticandeukaryoticcellsOrganizations	Classify different cell types	K2
1.2	Membranestructure:lipidcomposition-proteincomponents	Compare membrane structure of different cells	K2
1.3	Principles of Membrane transport-carrier proteins- Ion channels and membrane potential - Cell junctions-Extra cellular matrix.	Explain the principle of transport molecules between the membranes, Carrier protein, Ion channels, cell junctions and its functions	K4
1.4	Intracellular compartments: Endoplasmic reticulum, Golgi complex and lysosomes- Transport and sorting of proteins- vesicular transport- secretory pathways.	Explain the structure, function and biochemical properties of each of the cell organelles. Intra cellular movements of molecules and within EMS	K2
II	STRUCTURE &	<i>z</i> FUNCTION OF CELLUAR ORGAN	NELLES
2.1	Structure and functional significance of Mitochondria. Structure of Nucleus - Nuclear pore complexes – Transport of molecules between the	Explain structural and functional properties of mitochondria, nucleus and transport between cytoplasm and nucleus.	К2

	nucleus and cytosol.		
	Cytoskeleton Centriole -		
	Dynamic structure of		
	microfilaments,	Explain structure and function of	
2.2	intermediate filaments	CSKs and motor proteins in relation	К4
2.2	and microtubules -	to cell behavior	, 111
	molecular motors-		
	cytoskeleton and cell		
	behavior.		
III	CELL C	COMMUNICATION & CELL CYCLE	2
	Cell communication:		
	General principles- G-	Explain receptors and its role in	
3.1	protein linked receptors-	signal transduction pathways and cell	K3
	enzyme linked receptors-	communication.	
	pathways of intracellular		
	signal transduction.		
	Cell cycle control and	Explain cell cycle events, control	
	cell death: overview of	systems, check points and cell cycle	
32	cell cycle-control system	regulation. Understanding the	K 4
5.2	– apoptosis-extracellular	significance of apoptosis in tissue	
	control of cell growth-	maintenance and renewal.	
	Tissue maintenance and		
	renewal.		
IV		STEM CELLS	
	Stem cells: Types-	Classify the types of stem calls and its	
<u>4</u> 1	Molecular Basis of	niches Illustrate the mechanism of	к2
7.1	Pluripotency - Stem Cell	self renewal and potency.	112
	Niches - Mechanisms of	son rene war and potency.	
	Stem CellSell-Renewal -		
	Plurinotent Stem Cells		
	Characteristics and	Explain the importance of IPS & stem	
4.2	Characterization of	cell therapy	K5
	Pluripotent stem Cells-		
	Application of Embryonic		
	stem Cells		
V		CANCER BIOLOGY	
	Biology of cancer:	Analyse the Biology of cancer cells.	
5.1	Development and causes	pathogenesis, properties, genes and	K4
	of cancer-properties of		

	cancer cells- Tumor	factors involved,	
	viruses–Oncogenes -		
	Tumor suppressor genes-		
	Molecular basis of		
	cancer- Cell behavior-		
	Molecular Approaches to	Develop novel strategies for cancer	
5.2	Cancer Treatment -	treatment	K5
	Apoptosis		

4. Mapping Scheme for the PO, PSOs and COs

P19ZY102	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4

CO1	Η	Н	М	Η	L	М	Η	Η	М	Η	Η	Η	М
CO2	Н	Н	Н	М	L	М	Η	Н	М	Н	Η	Η	L
CO3	Н	Н	Н	Η	L	М	Η	Η	М	Η	Η	Η	L
CO4	Н	Н	Н	L	L	М	Н	Н	М	Н	Н	Н	L
CO5	Н	Н	М	М	L	М	Η	Η	М	Η	Η	Η	М
CO6	Н	Н	Н	Η	L	М	Η	Н	М	Н	Η	Η	М
	3.4	N / 1	4	TT TT.	1								

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

- 1. Continuous Assessment Test I,II
- 2. Assignment; Group Presentation, Poster preparation,
- 3. End Semester Examination

CORE – III: MOLECULAR BIOLOGY AND BIOINFORMATICS

Semester: I Credits : 5

Code: P19ZY103 Total Hrs. : 75

COURSE OUTCOMES:

After completing this course, the students will be able to

CO. NO	COURSE OUTCOMES	LEVEL	UNIT
CO1.	Explain the structure, synthesis and function of biomolecules.	K5	1
CO2.	Interpret the C-value paradox and its importance.	K5	Ι
CO3.	Compare the process of DNA replication in both Prokaryotes and in Eukaryotes	K5	II
CO4.	Analyze the process of transcription and gene expression in eukaryotes.	K4	III
CO5.	Distinguish the types of various biological databases and tools used for protein structure visualization.	K5	IV
CO6.	Compare and relate the alignment tools used in evolution and in drug designing.	K5	V

Unit – I

STRUCTURE AND FORMS OF DNA

Structure of DNA, tRNA, micro -RNA. Forms of DNA - Mitochondrial DNA - structure of eukaryotic chromosome- nucleosome model- heterochromatin and euchromatin - Genome size and C value paradox. Unique and Repetitive nucleotide sequences in eukaryotic genome (LINEs, SINEs). Kinetics of renaturation: Cot curve.

Unit – II

DNA REPLICATION AND CENTRAL DOGMA IN PROKARYOTIC CELLS

DNA replication: semi conservative, rolling circle, Q, D, Eye–models- Mechanism of replication –DNA damage and its repair mechanisms. **Genetic code:** Properties- Wobble hypothesis. **Transcription in Prokaryotes:** enzymes and proteins involved – mechanism –promoters- enhancers . **Protein synthesis in Prokaryotes:** Ribosomes - factors involved in protein synthesis - process of translation-post translational modifications and signal hypothesis - inhibitors.

Unit – III

REGULATION OF GENE EXPRESSION IN PROKARYOTES

Transcription in Eukaryotes: RNA polymerases - promoters- enhancers and silencers - effects of chromatin structure. Post-transcriptional modifications -**Regulation of gene expression:** concepts of enzyme induction and repression- positive and negative control. Regulation of gene expression in Prokaryotes: lac-operon, trp-operon, ara-operon and gal-operon. Catabolite repression. Regulation of gene expression in eukaryotes.

15 Hrs

15 Hrs

15 Hrs

Unit – IV

BIOINFORMATICS DATABASES

Overview of Bioinformatics - Literature, sequence and structure databases - Pattern and motif searches: PROSITE, BLOCKS, PRINTS, PFAM - Structural classification: SCOP, CATH - Metabolic pathway databases: KEGG and Biocyc - Protein structure visualization tools: RasMol, Swiss PDB Viewer Molecular sequence alignment: Pair wise alignment -Local and Global alignment concepts - FASTA and BLAST - Multiple sequence alignment -CLUSTALW and TCOFFEE.

Unit – V

15 Hrs

GENOMICS AND PROTEOMICS

Gene and Genome analysis: Genome projects - Genome Mapping, Sequencing, Assembly and Annotation - comparative genomics. Protein and proteome analysis: - Protein secondary structure prediction - protein identification tools - Chou- Fasman /GOR method. Transcriptomics: Genome expression analysis using microarray techniques - Applications of Microarray- Modern drug discovery - CADD (Computer Aided Drug Discovery) - impact of structural bioinformatics in drug discovery.

TOPICS FOR SELF-STUDY

NO	TOPICS FOR SELF-STUDY	WEB-LINKS
1.	DNA Replication: Eukaryotic	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3
	Origins and the Origin	779782/
	Recognition Complex	
2.	Histone Modifications	https://www.nature.com/articles/cr201122
3.	DNA Repair and Cancer	https://www.ncbi.nlm.nih.gov/books/NBK21554/
4.	Metabolite profiling and	https://www.nature.com/articles/s41598-017-
	Biomakers analysis	<u>01735-y</u>
5.	Modeling and simulation in	https://www.pharmafocusasia.com/foreword/mod
	drug development	elling-simulation-drug-development

Text Books

- 1. Malacinski G.M., Freifelder's Essential of Molecular Biology, Narosa Publishing House, New Delhi, 2003.
- 2. Jeyanthi G.P, Molecular Biology, MJP Publishers, Chennai. 2009.
- Ignacimuthu S, Basic Bioinformatics, Narosa Publishing House, Chennai, 2008 3.

References

- 1. Alberts, B., Johnson AandLewisJ, Molecular Biology of the Cell, 4th Ed., New York: Garland, 2002.
- 2. WeaverR, Molecular Biology, 5th Ed., McGraw-Hill, NY, 2012.
- Lodish H, Berr A and Paul M, Molecular Cell Biology, New York, W.H. Freeman, 3. 2003.

4. Epstein R.J, Human Molecular biology, An Introduction to the molecular basis of health disease, Cambridge University Press, 2003.

5.	ColladovidesJ., MagasanikB and Smith, T.F. Integrative approaches to Molecular
	Biology. Ane Books, New Delhi.2004.
6.	Lewin B, Genes IX, Jones and Bartlett Publishers, Boston, 2008.
7.	BatesA. D. and MaxwellA, DNA Topology, Oxford University Press Inc., New York,
	Indian Edition, 2005.
8.	David H.R., Genetics and Molecular Biology, Tata McGraw, New Delhi, 2009.
9.	Lewin B., Krebs J. E., Kilpatrick S.T. and Goldstein, E.S. Lewin's GENES X. John
	and Barlett Publishers, Sudbury Massachusetts, 2011.
10.	Watson J.D., BakerT.A., BellS.P., GannA., LevineM. and Losick R, Molecular
	Biology of the Gene, 5th Ed., Pearson EducationInc, 2004.
11.	Teresa K. Attwood, David Parry-Smith., Introduction to Bioinformatics. Pearson
	Education. 2001 Highest level of Blooms Taxonomy

Web Links:

https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biolog y_(OpenStax)/3%3A_Genetics/15%3A_Genes_and_Proteins/15.3%3A_Eukaryotic_Transcription

https://www.sciencedirect.com/science/article/pii/S2352873717300653

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186575/

Unit /sect	Course Contents	Learning Outcomes	Highest Blooms Taxonomy level
1	STRUC	of fransaction	
1 1	Structure Of DNA	Explain the Watson & Crick model of DNA	K2
1.1		Analyse the backbone of DNA	K4
		Explain the X-ray diffraction studies of DNA	K5
1.2	Structure of t-RNA	Analyse the clover leaf model structure of t-RNA	K4
		Explain the functions of t-RNA	K2
	Structure of micro RNA	Define and analyse the non-coding RNA	K4
		Explain the functions of non- coding RNA	K6
	Forms of DNA	Explain the different forms of DNA	K4
1.3		Compare and Interpret the molecular basis of different forms of DNA	K5

1.4	Mitochondrial DNA	Define and identify the components of Mitochondrial DNA.	K3
		Compare the functions of mitochondrial DNA and highlight its importance	K5
1.5	Structure of Eukaryotic chromosome	Analyse the chromatin organization and nucleosomes.	K4
		Explain the four motifs that play a major role in DNA binding	К5
1.6	Nucleosomes Model	Compare the first order and second order DNA coiling.	K4
		Explain the core structure of nucleosomes and histones	K5
1.7	Heterochromatin & Euchromatin	Infer the structure of heterochromatin and euchromatin.	K4
		Explains the solenoid model of chromosome.	K5
1.8	Genome size	Compare the variation and genome size.	K5
		Explain the types of DNA sequences in Humans	K5
1.9	C Value Paradox	Discover the variation of C-value paradox among species	K4
		Interpret the importance of C-value	

		paradox in evolution	K5
1.10	Unique and Repetitive nucleotide sequences in eukaryotic genome (LINEs,	Identify the repetitive nucleotide sequences	K4
	SINEs)	Explain the total repetitive nucleotide sequences in eukaryotic genome	K5
II	DNA REPLICATION ANI	D CENTRAL DOGMA IN	
	PROKARYO	TIC CELLS	
2.1	Kinetics of renaturation: Cot curve	Analyse the Cot curve and infer the results	K4
	DNA replication	Explain the process of DNA replication.	K5
2.2		List out the requisites of DNA replication.	K4
		Analyse the models of replication in leading strand	K4
		Compare the models of DNA replication	K5
	Semi conservative replication	Explain and defend the Meselson & Stahl's experiment on semi conservative model Applications	K5
	Models of replication-Semi conservative, conservative and dispersive	Discuss and compare the different models of replication	К6
2.3		Explain the three types of models of DNA replication	K5
	Mechanism of replication- Initiation, Elongation and Termination	Illustrate the steps in replication in formation of new strands	K6
2.4		Explain replisome and its molecular components with its functions	K5
	DNA damage	Infer the causes of DNA damage	K4

2.5		List out the types of DNA damage	K4
2.6	DNA repair mechanism- Types of DNA repair systems- Mismatch repair, Base-excision, Nucleotide excision, Direct	Explain the mechanism of DNA repair mechanism	K5
	repair, Post replication & Error - prone	List out the types of DNA repair mechanism	K4
0.7	Genetic code	Explain the Wobble hypothesis with examples	К5
2.7		List out the features of genetic code	K4
	Transcription in prokaryotes	Explain the structure of RNA polymerase	K5
2.8		Prioritise the process of transcription in Prokaryotes	K5
	Protein synthesis in Prokaryotes	Identify the factors involved in protein synthesis	K4
2.9		Analyse the components of protein machinery of prokaryotes	K4
		Explain the steps involved in protein synthesis	K5
2.10	Post translational modifications	Infer the post translational modifications.	K4
		List out the types of post translational modifications.	K4
2.11	Signal hypothesis	Analyse the process of binding & release of the signal peptides	K4
		Predict the importance of signal hypothesis in biomolecules	K6
III	REGULATION OF	GENE EXPRESSION IN PROKAR	YOTES

3.1	Inhibitors	Identify the inhibitors of protein synthesis in prokaryotes.	K4
		List out the inhibitors of protein synthesis	K4
	Transcription in Eukaryotes: RNA Polymerases	Explain the structure & function of RNA polymerase.	K5
3.2		Explains the types and functions of RNA polymerase	K5
3.3	Effects of chromatin structure	Identify and explain the effects of chromatin structure	K5
		Distinguish the types of chromatin and its role in cell division	K4
	Post transcriptional modifications	Interpret the post transcriptional modifications.	K5
3.4		List out the types of post translational modifications	K4
3.5	Regulation of gene expression- concepts of enzyme induction	Analyze the process of regulation of gene expression.	K4
	negative control	Distinguish the types of repression- positive and negative control	K4
3.6	Regulation of gene expression in prokaryotes- Lac operon, Trp Operon, Ara operon, Gal operon	Interpret the positive and negative control of gene expression.	K5
		List out the types of operons in prokarytes	K4
3.7	Regulation of gene expression in eukaryotes	Justify the gene expression in Eukaryotes and its feedback control	K5
IV	BIOIN		
	Overview of Bioinformatics	Explain the scope of bioinformatics	К5
4.1		Elaborate the importance of bioinformatics in various fields	K6

	Literature, sequence and	Identify the different sequence &	K3
	structure databases	structure database.	
		List out the types of sequence and	K4
		structural databases	
	Pattern and motif	Apply the secondary database for	K3
	Searches	assessing pattern & motifs in	
		proteins.	
		List out the types of pattern and	K4
4.2		motifs databases in secondary	1117
		structure	
	Structural classification	Classify & compare the structure of	K5
	Structural classification	nroteins	KJ
4.3		proteins	
		Identify the databases applied in	
		predicting the protein structure	K3
	Metabolic	Analyze the metabolic pathways.	K4
<u> </u>	pathway databases		
4.4			K4
		List out the types of metabolic	
		databases	
		Interpret the 3D structure of	K5
15	Protein structure visualization	proteins by using visualization	
4.5	tools	List out the types of 3D structure of	КЛ
		proteins visualization tools	127
	Molecular sequence alignment	Apply the alignment tools for	K3
	1 0	finding homology	
4.6			
		List out the tools applied for	
		molecular sequence alignment	K3
V	GENOME AND PRO	TEOME ANALYSIS	
	Gene and Genome analysis	Infer the importance of human	K3
5.1		genome sequencing & mapping	
		Apply the methods used for	K3
		genome analysis	W.C.
50	Comparitive genomics	Discuss the importance of	K6
5.2		comparative genomics in tracking	
	Protein and proteome analysis	apply the concepts of proteomics in	K3
5.3	rotem and proteome analysis	various fields	11.7
5 1	Protein structure prediction	Analyse the structure of proteins by	K4
3.4	methods	prediction method	

		Infer the secondary structure of proteins by structure prediction methods	K4
5.5	Transcriptomics	Apply the micro array techniques for studying gene expressions	К3
		Analyse the tools used for gene and mRNA expression	K4
	Modern drug discovery	Apply theCADD methods in drug designing.	К3
5.6		Explain the methods and tools used for modern drug discovery	К5

4. Mapping Scheme for the PO, PSOs and COs

P19ZY103	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	Μ	Н	Н	Μ	Н	Μ	Μ	Μ	Н	Н	Μ	Н
CO2	Η	Μ	Η	Η	Μ	Н	Μ	Μ	Μ	Н	Η	Μ	Н
CO3	Η	Μ	Н	Н	Μ	Н	Μ	Μ	Μ	Н	Н	Μ	Η
CO4	Η	Μ	Η	Η	Μ	Н	Μ	Μ	Μ	Η	Η	Μ	Η
CO5	Η	Η	Η	Η	Μ	Н	Μ	Μ	Μ	Μ	Μ	Η	Μ
CO6	Η	Н	Η	Η	Μ	Н	Μ	Μ	Μ	Μ	Μ	H	Μ

L-Low

M-Moderate

H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I,II

2. Cooperative learning report, Assignment, Presentation, Project report, Poster preparation.

3. End Semester Examination

Indirect

1. Course-end survey

CORE PRACTICAL-I: LAB IN CELL AND MOLECULAR BIOLOGY

Semester: I

Code: P19ZY1P1

Total Hrs. : 75

Credits : 3

1. COURSE OUTCOMES

After completing this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	Experiments
NO			
CO1	Examine the stages of mitotic cell division	K4	Ι
CO2	Analyze various events in cell division and cell cycle.	K4	Ι
CO3	Develop permanent slides and perform various staining	K6	Ι
	procedures.		
CO4	Estimate protein/DNA using gel electrophoresis and	K6	II
	analyze their molecular mass		
CO5	Test gene amplification using PCR	K5	II
CO6	Explain the significance of concentrating biomolecules	K5	Π

2. SYLLABUS

I CELL BIOLOGY

- 1. Effect of Colchicine on Mitosis using onion root tip.
- 2. Study of giant chromosomes in chironomous larva and micrometric measurements of Puffs.
- 3. Methyl Green Pyronin staining of DNA and RNA in buccal smear
- 4. Histology: Fixation, dehydration, embedding, sectioning, staining and permanent mounting of tissues Submission of 5 best slides for Exam evaluation
- 5. Histochemistry: Feulgen Reaction for DNA, Periodic Acid Schiff (PAS) reaction for carbohydrates, Mercuric Bromophenol Blue staining for Proteins.

Spotters: Giant chromosome, Mitotic stages of onion root tip, T.S of Heart, T.S of Kidney, T.S of Pancreas, T.S of Liver

II MOLECULAR BIOLOGY

- 1. Isolation of genomic DNA from PBMC.
- 2. PAGE separation and molecular weight determination of proteins.
- 3. Agarose gel electrophoresis of DNA and calculation of molecular weight.
- 4. Amplification of gene by PCR.
- 5. Gene expression through RT PCR(QPCR)
- 6. Western blotting technique

Spotters: PCR, PAGE and Agarose gel electrophoresis, Western blot

45hrs

35hrs

Topics for self study:

S.No	Topics	Web links
1.	FACS	https://www.labome.com/method/Flow-Cytometry-and- Cell-Sorting-A-Practical-Guide.html
2.	Cryopreservation	https://assets.thermofisher.com/TFS- Assets/LSG/manuals/D21111.pdf
3.	Immunohistoche mistry	https://link.springer.com/book/10.1007/978-1-4939-1578-1
4.	Western Blotting	https://vlab.amrita.edu/?sub=3&brch=187∼=1331&cnt =1
5.	Cell Culture	https://atecentral.net/downloads/1163/Basics of Cell Cult ure_students_manualv7.pdf

Text book

1. Cell Biology : Practical Manual. Dr. Renu Gupta (Author), Dr. Seema Makhija (Author), Dr. Ravi. Prestige Publishers (2018)

2. Freshney, R. I. (2005). Culture of specific cell types. John Wiley & Sons, Inc.

3. Razdan, M. K. (2003). Introduction to plant tissue culture. Science Publishers.Reference book

Reference Books

1. Essential Cell Biology: A Practical Approach Volume 1: Cell Structure (Practical Approach Series) 1st Edition. John Davey and J. Michael Lord. Oxford University Press; 1 edition (August 7, 2003) 2003

2. Sambrook, J., Russell, D. W., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3-volume set).

3. Cell and Molecular Biology: A Lab Manual. Chaitanya K.V. January 2013. Prentice Hall India Learning Private Limited

Weblinks:

https://b-ok.asia/book/5925611/120ff0

https://www.amrita.edu/school/biotechnology/academics/pg/cell-molecular-biology-lab-bio588

3. Specific Learning Outcomes (SLO):

Sl No	Course contents	Blooms	
		(SLO)	Taxonomy levels
			of Transaction
1		Cell biology	
1	Mitosis using onion root tip.	Explain the stages of mitosis	K5
2.	Study of giant chromosomes in chironomous larva and micrometric measurements of Puffs.	Examine Giant chromosomes in chironomous larva	K5
3	Methyl Green Pyronin staining of DNA and RNA in buccal smear	Distinguish DNA and RNA using Methyl Green Pyronin staining	K5
4	Histology: Fixation, dehydration, embedding, sectioning, staining and permanent mounting of tissues - Submission of 5 best slides for Exam evaluation.	Explain the importance of histology	K5
5	Histochemistry: Feulgen Reaction for DNA, Periodic Acid Schiff(PAS) reaction for carbohydrates, Mercuric Bromophenol Blue staining for Proteins.	Estimate the presence of various biomolecules in the tissue using dyes.	K5
6	Spotters: Giant chromosome, Mitotic stages of onion root tip, T.S of Heart, T.S of Kidney, T.S of Pancreas, T.S of Liver	Classify the various stages of cell division, DNA forms and histo-architecture of tissues	K2
II		Molecular Biology	
1	Isolation of genomic DNA from PBMC	Examine isolation of DNA from White Blood cells	K5
2	PAGE - separation and molecular weight determination of proteins.	Interpret tissue proteins through gel electrophoresis	,K5
3	Agarose gel electrophoresis of DNA and calculation of molecular weight.	Interpret DNA using agarose gel electrophoresis	K5
4	Amplification of gene by PCR.	Test gene amplification in the given sample	K5
5	Demonstration of Protein precipitation and purification.	Explain concentrating protein in a given sample.	K5
6	Spotters : PCR, PAGE and Agarose gel electrophoresis	Summarize the principle and applications of instrument used in molecular biology.	K2

P19ZY1P	PO	PSO	PSO	PSO	PSO								
1	1	2	3	4	5	6	7	8	9	1	2	3	4
C01	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	L
CO2	Н	Н	Н	Н	Н	М	L	Н	М	Н	Н	Н	L
CO3	Н	Н	Η	Н	Н	М	М	Н	L	Н	Н	Н	L
CO4	Н	Н	Η	Н	Н	L	Н	Н	L	Н	Н	Н	L
CO5	Н	Н	Н	Н	Η	М	L	Н	М	Н	Н	Н	М
CO6	Н	Н	Н	Н	Н	L	L	Н	L	Н	Н	Н	М

4. Mapping Scheme for the PO, PSOs and COs

L-Low

5. COURSE ASSESSMENT METHODS

M-Moderate

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,

H- High

3. End Semester Examination

CORE PRACTICAL -II LAB IN MICROBIOLOGY AND BIOINFORMATICS

Semester: I

Code: P19ZY1P2

Credits: 3

Total Hrs. : 75

1. Course Outcomes

After completing this course, the students will be able to

CO.No	COURSE OUTCOMES	LEVEL	UNIT
CO1	Categorise and determine the bacteria based on colony morphology	K4	Ι
CO2	Assess the different bacterial culture techniques applied for isolating pure culture.	K5	Ι
CO3	Determine the growth of bacteria in four stages by Spectrophotometry method.	K5	I
CO4	Evaluate the antibiotic sensitivity of bacteria by Disc Diffusion method.	K5	I
CO5	Justify the similarities between multiple sequences & to track the evolution.	K5	II
CO6	Determine the 3D structure of protein and to assess the phylogenetic relationship between the organisms.	K5	Π

2. SYLLABUS

I Microbiology

45hrs

1. Sterilization procedures and maintenance of laboratory.

2. Media preparation and bacterial culture inoculation.

3. Identification of bacteria based on colony morphology and colony counting.

4. Serial dilution and pour plate method and determination of colony number/gram.

5. Culture techniques :Broth culture, Spread plate, Streak plate, Slant culture &Swab culture

- 6. Identification of bacteria by gram staining method..
- 7. Determination of bacterial growth by spectrophotometry.
- 8. Antibiotic sensitivity test.
- 9. MPN technique for the identification of coliforms in water samples.

10. Bio- Chemical tests for bacterial identification. (IMVIC)

Spotters: Fungi and culture plates

Instruments: Laminar air flow and Colony counter

II-Bioinformatics

35hrs

- 1. Basic local Alignment methods BLAST, FASTA
- 2. Multiple Alignment methods-Clustal X
- 3. Structural Data Base -3D structure of proteins-PDB, Swiss Prot
- 4. Phylogenetic tree relationship- Distance tree results and neighbor joining tree method

Topic for Self-study:

No	TOPICS FOR SELF-STUDY	WEB-LIINKS	
1.	Introduction to the	https://www.pdfdrive.com/practical-	
	use of practical laboratory	microbiology-e12040951.html	
	microscopes		
2.	Basic bacterial cultivation techniques	https://www.pdfdrive.com/practical-	
		microbiology-e12040951.html	
3.	Transfer, maintenance and storage of	https://www.pdfdrive.com/practical-	
	pure cultures	microbiology-e12040951.html	
4.	Schaeffer-fulton spore staining	https://www.pdfdrive.com/practical-	
		microbiology-e12040951.html	

Text Book:

1. Laboratory Manual in Microbiology. P.Gunasekaran . New Age International, 2007 .

References:

1. Laboratory Manual: Microbiology Principles and Applications. Stephen A. Norrell Prentice Hall, 1990 - Medical microbiology.

2. Microbiology: A Laboratory Manual- James G. Cappuccino, Natalie Sherman Pearson Education, 20-Feb-2013

3. Bioinformatics Practical Manual . Mohammed Iftekhar \cdot Create space Independent Publishing Platform 2015.

4. Introduction to Bioinformatics Using Action Labs- Jean-Louis Lassez, Ryan Rossi, Stephen Sheel · Published by Lulu.com2016

Web links:

https://bio.libretexts.org/Bookshelves/Ancillary_Materials/Laboratory_Experiments/Microbiology_Labs/Microbiology_Labs_I/03%3A_Dilution_Techniques_and_Pipetting

https://microbiologyonline.org/file/7926d7789d8a2f7b2075109f68c3175e.pdf

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211962

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Course Contents	Specific Learning Outcomes (SLO)	Highest level of Blooms Taxonomy	
	MICROBIOLOGY			
1	Sterilization procedures and maintenance of laboratory	Apply the sterilization procedures and lab maintenance	K3	
2	Media preparation and bacterial culture inoculation	Assess the types of media prepare for bacterial culture	K5	
3	Identification of bacteria based on colony morphology.	Identify the bacteria based on colony morphology	K3	
4	Serial dilution and pour plate method and determination of colony number/gram.	Analyse the process of serial dilution to isolate pure culture	K4	
		Determine the process of pour culture method	K5	
		Predict the total number of bacterial colony count /gram.	K6	
5	Culture techniques :Broth culture, Spread plate, Streak plate, Slant culture &Swab culture	Evaluate and analyse the strains of bacteria using different culture techniques.	K6	
6	Identification of bacteria by gram staining method	Identify the bacteria based on gram staining.	K3	
		Assess the bacterial strain type based on grams staining.	K5	
7	Determination of bacterial growth by spectrophotometry -	Determine the growth of bacteria by Spectrophotometry method.	K5	
		Evaluate the stages of bacterial growth	K5	
8	Antibiotic sensitivity test	Evaluate the antibiotic sensitivity of bacteria by Disc Diffusion method.	K5	
		Determine the antibiotic sensitivity in bacteria	K5	
----	--	--	----	
		concentration of antibiotics.		
9	MPN technique for the identification of coliforms in water samples	Analyse the Coliform bacteria in the drinking water by MPN method.	K4	
		Analyse the water portability test.	K4	
10	Biochemical test for bacterial identification- IMViC	Identify the gram negative bacteria by biochemical test.	K3	
		Analyse the bacterial strains for identification at genus level by IMViC tests	K4	
	SPOTTERS			
11	Spotters- Fungi and culture plates	Analyse & compare the bacteria based on its morphology.	K4	
		Analyse & compare the fungi based on its morphology	K4	
12	Instruments-Laminar air flow, Colony counter	Explain the principle & applications of the instruments.	K5	
	BIO	INFORMATICS		
1	Basic Local Alignment methods- BLAST & FASTA	Compare & determine the similarities between the two local sequences using BLAST.	K5	
		Compare & determine the similarities between the two local sequences using FASTA.	K5	
2	Multiple alignment methods- Clustal X	Identify similarities between multiple sequences & to track the evolution	K5	

		Predict and apply the multiple alignment between the sequences using CLUSTAL X	K6
3.	Structural database-3D structure of proteins-PDB,SwissProt	Determine the 3D structure of proteins	K5
		Apply the 3D structure of protein to predict the annotations of the protein	K3
4.	Phylogeneticrelationship-Distance tree results and neighborjoining tree method	Assess the phylogenetic relationship between the organisms.	K5
		Apply the phylogenetic relationship between the organisms to track evolution	К3

4. Mapping Scheme for the PO, PSOs and COs

P19ZY1P2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	М	Η	Н	Н	Н	М	Н	М	М	М	Н	Н
CO2	Н	Н	Η	Н	Н	Н	М	Н	М	М	Η	Н	Η
CO3	Н	М	Н	Н	Н	Н	L	Н	М	М	Н	Н	Н
CO4	Н	М	Η	Н	Н	Н	L	Н	М	М	Н	Н	Н
CO5	Н	Н	Η	Н	Н	Н	L	Н	Н	М	М	Н	Н
CO6	Н	Н	Н	Н	Н	Н	L	Н	Н	М	М	Н	Н
L	-Low	Μ	-Mode	rate		H-]	High						

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group **Presentation, Posterpreparation,**
- 3. End SemesterExamination

Indirect

1. Course-end survey

ELECTIVE – I: MICROBIOLOGY

Semester: I

Code: P19ZY1:1

15hrs

Total Hrs.: 75

Credits : 4

1. COURSEOUTCOMES:

After completing this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	UNIT
NO			
CO1	Explain the structure, function, diversity, metabolism, and the genetics of metabolic regulation microorganisms.	K5	Ι
CO2	Explain the nutrient types essential for the microbial growth	K5	Π
CO3	Discuss about the multiplication and the physical factors influencing the growth of microbes.	K6	III
CO4	Identify and assess the various accessory pigments and their functions for major metabolic processes	K2	IV
CO5	Explain the functional role of microbes in large scale industries	K5	V
CO6	Categorize the diverse threat of microorganisms causing deadliest diseases	K2	VI

2. SYLLABUS

Unit – I MICROBES : CLASSIFICATION AND STRUCTURE 15hrs

Microbial diversity: Whitakers system of classification. **Bacteria**: Structure of *E.coli*-Cytoplasmic membrane – cell wall – gram positive and gram negative bacterial cell surface structures- cell inclusions– gas vesicles- endospores - locomotion – nutrition types in bacteria. **Virus**: Structure and life cycle of Bacteriophage.

Fungi: Structure and life cycle of *Penicillium*.

Unit – II MICROBIAL CULTURE AND GROWTH

Microbial culture and growth: Types of culture–culture media. Cell division - peptidoglycon synthesis-measurement of microbial growth - exponential growth- growth curves –growth kinetics –**Factors affecting growth**: temperature, pH and oxygen.

Unit – III AEROBIC AND ANAEROBIC RESPIRATION

Phototrophy: Structure of photosynthetic pigments – chlorophylls, bacteriochlorophyll, carotenoids and phycobilins **Chemolithotrophy:** inorganic electron donors - hydrogenoxidation- sulfur oxidation- iron oxidation- nitrification. **Anaerobic respiration:** nitrate reduction- sulfur reduction- acetogenesis - methanogenesis - organic electron acceptor.

Unit – IV MICROBIAL PRODUCTS

Industrial Microbiology: Microbial products -primary and secondary metabolitescharacteristics of large-scale fermentations- Antibiotics isolation and characterization-Industrial production of vitamins-steroids - enzymes - alcohol-vinegar-citric acid.

Unit – V MICROBIAL DISEASES

Medical microbiology: Symptoms, prevention and control of **Air borne infections:** Tetanus - tuberculosis- respiratory viral infections : COVID-19, Zoonotic diseases – Polio - influenza. **Water borne infections**: - hepatitis. Helicobacter pylori and Gastric ulcer – Leprosy - Sexually Transmitted Diseases: Gonorrhea-Syphilis - AIDS.

Topics	for	Self-Study:	
1 opics	Ior	Self-Study:	

S.No.	Topics	Web Links
1	Virtualization Proteins as Indicators of Phylogeny	https://academic.oup.com/peds/article/14/9/609/155146 6
2	Quorum Sensing and Microbial Populations	https://elifesciences.org/articles/25773
3	Specialty Compounds for Use in Medicine and Health	ftp://ftp.hpl.hp.com/wilkes/AutoRAID.TOCS.ps.Z
4	Microbial Mechanisms for Escaping Host Défense	https://www.immunology.org/public- information/bitesized-immunology/pathogens-and- disease/host-%E2%88%92-pathogen-interactions-and

Text Books

- 1. Pelczar M.J and Reid, Microbiology, 1996. Tata Mc Graw Hill,
- 2. Prescott L.M., HarleyJ. P. and KleinD.A., Microbiology, 6th Ed., 2005. McGraw-Hill, New Delhi,

References

- 1. Pomervill P.C., Alacamo's Fundamentals of Microbiology, 7th Ed., 2004.Boston: Jones and Bartlett,
- 2. Tartora G.J., Case C.L. and Funke B.R., Microbiology An Introduction, 8th Ed.,2004. Pearson Benjamin Cummings, New York,
- 3. Hogg S,Essential Microbiology, 2005. John Wiley & Sons Ltd., England,
- 4. Madigan M.T. and MartinkoJ.M.,Brock Biology of Microorganisms, 11th Ed., 2006.Prentice Hall, USA,

15hrs

15hrs

15hrs

- 5. Percival S.L., Chalmers RM, Embrey M., Hunter PR, Sellwood J and Wyn-Jones P, Microbiology of Waterborne Diseases,2004 Elsevier Academic Press, London,.
- 6. Schaechter M, The Desk Encyclopedia of Microbiology,2004 Elsevier Academic Press, London,.

Web Links:

3. Specific Learning Outcomes (SLO)

Unit	Course Contents	Specific Learning Outcomes (SLO)	Highest Bloom's taxonomy level			
Ι	MICROBES	: CLASSIFICATION AND STRUCTURE				
1.1	Microbial diversity	Classify the microorganisms with Whitaker's classification	К2			
1.2	Bacteria	Explain the structure and classification of bacteria	К5			
1.3	Virus	Explain the structure and life cycle of viruses	K5			
1.4	Fungi	Explain the structure and life cycle of Fungi	K5			
II	MICROBIAL CULTURE AND GROWTH					
		Classify the various types of culture media for the growth of microbial growth	К2			
2.1	Microbial cultural growth	Determine the stages of cell division and their functions	K6			
		Explain about the growth curve and kinetics	K5			
2.2	Factors affecting growth	Assess the importance of physical factors essential for the growth	К5			
III	AEROBI	C & ANAEROBIC RESPIRATION				
3.1	Phototrophy and	Explain the structure and importance of photosynthetic pigments	K5			
5.1	Chemolithotrophy	Elaborate the process of metabolism occur in bacteria	K6			
3.2	Respiration	Explain the mechanism of anaerobic	K5			

		respiration in microorganisms			
IV		MICROBIAL PRODUCTS			
4	Industrial microbiology	Classify the different microbial products and their metabolite characters	K2		
		Estimate about the large scale fermentations of essential needs of human beings	K5		
V	MICROBIAL DISEASES				
		Interpret the symptoms of major infections	K5		
5	Medical microbiology	edical microbiology Explain the prevention and control of deadly microbes			
		Classify the various Airborne, water borne and sexually transmitted diseases with their symptoms	K2		

4. Mapping Scheme for the PO, PSOs and COs

D107V1.1	DO1	002	002		DOF	DOC	DO7		DOO				
P19211.1	PUI	PUZ	PU3	PU4	P05	P00	P07	PU8	P09	P30 1	P30 2	P30 5	P30 4
CO1	н	н	н	н	Н	н	Μ	н	н	н	н	н	н
CO2	Н	Н	Н	Н	Н	Н	М	н	н	н	н	н	Н
CO3	Н	Η	Н	Н	Η	Н	Μ	Н	Н	н	н	н	н
CO4	Н	Η	Н	Н	Н	Н	Н	Н	Н	н	н	н	н
CO5	Η	Η	Н	Н	Η	н	Η	Н	Н	н	н	н	н
CO6	Н	Н	Н	н	Н	Н	Н	н	н	н	н	н	Н
	L-Low		Μ	-Modera	ate		H	I- Higł	1				

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End SemesterExamination

Indirect

1. Course-end survey

ELECTIVE – I: PARASITOLOGY

SEMESTER: I

Code: P19ZY1:A

Credits: 4

Total Hrs.: 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES

After completing this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	UNIT
NO			
CO1	Explain the structure, function, diversity and metabolism of Parasites	K5	Ι
CO2	Explain the different types of parasites.	K5	II
CO3	Discuss about the multiplication and the physical factors influencing the growth of the parasites.	K6	III
CO4	Identify and assess the various types of Helminth parasites	K2	IV
CO5	Explain the functional role of	K5	V
CO6	Categorize the diverse threat of parasites causing deadliest diseases	K2	VI

2. SYLLABUS

UNIT-I

15 HRS

15HRS

Parasitism: General consideration - Types of parasites - Type of hosts - Symbiosis and commensalism. Protozoan parasites: Distribution, habit and habitat, structure life cycle and diseases caused by selected pathogenic protozoan parasites of man: Intestinal and urogenital protozoa: *Entameobahistolytica* (Amoebae) -*Balantidium coli* (Ciliates)- *Giardia lamblia* (Flagellates)-*Trichomonasvaginalis* (Flagellates)- *Cryptosporidium parvum* (Sporozoa)- *Isospora belli* (Sporozoa).

UNIT- II

Blood and tissue protozoa: Trypanosoma (*T. brucei and T. cruzi*)- Leishmania (*L. donovani, L. tropica, L. braziliensis, L. mexicana and L. peruviana*)- Plasmodium (*P. falciparum, P. ovale, P. malariae and P. vivax*)- Toxoplasma gondii.

UNIT -III

Helminth parasites - General characters, organization and larval forms of Platyhelminthes and Nemathelminthes. Intestinal helminthes: - Ascarislumbricoides (Large intestinal roundworm)-Trichinellaspiralis (Trichinosis)-Trichuristrichiura (Whipworm)- Enterobiusvermicularis (Pinworm)-*Strongyloidesstercoralis* (Threadworm)-Necatoramericanes and Ancylostomaduodenale (Hookworms).

UNIT-IV

Blood and tissue helminthes: Dracunculusmedinensis (Guinea worm)- Toxocaracanis and T. catti (Visceral larvamigrans)- Ancylostomabraziliensis, Ancylostomacaninum (Cutaneous larva migrans)-Wuchereriabancrofti (Filariasis)- W. (Brugia) malayi- Onchocerca volvulus (Blinding worm)- Loa loa (Eye worm). :Cestodes (Tapeworms): Teniasolium (Pork tapeworm)- T. saginata (Beef tapeworm) -Diphyllobothriumlattum(Fish *Hymenolepis* tapeworm)nana (Dwarf tapeworm)-Echinococcusgranulosus (Dog tapeworm).

UNIT -V

Trematodes (Flukes; Flatworms):- Blood flukes: Schistosomamansoni, S. japonicum and S. hematobium- Intestinal flukes: Fasciolopsisbuski- Liver flukes: Clonorchissinensis, Fasciola hepatica- Lung flukes: Paragonimuswestermani. Vector Biology: Vectors and its importance in transmission of parasites- Major malaria vectors of India. Arthropods and Ectoparasites.

Text Book

Chandler A.S.Aand Read C.P., Introduction to Parasitology, Wiley, 1970. 1. References

- Chatterjee K.D., Parasitology, Chatterjee Medical Publishers, 1981. 1.
- 2. Noble E.R and Noble G.A., Parasitology, Lea and Febiger, 1973.
- SmythJ.D., Animal Parasitology, Cambridge University Press, 1996. 3.
- Gillespie Sand Richard D, Principles and Practice of Clinical Parasitology, John Wiley & 4. Sons Ltd., 2001.
- 5. Chiodini P.L. Moody A.H., Manser, D.W. and Livingstone C, Atlas of Medical Helminthology and Protozoology, 4th Ed., 2001.

3.	SPECIFIC LEARNING OU'	FCOMES (SLO)		
Unit	Course Contents	Contents Specific Learning Outcomes (SLO)		
Ι	PARASITES	: CLASSIFICATION AND STRUCTURE		
1.1	Parasite diversity	Classify the parasites related to Phylum	K2	
1.2	Parasites	Explain the structure and classification of intestinal and urinogenital parasites	K5	
1.3	Symbiosis	Explain the symbiotic relationship in parasites	K5	
1.4	Commensalism	Explain Commensalism in parasites.	K5	

15HRS

15HRS

15HRS

II	BL	OOD AND TISSUE PROTOZOA			
		Classify the various types of blood and tissue Protozoa	К2		
2.1	Blood and tissue protozoa	Determine the stages of blood Protozoa	K6		
		Explain the life cycle of various tissue protozoa	К5		
2.2	Factors affecting growth	Assess the importance of physical factors essential for the growth	K5		
III		HELMINTH PARASITES			
		Explain the structure of Helminth parasites	K5		
3.1	3.1 Helminth Parasites	inth Parasites Elaborate the larval forms of Helminth parasites			
3.2	Respiration	Explain the mechanism of anaerobic respiration in microorganisms	К5		
IV	BLC	OOD AND TISSUE HELMINTHS			
Δ	Industrial microbiology	Classify the different microbial products and their metabolite characters	К2		
		Estimate about the large scale fermentations of essential needs of human beings			
V		TREMATODES			
		Interpret the symptoms of major infections	K5		
5	Medical microbiology	Explain the prevention and control of deadly Medical microbiology			
5		Classify the various Airborne, water borne and sexually transmitted diseases with their symptoms	K2		

4. Mapping Scheme for the PO, PSOs and COs

P192	Y1:1	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PSO 1	PSO 2	PSO 3	PS	04
CO1		н	н	н	н	н	Н	М	Н	н	н	н	н	Н	
CO2		н	Н	Н	Н	Н	Н	М	н	н	н	н	н	Н	
CO3		Η	Н	Н	Н	Н	Н	Μ	Н	Н	н	н	н	Н	
CO4		Η	Η	Н	Н	Н	Н	Н	Н	Н	н	Н	н	н	
CO5		Н	н	н	Н	н	Н	Н	Η	Н	н	н	н	Н	
CO6		Н	Н	Н	Н	Н	Н	Н	Н	Н	н	н	н	н	
	L-	Low		M-N	Ioderat	e		H-	High						

5. COURSE ASSESSMENT METHODS

Direct

4. Continuous Assessment Test I, II

- 5. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 6. End Semester Examination

CORE – IV: ANIMAL PHYSIOLOGY

Semester: II

Credits: 5

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.NO	COURSE OUTCOME	LEVEL	UNIT
CO1	Analyze the structural and functional aspects of digestive and	K4	Ι
	respiratory systems in mammals.		
CO2	Evaluate the function of the blood and the process of	K5	II
	circulation in mammals.		
CO3	Interpret the mechanism of excretion, regulation of water	K5	III
	balance, acid-base balance, electrolyte balance,		
	thermoregulation and stress adaptations		
CO4	Examine the transmission of nerve impulses and physiology	K4	IV
	of muscle contraction		
CO5	Asses the role of hormones in the coordination of activities in	K5	V
	the biological systems		
CO6	Explain the reproductive processes and disorders of ovary in	K5	V
	mammals		

2. SYLLABUS

Unit – I: DIGESTIVE & RESPIRATORY SYSTEM

Digestion-absorption- energy balance - BMR. **Respiratory system**: Internal and external respiration-Comparison of respiration in mammals -respiratory pigments-transport of gases - exchange of gases - neural and chemical regulation of respiration.

Unit – II : BLOOD AND CIRCULATION

Blood corpuscles - haemopoiesis and formed elements -plasma function-blood volume -blood volume regulation. **Cardiovascular System**: Anatomy of heart - myogenic heart - principle and significance of ECG - cardiac cycle - blood pressure and neural and chemical regulation.

Unit – III: EXCRETORY SYSTEM & THERMOREGULATION 15hrs

Excretory system:kidney-urine formation- urine concentration-waste eliminationmicturition-regulation of water balance - electrolyte balance- acid-base balance. **Thermoregulation:** Comfort zone - body temperature - physical, chemical, neural regulation- acclimatization- stress adaptation.

Unit - IV NERVOUS AND MUSCULAR SYSTEMS AND SENSE ORGANS 15hrs

Nervous system :Central and Peripheral nervous system - Neurons - action potentialtransmission of nerve impulse - neural control of muscle tone and posture.

Code: P19ZY204

15hrs

15hrs

Total Hrs.: 75

Sense organs : Vision, hearing, gustation, olfaction and tactile.

Muscular system: Ultra structure of muscle - Physiology of muscle contraction

Unit – V :ENDOCRINE GLANDS

15hrs

Principles of Hormone action -Pituitary, Thyroid, Adrenal and Parathyroid: Hormones mechanism of action, functions and diseases. - Neuroendocrine regulation. Hormonal control of female reproductive cycle: Menstrual cycle -pregnancy- parturition – lactation.Disorders of Ovary: Polycystic Ovarian Syndrome.

*With reference to mammals

Topics for self study:

S.No	Topics	Web links
1	Bioluminescence in animals	https://www.youtube.com/watch?reload=9&v=9HXX
		<u>QBz6Vv0</u>
		https://www.nationalgeographic.org/encyclopedia/biol
		uminescence/
2.	Physiology of stress	https://www.ncbi.nlm.nih.gov/books/NBK541120/
		https://samples.jblearning.com/0763740411/Ch%202_
		Seaward_Managing%20Stress_5e.pdf
3.	Adaptations to high altitude	https://www.coursera.org/lecture/mountains-101/4-3-
		adaptation-of-high-altitude-peoples-QqTLE
4.	Neuromuscular disorders	https://www.maxhealthcare.in/our-
		specialities/neurology/conditions-
		treatments/neuromuscular-diseases
5.	Hormone receptors	https://www.sciencedirect.com/topics/neuroscience/ho
		<u>rmone-receptor</u>

Text Books:

Sherwood, L., Klandorf, H, and Yancey, P.H. Text Book of Animal Physiology 2008.Cengage Learning India Pvt., Ltd.

Hoar, W.S. General and Comparative Physiology,1968 Prentice Hall **References**

- 1. Hill R.W., Wyse G.A. and Anderson, M., Animal Physiology., 2nd Ed., 2008. Sinauer Associates, Inc Publisher, Massachusetts.
- 2 . Moyes, C.D. and Schulte, P.M. Principles of Animal Physiology. Pearson Education,

2007, Dorling Kindersley Publication. New Delhi.

3. Guyton, A.C. Textbook of Medical Physiology. 2000. W.B. Saunders Company,

Philadelphia, London, Toronto and IgakuShoin/Saunders (Tokyo).

4.Prosser, C.L. Comparative Animal Physiology. 3rd Ed., 1973W.B. Saunders & Co. Philadelphia

Weblinks

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/animal-physiology

https://handwrittennotes.in/product/science-notes-anatomy-and-physiology-of-animal-anatomyand-physiology/

https://nptel.ac.in/courses/102/104/102104042/

3. Specific Learning Outcomes (SLO):

Unit/ Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction						
Ι	DIG	DIGESTIVE & RESPIRATORY SYSTEM							
1.1	Digestion of food and absorption	 Describe the process of digestion and absorption Analyze the digestion & absorption of food 	K4						
1.2	Energy balance mechanism Intake of energy, Energy expenditure	 Illustrate the mechanism of energy balance Categorize the energy expenditure in animals 	K4						
1.3	BMR	• Analyze the basal metabolic rate in various animals	K4						
1.4	Internal and external respiration, Comparison of respiration in mammals	 Demonstrate internal and external respiration in mammals Compare the mechanism of respiration in mammals 	K3						
1.5	Types of respiratory pigments	• Classify the respiratory pigments	K4						

1.6	Transport and exchange of gaseous molecules Regulation (Neural, chemical)	 Analyse the transport of gaseous molecules Explain the regulation of respiration 	К4						
II	BLOOD AND CIRCULATION								
2.1	Types of blood corpuscles, haemopoiesis	Classify the blood corpusclesDiscuss the production of RBC	К5						
2.2	Function of blood plasma	• List out the functions of blood plasma	К5						
2.3	Blood volume and its regulation	• Examine blood volume and its regulation	K4						
2.4	Heart – Anatomy	• Describe the structure of heart	К2						
2.5	Myogenic heart, ECG	• Interpret the heart rate	K5						
2.6	Cardiac cycle, blood pressure	Infer the process of cardiac cycleMeasure the blood pressure	К5						
2.7	Neural and chemical regulation	• Conclude the regulation of circulation	К5						
III	EXCR	ETORY SYSTEM & THERMOREGULAT	FION						
3.1	Kidney – anatomy	• Describe the structure of Kidney	К2						
3.2	Formation and concentration of Urine	• Explain the process of urine formation in mammals	K4						
3.3	Waste elimination, Micturition	• Interpret the process of micturition	К5						
3.4	Water balance, Electrolyte, acid –base balance	• Relate water balance, Electrolyte, acid –base balance	К2						
3.5	Thermoregulation: body temperature Regulation (physical, chemical, neural)	 Analyse the influence of body temperature in physiology of mammals Explain different types of regulation inExcretion 	К5						
3.6	Acclimatization, stress adaptation	• Assess acclimatization due to temperature	К5						
IV	NERVOUS AND	MUSCULAR SYSTEMS AND SENSE O	RGANS						

4.1	CNS, PNS : types of neuron	• List out the type of neurons	K4
4.2	Action potential, impulse transmission	• Analyze the transmission of nerve impulse	K4
4.3	Optic, auditory, gestation, Olfactory, tactile	 Explain the structure of sensory Organs Analyse the functions of sensory organs 	K5
4.4	Neural control of muscle tone, posture, muscle structure, Physiology of muscle contraction	 Identify and illustrate muscle tone and posture Explain the physiology of muscle contraction 	K5
V		ENDOCRINE GLANDS	
5.1	Pituitary, Thyroid, Adrenal, Parathyroid Action of hormones, functions and disorders	 Summarize the different types of endocrine glands Justify "pituitary gland is the master gland" Identify and Interpret the hormonal disorders 	К5
5.2	Neuro endocrine regulation of hormones	• Explain the Neuro endocrine regulation	K5
5.3	Hormonal control of female reproductive cycle: Menstrual cycle, Ovulation, Pregnancy, Parturition	 Explain the hormonal control of the menstrual cycle Discuss the process of ovulation, Pregnancy and Parturition 	K5
5.4	Disorders of Ovary: PCO	• Explain the ovarian disorder,	K5

4. Mapping Scheme for the PO, PSOs and COs Course code : P19ZY204

P19ZY204	P01	P02	P03	P04	P05	P06	P07	P08	P09	PSO1	PSO 2	PSO3	PSO 4
C01	Н	Μ	Μ	Н	Н	-	-	Μ	-	Н	Н	-	-
CO2	н	-	М	L	L	-	-	-	-	н	н	-	-
CO3	н	Μ	Μ	L	L	-	-	-	-	н	н	-	-
CO4	н	Μ	М	L	L	-	-	-	-	н	н	-	-
CO5	М	Μ	Μ	L	L	-	-	-	-	н	н	-	-
CO6	Н	Μ	Μ	L	L	-	-	-	-	Н	Н	-	-

L-Low

M-Moderate

H- High

5. COURSE ASSESSMENT METHODS

Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation3.End Semester Examination
Indirect
1.0
1. Course-ena survey

CORE – V: BIOCHEMISTRY

Semester: II

Credits: 5

1. Course Outcomes

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOME	LEVEL	UNIT
C01	Explain the basic concepts/functions of solutes, chemical bonding and organic compounds.	K2	Ι
CO2	Predict the structure of proteins and their biological active sites	K6	II
CO3	Assess quantitative and qualitative estimation of biomolecules	K5	III
CO4	Explain the importance of biochemical metabolism of carbohydrate	K5	IV
CO5	Evaluate the importance of biochemical metabolism of protein and lipid	K5	V
CO6	Analyze the importance of essential aminoacids	K4	V

Unit – I CHEMICAL BONDS, BUFFERS AND CARBOHYDRATES 15hrs

Chemical bonds and interaction: Hydrogen bond, ionic bond and covalent bonds vanderwaals and hydrophobic interactions - Water as a solvent - pH and buffers: Acid-base reactions- dissociation constants (Ka) for weak acids and weak bases - role of buffers in biological systems. Carbohydrates: monosaccharides: linear and heterocyclic structure conformational structure- isomers - epimers. Disaccharides - oligosaccharides polysaccharides- Glycoproteins and glycolipids.

Unit – II PROTEINS AND LIPIDS

Proteins: Primary structure–peptide bond. Secondary structure– α helix - β pleated sheet and bends- Prediction of secondary structure: Ramachandran plot. T ertiary structure - Forces stabilizing tertiary structure - Domains and motifs. Quaternary structures-Molecular chaperones - prions. Lipids: Structure – Steroids – Cholesterol.

Unit – III ENZYMES

Enzymes: Classification of enzymes - co-enzymes- iso-enzymes- ribozyme - abzymes. Enzyme specificity: Mode of action of enzymes - Formation of enzyme substrate complex. Enzyme kinetics: Equilibrium and steady - state assumptions - Michaelis - Menten equation - significance of Km Value- MM & amp; LB plots - Enzyme regulation

Unit – IV CARBOHYDRATE METABOLISM

Carbohydrate metabolism: Glycolysis - Pentose phosphate pathway - citric acid cycleoxidative phosphorylation. Gluconeogenesis - Cori cycle. Glycogen metabolism:

15hrs

15hrs

15hrs

53

Code: P19ZY205

Hours: 75

Glycogenesis - Glycogenolysis - Adenylate cascade system- Regulation of glycogen synthesis – Intermediate metabolism.

Unit – V PROTEIN AND LIPID METABOLISM 15hrs

Metabolism of Proteins: Deamination, transamination and transdeamination. Metabolism of lipids: β oxidation – alpha oxidation – omega oxidation – synthesis of triacylglycerols – Synthesis of essential amino acids: methionine and valine – synthesis of purine and pyrimidine nucleotides.

Topics for Self -Study :

S.No.	Contents	Web Link
1.	Entropy	http://guweb2.gonzaga.edu/faculty/cronk/CHEM245pub/entropy.html
2.	Enthalpy	http://guweb2.gonzaga.edu/faculty/cronk/CHEM245pub/enthalpy.html
3.	Electron Transport	https://microbenotes.com/electron-transport-chain-etc-components-
	Chain	and-steps/
4.	Action Potential	https://teachmephysiology.com/nervous-system/synapses/action-
		potential/
5.	Metabolic acidosis	https://litfl.com/metabolic-acidosis/

Text Books

1. Cox M.M. and Nelson D.L. Lehninger's Principles of Biochemistry, 4th Ed., 2005 New York: W.H. Freeman

 Ambika Shanmugam, Fundamentals of Biochemistry for Medical Students, Revised Ed., 2001.

References

1. Voet D. and Voet, J.G., Biochemistry, 4th Ed., 2011 John Wiley & Sons,

2. BergJ.M., Tymoczko J.L. and Stryer L. Biochemistry, 6th Ed., 2007 W.H Freeman and Company, New York.

3. Zubay G.L., Principles of Biochemistry, 2000Dubuque, Williams C, Brown Publishers.

4. Murray R.K., Granner D.K. and Mayer P.A., Harper's Illustrated Biochemistry: A Lange Medical Book, 26th Ed., 2003 New Delhi, McGraw-Hill.

5. Bayens J.W. and Marek D, Medical Biochemistry, 2nd Ed., 2005 Elsevier.

6. Mathews C.K., Van holde, K.E. and AHERNK.G., Biochemistry, 3rd Ed., 2004 New Delhi, Pearson Education.

7. Elliott W. H. and Elliott D. C., Biochemistry and Molecular Biology, 3rd Ed., 2005 Oxford University Press, Indian Edition. 8. Devlin T. M., Text book of Biochemistry with Clinical Correlation, 2002 John Wiley & Sons.

9. Price N.C. and Stevens L., Fundamentals of Enzymology, 3rd Ed., 2006 Oxford University Press.

10. Conn E.E., Stump P.K., Bruening G. and DOI R.H., Outlines of Biochemistry, 5th Ed., 2007 John Wiley & Sons, Indian Edition.

Web Links:

https://nptel.ac.in/content/syllabus_pdf/104105076.pdf

https://www.classcentral.com/course/swayam-experimental-biochemistry-12909

Unit/ Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomical level of Transaction
Ι	CHEMICAL BONDS, BU	FFERS & CARBOHYDRA	TES
1.1	Chemical bonds and interaction: Hydrogen bond, ionic bond and covalent bonds - vanderwaals and hydrophobic interactions - Water as a solvent	Define interaction of atoms, ions and molecules in biochemical process	K 1
1.2	pHandbuffers:Acid-basereactions-dissociationconstants(Ka) for weak acids and weak bases-roleofbufferssystems.	Demonstrate different acid base interaction and role of buffers in biological system	K2
1.3	Carbohydrates: monosaccharides: linear and heterocyclic structure - conformational structure- isomers - epimers. Disaccharides - oligosaccharides – polysaccharides - Glycoproteins and glycolipids.	Interpret the structure and conformational changes of different carbohydrates	K2
II	PROTEI		
2.1	Proteins: Primary structure–peptide bond. Secondary structure– α helix - β pleated sheet and bends - Prediction	Predicttheconformationalchangesof protein structures	K6

3. SPECIFIC LEARNING OUTCOMES (SLO)

	of secondary structure:		
	Ramachandran plot. Tertiary		
	structure - Forces stabilizing tertiary		
	structure - Domains and motifs.		
	Quaternary structures-Molecular		
	chaperones - prions.		
2.2	Lipids: Structure – Steroids –	Explain the structure and	К2
2.2	Cholesterol.	properties of lipids	112
III	ENZ	YMES	
3.1	Enzymes: Classification of enzymes - co-enzymes- iso-enzymes- ribozyme - abzymes. Enzyme specificity: Mode of action of enzymes - Formation of enzyme substrate complex.	Classify enzymes and their properties and Examine the interaction of enzyme substrates complex	K4
3.2	Enzyme kinetics: Equilibrium and steady-state assumptions- Michaelis -Menten equation-significance of Km Value- MM & LB plots - Enzyme regulation.	Determine the chemical reaction catalyzed by enzymes.	K5
IV	CARBOHYDRAT	E METABOLISM	
4.1	Carbohydrate metabolism: Glycolysis – Pentose phosphate pathway - citric acid cycle-oxidative phosphorylation. Gluconeogenesis - Cori cycle. Glycogen metabolism: Glycogenesis - Glycogenolysis - Adenylate cascade system- Regulation of glycogen synthesis – Intermediate metabolism.	Explain the fundamental biochemical process that ensures constant supply of energy to living cells	K2
V	PROTEIN AND I	LIPID METABOLISM	
5.1	MetabolismofProteins:Deamination,transaminationandtrans-deamination.	Determinethebiochemicalprocessresponsibleforthesynthesis of proteins	К5

		Determine the synthesis	
	Metabolism of lipids : β oxidation –	and degradation of lipids	
5.2	alpha oxidation - omega oxidation -	in cells, involving the	K5
	synthesis of triacylglycerols -	breakdown or storage of	
		fats for energy.	
	Synthesis of essential amino acids:	Analyze the pathways	
5.3	methionine and valine - synthesis of	involved in the synthesis	K4
	purine and pyrimidine nucleotides.	of essential amino acids.	

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY205	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н		L			М				L			М
CO2		М		М				Н				М	
CO3	L				L				Μ				Н
CO4			М					L			М		М
CO5	Н				М		Н			L			
CO6		М		Н		L			М			Н	

L - Low

M - Medium

H - High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

1. Course-end survey

ELECTIVE – II: IMMUNOLOGY

Semester: II

Code: P19ZY2:1

Credits : 4

Total Hrs.: 60

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOME	LEVEL	UNIT
C01	Interpret the structure and functions of lymphoid organs.	K5	1
CO2	Explains the functions of Complements and its mechanism to form Membrane attack complex.	K5	Π
CO3	Interpret the types and functions of MHC complex	K5	III
CO4	Explains about tumor antigens and its immune response.	K5	IV
CO5	Appraise the role of vaccines in treating diseases	K5	IV
CO6	Elaborate the importance of immunotechniques	K6	V

2. SYLLABUS

Unit – I IMMUNITY AND ITS TYPES

12hrs

Immunity: Innate and Acquired immunity- Ultra structure and functions of primary and secondary lymphoid organs. Cell types - origin and specific functions. Antigens and Immunogens - characteristics - epitopes. **Immunoglobulins:** 3D structure-classes- antigenic determinants- class switching-generation of antibody diversity.

Unit – II CELL MEDIATED IMMUNITY AND COMPLEMENTS PATHWAY 12hrs

Immune response: antigen recognition- processing and presentation-interaction of T and B cells – cell mediated and humoral immunity - cytokines and immune response – immunological memory – agglutination - antigen-antibody interactions – complements - classical and alternative pathway and immunological significance.

Unit – III MAJOR HISTOCOMPATIBILITY COMPLEX AND TRANSPLANTATION IMMUNOLOGY

Major Histocompatibility Complex: structure of MHC molecules –types - MHC and antigens presentation. **Transplantation immunology:** HLA typing-immunology of graft rejection- Hypersensitivity reactions -immunotolerance and autoimmune diseases

12hrs

12hrs

Unit – IV CANCER IMMUNOLOGY AND IMMUNODEFICIENCY DISEASES 12hrs

Immunology of cancer: tumor antigens- immune response to tumor antigens - immuno therapy.

Primary immunodeficiency: SCID -**Secondary immunodeficiency**: Immunological abnormalities associated with AIDS – CD4 and CD8 cells. **Vaccines: Types,** Vaccination schedule - Polysaccharide vaccines-toxoids- vaccines from recombinants vectors- DNA vaccines.

Unit – V IMMUNOTECHNIQUES

Immunotechniques: Precipitin reactions: immunodiffusion and immunoelectrophoresis RIA–ELISA -Western Blotting Complement fixation -Flow cytometry - Monoclonal antibody production -Principles of immunohistochemistry- Fluorescent immunoassay (FIA).

No	TOPICS FOR	WEB-LINKS
	SELF-STUDY	
1.	Lymphocyte	https://www.sciencedirect.com/topics/neuroscience/lymphocyte-
	antigen Receptor	antigen-receptor
2.	. Generation of T	https://www.pnas.org/content/109/45/E3111
	cell receptor	
	ligands.	
3.	The immune	https://www.sciencedirect.com/science/article/abs/pii/S095035520580
	response in health	<u>0033</u>
	and disease.	
4.	Immunity at	https://www.sciencedirect.com/science/article/pii/B978012811924200
	mucosal surfaces.	<u>0067</u>

Topics for self-study:

Text Book

Roitt, I.M., and Delves, P.J. Roitt's Essential Immunology. 10th Ed., Oxford: Blackwell Science, 2000

References

1. Goldsby, R.A., Kindt, T. J. and Osborne, B. A. Kuby's Immunology. 5th Ed., WH Freeman & Co., 2003.

2. Abbas, A.K. and Lichtman, A.H. Cellular and Molecular Immunology. 6th Ed., Saunders Elsevier, 2007.

3. Janeway, C. Immunobiology. 5th Ed., Garland Publications, 2001.

4. Benjamin, E., Richard, C., and Sunshine, G. Immunology: A Short Course. 4th Ed., John Wiley, New York, 2000.

5. Tizard, I.R. Immunology 4th Ed., Thomson, Singapore, 2004.

6. Chakravarty, A.K. Immunology and Immunotechnology. Oxford University Press. New Delhi, 2000.

Weblinks

https://www.niaid.nih.gov/research/immune-system-overview

https://www.cell.com/immunity/comments/S1074-7613(00)80641-X

https://www.ncbi.nlm.nih.gov/books/NBK27156/

Unit/Se ction	Course Contents	Specific Learning Outcomes (SLO)	Highest Bloom's taxonomy level of transaction
1	IMMUNI	TY AND ITS TYPES	
1.1	Immunity –Introduction- History of Immunology Types- Innate immunity- barriers-First line of defense, Second line of defense, Third line of defense	1.Explain immunity and its types	K5
	Acquired immunity – Natural active, Artificial active, Natural passive, Artificial passive	2.Distinguish the types of barriers and the types of defenses	K4
1.2	Ultra-structure and functions of primary and secondary lymphoid organs	1. Explain the structure of lymphoid organs and its functions.	K 5
	Cell types Lymphoid & Myeloid lineage	1.Explain the types of cell lineages	К 5
1.2	Functions of Lymphoid & Myeloid lineage	2.Compare the types of lymphoid and myeloid lineages	K 5

	Antigens and	Classify the types of antigens	К 4
1.3	Immunogens Types of antigens Properties of antigens Difference	Compare the difference between antigens and immunogens.	K 4 K 5
	between antigens & immunogens Epitopes	Explain the properties of antigens Distinguish the epitopes and its types.	К 4
1.4	Immunoglobulins- types- Ig G,A,M,D,E Class switching	Interpret the basic structure of immunoglobulin	K 5
		Explain the types of Immunoglobulins structure and its functions	К б
1.5		Analyse the process of class switching and its types	К 4
	Generation of Antibody diversity Heavy chain & light chain rearrangements	Elaborate the mechanism of generation of antibody diversity and Heavy chain & light chain rearrangements	K 6
II	CELL MEDIATH	ED IMMUNITY AND COMPLEMENTS	S PATHWAY
	Immune response antigen	Analyse the immune response	K 4
2.1	recognition- processing and presentation. Antigen processing and presenting cells –MHC	Elaborate the process of antigen recognition and processing and presentation.	К 6
	Class I & MHC Class II	Explain the antigen processing and presentation	K 5
2.2	Interaction of T and B cells T Helper cells & T cytotoxic cells in antigen processing	Compare the process of interaction of T cells and B cells in antigen processing.	K 5

	Cell mediated and humoral immunity Cell mediated immunity- cytotoxic cells –	Explain the process of cell mediated immunity in antigen degradation.	K 5
2.3	Dendritic cells, TC CD8 cells,ADCC- perforated channels- antigen degradation. Humoral immunity- Activation of B cells-	2. Elaborate the process of humoral immunity and activation of B cells.	K 6
	Cytokines and immune	Categorise the types of cytokines .	К 4
2.4	response Types and its functions	Explain the process of immune response induced by cytokines	K 5
2.5	Immunological memory Clonal expansion	Explain the process of immunological memory	К 5
	& clonal differentiation of B cells	Elaborate the process of Clonal expansion & clonal differentiation of B cells	К 6
2.5	Agglutination reaction Antigen antibody	1.Explain the process of agglutination reaction	K 5
	interactions	2.Examine the process of antigen antibody interaction	К 4
2.6	Complements - classical and alternative pathway-	Explain the process of activation of complement pathway	K 5
2.0	Opsonisation - immunological significance.	Explain the classical pathway and its functions Describe the alternative pathway and its functions	K 5
III	MAJOR HISTOCOMPATIBILITY COMPLEX AND TRANSPLANTATION IMMUNOLOGY		

3.1	Major Histocompatibility Complex Structure of MHC molecules Types – Class I, Class II, Class III	Explain the structure and functions of Major histocompatibility complex. Classify and determine the types of MHC involved in antigen processing and presentation	K 5 K 5
	MHC and antigens presentation APCs and Antigens processing & presentation	Explain the process of antigen processing and presentation to T helper cells through MHC cmplex	K 5
	Transplantation immunology HLA – introduction	Classify the types of grafts used in transplantation processes	K 4
3.2	HLA typing Immunology of graft rejection –Kidney transplantation & Eye transplantation	Explain the process of HLA typing Explain the process of graft rejection in kidney transplantation and in eye transplantation	K 5
3.3	Hypersensitivity	Distinguish the types of hypersensitivity reaction and the diseases associated to it.	К4
	I.II,III,IV,V	List out the various pharmacological mediators involved in hypersensitivity reaction.	K4
3.4	Immunotolerance Central tolerance Peripheral tolerance	Classify the types of immunological tolerance	K 4
	Autoimmune diseases Types- systemic	Compile the significance of auto immune diseases.	К
3.5	& organ specific	List out the types of auto immune diseases	σ
IV	CANCER IMMUNOLO	GY AND IMMUNODEFICIENCY DISEASES	
4.1	Immunology of cancer Tumor antigens- Types	List out the types of tumor antigens	К 4

	1. Tumor antigens recognised by T- lymphocytes		
	2. Tumor antigens identified by xenogeneic antibodies	Interpret the significance of umor antigens recognised by xenogeneic antibodies	К 5
4.2	Immune response to tumor antigensImmune response by T & B cells	Explain the mechanism of cell mediated and humoral immune response to tumor cells.	К 5
	Immuno therapy.	Interpret the process of immune therapy to tumors.	К 5
4.3	3 immunization Passive therapy	Compare the types of immune therapy to tumors.	К 5
4.4	Cutokinos	Explain the role of cytokines in immune response.	K 5
	Cytokines	List out the types of cytokines.	К 4
4.5		Define SCID	K 5
	Primary immunodeficiency SCID- symptoms & deficiency of immune	Explain the types of immunodeficiency	К 5
	cells	Analyse the symptoms of primary immunodeficiency	К б
4.6	Secondary immunodeficiency Immunological	Elaborate the process of secondary immunodeficiency with immunological abnormalities	К б

	abnormalities associated with AIDS – CD4 and CD8 cells Symptoms- Immune cells Vaccines Vaccination schedule	Interpret the role of CD4 and CD8 cells in AIDS	K5
4.5	Polysaccharide vaccines Types – Hib, Meningococcal vaccines Outer membrane protein vaccines Conjugate vaccines Toxoids Tetanus Toxoids	Explain the Types of vaccines	K 5
	Vaccines from recombinants vectors Multivalent subunit vaccine DNA Vaccines DNA as adjuvant - Mucosal adjuvant	Explain the role of polysaccharide vaccines, Conjugate vaccines, toxoid vaccines and recombinant vaccines. Compare the role of the different vaccines and its significance	K 5 K 5
V	IMMU	NOTECHNIQUES	
5.1	Immunotechniques Introduction to immunotechniques Precipitin reactions Agglutination	Compare the process of precipitin reactions and agglutination reactions.	K 5
	reaction Agglutination Vs. Precipitation reactions	Explain the mechanism of antigen antibody interaction	K 5

5.2	Immunodiffusion techniques Ouchterlony Gel Diffusion	Explain the significance of immunodiffusion techniques.	К 5
5.3	Immunoelectrophoresis- Two step double diffusion technique.	List out its applications. Describe the importance of immunoelectrophoresis techniques.	К 4 К 3
5.4	RIA Principle & Applications	Elaborate the principle and applications of RIA	К 5
	ELISA Types – Direct, Indirect, Sandwich	Define ELISA	К 3
5.5		Describe the types of ELISA and its role in detecting the presence of antigen and antibody	К 3
5.6	Western blotting Principle & Applications	Explain the principle and applications of Western blotting technique	K 6
5.7	Complement fixation Antibody detection test – Principle & Applications	Elaborate the process of complement fixation in antibody detection	К 5
		List out the applications of Complement fixation test	К 4
5.8	Flow cytometry Principle, Procedure & Applications	Explain the process of flow cytometry and list out its applications.	К 5
	Monoclonal antibody production Establishment of Hybridoma Production of	Elaborate the process of production of monoclonal antibody	K 6
5.9	monoclonal antibodies	Explain the process of establishment of Hybridoma Define the media used for Hybrdoma technology	K 5
		Analyse the role of immunohistochemistry in antibody detection	К 4

5 10	FIA -Fluorescent	Explain the principle and applications of	К
5.10	immunoassay	Fluorescent immunoassay	5

4. Mapping Scheme for the PO, PSOs and COs

P19ZY2:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	H	L	Μ	Μ	Н	Н	Μ	Н	Μ	Μ	Η	Η	Н
CO2	H	Μ	Μ	Μ	Н	Н	Μ	Н	Μ	Μ	Н	Н	Н
CO3	H	H	Н	Н	Н	Н	Н	Н	Μ	Μ	Η	Η	Н
CO4	H	-	Н	Н	Н	Н	Н	Н	Μ	Μ	Η	Н	Н
CO5	H	-	H	Н	Н	Н	Н	Н	Μ	Μ	Н	Н	Н
CO6	H	-	Н	Μ	H	H	Н	Н	Μ	Μ	Η	H	Н
]	L-Low	M	-Mode	rate	•	H-	High	•	•				

L-Low

H- High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End SemesterExamination

Indirect

1. Course-end survey

ELECTIVE – III: BIOSTATISTICS

Semester: II Credits : 2 Code: P19ZY2:3 Total Hrs.: 60

1. Course Outcomes:

On completion of this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	UNIT
no			
CO1	Explain the methods of data collection in biological research	K5	Ι
CO2	Compare and interpret results by chi-square and ANOVA among two or more populations	K4	Π
CO3	Compare and interpret the various distribution methods	K4,K3	III
CO4	Examine the hypotheses and compare the data using student 't' test.	K4	IV
CO5	Verify and evaluate the basic concepts of statistics using SPSS.	K6,K4	V
CO6	Analyse the statistical inference by correlation and regression	K4	V

2. SYLLABUS

Unit - I COLLECTION OF DATA

12hrs

Introduction to Biostatistics – Applications and Role of biostatistics in modern research –Concepts of biostatistics - Collection of Data: Primary and Secondary data – Classification and tabulation of Data – Diagrammatic and Graphical Representation – Frequency Distribution.

Unit - II MEASURES OF CENTRAL TENDENCY AND DISPERSION 12hrs

Measures of Central tendency (Mean, Median and Mode) – Measures of Dispersion (Range, SD, Quartile deviation, Mean deviation, Variance, Coefficient of variance, Standard Error).

Unit-III PROBABILITY THEORY AND DISTRIBUTIONS

Probability: Concepts of probability, Types of Probability-Measures of probability-Theorems of probability (Addition and Multiplication)–Probability distributions –Binomial, Poisson, Normal distribution and their applications.

12hrs

12hrs

Unit - IV SAMPLING METHODS AND ANALYSIS 12hrs

Inference about population – sampling methods – Hypothesis testing –'t' test: One sample t test, Properties and applications. Chi-square test for goodness of fit-Statistical software and handling (SPSS/R-Programming), MS - Excel

Unit - V STATISTICAL ANALYSIS

Analysis of Variance (ANOVA) - One way ANOVA-Two way ANOVA – Correlation – Types, Methods -Graphic, mathematical (Karl Pearson's correlation Coefficient)–Regression- Types (Simple, linear and total regression), Regression equation and regression line.

Topics f	for Self-	Study:
-----------------	-----------	--------

S.No.	Topics	Web Links
1.	Sampling methods	https://towardsdatascience.com/sampling-
		techniques-a4e34111d808
2.	Probability	https://www.statisticshowto.com/probability-
		sampling/
		https://research-methodology.net/sampling-in-
		primary-data-collection/probability-sampling/
3.	New statistical packages	https://en.wikipedia.org/wiki/List_of_statistical_
		software
4.	Statistical distributions	http://www.stat.rice.edu/~dobelman/textfiles/Dis
		tributionsHandbook.pdf

Text books:

An Introduction to Biostatistics, Gurumani.N Second Revised Edition,2008 www. MJP publishers, Chennai,

Palanichamy S and M. Manoharan,- Statistical methods for Biologists, , Paramount Publications, 2009

Pranab Kumar Banerjee Revised Edition, Introduction to Biostatistics, S. Chand Publishers, 2011

Reference:

McCleery, R.H. and WATT, T.A., Introduction to Statistics for Biology, 3rd Ed., 2007 Chapman & Hall/CRC,

Gupta S P, Statistical Methods S.Chand & Sons, 2008.

Zar, J.H, Biostatistical analysis – Prentice Hall Inc., New Jersey, USA, 1974.

Web links

https://statisticsbyjim.com/basics/measures-central-tendency-mean-median-mode/ https://www.surveysystem.com/correlation.htm

https://www.statisticshowto.com/probability-and-statistics/regression-analysis/ https://www.statisticshowto.com/probability-and-statistics/chi-square/

3. SPECIFIC LEARNING OUTCOMES (SLO):

S.No	Course Content	Learning outcome	Highest Blooms Taxonomic Level of Transaction
1		Collection of data	
1.1	Collection of data	1.Explain the collection of data	K2
		2. Classify the data.	К3
1.2	Graphical	Compare and Interpret the data using	K4
	representation	graphs	K2
1.3	Frequency distribution	Construct the diagram/graph using the data	K5
II		Measures of Central tendency	1
2.1	Measures of Central tendency- Mean	Examine the length or width of the given molluscan shell and calculate the mean value	К3
52.2	Measures of Central tendency- Median	Justify the length or width of the given molluscan shell and calculate the mean value	K4
2.3	Measures of Central tendency- Mode	Justify the length or width of the given molluscan shell and calculate the mean value	K4
2.4	Measures of Dispersion	Justify the length or width of the given molluscan shell and calculate the mean value	K4
2.5	Probability & Types	Assess the degree of uncertainity numerically using probability	K6
2.6	Chi square test	Find out degree of discrepancy between observed and expected frequency using the chi square test .	K1

III		STASTICAL Distributions									
3.1	Binomial Distribution	Examine the statistical data using binomial distribution	K4								
3.2	Poisson Distribution	Analyse the statistical quality of the data using Poisson distribution	K4								
3.3	Normal Distribution	Design the statistical quality control experiment using normal distribution	K5								
IV		SAMPLING METHODS									
4.1	Sampling methods	Catogorise the different types of sampling methods	K4								
4.2	Student's t-Test	Verify the test the significance of a single mean when the population variance is unknown	K6								
V		STATISTICAL ANALYSIS									
5.1	ANOVA	Analyse the significance of differences in means and the variance by using ANOVA method	K3								
5.2	Correlation	Compare two different types of data using correlation analysis	K4								
5.3	Regression	Examine the average between two or more variables.	K4								
5.4	Applications of SPSS package	Analyse the data using SPSS software	K4								

4. Mapping of COs and POs

P19ZY2:3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	М	Н	Н	L	М	-	-	L	Н	L	Н	Н
CO2	Η	М	Н	Н	L	М	-	-	L	Η	L	Н	L
CO3	Η	-	М	М	-	М	-	-	-	L	L	Н	L
CO4	Н	М	М	М	-	М	-	-	-	L	L	Н	L
CO5	Н	-	M	Μ	-	M	-	-	-	L	-	Н	L
CO6	Η	М	М	Н	-	М	-	-	-	L	-	Н	L

L-Low M-Moderate

H- High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

1. Course-end survey
CORE PRACTICAL – III : LAB IN ANIMAL PHYSIOLOGY AND IMMUNOLOGY

Semester: II

Code: P19ZY2P3

Credits : 3

Total Hrs.: 75

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOME	LEVEL	PRACTICALS
CO1	Apply the physiological concepts in experiments	K3	Ι
CO2	Interpret the results in physiological experiments.	K5	Ι
CO3	Identify the tissues of different endocrine organs	K3	Ι
CO4	Apply the immunological techniques in biology	K3	Π
CO5	Analyze the various immunological disorders.	K4	Π
CO6	Identify the tissues of lymphoid organs and Lymphocytes	К3	Π

2. SYLLABUS

I ANIMAL PHYSIOLOGY

- 1. Survey of digestive enzymes in Cockroach (Invertase, Amylase, Maltase, Protease and Lipase)
- 2. The rate of oxygen consumption in fish with reference to body weight.
- 3. Rate of salt loss and salt gain in crab.
- 4. Estimation of urea in the blood and urine by DAM method.
- 5. Effect of Humulin on blood glucose level (Demonstration)
- 6. ECG (Demonstration).
- 7. **Prepared Slides:** T.S of endocrine organs: Pituitary, thyroid, parathyroid, pancreas, adrenal, ovary and testis.

II IMMUNOLOGY

- 1. Differential counting of WBCs.
- 2. Blood grouping and Rh factor analysis.
- 3. Quantitative estimation of Thyroid hormone by ELISA (Demonstration).
- 4. Double immune-diffusion
- 5. WIDAL test
- 6. **Prepared Slides:** T.S of lymphoid organs: Thymus, Bone marrow, lymph node, spleen, T cells and B cells.

40hrs

Topics for Self-Study :

S.No	Topics	Web links
1	Osmoionic regulation in Tilapia fish	https://www.slideshare.net/mndp_slide/osmo- regulation-in-fish-by-mndp-poonia
2.	Analysis of heat shock response	https://www.cell.com/molecular- cell/pdf/S1097-2765(16)00136-2.pdf
3.	Immunoelectrophoresis	https://www2.slideshare.net/SaajidaSultaana/im munoelectrophoresis- 169939054?from_action=save
4.	Immuno precipitation	https://www2.slideshare.net/masumaaktersani5/ immunoprecipitation-84426921
5.	Monoclonal antibodies production	https://www2.slideshare.net/SrilaxmiMenon/m onoclonal-antibody-production-and- hybridoma-technology

Text books

- 1. Ghai. C.L, A Textbook of Practical Physiology, 6th Edition,2005, Jaypee Brothers, Medical Publishers, New Delhi.
- 2. Rajan. S and Selvi Christy. R, Experimental procedures in Life Sciences,1st Edition 2010, Anjanaa Book House, Chennai.

Weblinks: <u>https://laney.edu/rebecca_bailey/wp-content/uploads/sites/10/2017/07/Human-</u> Physiology-Lab-Exercises-update-2017.pdf

Experiment	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction
Ι		ANIMAL PHYSIOLOGY	
1.	Survey of digestive enzymes in Cockroach (Invertase, Amylase, Maltase, Protease and Lipase)	 Examine the digestive system present in the Cockroach Analyse the digestive enzymes present in Cockroach 	К4

3. SPECIFIC LEARNING OUTCOMES (SLO)

2.	Rate of oxygen consumption in fish with reference to body weight.	 Apply the concepts of respiration in fish. Evaluate the rate of oxygen consumption in fish Interpret the results with reference to body weight. 	К5
3.	Rate of salt loss and salt gain in crab.	 Apply the concepts of osmo-ionic regulation in crab Analyse the rate of salt loss and salt gain in different media 	K4
4.	Estimation of urea in the blood and urine(DAM method)	 Compare the quantity of urea present in the blood and urine Evaluate the normal level of urea in the samples. Analyze the results and predict the diseases. 	K5
5.	Effect of Humulin on blood glucose level (Demo)	• Estimate the blood glucose level with the effect of humulin	К5
6.	ECG (Demo)	 Interpret and read the ECG graph of a human heart. Assess the heart rate of a human being. 	K5
7.	Slides: T.S of endocrine organs: Pituitary, thyroid, parathyroid, pancreas, adrenal, ovary and testis.	 Identify the tissues of different endocrine organs Distinguish the cells of various endocrine organs 	K4
II		IMMUNOLOGY	
1.	Differential counting of WBCs.	 Identify the different types of WBCs in the blood smear. Distinguish the types of WBCs by the structure of nucleus. 	K4
2.	Blood grouping and Rh factor analysis.	 Apply the concepts of multiple allele to find out the blood group. Identify the blood group and Rh factor. 	К3
3.	Quantitative estimation of Thyroid hormone by ELISA(Demo)	• Estimate Thyroid hormones by immunological techniques.	K5
4.	Double immune- diffusion	• Demonstrate the immunological technique Double immune diffusion	K2
5.	WIDAL test	• Detect typhoid by Widal test	K5

6.	Slides: T.S of lymphoid organs: Thymus, Bone marrow, lymph node, spleen, T cells and B cells	 Identify the tissues of lymphoid organs Distinguish the cells of lymphoid organs. 	К3

4. Mapping Scheme for the PO, PSOs and COs

P19ZY2P3	P01	P02	P03	P04	P05	P06	P07	P08	P09	PSO 1	PSO 2	PSO 3	PSO 4
C01	н	М	Н	Н	Н	н	М	н	-	Н	н	М	М
CO2	Н	М	Н	Н	Н	н	М	н	-	Н	н	М	М
CO3	Н	М	Н	Н	Н	Н	М	Н	-	Н	Н	М	М
CO4	Н	М	Н	Н	н	Н	М	Н	-	н	Н	М	М
CO5	Н	М	Н	Н	Н	Н	М	Н	-	Н	Н	М	М
CO6	Н	М	Н	Н	Н	М	М	Н	-	Н	Н	М	М

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I,II

2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.

3. End Semester Examination

Indirect

CORE PRACTICAL - IV: LAB IN BIOCHEMISTRY

Semester: II Credits: 3

Code: P19ZY2P4 Total Hrs. : 75

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO. No	COURSE OUTCOMES	LEVEL	EXPER
			IMENT
			S
CO1	Evaluate the experiments based on biochemical calculations.	K5	1
CO2	Design & prepare the Acetate & Phosphate buffers.	K6	3
CO3	Evaluate the acid-base titration for pKa determination.	K5	3
CO4	Develop knowledge in structure, reactions and energy metabolism of the cellular biomolecules.	K6	4,5
CO5	Categorize & classify the micro molecules by TLC method	K5	8
CO6	Classify & separate the amino acids by Paper Chromatography method.	K5	9

2. SYLLABUS BIOCHEMISTRY

- 1. Preparation of solutions: i) Molarity ii) Normality iii) Percentage solution
- 2. Calculation of moles, millimoles and nanomoles
- 3. Basic and Standardization procedures
- i) Preparation and testing of buffers: Acetate and Phosphate buffers.
- ii) Acid-base titration and determination of pKa value.
- iii) Measuring pH of different solutions.
- 4. Quantitative estimation of reducing sugars by Anthrone method.
- 5. Quantitative estimation of amino acids by ninhydrin method.
- 6. Quantitative estimation of protein by Lowry *et al.* method.
- 7. Quantitative estimation of nucleic acids.
- 8. Separation of micromolecules by Thin layer Chromatography: Sugars and drugs
- 9. Separation of micromolecules by Paper chromatography: Amino acids

Topics for self-study:

NO	TODICS FOD SELE	WED I INKS
NU	IUPICS FOR SELF-	WED-LINKS
	STUDY	
1.	Estimation of Reducing	https://www.researchgate.net/publication/306034920_Lab
	Sugar by Dinitro	oratory_Manual_of_Biochemistry
	Salicylic Method	
2.	Determination of Micro	https://www.researchgate.net/publication/306034920_Lab
	nutrients by colorimetric	oratory_Manual_of_Biochemistry
	method	
3.	Estimation of Total	https://www.researchgate.net/publication/306034920_Lab
	soluble solids	oratory_Manual_of_Biochemistry
4.	Estimation of Total	https://www.researchgate.net/publication/306034920_Lab
	Phenolic compounds	oratory Manual of Biochemistry
5.	Estimation of Flavanols	https://www.researchgate.net/publication/306034920_Lab
		oratory_Manual_of_Biochemistry

Text Book:

1. Laboratory Manual in Biochemistry: J.Jayaraman. Published by Wiley Eastern. 1981. **References:**

1. Fundamentals of Biochemistry: A Practical Approach .Naren Kumar Dutta - 2005

2. Experimental Approaches in Biochemistry and Molecular Biology Henry M. Zeidan, William V. Dashek - 199

Web links:

https://biolympiads.com/wp-content/uploads/2014/08/metodich_1.pdf

https://courses.lumenlearning.com/introchem/chapter/acid-base-titrations/

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit		Specific Learning	Highest Blooms
/Sec	Course Contents	Outcomes (SLO)	Taxonomic level of Transaction
tion			Tunbucuon
		BIOCHEMISTRY	1
1	Preparation of solutions:	Construct the experiments	K3
	i) Molarityii) Normality iii)	based on biochemical	
	Percentage solution	calculations.	
2.	Calculation of moles,	Construct the experiments	К3
	millimoles and nanomoles	based on moles, millimoles	
-		and nanomoles.	
3	Basic and		
21	Standardization procedures	Apply the procedure to	K3
3.1	i) Preparation and testing of	$\frac{1}{2}$	KS
	buffers: Acetate and Phosphate	Phosphate buffers.	
	buffers.		
3.2	ii) Acid-base titration and	Evaluate the acid-base	K5
	determination of pKa value.	titration for pKa	
		determination.	
3.3	iii) Measuring pH of	Evaluate pH of different	K5
	different solutions.	solutions	
4.	Quantitative estimation of	Appraise the amount of	K5
	reducing sugars by Anthrone	reducing sugars in the	
	method.	biological samples.	
		Appraise the amount of	K5
		reducing sugar in clinical	K5
		samples	
5.	Quantitative estimation of	Evaluate the amount of	K5
	amino acids by ninhydrin	amino acids in the	
	method.	biological samples.	
		Appraise the amount of	K5
		reducing sugar in clinical	K5
		samples	
6.	Quantitative estimation of	Evaluate the amount of	K5
	protein by Lowry et al. method.	protein in the biological	
		samples	
		Approved the emount of	V5
		protein in clinical samples	KJ
7.	Ouantitative estimation of	Evaluate the amount of	K5
-	nucleic acids.	nucleic acidsin the	
		biological samples.	
		Appraise the amount of	K5
1		nucleic acto in clinical	

		samples	
8.	Separation of micro molecules	Categorize & classify the	K4
	by Thin layer Chromatography:	micro molecules by TLC	
	Sugars and drugs	method.	
9.	Separation of micro molecules	Classify & separate the	K4
	by Paper chromatography:	amino acids by Paper	
	Amino acids	Chromatography method.	

4. Mapping Scheme for the PO, PSOs and COs

P19ZY2P4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	L	Н	Н	Н	М	L	М	М	М	L	Н	Н
CO2	Η	L	Η	М	Н	М	М	М	М	L	L	Н	Н
CO3	Н	L	Н	М	Н	Н	М	М	М	L	L	Н	Н
CO4	Η	М	Н	Н	Н	Н	М	М	L	М	М	Н	Н
CO5	Н	L	Н	Н	Н	Н	M	M	L	L	L	Н	Н
CO6	Н	L	Н	Н	Н	Н	М	М	L	L	L	Н	Н
	-												

L-Low M-Moderate

H- High

5. COURSE ASSESSMENT METHODS

Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group
Presentation, Poster preparation.
3. End Semester Examination
Indirect
1. Course-end survey

CORE –VI: ENVIRONMENTAL BIOLOGY

Semester: III

Code: P15ZY306

Credits : 5

Total Hrs.: 75

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.No	COURSE OUTCOMES	LEVEL	UNIT
CO1	Analyse the interrelation between abiotic and biotic environment and scope of Ecology	K4	Ι
CO2	Explain the characteristics of ecosystem.	K5	II
CO3	Explain the characteristics of population, Niche, Niche parameter.	K4	III
CO4	Compare ecological succession, equivalents and indicators.	K4	IV
CO5	Classify freshwater and marine habitats. List the characters of terrestrial habitat.	K2	V
CO6	Discuss the importance of biodiversity and its conservation.	K6	V

2. SYLLABUS

UNIT-I ENVIRONMENTAL FACTORS & ECOSYSTEM 15hrs

Importance and scope of ecology **–Environmental factors:** light – temperature – humidity – edaphic (soil) and biotic factors. Ecosystems: Characteristics of ecosystems - food chain – herbivorous and detritus food chains and food web - bio-magnification - Energy flow in an ecosystem– productivity - trophic levels.

Unit – II POPULATION ECOLOGY

Population Ecology: Definition, Characteristics of Population: Density - Natality–Mortality– Age distribution – Growth form-Population Equilibrium – Biotic potential – Carrying capacity – Dispersal – Dispersion – Population fluctuations – Population regulation – r and K strategists. Niche concept – Types of niches: Spatial, Trophic and Multidimensional – Niche parameters: Form, Position and Width – Niche Partitioning - Realized and Fundamental Niche.

Unit – III COMMUNITY ECOLOGY

Community Ecology: Characteristics of a Community - Ecological succession–Primary andSecondary succession –Natural and man-influenced succession - Hydrarch and Xerarch - Ecotone and Edge effect - Ecological equivalents - Ecotypes and Ecophenes - Ecological indicators.

15hrs

Unit – IV HABITAT ECOLOGY

15hrs

Habitat Ecology: Characteristics and types of fresh water and estuarine habitat. Marine habitat: Characteristics and types – Ecology of benthic zone, intertidal zone and deep sea. Physico -chemical characteristics of terrestrial habitat – Tundra, Forest, Desert and mountain biomes - Biogeographical zones of India.

Unit-VBIODIVERSITY AND ITS CONSERVATION15hrs

Biodiversity and its conservation-global environmental change – biodiversity-status, monitoring and documentation-Megadiversity and hotspots - biodiversity management approaches. Conservation biology: Principles of conservation, major approaches to management, Indian initiatives for conservation (Project Tiger, Project Elephant Biosphere reserves).IUCN, Red Listed animals, Endangerd animals, WWF and Wildlife Institutes in India.

S.NO	Advanced Topics	Web links/Reference Book
1	Biogeochemical cycles, N C P	https://byjus.com/biology/biogeochemical- cycles/#:~:text=Biogeochemical%20cycles%20 are%20basically%20divided,Phosphorus%2C %20Rock%20cycle%2C%20etc.
2	Ecotoxicology	https://library.um.edu.mo/ebooks/b28113652.p df
3	Waste Treatment Technology	https://www.pseau.org/outils/ouvrages/wrc_wa stewater_treatment_technologies_a_basic_guid e_2016.pdf
4	Environmental Laws	https://en.wikipedia.org/wiki/Environmental_la w
5	Types of biodiversity	https://www.vedantu.com/biology/biodiversity

Topics for Self-Study:

Text Book

Odum, E.P. and Barrett, G.W. Fundamental of Ecology. 5th Ed., 2005 Cengage Learning India. New Delhi,

References

- 1. PeterJ.R., Stephan, L.W., PauleH., Ceche S. and Bevlerly, M. Ecology,2008 Cengage learning India, New Delhi,
- 2. Wright, R.T., Environmental Science, 10th Ed., 2008 Pearson Education, New Delhi,
- 3. Smith T.M. and SmithR.L.,Elements of Ecology, 6th Ed., 2008 Pearson Education, New Delhi,
- 4. Kormondy E.J, Concepts of Ecology, 4th Ed., 1996 PHI Cengage Learning India, New Delhi,
- 5. Turk A. and Turk J., Environmental Science., 4th Ed., 1993 Saunders, Primark R.B., A Primer of Conservation Biology, 2nd Ed., 2000 Sinauer Associates

Weblinks

https://nptel.ac.in/courses/127/106/127106004/

3.SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Course Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic levels of Transaction
Ι	ENVIRONMEN'	TAL FACTORS AND	ECOSYSTEM
1.1	Abiotic factors: Light, temperature, soil, water	List out the abiotic factors	K4
		Identify the role of light,soil,water ect	К3
1.2	Biotic factors: symbiosis, commensalism,	Explain the animal interaction	K4
	parasitism and competition	Justify the animal behaviours	K5
1.3	Biogeochemical cycles: Nitrogen, phosphorous.	Examine the Biogeochemical cycles	К4
		Analyse the importance of chemical cycles	K5
1.4	Trophic levels: Food chain, Food web	Assess the food habits	K5
1.5	Ecological Pyramids: Pyramid of biomass, number, and energy.	Measure the classification of energy	K4
		Measure the energy level	К5
		Analyze the level of consumers	К5
II	POPUI	LATION ECOLOGY	
2.1	Population : Definition - natality- mortality- age pyramids- population	Measure and classify the population characteristics	K5

	equilibrium- fluctuation-											
	regulation											
2.2	Carrying capacity	Explain the concept	17.5									
		of CC	K5									
	Niche concept	Classify the Niche										
	_	concept										
2.3			K4									
3	COMMUNITY ECOLOGY											
0.1												
3.1	Community Ecology: Types	Assess the types of										
	of community -	community –										
	characteristics of community	characteristics	К5									
	– stratification											
	Corrying conscitu											
	- Carrying capacity											
3.2	Ecotone edge effect -	Compare and contrast										
	ecological Niche - ecological	the each aspect	К5									
	succession.		K5									
3.3	Ecosystem: Structure of Pond	Analyze the pond										
0.0	ecosystem.	ecosystem	K5									
3.4	Ecological indicators.	explain the different										
		level indicators	77.5									
		auguar the flore and	K5									
		found communities										
		rauna communities										
IV	Н	ABITAT ECOLOGY	1									
4.1	Fresh water characteristics	Estimate the	К5									
		distribution level										
4.2	Estuary	Survey the flora and										
1.2	Listuary	fauna communities	K4									
4.3	Marine	Survey the flora and	I Z 4									
		rauna communities	K 4									
4.4	Concepts and levels of	Elaborate the concept										
	biodiversity	and levels of	K5									
		biodiversity										

V	BIODIVERSITY AND CONSERVATION									
5.1	Biodiversity	Elaborate the concept and levels of biodiversity	К3							
5.2	 biodiversity-status, monitoring and documentation 	Elaborate and to develop the documentation skill	К3							
5.3	Conservation biology	Plan to conserve the endangered species	K6							
5.4	Project Tiger, Project Elephant Biosphere reserves	Plan to conserve the key stone species	K3							
5.5	IUCN, Red Listed animals, Endangerd animals, WWF and Wildlife Institutes in India	Take part in conservatory aspects	К4							

4. Mapping Scheme for the PO, PSOs and COs

P15ZY306	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	Н	Н	Н	Н	Н	Н	-	Н	-	Н	Н
CO2	Н	Н	Н	Н	Н	М	Н	Н	-	Н	-	Н	М
CO3	Н	Н	Н	Н	Н	-	Н	Н	-	Н	-	Н	-
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	-	Н	Н
CO5	Η	Η	Μ	Н	Н	Н	Μ	Н	Н	Н	-	-	Н
CO6	Н	Н	Н	Н	Н	Μ	Н	Н	-	Н	-	Н	Н
	L-Low		M	-Modera	te		Н	I- High					

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I,II

2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,

3. End Semester Examination

Indirect

CORE-VII: DEVELOPMENTAL BIOLOGY

Semester: III

Code: P19ZY307

Total Hrs.: 75

Credits : 5

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.No	COURSE OUTCOMES	LEVEL	UNIT
C01	Illustrate the basic principles of growth and development in animals.	K2	Ι
CO2	Interpret the axis and pattern formation in Drosophila.	K5	Π
CO3	Explain the environmental regulation of animal development	K5	III
CO4	Examine the metamorphosis in amphibia and regeneration in salamander.	K4	IV
CO5	Justify the concepts of organiser in determining the fate of developing embryos	K5	IV
CO6	Identify the role of genes in the embryonic development.	K3	V

2. SYLLABUS

Unit – I FERTILIZATION IN MAMMALS

Introduction to Developmental Biology- spermatogenesis and oogenesis in mammals -Fertilization in mammals: translocation and capacitation of sperm - cell surface interactions between egg and sperm -gamete fusion- cleavage and formation of blastula- gastrulation and formation of germ layers.

CELL DIFFERENTIATION Unit – II

Concepts of induction, competence, totipotency, cell specification, commitment, determination and morphogenetic gradients - cell lineages - cell differentiation and cell aggregation in Dictyostelium -axis and pattern formation in drosophila - gradient and polarity.

Unit – III **ORGANOGENESIS**

Organogenesis: Development and differentiation in Caenorhabditis elegans-development of vertebrate eye - development of tetrapod limb. Environmental regulation of animal

15hrs

15hrs

development: developmental symbiosis - nutritional and seasonal polyphenism. **Abnormal development:** Teratoma and teratogens.

Unit – IV ORGANISER

Organiser: Spemann's experiment- functions of organiser-mechanism of noggin, chordin, Follistatin,BMP4, Wnt, FGF and retinoic acid for the action of organiser. **Metamorphosisin amphibia:** morphological changes associated with metamorphosis. **Regeneration:** Mechanism of regeneration in salamander. **Ageing:** The biology of senescence.

Unit – V GENES IN DEVELOPMENT

Genes in Gonad development: Function of SF1, WNT4, SRY, SOX genes. Genes in embryonic development: Role of Homeobox genes in Drosophila and Hox genes in Mouse. Concepts of GeneKnock out, Genomic imprinting and Genomic equivalence.

S.No	Topics	Web links
1.	Zebrafish early and Late development	https://embryology.med.unsw.edu.au/embryology/inde x.php/Zebrafish_Development
2.	Development of central nervous system in vertebrates	https://www.britannica.com/science/nervous- system/The-vertebrate-system
3.	Germ cell specification and migration	https://link.springer.com/article/10.1007/s12522-014- 0184-2
4.	Model organism in developmental Biology	https://blog.addgene.org/plasmids-101-five-popular- model-organisms
5.	Medical implications of Developmental Biology.	https://www2.slideshare.net/AYSHA007/medical- implication-of-developmental- biology?from_action=save

Topics for Self-Study :

Text Books

- 1. Gilbert B.F., Developmental Biology, 8th Ed.,2006 Sinaur Associates Inc. Publishers, Sunderland, Massachusetts, USA,
- 2. Veer Bala Rastogi, Chordate Embryology, 2016, Kedar Nath Ram Nath

References

- 1. Wolpert L, Principles of Development, 2nd Ed., 2002 Oxford University Press,
- 2. Twyman R.M. Developmental Biology, 2008 Viva, New Delhi,
- 3. BalinskyB.I., An Introduction to Embryology, 5th Ed., 2004 Thomas Asia Pvt. Ltd.,
- 4. Russo V.E.A, BrodyS., Cove D and Ottolenghi S, Development: The Molecular Genetic Approach, 1992 Springer Verlag, Berlin,
- 5. Rao.V, Developmental Biology: A Modern Synthesis, 1994 Oxford IBH New Delhi.

15hrs

Web Links:

https://nptel.ac.in/courses/102/106/102106084/

http://mcb.berkeley.edu/courses/mcb141/lecturetopics/Levine/engrailed.pdf

https://plato.stanford.edu/entries/biology-developmental/notes.html

3 SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Section	Contents	Learning Outcomes	Highest Blooms Taxonomic levels of Transaction								
Ι	FERTILIZATION IN MAMMALS										
1.1	Introduction: Spermatogenesis and Oogenesis	 Recall the formation of gametes Relate the structure and functions of egg and ova 	K1								
1.2	Fertilization in mammals Translocation and Capacitation of sperm, cell surface interactions between egg and sperm , gamete fusion	 Explain the process of fertilization in mammals. Examine cell surface interactions 	K4								
1.3	Cleavage formation of blastula, gastrulation, formation of germ layers	 Explain the process of cleavage Evaluate the formation of blastula and gastrula 	К5								
II		CELL DIFFERENTIATION									
2.1	Concepts of induction, competence, totipotency, cell specification, commitment	 Relate induction, competence and totipotency Illustrate cell specification and commitment 	К2								
2.2	Cell lineages, cell differentiation and cell aggregation in <i>Dictyostelium</i>	 Determine cell lineages Summarize the cell differentiation and aggregation in <i>Dictyostelium</i> 	К5								
2.3	Axis and pattern formation in Drosophila, Gradient and polarity	 Examine Axis and pattern formation in Drosophila Illustrate Gradient and Polarity 	К4								

III	ORGANOGENESIS										
3.1	Organogenesis Development and differentiation in <i>Caenorhabditis elegans</i> Development of vertebrate eye, Development of tetrapod limb	 Explain the development and differentiation of <i>Caenorhabditis elegans</i> Influence of organizer in the development of vertebrate eye Examine the Development of tetrapod limb 	K5								
3.2	Environmental regulation of animal development Developmental symbiosis -nutritional and seasonal polyphenism	 Explain the Environmental regulation of animal development Illustrate Developmental Symbiosis Relate the importance of nutritional and seasonal polyphenism 	K5								
3.3	Abnormal development: Teratoma and teratogens.	Analyse the causes of TeratomaClassify the types of teratogens	K4								
IV		ORGANISER									
4.1	Organiser Spemann's experiment, mechanism of noggin, chordin, Follistatin	 Interpret Spemann's experiment of organiser Examine the mechanism of noggin, chordin, Follistatin through Spemann's experiment 	K4								
4.2	BMP4, Wnt, FGF and retinoic acid for the action of organizer	• Distinguish BMP4, Wnt, FGF and retinoic acid for the action of organizer	K4								
4.3	Metamorphosis in amphibian Morphological changes associated with metamorphosis	 Asses the morphological changes during metamorphosis in Amphibia. 	К3								
4.4	Regeneration: Mechanism of regeneration in salamander.	• Explain the Mechanism of regeneration in salamander	К5								
4.5	Ageing: The biology of senescence	Categorize the agents of senescenceExplain in detail the biology of aging	K5								
V		GENES IN DEVELOPMENT									

5.1	Genes in Gonad development Function of SF1, WNT4, SRY, SOX genes	 Justify the function of Genes in Gonad development Evaluate the function of SF1, WNT4, SRY, SOX genes in development 	К5
5.2	Genes in embryonic development Role of Homeobox genes in Drosophila and Hox genes in Mouse	• Compare the role of Homebox genes in Drosophila and Hox genes in mouse	K4
5.3	Concepts of Gene Knock out, Genomic imprinting and Genomic equivalence.	 Summarise the Concepts of Gene Knock out, Genomic imprinting and Genomic equivalence Illustrate the concepts of Gene Knockout Explain the importance of Genomic imprinting and Genomic equivalence 	К2

4. Mapping Scheme for the PO, PSOs and COs Course code: P19ZY307

P19ZY307	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PSO 1	PSO 2	PSO 3	PSO 4
C01	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO2	н	н	Н	М	М	-	Н	Н	н	Н	Н	Н	-
CO3	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO4	Н	н	Н	М	М	-	Н	Н	н	Н	Н	Н	-
CO5	н	н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO6	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
L-Low M-Moderate					te		Н	- High					

L-Low

H- High

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test I,II

2.Cooperative learning report, Assignment; Journal paper review, Group **Presentation, Poster preparation,**

3. End Semester Examination

Indirect

CORE-VIII: GENETICS

Semester: III Credits : 5

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO. No	COURSE OUTCOMES	LEVEL	UNIT
CO1	Interpret the Mendelian law of inheritance.	K4	Ι
CO2	Compare the nuclear and maternal inheritance of genes	K4	II
CO3	Elaborate the environmental effects and gene expression	K6	III
CO4	Analyze the concepts of Microbial genetics	K4	IV
CO5	Discuss the perception of Evolutionary and population genetics	K6	V
CO6	Assess the importance of human genetics and its related disorders	K5	V

2.SYLLABUS

Unit I MENDELIAN GENETICS

15hrs

15hrs

Mendelian Genetics: Mendelian laws of inheritance–**Classical Genetics:** Linkage–crossing over–types and mechanics – chromosome mapping –Heterogamatic and Homogametic – Haplodiploidy-Mosaics and Gynandromorphs. Human Y chromosome - evolution, structure, molecular organization and its role in sex determination- Dosage compensation.

Unit-II MATERNAL INHERITANCE AND GENE EXPRESSION

Extranuclear inheritance and maternal effects: Organelle heredity (mitochondria) - Infectious heredity (Cytoplasmic inheritance) in symbionts (Paramecium and Drosophila). **Maternal inheritance:** Ephestia pigmentation and snail coiling. **Environmental effects and gene expression**– Phenocopies- Twin studies and IQ- Concordance – Discordance- Penetrance and expressivity.

Unit-III MICROBIAL GENETICS:

Microbial Genetics: Evidence of genetic materials in Bacterial **Bacterial transformation:** molecular mechanism- mapping by transformation. **Bacterial conjugation:** insertion of F into the bacterial chromosome- Hfr transfer- recombination in recipient cells. Transduction: DNA transfer by means of transduction- cotransduction and linkage. **Specialized transducing particles:** Phagemids, Cosmids -characteristics- role as cloning vectors.

Unit-IV EVOLUTIONARY POPULATION GENETICS:

15hrs

Evolutionary Genetics: Genetics of races and species formation–genetic load–geneticpolymorphism – X inactivation – genomic imprinting.

Population Genetics: Gene pool and gene frequencies–equilibrium of gene frequencies– Hardy-weinberg equilibrium – changes in gene frequencies- factors affecting Hardy-weinberg equilibrium.

Unit-V HUMAN GENETICS

15hrs

Web Links

Human Genetics: Pedigree construction, inheritance patterns (autosomal, sex -linked,sex - limited and sex-influenced)- Gene Mutation and Chromosomal aberrations - Inborn errors of metabolism in man -Haemoglobin disorders- Chromosomal syndromes– sickle cell anemia and thalassemia - Genetic counselling.

Topics for Self-Study:

Topics

S.No.

1 Genetic Analysis of Inbreeding https://www.ucl.ac.uk/~ucbhdjm/courses/b242/Inb rDrift/InbrDrift.html 2 Parental Imprinting http://atlasgeneticsoncology.org/Educ/GenomImpr intID30027ES.html 3 Mutant Genes in Bacteria https://eujournal.org/index.php/esj/article/view/25 18 4 Amniocentesis and Chorionic Biopsy https://www.cdc.gov/mmwr/preview/mmwrhtml/0 0038393.htm#:~:text=CVS%20utilizes%20either %20a%20catheter,surrounds%20the%20fetus%20i s%20removed

Text Book

1. Gardner E.J, Simmons, M.J. and Snustad D.P, Principles of Genetics, 7th Ed., 2007 John Wiley India,

References

1. WilliamK.S. and CummingsM. Concepts of Genetics, 7th Ed.,2011 Pearson Education Inc, Dorling Kindersley Publication,

2. SnustadD.P. and SimmonsM.J. Genetics, VI Ed., 2012 John Wiley & Sons, Singapore,

3. SudberyP, Human Molecular Genetics, 2nd Ed.,2009 Dorling Kindersley (India) Pvt. Ltd.,

4. Nancy T and TrempyJ, Fundamental Bacterial Genetics, 2nd Ed.,2006 Malden MA; Blackwell Science,

5. Stent G.S. and Calendar R. Molecular Genetics: An Introductory Narrative, 2nd Ed., 2004 CBS Publishers and Distributers, New Delhi,

6. Klug W.S. and CummingsM.R. Concepts of Genetics. 7th Ed., 2003 Pearson Education,

7. RusselP.J. Genetics: A Molecular Approach, 2nd Ed., 2006 Pearson Education,

8. MaloyS.R.,Cronan, J.E. and Freifelder, D. Microbial Genetics 2nd Ed., 2008 Narosa Publishing House, New Delhi,

9. Pasternak, J.J. An Introduction to Molecular Human Genetics.2000 Fritzgerald Science Press, Bethesda

10. Hancock, J.T. Molecular Genetics.2008 New Delhi.

Web Links:

https://nptel.ac.in/courses/102/104/102104052/

https://onlinecourses.swayam2.ac.in/cec20_bt03/preview

Specific Learning Outcomes (SLO)

Unit	Course Contents	Specific Learning Outcomes (SLO)	ghest Blooms Taxonomic level of Transaction
Ι		MENDELIAN GENETICS	
1.1	Mendelian genetics	Define the laws of inheritance	K1
1.2	Classical genetics	Elaborate the concepts of linkage and crossing over	K6
1.3	Chromosome mapping	Explain the types and significance of chromosome mapping	K6
		Assess the evolutionary concepts of chromosome	K5
1 /	Human chromosomes	Determine the molecular level of organization	K5
1.4	Truman enromosomes	Identify the concept behind sex determination and dose compensation	К3
Π	MATERNA	AL INHERITANCE AND GENE EXPRESSION	
	Extranuclear	Explain the heredity of mitochondria	K5
2.1	inheritance and maternal effects	Classify the various Cytoplasmic inheritance in Symbionts	К2
		Elaborate about the Ephesian pigmentation	K6
2.2	Maternal inheritance	explain about the coiling process occur in snail	
2.3	Environmental effects & gene expression	Interpret the role of gene expression in phenotypes.	К5
III		MICROBIAL GENETICS	
3.1	Microbial Genetics	Analyse the importance of genetic materials in bacteria	К5
3.2	Bacterial transformation	Explain about molecular mechanism by transformation technique	K2
33	Bacterial Conjugation	Explain about the Hfr transfer and recombination technique in bacterial cells	K5
5.5	Bacteriai Conjugation	Elaborate the process of DNA transduction and linkages	K6
3.4	Transducting particles	Categorize and explain the specialized transducting vectors	K4
		Explain the role of cloning vectors	K5
IV	EV	OLUTIONARY POPULATION GENETICS	
		Assess the genetics of races and species formation	K5
4.1	Evolutionary Genetics	Explain the genetic polymorphism	K5
		Elaborate the process of genomic imprinting	K5

		Summarise the concepts of gene pool and gene frequencies	K2			
		Evaluate Hardy Weinberg equilibrium	K5			
4.2	Population Genetics	Estimate changes occur due to gene frequencies	K5			
		Analyze the factors affecting Hardy-Weinberg equilibrium.	K2			
V	HUMAN GENETICS					
		Evaluate the inheritance pattern through pedigree chart	K5			
_	Human Genetics	Explain the concept of gene mutations with examples	K5			
5		Explain the concept of Human karyotype preparation	K2			
		Find out the various chromosomal syndromes in mam	K1			

4 Mapping Scheme for the PO, PSOs and COs

P19ZY308	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Η	Н	Н	М	М	М	М	М	Н	М	Н	М	Н
CO2	Н	М	Н	Н	Η	Н	М	Н	М	Н	Н	Н	Н
CO3	Н	Η	Η	Η	Н	-	Η	Н	Η	Н	Н	Н	Η
CO4	Н	Н	Н	Н	Н	-	Н	Н	М	Н	Н	Н	Н
CO5	Н	Н	Н	Η	Μ	Н	-	Н	Н	Н	Н	Н	Н
CO6	Н	Η	Н	Н	Н	Н	Н	Н	Η	Н	Н	Н	Н

L-Low

M-Moderate

H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I, II

2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation

3. End Semester Examination

Indirect

Core IX Research Methodology and Biotechniques

Semester : III

Code : P19ZY309

Credit : 5

Duration : 75

15hrs

15hrs

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO.No	COURSEOUTCOMES	LEVEL	UNIT
CO1	Apply the Statistical principles and skills in biological research	К3	I
CO2	Analyse, review and assess critically scientific hypotheses and theories using scientific evidence and information	K6,K4	П
CO3	Design to the learning process of how to write thesis and how to publish papers in various journals	K5	П
CO4	Investigate the various chemical compounds using chromatographic technique	K4	III
CO5	Explain the principles and applications of spectrophotometry and electrophoresis	K4	IV
CO6	Select and use the animal cell culture technique	K3	V

2. SYLLABUS

Unit – I COMPONENTS OF RESEARCH

Research: Objectives–types–significance-Components of research- Research process - **Research Design:** need-features of a good design–concepts-principles of Experimental design.Selectionand Defining of a research problem- **Sources and retrieval of information:** journals, monographs, books –computer aided searches - Offline and Online journals -search engines- Formulating a research Hypothesis-

Unit – II THESIS WRITING

Thesis writing: format of thesis- preparation of manuscript and editing - forms of presentation of results-components of Discussion- citing the references - Research papers for publication-writing a research proposal-Impact factor-citation index- manuscript preparation-IPR and patenting.

Unit – III CHROMATOGRAPHY & CENTRIFUGATION 15hrs

Chromatography: Principle and methodology of column, ion exchange and affinity chromatography -GLC and HPLC-**Centrifugation:** Differential and gradient centrifugation-Ultra centrifuge-Principles and applications of Autoradiography and X-ray crystallography.

Unit –IV SPECTROPHOTOMETRY & ELELCTROPHORESIS 15hrs

Spectrophotometry: Principle, methodology and applications of Atomic absorbance spectrophotometer, Flame Photometer, UV-VIS spectrophotometer, Nuclear magnetic resonance spectrometry (NMR).**Electrophoresis:** Principle, types, procedure and applications. Cell lines-cell lines culture.

Unit – V ANIMAL CELL CULTURE TECHNIQUES 15hrs

Animal Cell culture Techniques: Design and functioning of tissue culture laboratory- Cell proliferation measurements- Cell viability testing- Culture media preparation. Types of culture: -Flask, Test tube, Organ and Embryo culture. Protoplast culture. Stem cell culture. Cryopreservation for cells, Tissues and organisms. Germplasm storage: Cryobank - Pollen bank and sperm bank.

Topics for self study:

S.No.	Topics	Web links
1.	Patenting	https://www.government.nl/topics/intellectual-property/question- and-answer/what-are-the-criteria-for-patenting-my-invention
2.	Crystallography	https://en.wikipedia.org/wiki/Crystallography
3.	cell line culture	<u>file:///C:/Users/Dell/Downloads/2015_Bookmatter_TheImpactOf</u> FoodBioactivesOnHea.pdf
4	Stem cell culture	https://www.creative-bioarray.com/support/stem-cell-culture- guide.htm https://microbenotes.com/stem-cells/

Text Book :

Kothari, C.R. Research Methodology: Methods and Techniques. 2nd Ed.,2004 New Age International Publishers, New Delhi,

References

- 1. Pingoud, A. Biochemical Methods. 2003 Wiley-VCH,
- 2. Venn, R.F. Principles and Practice of Bioanalysis. 2003 Taylor & Francis,
- 3. Holme, D.J. and Peck, H. Analytical Biochemistry. 3rd Ed., 1998 Pearson Education,
- 4. Wilson, K. and Walker, J. Practical Biochemistry: Principles and Techniques. 5th Ed.,2000 Cambridge University Press,
- 5. Wilson, K. and Walker, J. Principles and Techniques of Biochemistry and Molecular Biology. 7th Ed.,2010 Cambridge University Press,
- 6. Holmes, D., Moody, P., Dine, D., Moody, P. andHolmes, D.S. Research Methods for the Biosciences. 2006 Oxford University Press, New Delhi,
- Ramadass, P. and Wilson Aruni, A. Research and Writing-across the Disciplines.2009 MJP Publishers, Chennai.

Web Links:

https://www.mayoclinic.org/tests-procedures/in-vitro-fertilization/about/pac-

https://microbenotes.com/polyacrylamide-gel-electrophoresis-page/

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/D21111.pdf

https://atecentral.net/downloads/1163/Basics_of_Cell_Culture_students_manualv7.pdf

3. Specific Learning Outcomes (SLO):

Unit/	Course content	Learning outcome	Highest				
			Blooms				
section			Taxonomic				
			Level of				
			Transaction				
Ι		COMPONENTS OF RESEARCH					
1.1	Introduction	Define research	K6				
1.2	Types of research	Classify and explain the types of research	K4				
1.3	Sources & retrieval of	Compare the various methods in reteriving	K4				
	information	of information for research					
1.4	Research design	Discuss in detail the important concepts	K6				
		related to research design					
		Explain briefly the parts of research design	K2				
II		THESIS WRITING					
2.1	Thesis writing	Explain the structure of thesis	K4				
2.2	Impact factor & citation	Compare and interpret the research	K4				
	index	publications					
2.3	IPR& Patent	Create the IPR & patent for your	K5				
		indegeneous research findings					
III	CHROMATOGRAPHY & CENTRIFUGATION						
3.1	Chromatography –	Classify the types of chromatography	K3				
	Column, Ion exchange,						
	Affinity						
3.2	Centrifugation –	Explain the principle of various	K4				
	GLC,HPLC,Differential	centrifugation methods.					
	&gradient,						
		Justify centrifugation is a best separation					

	Ultra centrifuge	method	K6
3.3	Autoradiography	Classify and compare the components present in the biological material using autoradiography	K4
3.4	X-ray crystallography	Predict the molecular structure using X -ray crystallography	К5
IV	SPECTR	OPHOTOMETRY & ELELCTROPHORES	IS
4.1	Spectrophotometry Atomic absorbance	Analyse and categorise the various molecules present in the biological sample using	K4
	Flame photometer	Spectrophotometry,Atomicabsorbance,Flame photometer	
		UV-VIS, NMR	
4.2	Electrophoresis	Use the electrophoresis technique to separate the molecules based on MW	К3
4.3	Cell Line-culture	How will you formulate a animal cell line culture for your research	K5
V	ANI	MAL CELL CULTURE TECHNIQUES	
5.1	Design and functioning of tissue culture laboratory	Plan and Construct a tissue culture laboratory based on your need	К5
5.2	Cell viability testing	Verify the cell viability using cell viability testing method	K6
5.3	Culture media preparation	Compose various culture medias according to your need	К5
5.4	Types of culture: Protoplast culture Stem cell culture Cryo preservation for cells	Construct a protoplast culture laboratory and the use of stem cell culture method	К5
5.5	Germplasm storage Cryobank, Pollenbank	Formulate and explain the germ plasm storage technique. Construct a cryobank or pollen bank in your area	K5 K5

4. Mapping of COS and POs

D107737200	DO1	DOA	DOI	DO 4	DOF	DOC	DOF	DOO	DOA	DCO 1		DCOO	DCO 4
P19ZY309	POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PS03	PS04
CO1	H	H	H	H	H	H	-	-	-	H	Μ	Η	Μ
CO2	Н	Н	Н	Н	Н	Н	-	-	-	Н	Μ	Н	Μ
CO3	Μ	Μ	Μ	Н	Н	Н	_	_	-	Μ	-	Н	М
000	1.1		1.1										111
CO4	М	М	L	Н	н	Н	-	-	-	-	М	Н	Н
			_										
CO5	Μ	Μ	L	Н	Н	Н	-	-		-	Μ	Н	Н
CO6	Μ	M	L	Μ	н	н	-	-	-	-	М	Н	н
		1.1		111									

L-Low M-Moderate

H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I,II

- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

CORE PRACTICAL - V: LAB IN ENVIRONMENTAL

BIOLOGY, DEVELOPMENTAL BIOLOGY AND GENETICS

Semester III

Code: P15ZY3P5

Credits: 3

Total Hours: 75

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO.No.	COURSEOUTCOMES	LEVEL	PRACTICALS
CO1	Qualitatively and qualitatively estimate different ecological parameters.	К3	Ι
CO2	Interpret the results of qualitative and quantitative estimations	К5	Ι
CO3	Identify theembryonic development of chick and frog	K3	Ι
CO4	Apply the immunological techniques in biology	K3	Ш
CO5	Examine different genetic traits and chromosomal aberrations in Human being	K4	III
CO6	Prepare a pedigree chart for chromosomal traits	К3	III

2. SYLLABUS

I ENVIRONMENTAL BIOLOGY

Different ecological parameters.

Spatial variations of dissolved oxygen concentration in water and percentagesaturation

Estimation of Dissolved free carbon dioxide

Estimation of Nitrates

Estimation of Total Hardness

Estimation of Total Alkalinity

Estimation of Total Phosphates

II DEVELOPMENTAL BIOLOGY

Observation of sperms in Bull's semen

35hrs

Observation of blastoderm in chick embryo

Slides: Whole mount of early hours of chick embryo development (24 hrs, 48 hrs, 72 and 96

hours). Yolk Plug stage, neural plate, neural fold and neural tube of frog

III GENETICS

Pedigree analysis

Study of various genetic traits in Human being

Preparation of Human karyotype

Identification of syndromes

Study of sex chromatin in human buccal smear.

Topics for Self study

S.No	Topics	Web links
1	BOD, COD	Biochemical Oxygen Demand - an overview
		ScienceDirect Topics, What is Chemical Oxygen
		Demand (COD)? - Definition from Corrosionpedia
2.	Histology techniques	Histological Techniques
3.	Embryonic stem cells	Embryonic Stem Cells stemcells.nih.gov
4.	Gene manipulation	Genetic Manipulation: Definition, Pros & Cons - Video
		& Lesson Transcript Study.com
5.	NGS technology	Next-Generation Sequencing (NGS) Explore the
		technology (illumina.com)

Text Books:

Web Links:

http://tumkuruniversity.ac.in/wp-content/uploads/2014/11/ENV-SCIENCE.pdf

file:///C:/Users/dell/Downloads/BIO_150L_new_course.pdf

https://bangaloreuniversity.ac.in/wp-content/uploads/2018/08/Syllabus-B.Sc_.-Genetics-2018.pdf

3. SPECIFIC LEARNING OUTCOME

Unit/Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction
I	ENV	IRONMENTAL BIOLOGY	I
1.1	Spatial variations of dissolved oxygen concentration in water and percentage saturation	• Evaluate the oxygen saturation according to space	К3
1.2	Estimation of Dissolved free carbon dioxide Estimation of Nitrates Estimation of Total Hardness Estimation of Total Alkalinity Estimation of Total Phosphates	• Qualitatively estimate different water quality parameters.	K4
II	DEV	ELOPMENTAL BIOLOGY	
2.1	Observation of sperms in Bull's semen	• Examine the motility and fertility of bull semen	K5
2.2	Observation of blastoderm in chick embryo Slides : Whole mount of early hours of chick embryo development (24 hrs, 48 hrs, 72 and 96 hours).	• Observe and identify different embryonic stages of chick	K4
2.3	Yolk Plug stage, neural plate, neural fold and neural tube of frog	• Observe and identify different embryonic stagesand metamorphosis of frog	К3
III		GENETICS	
3.1	Pedigree analysis	Classify the traits	K4
3.2	Study of various genetic traits in Human being	Categorize the allosomal and autosomal characters	K4

3.3	Preparation of Human karyotype	Infer the chromosomal aberrations	K4
3.4	Identification of syndromes	Discussthe cause of the human syndromes	K6
3.5	Study of sex chromatin in human buccal smear	classify the gender using the methodology	K4

4. Mapping Scheme for the PO, PSOs and COs

P15ZY3P5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Η	Η	Η	М	М	М	L	М	М	Η	Н	Η
CO2	Η	М	М	Η	М	М	М	М	Η	М	-	L	Н
CO3	Η	Н	М	М	L	М	М	L	М	-	Η	М	Η
CO4	Η	М	Η	М	Η	Η	L	М	Η	М	Η	-	Η
CO5	Η	Η	М	Η	Η	М	-	L	М	-	-	-	Η
CO6	Η	Н	М	Η	Η	М	Μ	L	М	L	Н	М	Н

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I,II

2.Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation, Sample analysis, Record

3. End Semester Examination

Indirect

ELECTIVE - III: ANIMAL BIOTECHNOLOGY

Semester: III

Code: P19ZY3:1

Hours: 75

Credit: 4

1. Course Outcomes

On completion of this course, the students will be able to

CO.No.	COUORSE OUTCOMES	LEVEL	UNIT
CO1	Discuss fundamental concepts and tools used in recombinant DNA technology	K6	Ι
CO2	Develop methodology to establish animal cell culture	K6	II
CO3	Create transgenic animal breeds.	K6	III
CO4	Create the importance of genetic engineering in transgenic animal production	K6	IV
CO5	Build techniques in medical biotechnology for the production of therapeutic proteins, vaccines and targeted gene therapies	K6	V
CO6	Design public policy, bio safety, and intellectual property rights issues related to animal biotechnology.	K6	V

Unit – I RECOMBINANT DNA TECHNOLOGY

Introduction- brief history -Recombinant DNA technology: Steps in rDNA technology. Molecular tools: restriction enzymes and DNA manipulative enzymes – gene cloning vectors: plasmids, phagemids, cosmids, bacteriophages, artificial chromosomes (BACs, PACs, YACs, MACs, and HACs)- shuttle vectors, prokaryotic and eukaryotic expression vectors specialized vectors for expression of foreign gene.

Unit – II GENOMIC LIBRARIES

Construction of cDNA - genomic DNA libraries – preparation of radioactive and nonradioactive probes-screening of libraries using oligo probes and antibodies-Nucleic acid amplification and its application in medicine– DNA sequencing- site directed mutagenesis and protein engineering.

Unit - IIIGENETIC ENGINEERING IN ANIMALS15hrs

Genetic engineering in animals: methods of transferring genes in to animals oocytes, eggs embryos and specific tissues (physical chemical and biological methods)- cell lines and their applications-transgenic animals (mice, cow, sheep and insects) -Gene silencing.

Unit – IV MEDICAL BIOTECHNOLOGY

Medical biotechnology: Animal biotechnology for production of regulatory proteins, blood products, vaccines, hormones and other therapeutic proteins - gene therapy- cloning. Human Genome project: objectives, strategies and progress.

104

15hrs

15hrs

Unit – V BIOTECHNOLOGICAL APPLICATIONS

15hrs

Bioremediation - Types : Insitu – Exsitu – Stratergy – Applications and Advantages – Bio sensors, bioleaching, biochips and biofuels. Applications of Probiotics – Forensic Biotechnology: DNA finger printing. Environmental applications of biotechnology–Biosafety and Bioethics.

Topics for self study:

S.No.	Contents	Web Link
1.	CRISPR	https://www.livescience.com/58790-crispr-explained.html
2.	Lentivirus	https://old.abmgood.com/marketing/knowledge_base/The_Lentivirus_System.php
3.	Personalised	https://healthitanalytics.com/features/what-are-precision-medicine-and-personalized-
	medicines	medicine
4.	Bioreactors	https://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol2/abstracts/korossis_0102.pdf
	in Tissue	
	Engineering	
5.	Biosimilar	https://www.dovepress.com/biosimilars-an-overview-peer-reviewed-article-BS

Text Book:-

1. Glick, B.R. and Pasternak, J.J. Molecular Biotechnology: Principles and Applications of Recombinant DNA. 3rd Ed., 2007 ASM Press, Washington. Indian Reprint, 2007.

Reference:-

1. Primrose, S.B. and Twyman, R.M. Principles of Gene Manipulation and Ge nomics. 2006, Blackwell Scientific Publications.

2. Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. Introduction to Genetic Analysis. 8th Ed., 2005 W. H. Freeman and Company, New York.

3. Brown, T.A. Gene Cloning and DNA Analysis: An Introduction. 5th Ed., 2006 Blackwell Publishing.

4. Watson, J.D., Gilman, M., Witkowski, J. and Zoller, M. Recombinant DNA. 2nd Ed., 1992 W. H. Freeman, Scientific American Books, New York.

5. Winnacker, E.L. From Genes to Clones: Introduction to Gene Technology. 2003 Panima Publishing Corporation, New Delhi.

6. Tamarin, R.H. Principles of Genetics. 7th Ed., 2006 Tata-McGraw Hill Publishing Company Ltd., New Delhi.

7. Kreuzer, H. and Massey, A. Recombinant DNA and Biotechnology. 2nd Ed., 2001 ASM Press, Washington.

Web Links:

http://ecoursesonline.iasri.res.in/course/view.php?id=350

3. Specific Learning Outcomes (SLO)

Unit / Sect ion	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomical level of Transaction								
Ι	RECOMBINANI	DNA TECHNOLOGY									
1.1	Brief introduction to Animal	Define the basics of animal	K2								
	Diotechnology and History	biotechnology									
1.2	Recombinant DNA technology: Steps in	Illustrate basic steps in rDNA	K6								
	rDNA technology	technology									
13	Restriction enzymes and DNA	Define the role of restriction	K 1								
1.5	manipulative enzymes	enzymes in DNA manipulation	IX1								
-	Plasmids, phagemids, cosmids,	Construct novel vectors for									
	bacteriophages, artificial chromosomes	efficient gene transfer									
1.4	(BACs, PACs, YACs, MACs, and HACs)		K6								
	- shuttle vectors, prokaryotic and										
	eukaryotic expression vectors										
1.5	Specialized vectors for expression of		W.C								
1.5	foreign gene		Ko								
II	GENOMIC LIBRARIES										
2.1	Genomic DNA libraries										
	Preparation of radioactive and										
2.2	nonradioactive probes	Explain expression of genomic	K5								
2.2	Screening of libraries using oligo probes										
2.3	and antibodies										
2.4	Nucleic acid amplification and its		Vć								
2.4	application in medicine	Develop new PCR amplification	K0								
2.5	DNA sequencing	techniques & their role in	K4								
26	Site directed mutagenesis and protein	disease identification	VA								
2.0	engineering.		K0								
III	GENETIC ENGI	NEERING IN ANIMALS									
	Genetic engineering in animals:										
	Methods of transferring genes in to animal	Develop novel method of gene									
3.1	oocytes, eggs embryos and specific tissues	transfer techniques in to animals	K6								
	(physical chemical and biological	& cell lines									
	methods)										

	Cell lines and their applications-											
3.2	transgenic animals (mice, cow, goat, pigs,		K6									
	sheep and insects)											
IV	MEDICAL B											
	Medical biotechnology: Animal											
	biotechnology for production of	Improve the production of food										
4.1	regulatory proteins, blood products,	supplements through animal	K6									
	vaccines, hormones and other therapeutic	biotechnology										
	proteins											
4.2	Constherenzy cloning	Develop new gene therapy	VA									
4.2	Gene merapy- cioning	strategies	K0									
	Human Conomo Proiosti Obiostivos	Define the basics of human										
4.3	strategies and are gross	K1										
	strategies and progress	application.										
V	BIOTECHNOLOGICAL APPLICATIONS											
5 1	Bioremediation Types: In situ – Ex situ –		VA									
5.1	Strategy		KU									
5.2	Bioremediation: Biosensors, bioleaching,	Develop strategies for	VA									
5.2	biochips and biofuels.	production & application of	KÜ									
5.3	Applications of Probiotics	novel bioremediation methods	K6									
5 /	Applications: Healthcare; Agriculture &		V6									
5.4	Industry		KU									
5 5	DNA finger printing	Improve the quality of DNA	K6									
5.5	DIVA miger printing	finger printing										
	Environmental applications of	Propose new policies to protect										
5.6	hiotechnology	& restore the quality of	K6									
	biotechnology	environment										
		Define legal & socio, economic										
5.7	Biosafety and Bioethics	Bioethics issues related to biotechnology										
		and their ethical issues										

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY3	PO	PSO	PSO	PSO	PSO								
:1	1	2	3	4	5	6	7	8	9	1	2	3	4

CO1	M		L		L					М		L	
CO2		Η						Η					М
CO3	L			Η		М			L		L		
CO4		L			L		Н		М				М
CO5	L					Η				L			
CO6			М					Μ			М	L	
L - Low			•	M -	Medi	ium	H - High						

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.
- 3. End Semester Examination

Indirect
CORE-X: EVOLUTION AND ANIMAL BEHAVIOUR

Semester- IV

Code: P19ZY410 Total Hours: 75

Credits: 5

1. COURSE OUTCOMES

After completing this course, the students will be able to

NO	COURSE OUTCOMES	LEVEL	UNIT
CO1	Explain the origin of life on earth and theories with evidences	K5	Ι
CO2	Define the various factors which affected the evolution of sex	K3	II
	and reproductive strategies		
CO3	Illustrate the concept of speciation and evolutionary time scale	K3	III
CO4	Explain the evolutionary history of man	K5	IV
CO5	Relate the different aspects of environmental perception and	K3	IV
	communication in animals.		
CO6	Explain the various aspects of behavior and social organization	K5	V
	in animals		

2. SYLLABUS

Evolution

Unit – I EVOLUTION OVERVIEW

Origin of life – Abiogenesis —Lamarckism – Mutation theory of De Vries –Darwinism : Theory of Natural selection – Facts that influence Darwins thoughts - Current challenges to Darwinism: DNA and protein phylogenies – protein evolution and neutrality theory – Molecular evolutionary clock, Micro and macroevolution.

Unit – II ISOLATION, SPECIATION AND FOSSILS 15hrs

Isolation and Speciation: Isolating mechanism – Pre and post zygotic – origin of isolation – Koopman's experiment - Speciation – definition – modes – Sympatric –allopatric and quantum speciation. The evolutionary time scale- Fossil history and phylogeny of man – Cultural evolution and evolutionary future of mankind – Concepts of Exobiology.

Animal Behaviour

Unit – III ETHOLOGY

Introduction to Ethology - Animal psychology, classification of behavioural patterns, analysisofbehaviour (ethogram) - Reflexes and complex behavior - Perception of the environment: mechanical, electrical, chemical,olfactory, auditory and visual - Neural and hormonal control of behavior - Genetic and environmental components in the development of behavior - Communication: Chemical, visual, light and audio, evolution oflanguage (primates).

15hrs

15hrs

Unit – IV ANIMAL BEHAVIOUR AND BIOLOGICAL RHYTHMS 15hrs

Ecological aspects of behaviour: Habitat selection, food selection,optimal foraging theory, anti -predator defenses, aggression, homing, territoriality, dispersal, host parasite relations.Biological rhythms: Circadian and circannual rhythms, orientationandnavigatio n, migration of fishes and birds. Learning and memory: Conditioning, habituation, insight le arning,association learning and reasoning.

Unit – V REPRODUCTIVE BEHAVIOUR AND PARENTAL CARE 15hrs

Reproductive behavior: Mating systems, courtship, sexualselection, parental care. Social Organisation in Honey bees and Primates - aggregations, schooling in fishes, flocking in birds, herding in mammals, group selection, kin selection, altruism, reciprocal altruism, inclusive fitness, social organization in insects and primates.

S.No	Topics	web links
1.	Phylogenetic trees	https://courses.lumenlearning.com/suny-wmopen- biology1/chapter/phylogenetic-trees/
2.	Molecular divergence	https://www.ncbi.nlm.nih.gov/books/?term=Molecular+diverg ence
3.	Molecular clocks	http://www.as.wvu.edu/~kgarbutt/QuantGen/Gen535Papers2/ Molecular_Clocks.htm
4.	Chronopharma cology	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885389/ https://link.springer.com/chapter/10.1007/978-981-32-9779- 1_16
5.	Animal Domestication	https://www.nationalgeographic.com/animals/reference/dome sticated-animals/ https://www.intechopen.com/books/animal- domestication/animal-domestication-a-brief-overview

Topics for self study:

Text Books

- 1. Brian, K. H. and BenediktHall,G.Strickberger's Evolution. 4th Ed., 2008 Jones and Bartlett Publishers, Inc,
- 2. Goodenough, J., Betty, M. and Wallace, R.A. Perspectives on Animal Behaviour.1993 John Wiley,

References

1. Futuyma, D.J.Evolutionary Biology. 3rd Ed.,1998 Sinauer Associates, Sunderland, Massachusetts,

- 2. Alcock, J. Animal Behaviour: An Evolutionary Approach. 7th Ed.,2001 Sinaur Associates, Inc.
- 3. Krebs, J.R and Davis, N.B. Behavioural Ecology. 3rd Ed., 1993 Blackwell,
- 4. Ridley, M. Evolution. 2nd Ed.,2004 Indian Edition. Blackwell Scientific Publishers, Oxford, UK,
- 5. Rastogi, V.B. Organic Evolution. 12th Ed., KedarNath Ram Nath, Meerut.

Web Links:

https://b-ok.asia/book/2325474/f08119 https://b-ok.asia/book/3504212/b99824 https://b-ok.asia/book/1250880/8dcac2

Specific Learning Outcomes (SLO):

Unit	Course Contents	Specific Learning Outcomes (SLO)	Blooms Taxonomy levels of Transaction
Ι	DARWINI	SM AND LAMARKISM	
1.1	Origin of life – Abiogenesis – Cosmozoic and naturalistic theories – chemical evolution and origin of life – evidences and objections	Explain how life might have originated on this planet	K2
1.2	Lamarckism – Mutation theory of De Vries –Darwinism : Theory of Natural selection – Facts that influence Darwins thoughts - Current challenges to Darwinism: DNA and protein phylogenies – protein evolution and neutrality theory	Compare Lamarckism and mutation theory for evolution Explain Darwin's theories on natural selection and challenges	K2
1.3	Molecular evolutionary clock, Micro and macroevolution. Evolution of sex and reproductive strategies.	Compare micro and macro evolution	K2
II	ISOLATION, SPEC	IATION AND PALAENTOLOG	ĞΥ
2.1	Isolation and Speciation: Isolating mechanism – Pre and post zygotic – origin of isolation –Koopman's experiment - Speciation – definition – modes – Sympatric –allopatric and quantum speciation.	Explain the concept of speciation and gene regulation. List out the examples and adaptation of both allopatric and sympatric speciation	K4

2.2	The evolutionary time scale: eras-periods and epoch-major events in the evolutionary time scale.	Relate broad patterns in the fossil record to major geological events in time scale	K1
2.3	Fossil history and phylogeny of man – Cultural evolution and evolutionary future of mankind. Concepts of Exobiology.	Explain hominid evolution by discussing landmark phylogenetic transition and also cultural evolution in relation to society.	K5
III		ETHOLOGY	
3.1	Introduction to Ethology - Animal psychology, classification of behavioural patterns, analysis of behaviour (ethogram) - Reflexes and complex behavior -	Classify behavioral patterns and reflexes	K4
3.2	Perception of the environment: mechanical, electrical, chemical, olfactory, auditory and visual - Neural and hormonal control of behavior - Genetic and environmental components in the development of behavior -	Analyse the significance of animal perception and develop methods to regulate animal behavior	K6
3.3	Communication: Chemical, visual, light and audio, evolution of language (primates).	Illustrate the forms of communication in animals and its role in language development.	К3
IV	ANIMAL BEHAVIOU	JR AND BIOLOGICAL RHYTE	IMS
4.1	Ecological aspects of behaviour: Habitat selection, food selection,optimal foraging theory, anti -predator defenses, aggression, homing, territoriality, dispersal, host parasite relations	Define habitat selection, foraging pattern and defense mechansims	K2
4.2	Circadian and circannual rhythms, orientation and navigation, migration of fishes and birds.	Explain the regulation of circadian rhythms	K4
4.3	Learning and memory: Conditioning, habituation,	Explain the role of biology in learning and memory and its	K5

	insight learning, association learning and reasoning.	form.	
V	REPRODUCTIVE BE	HAVIOUR AND PARENTAL C	ARE
	Reproductive behavior: Mating systems, courtship, sexual selection, parental care.	Analyse the importance of reproductive behavior and parental care in species perpetuation.	K4
5	Social Organisation in Honey bees and Primates - aggregations, schooling in fishes, flocking in birds, herding in mammals, group selection, kin selection, altruism, reciprocal altruism, inclusive fitness, social organization in insects and primates.	Analyze the social organization in survival of animals	K4

Text Books

1.Brian, K. H. and BenediktHall,G.Strickberger's Evolution. 4th Ed., 2008 Jones and Bartlett Publishers, Inc,

2.Goodenough, J., Betty, M. and Wallace, R.A. Perspectives on Animal Behaviour.1993 John Wiley,

References

- 1. Futuyma, D.J.Evolutionary Biology. 3rd Ed.,1998 Sinauer Associates, Sunderland, Massachusetts,
- 2. Alcock, J. Animal Behaviour: An Evolutionary Approach. 7th Ed., 2001 Sinaur Associates, Inc.
- 3. Krebs, J.R and Davis, N.B. Behavioural Ecology. 3rd Ed., 1993 Blackwell,
- 4. Ridley, M. Evolution. 2nd Ed.,2004 Indian Edition. Blackwell Scientific Publishers, Oxford, UK,
- 5. Rastogi, V.B. Organic Evolution. 12th Ed., KedarNath Ram Nath, Meerut.

P19ZY41	РО	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	1	2	3	4
C01	Н	Н	М	Н	L	М	Н	Н	М	Н	Н	Н	L
CO2	Н	Н	М	М	L	L	Н	М	L	Н	Н	Н	L
CO3	Н	Н	L	L	L	L	Н	М	L	Н	Н	Н	L
CO4	Н	Н	L	L	L	М	Н	Н	L	Н	Н	Н	L
CO5	Н	Н	L	L	L	L	Н	М	М	Н	Н	Н	L
CO6	Н	Н	L	М	L	L	Н	L	М	Н	Н	Н	L
L-Low M-Moderate				e	•	H	I- High	l					

4. Mapping Scheme for the PO, PSOs and COs

5. COURSE ASSESSMENT METHODS

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.
- 3. End Semester Examination

ELECTIVE - IV: APPLIED ENTOMOLOGY

Semester: IV

Code: P19ZY4:1

Hours: 75

Credit: 4

1. Course Outcome

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOMES	LEVEL	UNIT
CO1	Classify the different orders of insect organisms	K4	Ι
CO2	Categorize the biological life cycle of agricultural and industrial important pests.	K4	II
CO3	Examine the structure and mode of action of important insecticides belonging to different groups	K4	III
CO4	Apply Integrated Pest Management	K4	IV
CO5	Recommend methods of insect control and the damages and benefits regarding practical applications.	K5	V
CO6	Improve employability skills of students to become an entomologist in government and private sectors.	K6	V

2. SYLLABUS

Unit- I INSECT CLASSIFICATION

15hrs

Introduction to Entomology - General characters of Class Insecta –Outline Classification of insects upto orders Classification of following insect orders Orthoptera, Hemiptera, Diptera, Hymenoptera, Lepidoptera, Coleoptera, Insect Pest and their Classification

Unit-II PEST OF AGRICULTURAL AND INDUSTRIAL IMPORTANCE 15hrs

Life history, nature of damage and control measures of major pests of Pest of rice: Rice stem borer (Scirpophaga incertulas) - Pest of Sugarcane: The shoot borer (Chiloinfuscatellus) -Pest of coconut: The rhinoceros beetle (Oryctes rhinoceros) - Pest of cotton: The spotted bollworm (Earias insulana)- Pests of Stored Products. **Insects of Industrial importance** -Biology and rearing of Honey bees, Silk worm, Lac insect–Useful Products and their Economic Values.

Unit-III -PEST OF MEDICAL AND VETERINARY IMPORTANCE 15hrs

Insect vectors of human diseases; Mosquitoes, Bedbug, TseTse fly - Identification, nature of attack, and control measures. Veterinary pests: Identification, nature of attack, and control measures of insect pest of domestic animals – Fowl, cattle, sheep and goat. Insects of forensic importance – crime detection using entomological science.

Unit-IV PEST CONTROL MEASURES

Pest control measures: Cultural–mechanical–physical and Biological methods - **Chemical control-** Insecticides - classification of insecticides based on mode of entry – mode of action and chemical nature –Insecticidal formulations– insecticidal toxicity (LD 50 / LC 50).

Unit-V IPM - BIOLOGICAL CONTROL

Insect pest-Management: Biological control; Ecological basis and agents of biological control–Parasites, Parasitoids, Predators. Autocidal control. Methods of sterilisation – Male Sterilization technique, Chemo sterilants. Pheromonal control, Insect repellents, Insect anti feedants, Insect attractants – definition, applications, advantages and disadvantages. Microbial control of crop pests by employing bacteria, virus and fungi - Integrated pest management (IPM).

Topics for Self-Study :

S.No.	Contents	Web Link
1.	Tritrophic	https://en.wikipedia.org/wiki/Tritrophic_interactions_in_plant_defense
	Interactions	
2.	Sterile insect release	https://ipmworld.umn.edu/bartlett
	method	
3.	Biology and Control	https://www.ag.ndsu.edu/publications/crops/pulse-crop-insect-
	of Pulse Crop Pests	diagnostic-series-field-pea-lentil-and-chickpea
4.	Corcyra	https://www.plantwise.org/KnowledgeBank/datasheet/15444
	cephalonica	
5.	Forensic	https://ifflab.org/forensic-entomology-using-insects-for-forensic-
	Entomology	investigations/

Text Books:-

 David, B.V. and Ananthakrishnan, T.N., General and Applied Entomology. 2nd Ed., 2004, Tata McGraw Hill, New Delhi.

2. Ignacimuthu, S. S and Jayaraj S, Biological Control of Insect Pests2003 Phoenix Publ, New Delhi.

References:-

1. David, B.V. Elements of Economic Zoology. 2003, Popular Book Depot, Chennai.

2. Nalinasundari, M.S. and Santhi, R. Entomology. 2006, MJP Publishers, Chennai.

3. Awasthi, V.B. Introduction to General and Applied Entomology. 2002, Scientific Publishers, Jodhpur.

4. Norris, R.F., Caswell-chen, E.P. and Kogan, M. Concepts in Integrated Pest management 2002, Prentice Hall, New Delhi.

15hrs

5. Racheigl and Racheigl, Biological and Biotechnological Control of Insect Pests.1998, CRC Press.

6. Srivastava, K. P., A, Textbook of Applied Entomology Vol. I. 2nd ed. 1988 Kalyani Publishers, New Delhi.

Web Links:

https://nptel.ac.in/courses/126/104/126104003/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomical level of Transaction
I	INSECT C	LASSIFICATION	
1.1	Insect Classification: - Introduction to Entomology – General characters of Class Insecta – Outline Classification of insects up to orders Classification of following insect orders Orthoptera, Hemiptera, Diptera, Hymenoptera, Lepidoptera, Coleoptera, Insect Pest and their Classification.	Classify insects according to their orders	K4
II	PEST OF AGRICULTURAL A	ND INDUSTRIAL IMPO	RTANCE
2.1	Pest of Agricultural and industrial importance: - Life history, nature of damage and control measures of major pests of Pest of rice: Rice stem borer (Scirpophaga incertulas) – Pest of Sugarcane: The shoot borer (Chiloinfuscatellus) – Pest of coconut: The rhinoceros beetle (Oryctes rhinoceros) – Pest of cotton: The spotted bollworm (Earias insulana) – Pests of Stored Products.	Apply various control measures to eliminate the damage causing pests.	К3

	Insects of Industrial importance –					
	Biology and rearing of Honey	Categorize the				
2.2	bees, Silk worm, Lac insect -	importance of insects in	K4			
	Useful Products and their	industrial purpose				
	Economic Values.					
III	PEST OF MEDICAL AND	VETERINARY IMPOR	TANCE			
	Pest of medical and veterinary					
	importance: - Insect vectors of					
	human diseases; Mosquitoes,	Analyze the nature of				
3.1	Housefly, Bedbug, Sand fly,	human diseases caused	K4			
	TseTse fly – Identification,	by insect vectors.				
	nature of attack, and control					
	measures.					
		Classify the nature of				
	Veterinary pests: Identification,	diseases caused by				
	nature of attack, and control	insect vectors in				
3.2	measures of insect pest of	domestic animals and	K4			
	domestic animals – Fowl, cattle,	apply various control				
	sheep and goat.	measures to eliminate				
		veterinary pests.				
	Insects of forensic importance -	Identify insects in				
3.3	crime detection using	criminal investigation	K4			
	entomological science.	criminar myestigation				
IV	PEST CONTI	ROL MEASURES				
	Pest control measures: -					
4 1	Cultural-mechanical - physical	Apply various pest	K4			
1.1	and Biological methods –	control measures				
	Chemical control – Insecticides					
	classification of insecticides					
	based on mode of entry - mode	Classify insecticides				
4.2	of action and chemical nature -	based on mode of entry,	К4			
	Insecticidal formulations – action and chemical					
	insecticidal toxicity (LD50/LC	nature				
	50).					
V	IPM - BIOLO	OGICAL CONTROL				

5.1	Insect pest – Management: Biological control; Ecological basis and agents of biological control–Parasites, Parasitoids, Predators. Autocidal control.	Evaluate insect pest management using biological approach	K5
5.2	Methods of sterilisation – Male Sterilization technique, Chemo sterilant. Pheromonal control, Insect repellents, Insect antifeedants, Insect attractants – definition, applications, advantages and disadvantages.	Utilize available sterilisation methods to control insect pests	K3
5.3	Microbial control of crop pests by employing bacteria, virus and fungi – Integrated pest management (IPM).	Improve integrated pest management system for microbial pest control.	K6

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY4	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
:1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	L			L			М			М		L	
CO2	Μ		L			L			Μ		М		
CO3		М			L			М					Н
CO4				Μ	Μ	Η					М		
CO5			М						Μ			L	
CO6	Μ			Μ			Η			L			М
L	- Low	•	•		M ·	Medi	ium	•	•	H - H	ligh	•	r.

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

1. Course-end survey

ELECTIVE – IV: FISHERIES SCIENCE

SEMESTER: 4

Code: P19ZY4:A

Credits: 4

Total Hrs. : 75

1. Course Outcome

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOMES	LEVEL	UNIT
C01	Classify the major groups of fishes and their characteristics.	K4	Ι
CO2	Categorize the anatomy of fish and organ system of fish.	K4	II
CO3	Examine the nutritional requirements of cultivable Fish and Prawn	K4	III
CO4	Apply Inland capture and Marine capture fisheries of India	K4	IV
CO5	Recommend methods of surveying the fishery resources.	K5	V
CO6	Improve employability skills of students in government and private fish marketing sectors.	K6	V

UNIT-I

BIOLOGY OF FISHES AND CLASSIFICATION

General morphology and outline classification of fishes - major groups of fishes and their characteristics - morphometric and meristic characters of elasmobranchs and teleost fishes. Basic anatomy of fish - digestive, circulatory, respiratory, nervous and reproductive systems. Food and feeding habits, maturity, fecundity, spawning and survival of Indian fishes.

UNIT-II

NUTRITION.GROWTHANDPOPULATION DYNAMICS

Nutritional requirement of cultivable fish and prawn -Length-weight relationship and factors influencing growth condition, age Determination- Theory of fishing, unit stock, recruitment, growth, mortality, migration, fish tagging and marking-Fishery zones

UNIT-III

INLAND CAPTURE AND MARINE CAPTURE FISHERIES OF INDIA 15hrs

Type of fisheries in India. Riverine, Estuarine, Coldwater, Reservoir and Pond fisheries. Present status and scope of inland capture fisheries prawn/shrimp, lobster and cephalopods – fishery characteristics, distribution and importance. Marine capture fisheries - crustaceans crabs, Molluscs clam, cockle, mussel, oyster, their fishery characteristics, distribution and importance

UNIT-IV

FISHERY SURVEY METHODS

Methods of surveying the fishery resources - acoustic method, aerial method, survey of fish eggs and larvae, analyzing population features - growth mortality selection.

UNIT-V

CRAFTS AND GEARS

Principal methods of exploitation of fishes - indigenous and modern gears and crafts. Principal methods of fish preservation and processing in India Types of spoilage, causative factors - marketing and economics.

REFERENCE BOOKS

15hrs

15hrs

15hrs

15hrs

120

1. Day, F. 1981. Fishes of India, Vol.I and Vol. II. William Sawson & Sons Ltd., London.

2. Jhingran, C.G. 1981. Fish and Fisheries of India. Hindustan Publishing Co., India.

3. Maheswari, K. 1993. Common fish diseases and their control. Institute of Fisheries Education, Powakads, M.P.

4. Santhanam, R. 1980. Fisheries Science. Daya Publishing House, New Delhi.

5. Yadav, B.N. 1997. Fish and Fisheries. Daya Publishing House, New Delhi

6. FAO Volumes for fish identification.

7. Bal D.V. and Rao, K.V. 1990. Marine Fisheries of India. Tata McGraw Hill Publishing Co. Ltd., New York.

8. Biswas, K. P. 1996. A Text Book of Fish, Fisheries and Technology. Narendra Publishing House, Delhi.

9. Srivastava, C.B.L. 1999. Fish Biology. Narendra Publishing House, Delhi.

Unit/Section	Contents	Specific Learning Outcomes (SLO)	Highest Bloom's Taxonomical level of Transaction										
Ι	BIOLOGY OF FISHES AND CLASSIFICATION												
		Classify the fishes											
1.1	Fishes Classification	according to their	K4										
		characteristic features.											
II	NUTRITION, GROWT	DYNAMICS											
2.1	Nutrition and Growth	Apply the theory of	V 2										
2.1		fishing	KJ										
		Categorize the fishing											
2.2	Population Dynamics	Zones and Population	K4										
		Dynamics											
III	INLAND CAPTURE AND MARINE CAPTURE FISHERIES												
	Juland and Marine Conturn	Classify the inland											
2.1	mand and Marme Capture	capture and marine	17.4										
3.1	Tisneries	capture fisheries	K 4										
IV	FISHERY SURVE	Y METHODS											
4.1		Apply various fishery	17.4										
4.1	Fishery Survey methods	Survey methods	K 4										
V	CRAFTS AND	GEARS											
		Evaluate principal											
5.1	Exploitation of Fishes	methods of exploitation	K5										
		of fishes											
5.0	Principal methods of food	Utilize available	W2										
5.2	preservation	methods of food	K3										

3. SPECIFIC LEARNING OUTCOMES (SLO)

preservation	
--------------	--

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY4	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
:1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	L			L			М			М		L	
CO2	М		L			L			М		М		
CO3		М			L			М					Н
CO4				М	М	Η					М		
CO5			Μ						Μ			L	
CO6	Μ			М			Η			L			М
L - Low				M - Medium						H - High			

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

1. Course-end survey

PG - PROGRAMME ARTICULATION MATRIX

S.No	COURSE	COURSE	Correlation with Programme Outcomes and Programme Specific Outcome										tcomes		
	NAME	CODE	PO1	PO	PO9	PSO	PSO	PSO	PSO						
				2	3	4	5	6	7	8		1	2	3	4
1	Functional Morphology		Η	Η	Η	L	L	-	Η	Η	-	Η	Μ	-	L
	of Invertebrates and Chordates	P19ZY101													
2	Cell Biology	P19ZY102	Η	-	Μ	Η	Η	Η	Η	L	-	-	Η	L	Μ
3	Molecular Biology and		Η	-	Μ	Η	Η	Η	Η	-	-	-	Η	Η	Н
	Bioinformatics	P19ZY103													
4	Core Practical I	P19ZY1P1	Η	-	Η	Η	Η	Η	Η	Η	-	-	Η	Μ	Н
5	Core Practical II	P19ZY1P2	Η	-	Η	Η	Η	Η	Η	Η	-	-	Η	Η	Н
6		P19ZY1:1	Н	-	Η	Η	Η	Η	Η	L	-	-	Μ	Η	Н
	Microbiology														
7	Animal Physiology	P19ZY204	Η	-	Η	Η	Η	Η	Η	Η	-	Η	Η	-	Н
8	Biochemistry	P19ZY205	Η	-	Μ	Η	Η	Η	Η	-	-	-	Η	Η	Н
9	Immunology	P19ZY2:1	Н	-	Η	Η	Η	Η	Η	Μ	-	-	Н	Н	Н
10	Biostatistics	P19ZY2:3	Н	-	Η	Η	Η	Η	Η	-	-	-	-	Н	Н
11	Core Practical III	P19ZY2P3	Н	-	Η	Η	Η	Η	Η	-	-	Μ	Н	Н	Н
12	Core Practical IV	P19ZY2P4	Н	-	-	Η	Η	Η	Η	-	-	-	Μ	Η	Н
13	Environmental Biology	P19ZY306	Η	Η	Η	Η	Η	Η	Η	Η	Η	-	Η	-	Η
14	Developmental Biology	P19ZY307	Η	-	-	Η	Η	Η	Η	Μ	-	Μ	Η	-	Η
15	Genetics	P19ZY308	Η	-	-	Н	Η	Η	Η	-	-	Μ	Η	-	Η
16	Research Methodology and		Η	-	-	Η	Η	Η	Н	-	-	L	-	Η	Η
	Biotechniques	P19ZY309													
17	Core Practical V	P19ZY3P5	Н	Η	Η	Η	Η	Η	Η	-	Η	-	Н	Η	Н
18	Animal Biotechnology	P19ZY3:1	Η	-	-	Η	Η	Η	Η	Η	-	L	Η	Μ	Η
19	Evolution and Animal	D157V/10	ц	ц	ц	ц	ц	ц	ц	ц		м	ц	ц	ц
	Behaviour	11521410	11	11	11	11	11	11	11	11		141	11	11	11
20	Applied Entomology	P15ZY4:1	Η	-	Μ	Η	Η	Η	Η	Μ	Η	Μ	Μ	-	Н