M. Sc. PHYSICS SYLLABUS
 (UNDER CHOICE BASED CREDIT SYSTEM)

Applicable to the candidates admitted from 2020 onwards

OUTCOME - BASED EDUCATION (OBE)

PG \& RESEARCH DEPARTMENT OF PHYSICS

BISHOP HEBER COLLEGE (AUTONOMOUS)

AFFILIATED TO BHARATHIDASAN UNIVERSITY
(NATIONALLY REACCREDITED AT THE 'A' GRADE BY NAAC WITH A CGPA OF 3.58 OUT OF 4) RECOGNIZED BY UGC AS 'COLLEGE WITH POTENTIAL FOR EXCELLENCE' TIRUCHIRAPPALLI - 620017

VISION

To ignite the young minds to achieve excellence in physics through whole person education, to provide opportunities to explore the laws of nature and enable them to contribute to nation building.

MISSION

- Impart quality education, endorse scientific temper and create a passion for Physics through competitive curriculum and effective teaching.
- Explore the skills through hands on experiences by providing state of art research facilities.
- Strive for holistic development by imbibing ethical and social values and build scientific, communicative and leadership competencies to face the global challenges.

M. Sc PHYSICS

PROGRAMME OUTCOMES

On successful completion of the M. Sc. Physics Course, the graduates will be able to

KNOWLEDGE

PO1-Cognize and exhibit advanced knowledge in core and applied areas and realize their relevance in modern science and technology.
PO2-Critically and intellectually analyze and solve complex scientific and real time problems and arrive at logical conclusions

PO3-Exhibit research oriented inquisitive, novel ideas by utilizing appropriate modern tools and techniques to cater to the needs

SKILL

PO4-Demonstrate skill in per forming advanced physics experiments and projects using laboratory facilities and instrumentation techniques, by logical planning and systematic execution

PO5- Utilize appropriate experiments, inter facing techniques, mathematical modelling methods and computational tools.

PO6-Acquire data, analyze and communicate technical and scientific findings effectively to the global community.

ATTITUDE

PO7-Demonstrate independent and lifelong learning, endowed with leadership skills and carry out research collaborating with related fields of Physics.

ETHICAL AND SOCIAL VALUES

PO8-Practice individual consciousness and exhibit professional and ethical values in personal, social and scientific research

PO9-Provide solutions with social concern to the problems on energy demands, environment, health and safety issues for the well-being of the society

PROGRAMME SPECIFIC OUTCOMES

On successful completion of the M.Sc. Physics Course, the graduates will be able to PSO1-Comprehend the physical concepts, theory, and applications in advanced core Physics domains such as Mathematical Physics, Classical, Quantum and Statistical Physics, Atomic and Molecular Physics, Nuclear Physics, Solid state Physics and Electronics

PSO2-Utilize scientific knowledge and apply numerical techniques for modeling physical systems for which analytical methods are in appropriate or of limited utility.

PSO3-Recognize the limitations of physical system based on empirical study, minimize contributing variables, collect data, analyze and interpret the results.

PSO4-Integrate mathematical, physical and computational techniques to address the problems and identify the applications of physics in new inter disciplinary areas.

M. Sc. Physics

Structure of the Curriculum (2020)

Parts of the curriculum	No. of Courses	Credits
Core	10	50
Elective	5	22
Project	1	4
VLO	1	2
Major Practicals	4	12
Total	21	90

SYLLABUS STRUCTURE

Sem.	Course	Course Title	Course Code	Hours / week	Credits	Marks		
						CIA	ESE	Total
I	Core I	Mathematical Physics - I	P20PH101	6	5	25	75	100
	Core II	Classical Dynamics	P16PH102	6	5	25	75	100
	Core III	Statistical Mechanics	P20PH103	6	5	25	75	100
	Core Prac. I	Major Practical - I	P16PH1P1	6	3	40	60	100
	Elective I	Analog and Digital Electronics/ Modern Communication System	P18PH1:1/ P16PH1:A	6	5	25	75	100
			Sem.I Credits :		23			
II	Core IV	Mathematical Physics - II	P20PH204	6	5	25	75	100
	Core V	Electromagnetic Theory	P16PH205	6	5	25	75	100
	Core Prac. II	Major Practical - II	P16PH2P2	6	3	40	60	100
	Elective II	Atomic and Molecular Physics/Solar PV Technology and its Application	$\begin{aligned} & \text { P19PH2:2/ } \\ & \text { P20PH2:A } \end{aligned}$	6	4	25	75	100
	Elective III	Virtual Labs - Physics Experiments	P19PH2:P	4	4	40	60	100
	VLO	RI / MI	P17VL2:1/ P17VL2:2	2	2	25	75	100
			Sem.II Credits :		23			
III	Core VI	Quantum Mechanics - I	P16PH306	6	5	25	75	100
	Core VII	Solid State Physics - I	P16PH307	6	5	25	75	100
	Core VIII	Microprocessor and Microcontroller	P16PH308	6	5	25	75	100
	Core Prac. III	Major Practical - III	P16PH3P3	6	3	40	60	100

CORE - I: MATHEMATICAL PHYSICS I

SEMESTER: I
CREDITS: 5

1. COURSE OUTCOMES (CO)

After the successful completion of this course, the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the basic concepts of vectors, vector differential calculus, vector integral calculus, vector space, matrices, differential equations and numerical techniques.	K2	I, II, III, IV, V
$\mathbf{C O 2}$	Apply Gauss, Stoke's and Green's Theorems for solving vector field related problems and principle of least squares for curve fitting.	K3	I, V
$\mathbf{C O 3}$	Determine the eigenvalues, eigenvectors, rank, inverse, power and exponential of matrices and roots of algebraic and transcendental equations using numerical techniques.	K5	II, V
$\mathbf{C O 4}$	Solve linear ordinary differential equations using elementary methods and partial differential equations using method of separation of variables	K3	III
$\mathbf{C O 5}$	Analyze the properties of Bessel, Legendre, Hermite, Laguerre, beta and gamma functions.	K4	IV
$\mathbf{C O 6}$	Choose the optimal numerical technique for solving integral and differential equations.	K5	V

2. A. SYLLABUS

Unit -I: Vector Fields and Vector Spaces
(15 hours)
Gauss theorem, Green's Theorem, Stoke's Theorem and applications - Orthogonal curvilinear coordinates - Expressions for gradient, divergence, curl and Laplacian in cylindrical and spherical co-ordinates. Definitions - Linear dependence and linear independence of vectors - Bilinear and quadratic forms- change of Basis - Schmidt's orthogonalisation process- Schwartz inequality.

Unit- II: Matrices

(15 hours)
Introduction to Matrix - Types of matrices and their properties - Rank of a matrix - Cramer's rule - Characteristic equation - Eigen values, Eigen vectors - Adjoint of a matrix - Inverse of a
matrix - Diagonalization of Matrices - Cayley Hamilton’s theorem - Jacobi method - Sylvester's theorem.

Unit -III: Differential Equations

Linear ordinary differential equations - Elementary methods - Linear second order differential equations with variable coefficients - Sturm - Liouville differential equation - Linear partial differential equations - Separation of variables - Examples : the wave equation, Laplace equation and diffusion equation- Fixed points and slope fields.

Unit- IV: Special Functions

(15 hours)
Bessel, Legendre, Hermite and Laguerre differential equations - series solutions - generating function - orthogonal relations - recursion relations - Rodrigue's formula - gamma and beta functions.

Unit -V: Numerical Methods

The method of least squares - curve fitting - straight line - Numerical integration: Trapezoidal rule Simpson's (1/3) rule - Numerical solution of ordinary differential equations - Taylor's series method-Runge-Kutta (II and IV order) methods. Solution of Algebraic and Transcendental equations: Successive approximation method - Newton-Raphson method - Gauss-Jordan method -Gauss-Seidal method.

B. TOPICS FOR SELF STUDY

1. Understanding on polar Plot (Polar coordinates)
https://www.wolframalpha.com/
2. Numerical methods and simulation techniques
i) https://swayam.gov.in/nd1_noc19_ph11/preview
ii)https://swayam.gov.in/nd1_noc19_ma21/preview

C. TEXT BOOKS

1. Sathya Prakash, Mathematical Physics 6e, Sultan Chand and Sons, New Delhi, 2014.
2. H.K. Dass, Mathematical Physics, S. Chand and Co. Ltd, New Delhi, 2003
3. A.W.Joshi, Matrices and Tensors in Physics, Wiley Eastern Ltd., New Delhi, 1975.
4. Arfken and H.J Weber, Mathematical Methods for Physicists, Academic Press, 2005.
5. N. Vedamurthy and N.Ch.S.N. Iyengar, Numerical Methods, Vikas Publishing House Pvt. Ltd, New Delhi, 2003.

D. REFERENCE BOOKS

1. E. Kreyszig, Advanced Engineering Mathematics, Wiley, New York, 1999.
2. M.K. Venkatraman, Numerical Methods in Science and Engineering, The National Publishing Company, Madras, 1999.
3. S.S. Sastry, Introductory Numerical Methods, Prentice Hall of India, New Delhi, 2006.
4. R. Bronson, Differential Equations, Schaum's outline series McGraw Hill, New York, 1973.
5. M. W. Hirsch, S. Smale and R.L. Devaney, Differential Equations, Dynamical Systems and Introduction to Chaos, Academic Press, USA, 2013.

E. WEBLINKS

1. Advanced matrix theory: linear transformations

https://nptel.ac.in/ (Lectures)

2. Advanced Partial differential equations and applications

https://ocw.mit.edu/courses/mathematics/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit / Section	Course content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
I	Vector Fields and Vector Spaces		
1.1	Gauss theorem, Stoke's Theorem, Greens Theorem, Applications	Evaluate line integral, surface integral and volume integral through these theorems.	K5
1.2	Orthogonal curvilinear coordinates	Explain Cartesian and curvilinear coordinates	K2
1.3	Expressions for gradient, divergence, curl and Laplacian in cylindrical and spherical co-ordinates	Construct the gradient, divergence, curl and Laplacian in terms of curvilinear coordinates	K3
1.4	Vector spaces: Definitions	Extend the concept of vector space	K2
1.5	Linear dependence and linear independence of vectors	Identify linear dependence and independence of vectors.	K3
1.6	Bilinear and quadratic Forms and change of Basis	Outline the concept of basis	K2
1.7	Schmidt's orthogonalisation process	Construct set of orthonormal vectors	K3
1.8	Schwartz inequality	Interpret Schwartz inequality	K2
II	Matrices		

2.1	Introduction to Matrix	Relate physical observables in matrix form	K2
2.2	Types of matrices and their properties	Classify the types of matrices and elaborate their properties	K2
2.3	Rank of a matrix	Deduce the rank of matrix	K5
2.4	Cramer's rule	Apply Cramer's rule to find solution of equations	K3
2.5	Characteristic equation, Eigen values, Eigen vectors	Formulate characteristic equation to find Eigen values, Eigen vectors	K5
2.6	Adjoint of a matrix, Inverse of a matrix	Evaluate Adjoint of a matrix and Inverse of a matrix	K5
2.7	Diagonalization of Matrices	Diagonalize the given Matrix	K5
2.8	Cayley Hamilton's theorem	Determine inverse of the matrix using Cayley Hamilton's theorem	K5
2.9	Jacobi method	Solve given simultaneous equations by Jacobi method	K5
2.10	Sylvester's theorem	Explain Sylvester's theorem Evaluate power of matrix using Sylvester's theorem	K2 K5
III	Differential Equations		
3.1	Linear ordinary differential equations	Categorize the linear ordinary differential equation	K2
3.2	Elementary methods	Determine the solution of linear ordinary differential equation using suitable elementary methods.	K5
3.3	Linear second order differential equations with constant coefficients	Solve linear second ordinary differential equation with constant coefficients.	K5
3.4	Sturm - Liouville differential equation	Explain the Sturm - Liouville differential equation	K2
3.5	Linear partial differential equations: Separation of variables	Solve linear partial differential equations by variables Separable method	K2
3.6	Examples: the wave equation Laplace equation Diffusion equation	Solve wave, Laplace and Diffusion second order partial differential equation using method of separation of variables.	K2

3.7	Fixed points and slope fields	Explain Fixed points and slope fields.	K2
IV	Special Functions		
4.1	Bessel, Legendre, Hermite and Laguerre differential equations, series solution generating function, orthogonal relations, recursion relations and Rodrigue's formula	Examine the various special functions, their series solutions, properties. Explain the applications of various special functions.	K4 K2
4.2	Gamma and Beta functions	Relate gamma and beta functions Solve integrals using gamma and beta functions.	$\begin{gathered} \text { K4 } \\ \text { K2 } \end{gathered}$
V	Numerical Methods		
5.1	The method of least squares curve fitting straight line	Determine the value of best fit constants for the given set of values.	K5
5.2	Numerical integration: Trapezoidal rule Simpsons ($1 / 3$) rule	Evaluate the integral using Trapezoidal and Simpson's (1/3) rule.	K5
5.3	Numerical solution of ordinary differential equations: Taylor's series method	Solve the differential equation using Taylor's series method	K5
5.4	Runge-Kutta (II and IV order) methods.	Solve the differential equation using R-K methods.	K5
5.4	Solution of Algebraic and Transcendental equations : Successive approximation method Newton-Raphson method, Gauss-Jordan method, Gauss-Seidal method	Solve the algebraic and transcendental equations using Successive approximation method Newton-Raphson method, GaussJordan method and Gauss-Seidal method	K5

4. MAPPING SCHEME (PO, PSO \& CO)

P20PH101	PO									PSO			
	$\begin{gathered} \text { PO } \\ 1 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 7 \end{gathered}$	PO8	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	PSO1	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 3 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 4 \end{gathered}$
CO1	H	H	M	L	L	M	M	H	L	H	L	L	H
CO2	H	L	M	L	L	M	L	M	L	H	L	L	M
CO3	H	H	M	L	H	M	H	M	H	H	H	L	H
CO4	H	H	M	L	H	M	H	L	H	H	H	L	H
CO5	H	H	H	L	L	M	H	L	L	H	L	L	M
CO6	H	M	M	L	H	H	M	H	L	H	M	H	M

L-Low M-Moderate
 H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exams) I,II
2. Open book test, Assignment, Seminar, Quiz, Problem solving.
3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Dr. M. B. Jessie Raj

SEMESTER: I
CREDITS: 5

CODE: P16PH102
NO. OF HOURS / WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course, the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
$\mathbf{C O 1}$	Explain the symmetries and conservation laws of system of particles and kinematics of rigid body	K2	I, II
$\mathbf{C O 2}$	Solve small oscillation problem and construct canonical transformation as well as to evaluate Poisson bracket structure	K3	II, III
$\mathbf{C O 3}$	Analyse the planetary motion and scattering in the central force field.	K4	I
$\mathbf{C O 4}$	Develop Lagrangian, Hamiltonian, Hamilton-Jacobi, action-angle formulations and analyse various physical systems like simple pendulum, Atwood's machine, Kepler problem, symmetric top, etc.	K5	I, II, III
$\mathbf{C O 5}$	Describe the chaotic behaviour in dynamical systems and develop the methods of soliton theory.	K6	IV
$\mathbf{C O 6}$	Outline the special theory of relativity and examine the invariance of relativistic systems (Ex.: Maxwell's equations) under the Lorentz Transformation.	K4	V

2. A. SYLLABUS

Unit-I: Fundamental Principles and Lagrangian Formulation
(15 Hours)
Mechanics of a particle and system of particles - Conservation theorems - Constraints - Generalized co-ordinates - D'Alembert's principle and Lagrange's equation - Derivation of Lagrange's equation using Hamilton's principle - Application to Simple pendulum, Atwood's machine - Conservation laws and symmetry properties - Central force motion: General features - The Kepler problem - Scattering in a central force field.

Unit-II: Rigid body dynamics and theory of small oscillations
(15 Hours)
a) Rigid Body Dynamics: Coordinates of rigid bodies - Orthogonal transformations (basics) - The Euler angles - connection between rate change of a vector in body set of axes and in space set of axes Moments and products of inertia - Euler's equations of motion - The heavy Symmetrical top with one point fixed.
b) Small oscillations: Theory - Normal modes and normal frequencies - application to linear triatomic molecule.

Unit-III: Hamilton's Formulation

(15 Hours)
Hamilton's canonical equations from variational principle - Principle of Least action - Cyclic coordinates - Canonical transformations - Poisson bracket - Hamilton-Jacobi equation - Hamilton's principal function - Linear Harmonic oscillator - Hamilton's characteristic function - action - angle variables - Application to Kepler's problem.

Unit-IV: Nonlinear Dynamics

(15 Hours)
Linear and nonlinear forces - Introduction to nonlinear oscillators - Duffing oscillator - jump phenomenon - Classification of Fixed points - Phase portrait - Period doubling phenomena and chaos in MLC circuit.
Linear and nonlinear waves - Solitary waves - Fermi - Pasta - Ulam experiment - Numerical experiment of Kruskal and Zabusky - Solitons- KdV equation (no derivation) - one soliton solution by Hirota'sbilinearization method.

Unit-V: Relativistic Mechanics

Fundamentals of special theory of relativity - Minkowski's four dimensional space - Four vectors Energy and momentum four vectors - Lorentz transformation (LT) equations - LT as rotation in Minkowski's space - Invariance of Maxwell's equations under LT.

B. TOPICS FOR SELF STUDY

1. Newtonian Mechanics

https://youtu.be/8X1x9RL
2. Analysis of linear dynamical systems in phase-space
https://youtu.bp/QZo93VDYacE
https://www.youtube.com/watch?v=ucG_Ft36XOo
https://www.youtube.com/watch?v=Vmj54LvrLOA

C. TEXT BOOKS

1. H. Goldstein, J. Safko and C. Poole, Classical Mechanics, Addison Wesley, New Delhi, 2002.
2. M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability Chaos and Pattern, Springer Verlag, Berlin, 2003.

D. REFERENCE BOOKS

1. T.W.B. Kibble and F.H. Berkshire, Classical Mechanics, Cambridge University Press, New Delhi, 2010.
2. N. C. Rana and P.S. Joag, Classical Mechanics, Tata McGraw Hill, New Delhi, 1991.
3. R. Douglas Gregory, Classical Mechanics, Cambridge University Press, New Delhi, 2018.
4. L.D. Landau and E.M. Lifshitz, Mechanics, Pergmon Press, India, 2005.
5. P.G. Drazin and R.S. Johnson, Solitons: An Introduction, Cambridge University Press, New York, 1989.
6. M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators, World Scientific Co., Singapore, 1996.
7. K.N. SrinivasaRao, Classical Mechanics, University Press, Hyderabad, India, 2003.
8. P.C. Deshmukh, Foundations of Classical Mechanics, Cambridge University Press , U.K., 2019.

E. WEBLINKS

1. https://nptel.ac.in/courses/115105098/
2. https://ocw.mit.edu/courses/physics/
3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
I	Fundamental Principles and Lagrangian Formulation		
1.1	Mechanics of a particle and system of particles, Conservation Theorem	Discuss the properties of single particle and system of particles	K2
1.2	Constraints-Generalized co-ordinates	Explain generalized co-ordinates	K2
1.3	D'Alembert's principle and Lagrange's equation	Deduce Lagrange's equation	K3
1.4	Derivation of Lagrange's equation using Hamilton's principle	Deduce Lagrange's equation using Hamilton's principle	K3
1.5	Application to Simple pendulum, Atwood's machine	Apply Lagrange's formalism to simple dynamical systems	K5
1.6	Conservation laws and symmetry properties	Explain the role of symmetries in conservation laws.	K2
1.7	Central force motion: General features	Discuss the central force motion	K2
1.8	The Kepler problem	Formulate the first integral approach to discuss the Kepler problem	K5
1.9	Scattering in a central force field	Analyse scattering of particles and deduce Rutherford's scattering formula	K4
II	Rigid body dynamics and theory of small oscillations		

2.1	Coordinates of rigid bodiesOrthogonal transformations (basics)-The Euler angles	Describe the kinematics of rigid body	K2
2.2	Connection between rate change of a vector in body set of axes(BSA) and in space set of axes (SSA)	Identify the connection between BSA and SSA for a change in a vector	K2
2.3	Moments and products of inertia	Define and explain moments of inertia	K2
2.4	Euler's equations of motion	Deduce Euler's equations of motion	K5
2.5	The heavy symmetrical top with one point fixed	Apply Lagrange's formalism to symmetric top and analyse its dynamics	K5
2.6	Small oscillations: Theory	Definition of normal modes and frequencies and building the theory to calculate	K2
2.7	Normal modes and normal frequencies	Determine normal modes of LTO	K3
2.8	application to linear triatomic molecule (LTO)	Determine normal modes of LTO	K5
III	Hamilton's Formulation		
3.1	Hamilton's canonical equations from variational principle	Deduce Hamilton's equations of motion	K3
3.2	Principle of Least action	Explain least action principle and employ it to deduce Hamilton's equations of motion	K3
3.3	Cyclic coordinates	Define Cyclic coordinates.	K1
3.4	Canonical transformations (CT)	Compute the generating functions for canonical transformations and explain the nature of transformation	K3
3.5	Poisson bracket (PB)	Define PB and list downs their properties	K2
3.6	Hamilton-Jacobi (HJ) equation, Hamilton's principal function	Develop HJ theory	K5
3.7	Linear Harmonic oscillator (LHO)	Apply the HJ theory to LHO	K5
3.8	Hamilton's characteristic function - action angle variables	Discuss the actionangle variable theory	K2
3.9	Application to Kepler's problem	Develop action and angle variable theory	K5

		for the Kepler problem	
IV	Nonlinear Dynamics		
4.1	Linear and nonlinear forces	Distinguish between linear and nonlinear forces	K4
4.2	Introduction to nonlinear oscillators	Explain nonlinear oscillators	K2
4.3	Duffing oscillator (DO) jump phenomenon	Describe the jump phenomenon in DO	K6
4.4	Classification of Fixed points Phase portrait	Classify fixed points of 2D dynamical system	K2
4.5	Period doubling phenomena and chaos in MLC circuit	Analyze the chaotic behavior in MLC Circuit by applying the theory of period doubling phenomenon, A	K6
4.6	Linear and nonlinear waves	Distinguish between linear and nonlinear waves	K4
4.7	Solitary waves	Outline the historical development of solitons	K2
4.8	Fermi - Pasta - Ulam (FPU) experiment	Explain Recurrence phenomenon in nonlinear lattices	K2
4.9	Numerical experiment of Kruskal and Zabusky (KZ), Solitons	Explain KZ experiment and give its importance; Definition of solitons	K2
4.10	KdV equation, one soliton solution by Hirota'sbilinearization method	Solve KdV type equations by the Hirota's method and study the propagation of solitons	K4
V	Relativistic Mechanics		
5.1	Fundamentals of special theory of relativity	Recall the fundamental postulates of special theory of relativity	K2
5.2	Minkowski's four dimensional space, Four vectors - Energy and momentum four vectors	Construct the energy and momentum four vectors in relativistic systems using fundamental definitions of four vectors.	K3
5.3	Lorentz transformation (LT) equations, LT as rotation in	Construct LT equations and analyse the properties of LT	K4

	Minkowski's space		
5.4	Invariance of Maxwell's equations under Lorentz Transformations	Prove that Maxwell's equations are invariant under Lorentz Transformation	K4

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{aligned} & \text { P16P } \\ & \text { H102 } \end{aligned}$	PO									PSO			
	$\begin{gathered} \hline \mathbf{P O} \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ \mathbf{3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{9} \\ \hline \end{gathered}$	PSO1	PSO2	PSO3	PSO4
CO1	L	M	L	L	L	L	L	L	L	H	H	M	L
CO2	H	H	M	M	L	L	L	L	L	H	H	M	M
CO3	H	H	H	H	H	L	L	L	L	H	H	M	H
CO4	H	H	H	H	M	L	H	L	L	H	H	M	H
CO5	H	H	H	H	M	M	H	L	L	H	H	H	H
CO6	M	M	L	L	M	L	L	L	L	H	M	H	M

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous assessment test I \& II
2. Open book test; cooperative learning report, assignment; journal paper review, group presentation, project report, poster preparation, prototype or product demonstration etc.
3. End semester examination

Indirect

1. Course-end survey

Course Co- ordinator: Dr. T. Kanna

CORE -III: STATISTICAL MECHANICS

SEMESTER: I
CREDITS : 5

1. COURSE OUTCOMES (CO)

After the successful completion of this course, the students will be able to:

CO.	Course Outcomes	Level	Unit Covered
CO1	Analyze the consequences of the laws of thermodynamics under varied external conditions	K4	I
$\mathbf{C O 2}$	Enumerate the role of statistics applied to the microscopic world and establish the link between thermodynamics and statistical mechanics	K4	II, III
$\mathbf{C O 3}$	Construct different ensembles and deduce Maxwell Boltzmann (Classical particles), Bose Einstein and Fermi Dirac (Quantum particles) statistical distribution functions.	K5	II, III
$\mathbf{C O 4}$	Interpret thermodynamical quantities in terms of partition function and derive the specific heat capacities of solids	K5	II, III
$\mathbf{C O 5}$	Assess the behavior of ideal gas, black body, liquid helium and electron gas systems in the light of classical and quantum statistical mechanics	K5	IV
$\mathbf{C O 6}$	Interpret phase transitions and phase diagrams under thermodynamical equilibrium for binary systems.	K5	V

2. A. SYLLABUS

Unit -I: Laws of Thermodynamics and their Consequences
(15 hours)
Consequences of first law - T and V independent, T and P independent, P and V independent - Entropy and consequences of second law of thermodynamics - consequences of combined first and second law - T and V independent, T and P independent, P and V independent TdS equations - Thermodynamic potential and the reciprocity relations - Clausius - Clapeyron equation - Gibb's - Helmholtz relations Thermodynamic equilibria - Nernst heat theorem - Consequences of third law - chemical potential.
Unit -II: Classical Statistical Mechanics
(15 hours)
Macro and micro states- Phase space - Volume of the phase space - Liouville's theorem - Statistical equilibrium - Ensembles - Micro canonical, Canonical and Grand canonical - Maxwell Boltzmann distribution law - Distribution of energy and velocity - Principles of equipartition of energy - Partition function - Relation between partition function and thermodynamic quantities.

Unit -III: Quantum Statistical Mechanics
(15 hours)
Basic concepts - Quantum ideal gas - Bose Einstein and Fermi-Dirac statistics - Distribution laws Partition function for a harmonic oscillator - Specific heat of solids - Einstein's theory - Debye's theory.

Ideal gas (Micro canonical) - Black body and Planck radiation law - Ideal Bose gas: Energy, pressure and thermal properties - Bose Einstein condensation - Liquid Helium and its properties. Ideal Fermi gas: Properties - Degeneracy - Electron gas.

Unit -V: Phase Transitions and Phase Diagrams
Phase equilibria - first and second-order phase transitions -differences and examples - Binary phase diagram - Types - Phase rule - Lever rule - Iron - Carbon phase diagram

Ising model (Bragg William approximation)-diffusion equation - random walk and Brownian motion Introduction to non equilibrium processes.

B. TOPICS FOR SELF STUDY

1. Classical Statistical Mechanics

https://www.youtube.com/watch?v=D1RzvXDXyqA
https://www.youtube.com/watch?v=XIXQ38JnF0k
2. Ideal gas - Interpretation of behavior of ideal gas using microcanonical, canonical and grand canonical ensembles
https://www.youtube.com/watch?v=zUp0D5Xcigs (microcanonical)
https://www.youtube.com/watch?v=3KM-IBkBKFQ (canonical)
https://www.youtube.com/watch?v=OWZVL1vU_WM (grand canonical)

3. Phase Transitions and Phase diagrams

https://www.youtube.com/watch?v=kKZsqO_xqNQ (Part I)
https://www.youtube.com/watch?v=kl0lqRnfUWg (Part II)

C. TEXT BOOKS

1. B.R. Agarwal and N. Eisner, Statistical Mechanics, New Age International Pvt. Ltd., New Delhi, 2005.
2. N. Sears and L. Salinger, Thermodynamics Kinetic Theory and Statistical Mechanics, Narosa Publishing House, New Delhi. 1998.
3. S.I. Gupta and V. Kumar, Statistial Mechanics 24e, PragatiPrakashan Publishing Ltd., Meerut, 2011.
4. V. Raghavan, Physical Metallurgy: Principles and Practice, Prentice Hall of India, New Delhi, 2006.

D. REFERENCE BOOKS

1. F. Reif, Statistical and Thermal Physics, McGraw Hill, Singapore, 1979.
2. R. Huang, Statistical Mechanics, Wiley Eastern Ltd., New Delhi, 2009.
3. SathyaPrakash and Agarwal, Statistical Mechanics, KedarNath Ram Nath and Co., Meerut, 2003.
4. R.K. Pathria and P.D. Beale, Statistical Mechanics 3e, Academic Press, 2011.
5. PJ Haines, Principles of Thermal Analysis and Calorimetry, Springer (2002).

E. WEBLINKS

1. https://nptel.ac.in/courses/115/103/115103113/
2. https://nptel.ac.in/courses/115/103/115103028/
3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit / Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
I	Laws of Thermodynamics and their Consequences		
1.1	Consequences of first law T and V independent, T and P independent, P and V independent	Recall the first law of thermodynamics Relate the energy equation through extensive and intensive variables Construct T-V, T-P and P-V relations by applying the first law Analyze the relations for isothermal, isobaric and isochoric processes	K4
1.2	Entropy and consequences of second law of thermodynamics	Define entropy in terms of second law of thermodynamics Compare the thermodynamic processes by including entropy term Build entropy relation for reversible processes	K3
1.3	Consequences of combined first and second lawT and V independent, T and P independent, P and V independent	Construct the combined form of first and second law of thermodynamics. Classify coefficients of volume expansion, isothermal compressibility and specific heat capacity based on the partial derivatives Develop equations for T-V, T-P and P-V independent conditions using the combined I and II laws.	K3
1.4	TdS equations	Recall TdS equations Summarize the TdS equations Utilize TdS relations for liquid helium system	K3
1.5	Thermodynamic potential and the reciprocity relations	Define quantities such as Helmholtz function (F) and Gibb's free energy (G) Illustrate the reciprocity relations in terms of F and G Correlate the thermodynamic relations and interpret its variation with external conditions	K4
1.6	Clausius - Clapeyron equation	Analyze the variation of pressure with respect to temperature for a system consisting of multiple phases	K4

		Explain the triple point temperature for water. Identify the ice point temperature from phase diagram	
1.7	Gibb's - Helmholtz relations	Relate Gibb's and Helmholtz functions Apply G-H relation to calculate internal energy of voltaic cell	K3
1.8	Thermodynamic equilibria	Outline thermodynamic equilibria Prove that systems in thermodynamic equilibrium are in thermal, mechanical and chemical lequilibria	K4
1.9	Nernst heat theoremConsequences of third law	State and explain Nernst heat theorem Analyze, how the internal equilibrium of the system behaves at absolute zero	K4
1.10	Chemical Potential	Outline chemical potential Apply thermodynamic potentials to calculate chemical potential	K3
II	Classical Statistical Mec		
2.1	Macro and micro states	Explain the fundamental postulates of statistical mechanics Differentiate macro and micro states Illustrate macro and micro states with suitable example	K4
2.2	Phase Space	Explain the concept of phase space Account on Γ and μ space	K2
	Volume of the Phase space	Evaluate the volume of the phase space	K5
2.3	Liouville's theorem	State and explain Liouville's theorem Illustrate that the density of phase points is conserved	K5
2.4	Statistical equilibrium	Explain statistical equilibrium	K2
2.5	Ensembles Micro Canonical, Canonical and Grand Canonical ensemble	Outline the need for defining an ensemble Summarize on micro canonical, canonical and grand canonical ensembles Enumerate the differences between the three ensembles	K4
2.7	Maxwell Boltzmann distribution law	Outline the properties of classical particles Deduce Maxwell Boltzmann distribution law of molecules in a gas	K5
2.8	Distribution of energy and velocity	Deduce and interpret the relation for most probable energy and velocity of a gas molecule Obtain the expressions for mean, mean square and root mean square velocity of a gas molecule	K5

2.9	Principles of equipartition of energy	Explain the principles of equipartition of energy Evaluate the energy shared by a molecule per degree of freedom	K5
2.10	Partition function	Define partition function Derive an expression for the partition function for a system of classical particles	K5
2.11	Relation between partition function and thermodynamic quantities	Relate partition function and thermodynamic quantities Interpret thermodynamical quantities in terms of partition function	K5
III	Quantum Statistical Mechanics		
3.1	Basic concepts	List the fundamental postulates of quantum mechanics Explain the need for quantum statistical mechanics	K2
3.2	Quantum ideal gas	List the properties of quantum ideal gas.	K2
3.3	Bose Einstein and Fermi-Dirac statistics Distribution laws	Obtain distribution functions for Fermions and Bosons	K5
3.4	Partition function for a harmonic oscillator	Arrive at the vibrational partition function for a harmonic oscillator and analyze its characteristics	K4
3.5	Specific heat of solids Einstein's theory \& Debye's theory.	Analyze the specific heat capacity variation with temperatures with examples Explain Debye T ${ }^{3}$ law Determine the specific heat capacity of solids according to Einstein's/Debye's theory on the basis of atomic vibrations Discuss the merits and limitations of Einstein's/Debye's theory of specific heat	K5
IV	Applications of Statistical Mechanics		
4.1	Ideal gas (Micro canonical)	Analyze the behavior of ideal gas by considering the system as microcanonical ensemble.	K4
4.2	Black body and Planck radiation law	Explain the concept of energy quantization in black body radiation. Apply Bose-Einstein statistics to explain the spectral distribution of black body	K3
4.3	Ideal Bose gas: Energy, pressure and thermal properties	Outline the properties of bosons and spin degeneracy factor Deduce the relation for energy, pressure and thermal properties of a boson gas	K5

4.4	Bose Einstein condensation Liquid Helium and its properties	Summarize the properties of liquid helium Examine the critical temperature of liquid helium using Bose-Einstein condensate.	K4
4.5	Ideal Fermi gas: Properties - Degeneracy	Deduce energy, pressure and thermal properties of fermi gas	K5
4.6	Electron gas	Apply the statistical distribution to calculate fermi energy, temperature of an electron gas	K3
V	Phase Transitions and P	Diagrams	
5.1	Phase equilibria	Explain phase equilibria Recall triple point	K2
5.2	First and second-order phase transitions differences and examples	Differentiate first and second order phase transitions with suitable examples	K4
5.3	Binary Phase Diagrams - Types	Explain binary Phase Diagram Classify the types of reactions in binary phase diagrams	K2
5.4	Phase rule - Lever Rule	Explain Phase rule and lever rule Calculate the number of phases available in a binary phase diagram Calculate the composition of two elements in a given binary phase diagram using lever rule	K5
5.5	Iron-Carbon Phase diagram	Evaluate the phases and types of phase transitions in an Iron - Carbon System	K3
5.6	Ising model (Bragg William approximation)	Explain Ising model Investigate the magnetic phase transitions using Bragg William approximation	K5
5.7	Diffusion equation	State Fick's law Explain the factors influencing the mechanism of diffusion Apply diffusion equation to address heat flow in materials	K3
5.8	Random walk and Brownian motion	Derive the probability function for one dimensional random walk Explain kinetic theory and Brownian motion	K5
5.9	Introduction to non equilibrium processes	Explain non equilibrium processes in thermodynamical systems Distinguish between equilibrium and nonequilibrium process	K2

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P20PH } \\ 103 \end{gathered}$	PO									PSO			
	$\begin{gathered} \text { PO } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	PSO 1	PSO 2	PSO 3	PSO 4
CO1	H	M	L	L	M	L	L	L	L	H	M	H	H
CO2	H	M	L	L	L	L	M	L	L	H	M	M	M
CO3	H	M	L	L	M	L	M	L	L	H	M	M	L
CO4	H	M	M	M	L	L	M	L	L	H	L	M	L
CO5	H	M	M	L	M	L	M	L	L	H	M	M	L
CO6	H	M	M	M	M	M	H	L	L	H	M	M	M

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test: T1, T2 (Theory \& Practical Components): Closed Book
2. Assignment, Group Discussion, Seminar, Quiz (written)
3. Pre-Semester \& End Semester Theory Examination

Indirect

1. Course end survey (Feedback)

Course Co-ordinator: Dr. A. Josephine Prabha

ELECTIVE- I: ANALOG AND DIGITAL ELECTRONICS

SEMESTER: I

CREDITS : 5

CODE: P18PH1:1
NO. OF HOURS/WEEK : 6

1. COURSE OUTCOMES (CO)

After successful completion of this course the student will be able to :

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Summarize the characteristics and applications of thyristor family and MOSFET	K4	I
$\mathbf{C O 2}$	Examine the working of optoelectronics devices and special diodes.	K4	II
$\mathbf{C O 3}$	Examine the function of OPAMP as an active filter, log amplifier, clipper, clamper and 555 timer as A stable multi vibrator	K4	III
$\mathbf{C O 4}$	Analyse the function of different mode of shift register.	K4	IV
$\mathbf{C O 5}$	Develop synchronous sequential circuits.	$\mathbf{K 3}$	\mathbf{V}
$\mathbf{C O 6}$	Analyze the factors affecting Fiber optic communication and functioning of Microwave Devices	$\mathbf{K 5}$	\mathbf{V}

2. A. SYLLABUS

Unit - I: Semiconductor Devices and Thyristor

MOSFET - Depletion mode MOSFET - Enhancement mode MOSFET - SCR operation - SCR characteristics - Parameters - 90° phase control -DIAC - TRIAC operation and Characteristics TRIAC Phase control circuit -UJT operation - UJT characteristics - Parameters - Relaxation Oscillator - PUJT.

Unit - II: Optoelectronic Devices and Special diodes

(12 Hours)
LED -Organic LED (OLED) - Photo conductive cells - Photo diodes- Photo transistors -Photo multiplier tube - Optocouplers - solar cells - varactor diodes- Thermistors - Tunnel diodes - Schottky, PIN and Current regulator diode - Chua's diode - MLC.

Unit - III: Analog Electronics

(12 Hours)
Op-Amp parameters - Precision rectifiers - logarithmic - Antilogarithmic amplifiers - Clippers clampers.

Active filters: Low pass - High pass - band pass -- Solution to simultaneous equations - Op-amp negative impedance converter - IC 555 timer block diagram - Astable multivibrator and Schmitt trigger.

Unit - IV: Digital Electronics

(12 Hours)
JK Flip Flop - D flip-flop - T Flip flop- Registers: Serial in Serial out - Serial in Parallel out - Parallel in Serial out - Parallel in Parallel out - Universal shift registers - Design of synchronous sequential circuit: Model Selection - State synthesis table - Designs equations and circuit diagram

Unit - V: Fiber Optical Communication and Microwave Devices

(12 Hours)
Optical fiber cables - types - losses in fiber - measurements of fiber characteristics - analog and digital modulation schemes - fiber optical communication systems.
Reflex Klystron: Introduction- Basic Theory of Operation- Transit time and mode number -Gunn Oscillator: Gunn Oscillator. Waveguide E-And H-plane Tees - Attenuators - Attenuator Characteristics.

B. TOPICS FOR SELF STUDY

1. Semiconductors devices

https://www.youtube.com/watch?v=djbJm-xWo2w\&list=PLgwJf8NK-2e4B9bchhZBBvsoEEhCQfQ4k

2. Organic LED

https://www.youtube.com/watch?v=uwmQ3oXVV2w

3. Digital Electronics

https://www.youtube.com/watch?v=M0mx8S05v60\&list=PLBlnK6fEyqRjMH3mWf6kwqiTbT798eA Om
C. TEXT BOOKS

1. L. Floyd, Electronic Devices, Pearson Education, New York, 2004.
2. David A. Bell, Operational Amplifiers \& Linear ICs,Oxford University Press, New Delhi, 2011.
3. L. Floyd, Digital Fundamentals 10e, Pearson Education, New York, 2004.
4. M.L. Sisodia and G.S. Raghuvanshi, Basic Microwave Techniques and Laboratory Manual, New Age International (P) Limited, New Delhi, 2009.
5. T. F. Schubert and E.M. Kim, Active and Nonlinear Electronics, John Wiley, New York, 1996.
6. Subirkumarsarkar, Optical fiber and fiber optic communication system S.chand (4e) 2010.
7. Donald P Leach, Albert Paul Malvino - GouamSaha - Digital Principles and Applications (8e), McGraw Hill,2016

D. REFERENCE BOOKS

1. J. Millman and C. Halkias, Integrated Electronics, Tata McGraw Hill Ltd., New Delhi, 1987.
2. A. Malvino, Electronic Principles, Tata McGraw Hill Ltd., New Delhi, 1985.
3. David A. Bell, Electronic Devices and Circuits, Oxford University Press, New Delhi, 2008.

E. WEBLINKS

1. www.electrical4u.com
2. www.electronics-tutorials.ws
3. SPECIFIC LEARNING OUTCOME (SLO)

Unit/ Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
I	Semiconductor Devices	and Thyristor	
1.1	MOSFET	Define MOSFET	K1
1.2	Depletion mode of MOSFET	Explain the Structure of MOSFET	K2
1.3	Enhancement Mode MOSFET	Outline the enhanced mode of MOSFET	K2
1.4	SCR Operation	Analyze the operation of SCR	K4
1.5	SCR Characteristics and Parameters	Examine the SCR characteristics and Evaluate SCR parameters	K5
1.6	90° phase control	Analyze phase control of SCR	K4
1.7	DIAC operation and Characteristics	Explain the working of DIAC operation and characteristics	K4
1.8	TRIAC operation and Characteristics	Explain the working of DIAC operation and characteristics	K4
1.9	TRIAC Phase control circuit	Analyze phase control of TRIAC	K4
1.10	UJT Operation	Analyze the operation of UJT	K4
1.11	UJT characteristics, Parameters	Examine theUJT characteristics parameters and	K4
1.12	Relaxation Oscillator	Analyze the UJT relaxation oscillator	K3
1.13	PUJT	Sketch basic structure and operation of PUJT	K3
II	Optoelectronic Devices	and Special diodes	
2.1	LED	Analyze the operation of LED	K2
2.2	OLED (Organic LED)	Explain the working of	K2

		OLED	
2.3	Photo conductive cells	Explain the Photo conductive cells	K2
2.4	Photo diodes	Outline the structure of Photo diodes	K2
2.5	Photo transistors	Explain the working of Photo transistor	K2
2.6	Photo multiplier tube	Analyze the working of photo multiplier tube	K4
2.7	Optocouplers	Explain the principle of Optocouplers	K3
2.8	Solar cells	Explain the Construction and working of solar cell	K3
2.9	Voltage variable capacitor diodes	Construction and working of voltage variable capacitor diodes	K3
2.10	Thermistors	Analyze thermistors	K2
2.11	Tunnel diodes	Analyze the Construction and working of Tunnel diode	K4
2.12	Schottky diode	Analyze the Construction and working of Schottky diode	K4
2.13	PIN diode	Analyze the Construction and working of PIN diode	K4
2.14	Current limiting diodes	Analyze the Construction and working of current limiting diode	K4
2.15	Chua's diode	Explain the working of Chua's diode	K2
2.16	MLC circuit	Analyze the working of MLC	K4
III	Analog Electronics		
3.1	Op-Amp parameters	Explain the parameters of OPAMP	K2
3.2	Precision rectifiers	Analyse the operation of precision rectifier	K4
3.3	Logarithmic amplifier	Analyze the working of \log amplifier	K4
3.4	Antilogarithmic amplifier	Analyze the working of antilog amplifier	K4
3.5	Clippers	Analyze the operation of Clippers	K4
3.6	Clampers	Analyze the operation of clampers	K4
3.7	Active filters: Low pass	Analyze the operation of low	K4

	and High pass	pass and High pass filter	
3.8	Active filters: Band Pass and Band stop	Analyze Band Pass and Band stop filter	K4
3.9	Solution to simultaneous equations	Construct a circuit to solve simultaneous equations using OPAMP	K4
3.10	Op-amp negative impedance converter	Define opamp negative impedance converter	K1
3.11	IC 555 timer block diagram	Analyze the working of 555 timer	K4
3.12	Astable multivibrator	Analyze the working of astable multivibrator	K4
3.13	Schmitt trigger	Examine the working of Schmitt trigger	K4
IV	Digital Electronics		
4.1	Introduction to sequential circuits	Recall the principle of sequential circuit	K1
4.2	SR FF	Examine the operation of SR FF	K3
4.3	JK latch	Examine the operation of JK latch	K3
4.4	Master slave latch	Examine the operation of Master slave FF	K3
4.5	Delay Flip Flop	Examine the operation of DFF	K3
4.6	T Flip Flop	Examine the operation of TFF	K3
4.7	Registers	Discuss the principle of Register	K2
4.8	Serial load shift registers	Examine the operation of serial load shift register	K4
4.9	Parallel load shift register	Examine the operation of parallel load shift register	K4
4.10	Parallel to serial conversion	Examine the operation of parallel to serial shift register	K4
4.11	Universal shift registers	Examine the operation of universal shift register	K3
4.12	Design of synchronous sequential circuit: Model Selection	Classify different type of models	K4
4.13	State synthesis table	Develop the sate synthesis table for the given model	K4
4.14	Designs equations and circuit diagram	Analyze the operation of designs equation and circuit diagram	K4

\mathbf{V}	Fiber Optic communication and Microwave Devices		
5.1	Optical fiber cables and types	Classify fiber cables and types	K1
5.2	losses in fibers	Estimate the losses in fiber	K5
5.3	Measurements of fiber characteristics	Analyze the operation measurement of fiber characteristics	K4
5.4	Analog and digital modulation schemes, fiber optical	Explain the working of analog and digital modulation schemes	K4
5.5	Reflex Introduction	Klystron:	Define Reflex klystron
5.6	Basic Theory of Operation	Explain the working of Klystron	K5
5.7	Transit time and mode number	Estimate transit time and mode number	K4
5.8	Gunn Oscillator	Analyze the working of Gunn Oscillator	K4
5.9	Waveguide H-Plane Tee	Analyze the operation of plane	K4
5.10	Waveguide E-Plane Tee	Analyze the operation of E- plane	K4
5.11	Attenuators	Explain the working of attenuator	K2
5.12	Attenuator Characteristics	Analyze the characteristics of attenuator	K4

4. MAPPING SCHEME (PO, PSO \& CO)

P18PH1:1	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	L	L	H	M	-	M	L	L	M	L	L	-
CO2	H	M	L	M	M	L	M	L	L	M	L	L	-
CO3	H	M	L	M	L	L	L	-	-	M	L	M	M
CO4	M	M	M	H	L	L	L	-	-	M	M	L	L
CO5	M	H	L	M	M	L	M	-	L	L	L	M	L
CO6	H	M	M	L	-	-	M	-	L	L	M	M	L
L-Low										M-Moderate		H- High	

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test: T1, T2 (Theory \& Practical Components): Closed Book
2. Cooperative Learning Report, Assignment, Group Presentation, Group Discussion, project Report, Field Visit Report, Poster Presentation, Seminar, Quiz (written)
3. Pre/Post Experiment Test, Viva, Experimental Report for each Experiment (Lab Component)
4. Lab Model Examination \& End Semester Practical Examination
5. Pre-Semester \& End Semester Theory Examination

Indirect:

1. Course end survey (Feedback)

ELECTIVE - I : MODERN COMMUNICATION SYSTEM

SEMESTER : I
CREDITS : 5

1. COURSE OUTCOMES (CO)

After the completion of this course the student will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Outline the basics of noise in communication	K2	I
CO2	Classify the modulations on the basis of frequency	K3	II
CO3	Apply the concept of different type of pulse modulation in communication	K3	III
CO4	Analyze the network and controls in data communication	K4	IV
CO5	Utilize the analog and digital modulation schemes in fiber optical communication	K3	V
CO6	Explain the emitter design and detector design in fiber optical communication	K4	V

2. A. SYLLABUS

Unit -I: Basics of Communication

(15 hours)
Communication systems - modulation - need for modulation - bandwidth requirements- noise - thermal noise - noise calculations - signal to noise Ratio - noise figure - calculation of noise figure measurement of noise figure.

Unit -II: Analog Communication

(15 hours)
Amplitude modulation - frequency spectrum of AM wave - power relations in the AM wave - frequency modulation - mathematical representation of FM - frequency spectrum - phase modulation comparisons: frequency and phase modulation, frequency and amplitude modulations.

Unit -III: Pulse Communication

(15 hours)

Importance of pulses in Digital communication - Pulse communication - pulse modulation types: pulse amplitude modulation - pulse width modulation - pulse position modulation - pulse code modulation telegraphy - telemetry.

Unit -IV: Data Communication

(15 hours)
Data communication systems - data transmission circuits - error detection and correction interconnection requirements - modern classification- network and control considerations.

Optical fiber cables - types - losses in fibers - measurements of fiber characteristics - analog and digital modulation schemes - fiber optical communication systems - operating wavelength - emitter design detector design - fiber choice.

B. TOPICS FOR SELF STUDY

1. Fibre optic communication system - Techniques - Telecommunication
https://nptel.ac.in/courses/108/104/108104113/

2. Digital modulation - frequency - correction

https://nptel.ac.in/courses/117/101/117101051/

C. TEXT BOOK

1. George Kennedy, Electronic Communication System, McGraw-Hill International Editions, 1987.
2. G. Jose Robin and A. Ubald Raj, Communication Electronics, Indira Publications, Martandam, 2002.

D. REFERENCES BOOKS

1. John Gowar, Optical Communication Systems, Prentice Hall India, New Delhi, 1993.
2. Gerd Keiser, Optical Fiber Communications, McGraw Hill, Singapore, 2000.
3. Joseph C. Palais, Fiber Optic Communications, Prentice Hall International, USA, 2001.
4. B. P. Lathi, Communication systems, Wiley Eastern Ltd, New Delhi, 1968.
5. J.F.B. Hawkes, Optoelectronics: An Introduction, J. Wilson, Prentice Hall of India, 1992.

E. WEBLINKS

1.https://www.tutorialspoint.com/principles_of_communication/principles_of_optical_fiber_communic ations.htm
2.https://www.tutorialspoint.com/principles_of_communication/principles_of_communication_pulse_m odulation.htm
3. https://byjus.com/jee/communication-systems/
4.https://www.tutorialspoint.com/data_communication_computer_network/data_communication_comp uter_network_tutorial.pdf
5. https://en.wikipedia.org/wiki/Fiber-optic_cable

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Secti on	Course Contents	Learning Outcomes	Highest Blooms Taxonomic Level of Transaction
I	Basics of Communication		
1.1	Communication systems modulation	Define modulation	K2
1.2	Bandwidth requirements	Utilize the concept of modulation	K3
1.3	Noise - Thermal noise	Describe thermal noise	K3
1.4	Noise calculation	Explain noise calculation	K4
1.5	Signal to noise ratio	Analyze the signal to noise ratio	K4
1.6	Calculation of noise figure	Analyze the calculation of noise figure	K4
1.7	Measurement of noise figure	Outline measurement of noise figure	K3
II	Analog Communication		
2.1	Amplitude modulation frequency spectrum of AM wave	Illustrate amplitude modulation. Outline frequency spectrum of AM wave.	$\begin{aligned} & \mathrm{K} 2 \\ & \mathrm{~K} 2 \end{aligned}$
2.2	Power relations in the AM wave	Construct the power relations in AM wave	K3
2.3	frequency modulation mathematical representation of FM	Analyze the importance of frequency modulation and mathematical representation of FM	K4
2.4	frequency spectrum	Analyze the frequency spectrum in analog communication	K4
2.5	phase modulation	Describe phase modulation in analog communication	K3
III	Pulse Communication		
3.1	Importance of pulses in Digital communication	Analyze the importance of pulses in digital communication.	K4
3.2	Pulse communication	Analyze pulse communication	K4
3.3	pulse modulation	Examine the types of pulse modulation	K4

	types:pulse amplitude modulation	Outline pulse amplitude modulation	K2
3.4	Pulse width modulation	Compare pulse width modulation and pulse amplitude modulation	K3
3.5	Pulse position modulation	Utilize the pulse position modulation in pulse communication	K3
3.6	pulse code modulation	Summarize the pulse code modulation	K2
3.7	telegraphy	Describe telegraphy in pulse communication	K2
3.8	telemetry	Illustrate telemetry	K2
IV	Data Communication		
4.1	Data communication system	Explain the data communication system	K2
4.2	Data transmission circuits	Outline the data transmission circuits	K2
4.3	error detection and correction	Categorize the error detection and correction in data communication	K4
4.4	Interconnection	Describe interconnection in data communication	K3
4.5	modern classification network	Categorize the modern classification network	K4
4.6	control considerations	Outline the control system in data communication	K4
V	Fiber Optical Communication		
5.1	Optical fiber cables types	Classify the types of optical fiber cables	K2
5.2	losses in fibers	Outline the loses in fibers	K2
5.3	measurements of fiber characteristics	Describe the measurements of fiber characteristics	K3
5.4	analog and digital modulation schemes	Analyze the analog and digital modulation schemes	K4
5.5	fiber optical communication systems	Explain the fiber optical communication systems	K2
5.6	operating wavelength	Discuss the operating wavelength in fiber optical communication	K3
5.7	emitter design - detector design	Analyze the emitter design and detector design	K4

5.8	fiber choice	Summarize fiber choice in fiber optical communication	K2

4. MAPPING SCHEME (PO, PSO \& CO)

P16PH1:A	PO									PSO			
	$\begin{aligned} & \hline \mathbf{P O} \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PO } \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PO } \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PO } \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \mathrm{PO} \\ 5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{P O} \\ 6 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{P O} \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathbf{P O} \\ \mathbf{8} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{P O} \\ \mathbf{9} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { PSO } \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PSO } \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { PSO } \\ & 3 \\ & \hline \end{aligned}$	PSO4
CO1	M	H	H	H	H	M	M	L	L	M	H	H	H
CO2	M	H	H	H	M	M	M	L	L	M	M	M	M
CO3	M	M	M	M	M	M	L	L	L	L	M	M	L
CO4	M	L	M	M	M	L	L	L	L	M	M	M	L
CO5	M	M	L	M	M	M	L	M	L	M	M	H	L
CO6	L	M	L	L	L	M	L	L	L	L	L	L	M

L-Low M-Moderate
H- High

5. COURSEASSESSMENTMETHODS

Direct

1. Continuous Assessment Test (Model Exams) I,II
2. Open book test; Cooperative learning report, Assignment, Seminar, Group Presentation, etc.
3. End Semester Examination

Indirect

1.Course-endsurvey

CORE- IV: MATHEMATICAL PHYSICS - II

SEMESTER : II
CREDITS: 5

CODE: P20PH204
NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course, the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
$\mathbf{C O 1}$	Apply Cauchy-Riemann conditions to test analyticity of complex function	K3	I
$\mathbf{C O 2}$	Evaluate the integral of complex function using Cauchy's integral theorem, Cauchy's integral formula, Cauchy's residue theorem and the solution of wave and diffusion equations using Greens function	K5	I, III
$\mathbf{C O 3}$	Extend the complex function using Taylor, Laurent's series and periodic function using the Fourier series and Fourier integral.	K3	I, II
$\mathbf{C O 4}$	Outline the types, algebra and role of tensors in physics.	K2	IV
$\mathbf{C O 5}$	Analyze point groups and space groups in molecular structure.	K4	V
$\mathbf{C O 6}$	Construct a function of a complex variable (frequency) from a function of a real variable (time) using Fourier, Laplace transforms and character tables.	K3	II, III, V

2. A. SYLLABUS

Unit-I: Complex Variables

(15 hours)
Functions of complex variables - Differentiability - Cauchy - Riemann conditions - Integrals of complex functions - Cauchy's integral theorem and integral formula - Taylor's and Laurent's series - Residues and singularities - Cauchy's residue theorem - Liouville's theorem Evaluation of definite integrals - Integration of trigonometric functions around a unit circle.

Unit- II: Fourier series and Transforms

Definition of Fourier series (odd and even functions) - Dirichlet's theorem - complex form of Fourier series - properties of Fourier series - Fourier integral (odd and even functions) complex form of Fourier integral - Fourier transform -infinite and finite Fourier sine and cosine transforms - properties - Applications (Square, Triangular and Sawtooth waves) - solving linear partial differential equations.

Unit - III: Laplace Transform and Green's Functions

(15 hours)
Laplace transform - properties of Laplace transforms - solution of second order ordinary differential equations - convolution theorem - Green's functions - properties - methods of solutions in one dimension - applications.

Unit - IV: Tensors

Occurrence of tensors in physics - Notation and conventions - Contravariant vector - Covariant vector - Tensors of second rank - Equality and null tensor -Addition and Subtraction - Outer Product of tensors - Inner product of tensors -Contraction of a tensor - Symmetric and antisymmetric Tensors - The Kronecker Delta - The Fully antisymmetric tensor - Quotient law - Examples of quotient law - Conjugate symmetric tensors of second rank - The Metric tensor Associated tensor.

Unit-V: Group Theory

Basic definitions - multiplication table - sub-groups, co-sets and classes - direct product groups - point groups and space groups - elementary ideas of rotation group - Representation theory - homomorphism and isomorphism - reducible and irreducible representations - Schur's lemma - the great orthogonality theorem - character tables - $\mathrm{c}_{2 \mathrm{v}}, \mathrm{c}_{3 \mathrm{v}}$.

B. TOPICS FOR SELF STUDY

1. Complex Analysis - Problems with solutions

https://www.researchgate.net/publication/280722238_Complex_Analysis_Problems_with_soluti ons

2. Astronomy and the fourier transform

http://w.astro.berkeley.edu/~jrg/ngst/fft/astronmy.html

3. Laplace transform and its applications to real life

https://www.academia.edu/37710981/Laplace_Transform_and_its_application_to_real_life_pro blems

4. Foundations of Mathematical Physics: Vectors, Tensors and Fields
https://www.roe.ac.uk/japwww/teaching/vtf_0910/vtf_0910.pdf

5. Group theory applied to Crystallography

https://www.researchgate.net/publication/255618156_Group_theory_applied_to_crystallography

C. TEXT BOOKS

1. Sathya Prakash, Mathematical Physics 6e, Sultan Chand and Sons, New Delhi, 2014.
2. H.K. Dass, Mathematical Physics, S. Chand and Co. Ltd, New Delhi, 2003.
3. A.W. Joshi, Matrices and Tensors in Physics, Wiley Eastern Ltd., New Delhi, 1975.
4. A.W. Joshi, Elements of Group Theory For Physicists, New Age International Pvt. Ltd, New Delhi, 2005.
5. G. Arfken and H.J Weber, Mathematical Methods for Physicists, Academic Press, 2005.

D. REFERENCE BOOKS

1. L.A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists, Mcgraw Hill, Singapore, 1985.
2. A.K. Ghatak, I.C. Goyal and A.J. Ghua, Mathematical Physics, Macmillan, New Delhi, 1995.
3. E. Kreyszig, Advanced Engineering Mathematics, John Wiley, New York, 1999.

E. WEBLINKS

1. https://nptel.ac.in/courses/115/106/115106086/\#
2. https://nptel.ac.in/courses/115/103/115103036/\#

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Contents	Learning Outcomes	Highest Blooms Taxonomic Level of Transaction
\mathbf{I}	Complex Variables	K2	
1.1	Functions of complex variables, Differentiability	Explain complex numbers, relate them with their functions and differentiability	K2
1.2	Cauchy-Reimann conditions \& related problems	Apply Cauchy - Reimann conditions to test the analyticity of a given function	K3
1.3	Cauchy's integral theorem and integral formula	Evaluate related integrals	K5
1.4	Taylor's and Laurent's series, Cauchy's residue theorem, Liouville's theorem	Explain singularities, residues and related residue theorems	K2

1.5	Integration of trigonometric functions around a unit circle	Solve integrals using above residue theorems	K3
II	Fourier Series And Transforms		
2.1	Definition of Fourier series (odd and even functions)	Define fourier series, odd and even functions	K1
2.2	Dirichlet's theorem, complex form of Fourier series, properties of Fourier series	Extend a nonsinusoidal periodic function into a fundamental and its harmonics	K3
2.3	Fourier integral (odd and even functions), complex form of Fourier integral	Define and list various integral transforms	K1
2.4	Fourier transform, infinite and finite Fourier sine and cosine transforms, properties	Explain the fourier transforms of different functions	K2
2.5	Applications (Square, Triangular and Sawtooth waves) - solving linear partial differential equations	Solve partial differential equations in practical applications	K3
III	Laplace Transform And Green's Functions		
3.1	Laplace transform, properties of Laplace transforms, Convolution theorem	Construct a function of a complex variable (frequency) from a function of a real variable (time) using Laplace transform	K5
3.2	Solution of second order ordinary differential equations	Solve differential equations with boundary values without finding the general solution and values of arbitrary constants	K3
3.3	Green's function, properties	Define Green's function and list its properties	K1
3.4	Methods of solutions in one dimension -applications	Solve related problems using Green's function	K3

IV	Tensors		
4.1	Occurrence of tensors in physics	Describe physical observables in different frames of reference.	K2
4.2	Notation and conventions	Explain the concept of summation convention.	K2
4.3	Contravariant vector , Covariant vector, Tensors of second rank	Identify the rank of given tensors	K2
4.4	Equality and null tensor, Addition and Subtraction, Outer Product of tensors, Inner product of tensors	Discuss the basic algebraic operations of tensors	K2
4.5	Contraction of a tensor	Describe the method to reduce the rank of mixed tensors.	K2
4.6	Symmetric and antisymmetric Tensors	Discuss the invariance of symmetric and antisymmetric properties of tensors.	K2
4.7	The Kronecker Delta, The Fully antisymmetric tensor	Define the Kronecker delta function and explain the fully antisymmetric tensor	K2
4.8	Quotient law, Examples of quotient law	Explain quotient law	K2
4.9	Conjugate symmetric tensors of second rank, The Metric tensor, Associate tensor	Explain the conjugate symmetric tensor and fundamental tensors.	K2
V	Group Theory		
5.1	Basic definitions -Group, Multiplication table, Subgroups, Co-sets and classes, Point groups and space groups, Elementary ideas of rotation group	Analyze various point groups and space groups	K4
5.2	Homomorphism and Isomorphism Reducible and irreducible representations Schur's lemma - The great	Construct multiplication table and character table for different point groups	K3

	orthogonality theorem Character tables $-\mathrm{c}_{2 \mathrm{v}} \mathrm{c}_{3 \mathrm{v} .}$		

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P20PH2 } \\ 04 \end{gathered}$	PO									PSO			
	$\begin{gathered} \hline \mathbf{P O} \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 2 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \text { PO } \\ 7 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 8 \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ 4 \end{gathered}$
CO1	H	M	M	M	M	M	M	L	L	H	H	H	H
CO2	H	M	M	M	M	M	M	L	L	H	H	H	H
CO3	H	M	M	M	M	M	M	L	L	H	H	H	H
CO4	H	M	M	M	M	M	M	L	L	H	H	H	H
CO5	H	M	M	M	M	M	M	L	L	H	H	H	H
CO6	H	M	M	M	M	M	M	L	L	H	H	H	H

L-Low
M-Moderate
H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exams) I,II
2. Open book test; Assignment, Seminar, Problem solving
3. End Semester Examination

Indirect

1. Course-end survey

CORE-V: ELECTROMAGNETIC THEORY

SEMESTER : II
CREDITS: 5

NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the fundamental laws of Electrostatics, Magnetostatics and electromagnetism and rephrase them in vectoral form.	K2	I, II, III
$\mathbf{C O 2}$	Classify magnetic materials based on their susceptibility and organize experiments to determine the magnetic properties of magnetic materials.	K3	II
$\mathbf{C O 3}$	Apply various mathematical techniques to solve equations related electrostatic, magnetostatic and electromagnetic scalar and vector potentials.	K3	I,II, III
$\mathbf{C O 4}$	Analyze the propagation of electromagnetic waves in various medium and examine its behavior at the interface between two different media.	K4	IV, V
$\mathbf{C O 5}$	Design basic structures of waveguides and antennas as per the requirements.	K6	V
$\mathbf{C O 6}$	Evaluate the electric, magnetic and electromagnetic fields due to simple and complex structures and the energy stored in these fields.	K5	I - V

2. A. SYLLABUS

UNIT-I: ELECTROSTATICS

(15 hours)
Coloumb's law - The electric field - Continuous charge distribution - Gauss's law - Differential form - Proof - The curl of E - The electrical potential - Electrostatic boundary conditions Multipole expansion - Energy density of an electrostatic field - Method of images- Applications - Point charge near a grounded conducting plane - A conducting sphere when it is grounded,
insulated, insulated and has a total charge Q and when the sphere is maintained at a constant potential.

UNIT-II: MAGNETOSTATICS

Magnetic fields - Magnetic forces - Biot-Savart law : The magnetic field due to steady straight current - The Divergence and Curl of B - Application of Ampere's Force law - Magnetic Vector Potential - Magneto statics boundary conditions - Multipole expansion of vector potential - Magnetisation - Magnetic Materials - Magnetic susceptibility and permeability Measurement of susceptibility - Quincke's Method - Gouy's Method.

UNIT-III: ELECTROMAGNETISM

Faraday's law of electromagnetic induction - Energy in the magnetic field - Maxwell's displacement current - Derivation of Maxwell's Equations - Vector and Scalar potentials Gauge transformations - Lorentz gauge - Coulomb gauge - Green function for the wave function - Poynting's theorem - Conservation of energy and momentum for a system of charged particles and electromagnetic fields.

UNIT- IV: PLANE ELECTROMAGNETIC WAVES AND WAVE PROPAGATION

(15 hours)
Plane electromagnetic waves in free space, isotropic and anisotropic non conducting media Conducting Medium (dissipative medium) - Boundary conditions at the surface of discontinuity - Reflection and refraction of electromagnetic waves at a plane interface between dielectrics Polarization by reflection and total internal reflection - Super position of waves - Polarization Stokes Parameters.

UNIT- V: WAVE GUIDES AND SIMPLE RADIATING SYSTEMS
(15 hours)
Wave guides - TE waves in a rectangular wave guide - the coaxial transmission lines - Retarded potentials - Radiation and fields due to an oscillating dipole - Electric dipole and quadrupole radiation and Fields - Centre fed linear antenna - Fields and Radiation from a linear half wave antenna.

B. TOPICS FOR SELF-STUDY

1. Method of images for problems involving dielectric https://nptel.ac.in/courses/115/101/115101005/

2. Electromagnetic properties of superconductors

https://courses.physics.ucsd.edu/2014/Spring/physics239/LECTURES/.pdf

3. Spherical waves

https://nptel.ac.in/courses/115/106/115106124/

4. Scalar diffraction theory

https://www.iue.tuwien.ac.at/phd/kirchauer/node50.html

C. TEXT BOOKS

1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education Ltd., New Delhi, 2015.
2. J.D. Jackson, Classical Electrodynamics, Wiley India, New Delhi, 2007.
3. K. Chopra and G. Agarwal, Electromagnetic Theory, Kadernath and Ramnath \& Co., Meerut.
4. Sathya Prakash, Electromagnetic Theory and Electrodynamics, Kadernath and Ramnath\& Co., Meerut, 2007.

D. REFERENCE BOOKS

1. B. B. Laud, Electromagnetics, New Age International, New Delhi, 2005.
2. K.G. Balmain, Electromagnetic Waves and Radiating System, Prentice Hall of India, 1995.
3. John R. Reitz, Fredric, J. Milford and Robert W. Christy, Foundations of electromagnetic Theory, Addison Wesley, 2008.
4. Paul Lorrain, Dale R. Corson and Francois Lorrain, Electromagnetic Fields and Waves, CBS Publishers.

E. WEB LINKS

1. https://nptel.ac.in/courses/115/101/115101005/
2. https://onlinecourses.nptel.ac.in/noc21_ee83/preview
3. https://ocw.mit.edu/courses/physics/
4. https://www.coursera.org/lecture/electrodynamics-introduction/1-1-introduction-to-electromagnetism-qiIQb
5. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Secti on	Course content	Learning outcomes	Highest Bloom's Taxonomic Level Of Transaction
I	Electrostatics	Define Coulomb's law for charge distribution.	K1
1.1	Coloumb's law	Explain electric lines of force and electric field.	K2
1.2	The electric field	Recall types of charge distribution.	K1
1.3	Continuous charge distribution	Rephrase Gauss law in differential	K2
1.4	Gauss's law - Differential	Rent	

	form - Proof	form.	
1.5	The curl of E	Show that E is irrotational.	K2
1.6	The electric potential	Relate electric field and potential.	K2
1.7	Electrostatic boundary conditions	Analyze electrostatic boundary conditions.	K4
1.8	Multipole expansion electric potential	Interpret the association of terms in expansion with various charge configuration.	K5
1.9	Energy density of an electrostatic field	Estimate the Energy density of an electrostatic field.	K5
1.10	Method of electrical images.	Identify the image charge for a given potential using method of electrical images.	K2
1.11	Applications - Point charge near a grounded conducting plane Grounded conducting sphere, insulated sphere, charged insulated sphere and sphere kept in a constant potential	Evaluate the fields due to these structures using the method of images.	K5
II	Magnetostatics		
2.1	Magnetic fields - Magnetic forces	Explain magnetic forces due to current carrying conductors and magnetic fields.(Ampere's Force Law)	K2
2.2	Biot-Savart law	Summarize the origin of Biot -Savart Law	K2
2.3	The magnetic field due to steady straight current	Apply Biot-Savart law to Magnetic induction due to steady straight current.	K3
2.4	The Divergence of B	Show that magnetic field is solenoidal.	K2
2.5	Curl of B	Show that magnetic field is rotational.	K2
2.6	Ampere's circuital law	Summarize the origin of Ampere's Law	K2
2.7	Applications of Ampere's	Evaluate the magnetic field due to	K5

	circuital law	different current configuration using Ampere's law.	
2.8	Magnetic Vector Potential	Deduce an expression for magnetic vector potential due to current distribution.	K5
2.9	Magneto static boundary conditions	Analyze magnetostatic boundary conditions.	K4
2.10	Multipole expansion of vector potential	Interpret the association of terms in expansion with various current configuration.	K5
2.11	Magnetisation	Define Magnetization	K1
2.12	Magnetic Materials	List The Properties Of Magnetic Materials.	K1
2.13	Magnetic susceptibility and permeability	Obtain the relationship between susceptibility and permeability.	K4
2.14	Measurement of susceptibility - Quincke's Method	Organize an experiment to determine susceptibility of magnetic material.	K3
2.15	Gouy's Method	Organize an experiment to determine susceptibility of magnetic material.	K3
III	Electromagnetism		
3.1	Faraday's law of electromagnetic induction	Explain Laws of electromagnetic induction	K2
3.2	Energy in the magnetic field	Estimate the Energy stored in magnetic field.	K5
3.3	Maxwell's displacement current	Modify Ampere's circuital law for time varying fields and estimate the displacement current	K5
3.4	Derivation of Maxwell's Equations	Construct Maxwell's electromagnetic equations.	K3
3.5	Vector and Scalar potentials	Relate vector and scalar potential to fields.	K2
3.6	Gauge transformations Lorentz gauge- Coulomb gauge	Illustrate the method of solving electromagnetic wave equations by Gauge transformations.	K2

3.7	Green function for the wave function	Solve electromagnetic wave equations using Green function technique.	K6
3.8	Poynting's theorem	Prove energy is conserved in electromagnetic fields.	K5
3.9	Conservation of energy and momentum for a system of charged particles and electromagnetic fields.	Prove conservation of momentum for a system of charged particles and electromagnetic fields.	K5
IV	Electromagnetic wave propagation		
4.1	Plane electromagnetic waves in (i) free space (ii)isotropic and anisotropic non conducting media (iii) Conducting Medium (dissipative medium)	Analyze the nature of propagation of electromagnetic waves in these media.	K4
4.2	Boundary conditions at the surface of discontinuity	Analyze the behaviour of the fields of EM waves at the interface between two media.	K4
4.3	Reflection and refraction of electromagnetic waves at a plane interface between dielectrics	Evaluate the changes in dynamic properties of EM waves after reflection and refraction.	K6
4.4	Polarization by reflection	Deduce the condition for plane polarization of EM waves after reflection.	K5
4.5	Total internal reflection	Deduce the condition for a wave to be totally internally reflected.	K5
4.6	Super position of waves - Polarization	Apply the principle of superposition to produce various kinds of polarization of EM waves.	K3
4.7	Stokes Parameters.	Illustrate how different polarizations can be represented by stokes parameters.	K2
V	Wave guides and antenna		
5.1	Wave guides	Explain the structure of wave guides.	K2

5.2	TE waves in a rectangular wave guide	Analyze the TE mode of propagation of EM waves in rectangular wave guide	K4
5.3	TE waves in the coaxial transmission lines	Analyze the TE mode of propagation of EM waves in coaxial transmission lines	K4
5.4	Retarded potentials	Explain the concept of retarded potentials.	K2
5.5	Radiation and fields due to an oscillating dipole, quadrupole	Estimate the fields and power radiated by oscillating dipole and quadrupole.	K6
5.6	Radiation and fields due to centre fed linear antenna, Linear half wave antenna	Evaluate the fields and power radiated by these antennas.	K6

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P16 } \\ \text { PH2 } \\ 05 \end{gathered}$	PO									PSO			
	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & \mathbf{1} \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & \mathbf{2} \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & \mathbf{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & \mathbf{4} \end{aligned}$	$\begin{gathered} \hline \mathbf{P} \\ \mathbf{O} \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & \mathbf{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{O} \\ & \mathbf{9} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { PS } \\ \mathbf{O} \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \mathbf{O} \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \mathbf{O} \\ \mathbf{3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PS } \\ \mathbf{O} \\ 4 \\ \hline \end{gathered}$
CO1	-	H	-	M	H	-	M	-	M	H	M	M	M
CO2	M	-	L	H	M	M	L	L	H	M	-	L	H
CO3	M	H	M	-	H	M	M	L	M	H	-	-	M
CO4	-	H	-	-	-	H	M		H	M	-	-	M
CO5	-	-	M	-	-	L	M		M	M	L	L	M
CO6	-	H	-	-	-	M	M	L	M	M	-	-	M

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exams) I, II
2. Open book test; Cooperative learning report, Assignment, Seminar, Group

Presentation, Project report, Poster preparation, Problem solving etc.
3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Mr. S. P. Godwin Rajadoss

ELECTIVE- II: ATOMIC AND MOLECULAR PHYSICS

SEMESTER: III

CREDITS : 4

CODE: P19PH2:2
NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO	Course Outcomes	Level	Units covered
CO1	Analyze the electronic states in many electron systems and atomic spectra due to electric and magnetic field.	K4	I
CO2	Apply LCAO, Born Oppenheimer and Huckel's approximations to molecular systems.	K3	II
CO3	Examine the rotational and vibrational spectra of molecules by Microwave and Infrared spectroscopy.	$\mathbf{K 5}$	III
$\mathbf{C O 4}$	Analyze the Raman spectra of molecules using polarizability theory and Electronic spectra using Franck Condon principle.	$\mathbf{K 5}$	IV
CO5	Examine the nuclear interactions and relaxation effects due to Nuclear Magnetic Resonance and Electron Spin Resonance.	$\mathbf{K 4}$	\mathbf{V}
CO6	Explain the principle and instrumentation of Microwave, Infrared, Raman, NMR and ESR spectroscopy.	K2	III,IV,V

2. A. SYLLABUS

Unit-I: Atomic Spectra
(12 hours)

Quantum states of electrons in atoms - Electron spin - Stern and Gerlach experiment - results - spin orbit interaction - LS-JJ coupling schemes - Fine structure - spectroscopic terms and selection rules - Hyperfine structure - Pauli's exclusion principle - Alkali type spectra Equivalent electrons - Hund's rule - Quantum theory of Zeeman effect, Paschen Back effect of one and two electron system - Linear Stark effect.

Born - Oppenheimer approximation - LCAO approximation - Molecular Orbital theory Hydrogen Molecule ion - Bonding and antibonding Molecular Orbital - Valence Bond method Hydrogen Molecule - Directed Valance - Hybridization - Huckel's molecular approximation Application to Butadiene.

Unit-III: Microwave and IR Spectroscopy

(12 hours)

Rotational spectra of diatomic molecules - intensity of spectral lines - Effect of isotopic substitution - The non- rigid rotator - Rotational spectra of poly-atomic molecules - Linear, symmetric top and asymmetric top molecules - experimental techniques - Vibrating diatomic molecule - Diatomic vibrating rotator - linear and symmetric top molecule - Analysis by infrared techniques - Characteristic and group frequencies.

Unit-IV: Raman Spectroscopy and Electronic Spectroscopy of Molecules

Raman effect - Polarizability theory - Pure rotational Raman spectrum - Vibrational Raman spectrum of diatomic molecules - structure determination from Raman and IR spectroscopy Experimental techniques - Electronic spectra of diatomic molecules - intensity of spectral lines - the Frank Condon principle - Dissociation energy and dissociation products - Rotational fine structure of electronic vibration transitions - pre dissociation.

Unit-V: Resonance Spectroscopy

Larmor's precision -NMR - Basic Principles - Classical and quantum mechanical description Spin - Spin and spin lattice relaxation time - NMR - chemical shift - coupling constant coupling between nucleus - chemical analysis by NMR - NMR instrumentation - high resolution method - ESR spectroscopy - ESR - Basic Principles - ESR spectrometer - Nuclear interaction and hyperfine structure - Relaxation effects - g factor - radical studies.

B. TOPICS FOR SELF-STUDY

1 Quantum Chemistry: Introduction
https://www.youtube.com/watch?v=HC81oYe43DI
2 Orbitals Basics
https://www.youtube.com/watch?v=Ewf7RIVNBSA
3 Fourier Transform https://www.youtube.com/watch?v=spUNpyF58BY
4 Hybrid Orbitals https://www.youtube.com/watch? v=vHXViZTxLXo https://www.youtube.com/watch?v=wPw_LCmyjnI

C. TEXT BOOKS

1. G. Aruldhas, Molecular Structure and Spectroscopy 2e, Prentice Hall of India, New Delhi, 2007.
2. A.K. Chandra, Introductory Quantum Chemistry 4e, Tata McGraw Hill Co., New Delhi, 2008.
3. C. N. Banwell, Fundamentals of Molecular Spectroscopy 4e, McGraw Hill, New Delhi, 008.

D. REFERENCE BOOKS

1. B. P. Straughan and S. Walker, Spectroscopy Vol.III, Chapman and Hall, London, 1976.
2. R. P. Feynman, The Feynman Lectures on Physics Vol. III, Narosa Publishing House, New Delhi, 2008.
3. H. S. Mani and G. K. Mehta, Introduction to Modern Physics, Affiliated East West Pvt. Ltd., New Delhi, 2000.
4. Ira N. Levine, Quantum Chemistry 5e, Prentice-Hall of India, New Delhi, 2006.
5. Hobart Hurd Willard, Instrumental Methods of Analysis, Van Nostrand, 1981.
6. ManasChanda, Atomic Structure and Chemical Bond, Tata McGraw Hill, New Delhi, 1991.

E. WEBLINKS

1. https://nptel.ac.in/courses/115/101/115101003/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit / section	Course content	Highest bloom's taxonomic levels of transaction	
	Atomic spectra		
1.1	Brief introduction to quantum states of electron in atom	Describe the quantum states of electron in atom	K2
1.2	Stern - Gerlach experiment and its results	Explain Stern and Gerlach experiment Interpret the outcomes of Stern and Gerlach experiment	K5

1.3	Spin - orbit interaction	Define spin- orbit interaction	K1
1.4	LS-JJ coupling schemes	Compare LS and JJ coupling schemes Evaluate J for an atom	K5
1.5	Fine structure - Hyperfine structure	Compare fine and Hyperfine structure	K2
1.6	Selection rules Spectroscopic terms	Outline selection rules Evaluate the spectroscopic terms for an atom	K2
1.7	Pauli's exclusion principle	Explain Pauli exclusion principle	K2
1.8	Alkali type spectra Equivalent electrons	Analyze the main feature of alkali spectra Outline equivalent electrons	K4
1.9	Hund's rule	State Hund's rule	K1
1.10	Zeeman effect Quantum theory of Zeeman effect	Define Zeeman effect Explain the quantum theory of Zeeman effect	K5
1.11	Paschen -Bach effect	Outline Paschen -back effect	K5
1.12	Linear stark effect	Explain the linear stark effect in hydrogen atom	K5
II	Quantum theory of molecules		
2.1	Born - oppenheimer approximation	Analyze the electronic energy of hydrogen molecule using Born -oppenheimer approximation	K4

2.2	LCAO approximation	Estimate the energies and wave functions for hydrogen molecule ion on the basis of LCAO treatment	K5
2.3	Molecular orbital theory hydrogen molecule	Estimate the energy of hydrogen molecule by Molecular orbital theory	K5
2.4	Bonding and antibonding molecular orbital	Compare bonding and antibonding molecular orbital	K5
2.5	Valence - Bond (VB) methodhydrogen molecule	Apply VB theory to calculate the energy of hydrogen molecule	K3
2.6	Directed valence	Recall Directed valence	K1
2.7	Hybridization	Classify hybridization	K2
2.8	Huckle's molecular approximation	Evaluate the molecular orbital energy based on Huckle's molecular approximation	K5
2.9	Application to Butadiene	Apply Huckle's molecular approximation to Butadiene	K3
III	Microwave and IR spectroscopy		
3.1	Rotational spectra of Diatomic molecules Intensity of spectral lines	Explain the rotational spectra of diatomic molecules Interpret on the intensity of spectral lines	K2
3.2	Effect of isotopic substitution	Outline the effect of isotopic substitution on the rotational spectra of diatomic molecules	K5
3.3	The non-rigid rotator of diatomic molecules	Analyze the rotational spectra of diatomic non -rigid rotator	K4
3.4	Rotational spectra of polyatomic molecules	Interpret the spectra of polyatomic molecule	K2
3.5	Linear, Symmetric top and Asymmetric top molecules	Explain the rotational spectra of linear symmetric top molecules Analyze the spectra of Asymmetric top molecules	$\begin{aligned} & \text { K5 } \\ & \text { K4 } \end{aligned}$

3.6	Experimental techniques	Elaborate on the experimental techniques of microwave spectroscopy	K5
3.7	Vibrating diatomic molecule Diatomic vibrating rotator Linear, and symmetric top molecules	Explain the vibration-rotation effect to a linear diatomic molecule Explain the vibration rotation spectra of symmetric top molecules	K2
3.8	Analysis by IR techniques characteristic and group frequencies	Analyze molecules by IR techniques Interpret on the characteristic and group frequencies of an IR spectra	K2
IV	Raman spectroscopy and Electronic spectroscopy of molecules	K4	
4.1	Raman effect - Polarizability theory	Pure rotational Raman Spectrum Rxplain Raman effect using polarizability theory Illustrate the variation of polarizability in molecules	Construct the energy and frequency equation for the rotational Raman spectrum of linear molecule Compose the energy and frequency equation for the rotational Raman spectrum of symmetric top molecule

4.6	Frank Condon principle	Apply Frank Condon principle to account for the intensity of vibrational electronic spectra	K5
4.7	Dissociation energy Dissociation products	Construct equation for the dissociation energy of a diatomic molecule Relate dissociation energy with dissociation products	K3
4.8	Rotational fine structure of electronic vibration transition Predissociation	Analyze the rotational fine structure of electronic vibration transition Illustrate the representation of predissociation	K4 K2
V	Resonance Spectroscopy		
5.1	Larmor's precession	Recall Larmor's precession	K1
5.2	NMR Basic principle - classical and quantum mechanical description	Explain the principles of NMR giving classical and quantum mechanical description	K2
5.3	Spin-lattice - Spin-spin relaxation time	Define relaxation time Distinguish spin-lattice and spin-spin relaxation mechanism in NMR spectroscopy	K4
5.4	NMR Chemical shift	Analyze the effect of magnetic field on the chemical shift of NMR absorption peak	K4
5.5	Coupling constant- Coupling between nucleus	Outline coupling constant Inspect various factors which affect the coupling between nucleus	$\begin{aligned} & \text { K2 } \\ & \text { K4 } \end{aligned}$
5.6	Chemical analysis by NMR	Describe the chemical analysis by NMR	K1
5.7	NMR instrumentation-high resolution method	Explain NMR instrumentation high resolution method	K2
5.8	ESR Spectroscopy- basic principles	Describe the basic principle behind ESR spectroscopy	K2

5.9	ESR spectrometer	Discuss the instrumentation of ESR spectrometer	K2
5.10	Nuclear Interaction and hyperfine structure	Construct the energy levels for the interaction of electron with nucleus of hydrogen atom	K3
5.11	Relaxation effects - g-factor	Interpret the hyperfine structure, relaxation effects and g factor of ESR spectral lines for hydrogen atom	K5
5.12	Radical studies	Apply ESR techniques to study electron distribution and structure of radicals	K3

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{array}{\|c} \text { P19PH2: } \\ 2 \end{array}$	PO									PSO			
	$\begin{array}{\|c} \hline \mathbf{P O} \\ 1 \end{array}$	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	H	M	H	L	L	L	L	L	L	L	M	M	H
CO2	H	M	M	L	M	M	H	L	L	L	M	M	M
CO3	M	L	H	L	M	M	M	L	L	H	M	M	M
CO4	H	M	M	L	M	H	M	L	L	M	M	M	L
CO5	H	M	L	M	M	L	M	L	L	M	M	M	L
CO6	L	M	M	M	M	M	L	L	L	M	L	M	H

L-Low M-Medium H - High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exams) I, II
2. Open book test, Quizzes, Assignment, Seminar, Problem Solving, Slip test, Surprise test etc.
3. End Semester Examination

Indirect

1. Course-end survey/Feedback

Course Co -ordinator:Dr. K. Vijayalakshmi

ELECTIVE-II: SOLAR PV TECHNOLOGY AND ITS APPLICATION

SEMESTER: II
CREDITS: 4

CODE: P20PH2:A
NO. OF HOURS / WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course, the students will be able to:

CO.NO.	Course Outcomes	Level	Unit Covered
CO1	Discuss the importance of renewable energy resources	K2	I
$\mathbf{C O 2}$	Explain the importance of Solar energy and Solar Photovoltaic system	K2	I
$\mathbf{C O 3}$	Apply the principles of electricity in design of solar cells	K3	II
$\mathbf{C O 4}$	Outline the different types of Solar Photovoltaic system, power generation, distribution and storage in solar PV systems	K2	III
$\mathbf{C O 5}$	Design a solar Photovoltaic system	K5	IV
$\mathbf{C O 6}$	Analyse the applications and installation of a solar Photovoltaic system	K4	V

2. A. SYLLABUS

Unit - I: Energy resources and basics on solar energy
(12 hours)
Energy scenario-Environmental aspects of energy utilization-Renewable energy resources and their importance-Energy balance of the Earth-Basics of Solar Energy-Global solar resourcesSolar spectrum-Electromagnetic spectrum-Earth-Sun angles-Solar angles-Sun path diagramSolar radiation on the earth surface-Measurement of Solar Radiation-Global, diffused and direct, measuring devices -Conversion of Solar Energy-Solar Thermal system-Solar Photovoltaic system.

Basics of electricity - Measurement of electrical quantities-Electronic devices-Solar photovoltaic energy conversion - Principles-photovoltaic effect-solar cells- Structure and working of Solar Cells - Types-Electrical properties and Behaviour of Solar Cells-Cell properties and design-short- and open-circuit properties- fill factor- and parasitic resistancesSolar cell energy conversion Efficiency- I-V characteristics-PV Cell Interconnection and Module Fabrication.

Unit - III: Types of solar system and its components

Classification of solar PV power systems- Standalone PV system- grid Interactive PV Systemhybrid solar PV system-System Components - PV arrays- inverters- batteries- charge controlsnet meter- Combiner box- Distribution board- Types of Solar Inverter/PCU- Off grid InverterGrid Tie Inverter-Losses \& Loading of Inverter (Determination of connected load) Types of Batteries-Series \& Parallel combination of batteries-Operation \& Maintenance of batteries.

Unit - IV: Design of solar PV system

(12 hours)
Single line diagram-Load Estimation-System Sizing-PV module- Inverter- Battery sizing Determination of Cable sizing both AC- DC cable-Balancing of system-Factors involved in SPV Systems such as Plant load factor, Capacity Utilization factor, Grid Availability factor and Fill factor- Performance ratio-Design of System Components for different PV Applications - Sizing and Reliability - Simple Case Studies- Cost evaluation and savings.

Unit-V: PV system applications and installation
(12 hours)

Installation methods of solar PV power system-site survey- shadow analysis- tilt angle importance-Pre and post installation follow Ups-Maintenance \& Service -Trouble shooting \& Electrical safety in SPV System -Home lighting and street lighting appliances-PV lantern- solar water pumping systems- small appliances based on solar energy.

B. TOPICS FOR SELF STUDY

1.Solar radiation

http://ecgllp.com/files/3514/0200/1304/2-Solar-Radiation.pdf

2. Types of Photovoltaic systems

https://www.bca.gov.sg/publications/others/handbook_for_solar_pv_systems.pdf

3. Solar Photovoltaics

https://www.uprm.edu/aret/docs/Ch_5_PV_systems.pdf

C. TEXT BOOKS

1. Chetan Singh Solanki., Solar Photovoltaic: "Fundamentals, Technologies and Application", PHI Learning Pvt., Ltd., 2009.
2. Martin A. Green, Solar Cells Operating Principles, Technology, and System Applications Prentice- Hall, 2008
3. John R. Balfour, Michael L. Shaw, Sharlave Jarosek., "Introduction to Photovoltaics", Jones \& Bartlett Publishers, Burlington, 2011.

D. REFERENCE BOOKS

1. S.P. Sukhatme, J.K.Nayak., "Solar Energy", Tata McGraw Hill Education Private Limited, New Delhi, 2010. 5. Michael Boxwell, The Solar Electricity Handbook, Code Green Publishing, UK, 2009.
2. Photovoltaics: Design and Installation Manual, Published by Solar Energy International.

E. WEBLINKS

1. https://nptel.ac.in/courses/112/105/112105050/\#
2. https://nptel.ac.in/courses/112/105/112105051/\#
3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic Level of Transaction
\mathbf{I}	Energy resources and basics on solar energy		
1.1	Energy scenario	Explain the need for energy in different areas of science	K1
1.2	Environmental aspects of energy utilization	Discuss utilization of energy in various environments	K2
1.3	Renewable energy resources and their importance	Explain the importance of renewable energy resources in day to day life and	K2
1.4	Energy balance of the Earth	Describe the energy balance of the earth	K1

1.5	Basics of Solar Energy	Define the basic concepts in solar energy	K1
1.6	Global solar resources	Summarize the availability of solar energy resources in the world	K2
1.7	Solar spectrum Electromagnetic spectrum	Define the different regions of electromagnetic spectrum	K1
1.8	Earth-Sun angles-Solar anglesSun path diagram	Explain the terms associated with the Sun and the Earth	K1
1.9	Solar radiation on the earth surface	Discuss Sun - Earth relationship	K2
1.10	Measurement of Solar Radiation-Global, diffused and direct, measuring devices	Estimate solar energy irradiance	K2
1.11	Conversion of Solar EnergySolar Thermal system-Solar Photovoltaic system.	Summarize solar energy conversion	K2
II	Photovoltaic basics and balance of system		
2.1	Basics of electricity	Define the basic concepts in electricity	K1
2.2	Measurement of electrical quantities	Estimate different electrical quantities	K2
2.3	Electronic devices Solar photovoltaic energy conversion - Principles	Explain the different electronic devices associated with solar photovoltaic energy conversion	K2
2.4	Photovoltaic effect	Describe Photovoltaic effect	K2
2.5	Solar cells- Structure and working of Solar Cells Types	Summarize the working of solar cells	K2
2.6	Electrical properties and behaviour of Solar Cells	Discuss the electrical behaviour of solar cells	K2
2.7	Cell properties and design	Summarize the design and properties of solar cells	K2

2.8	Short and open-circuit properties, fill factor, and parasitic resistances	Estimate the different parameters of solar cells	K2
2.9	Solar cell energy conversion - Efficiency - I-V characteristics	Explain the characteristics of solar cells	K2
2.10	PV Cell Interconnection and Module Fabrication	Describe the fabrication of solar cells	K2
III	Types of solar system and its components		
3.1	Classification of solar PV power systems	Explain the classification of solar PV systems	K2
3.2	Standalone PV system, grid Interactive PV System, hybrid solar PV system	Describe the different types of solar PV power systems	K2
3.3	System Components - PV arrays, inverters, batteries, charge controls, net meter, Combiner box, Distribution board	Identify the different components of solar PV system	K2
3.4	Types of Solar Inverter/PCUOff grid Inverter, Grid Tie Inverter-Losses \& Loading of Inverter	Estimate the losses in an inverter	K2
3.5	 Parallel combination of batteries-Operation and Maintenance of batteries	Explain the types of batteries and their maintenance in a solar PV system	K2
IV	Design of solar PV system		
4.1	Single line diagram-Load Estimation-System Sizing	Estimate the load of a solar PV system	K2

4.2	PV module, Inverter, Battery sizing	Describe a PV module	K2
4.3	Determination of Cable sizing both AC ,DC cable	Identify the cables used in a solar PV system	K2
4.4	Balancing of system-Factors involved in SPV Systems such as Plant load factor, Capacity Utilization factor, Grid Availability factor, Fill factor, Performance ratio	Estimate the different parameters in a solar PV distribution system	K2
4.5	Design of System Components for different PV Applications	Design a solar PV system using essential components for various applications	K5
4.6	Sizing and Reliability	Explain the reliability of solar cells	K2
4.7	Simple Case Studies- Cost evaluation and savings	Estimate the cost savings in a solar PV system	K2
V	PV system applications and installation		
5.1	Installation methods of solar PV power system	Explain the installation methods of a solar PV power system	K2
5.2	Site survey, shadow analysis, tilt angle importance	Analyze the installation of a solar PV power system	K4
5.3	Pre and post installation follow ups	Explain the pre and post installation follow ups in a solar PV system	K2
5.4	Maintenance \& Service	Describe the maintenance and service needed for a solar PV system	K2
5.5	Trouble shooting \& Electrical safety in SPV System	Summarize the safety measures and troubleshoot the problems in a solar PV	K2

		system	
5.6	Home lighting and street lighting appliances - PV lantern ,solar water pumping systems- small appliances based on solar energy	Analyze small appliances based on solar energy	K4

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P20PH2: } \\ \text { A } \end{gathered}$	PO									PSO			
	PO	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	M	M	M	M	M	M	L	L	H	H	H	H
CO2	H	M	M	M	M	M	M	L	L	H	H	H	H
CO3	H	M	M	M	M	M	M	L	L	H	H	H	H
CO4	H	M	M	M	M	M	M	L	L	H	H	H	H
CO5	H	M	M	M	M	M	M	L	L	H	H	H	H
CO6	H	M	M	M	M	M	M	L	L	H	H	H	H

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test(Model Exams) I,II
2. Open book test; Assignment, Seminar, Problem solving, Field visits
3. End Semester Examination

Indirect

1. Course-endsurvey

Course co-ordinator: Dr. D. Gopalakrishna

ELECTIVE - III: VIRTUAL LABS - PHYSICS EXPERIMENTS

SEMESTER: II
CREDITS: 4

COURSE CODE: P19PH2:P
NO. OF HOURS/WEEK: 4

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Select remote-access to labs in various areas related to Physics	K1	I, II, III, IV, V
CO2	Perform practicals in the virtual mode	K3	I, II, III, IV, V
CO3	Construct virtually, electrical and electronic circuits and validate the corresponding theorems and laws	K6	I, IV, V
CO4	Evaluate the physical parameters from tabulated data and graph	K5	IV, V
CO5	Interpret the results obtained from virtual experiment	K5	I, II, III, IV, V
CO6	Illustrate the output data in graphical mode using relevant softwares	K3	I, II, III

2. A. SYLLABUS

Unit-I: Electric Circuits

(12 Hours)
Parallel RC Circuits -Parallel LC Circuits - Thevenin's Theorem - Series RL Circuits - Norton's theorem - Series LCR Circuits - Kirchhoff's Laws-Series RC Circuits - Series LC Circuits Parallel LCR Circuits - Parallel RL Circuits

Unit-II: Basic Electronics
(12 Hours)
V-I characteristics of junction diode - V-I characteristics of Zener Diode - Ohm's law - Half wave rectification - Full wave rectification - Common base characteristics - Common emitter characteristics - Common emitter amplifier.

Unit-III: Digital Logic Circuits

Adder - Multiplexer - Decoder with 7-segment display - ALU with function - Comparator Latch and flip-flops - Register - Counters - Sensor Modelling.

Newton's law of cooling - Thermocouple Seebeck effect - Characteristics of thermistor Blackbody radiation- Michelson's Interferometer - Refractive index of glass plate - Newton's Rings - Refractive index of liquid - Michelson's Interferometer - wavelength of laser beam Newton's Rings - wavelength of light - Brewster's angle determination - Numerical aperture of optical fiber.

Unit-V: Advanced Physics

Frank-Hertz experiment - Photo electric effect - Planck's constant - Abbe's refractometerMillikan's oil drop experiment - Magnetic Material characterization via hysteresis - Resistivity of four probe method - B-H curve - Hall effect - determination of charge carrier density.

B. TOPICS FOR SELF STUDY

Virtual Experiments

https://www.youtube.com/c/SimplyPhysics/videos
C. TEXT BOOKS

1. Introduction to solid state physics, 8th edition, C. Kittel
2. Advanced Mechanics of Solids by L Srinath
3. Laser and Non-Linear Optics by B.B. Laud
D. REFERENCE BOOKS
4. Heat and Thermodynamics by Mark Waldo Zemansky
5. Introduction To Modern Physics: Theoretical Foundations by John Dirk Walecka
6. Text Book of Simple Harmonic Motion and Wave Theory by D.K. Jha

E. WEBLINKS

1. www.iitg.ac.in
2. www.va-iitk.vlabs.ac.in
3. www.vlab.co.in
4. www.amrita.vlab.co.in

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
I	Electric Circuits		
1.1	Introduction to laws and theorems, Thevenin's Theorem, Norton's theorem, Kirchhoff's Laws	Apply the basics theory of Thevenin's Theorem, Norton's theorem, Kirchhoff's Laws	K3
1.2	Electric Circuits- Series and Parallel RL, RC and LC Circuits, Series and Parallel LCR Circuits,	Construct the Series and Parallel RL, RC and LC Circuits, Series and Parallel LCR Circuits	K3
II	Basic Electronics		
2.1	Diodes and rectifiers - V-I characteristics of junction diode and Zener Diode	Determine the input and output parameter of junction diode and Zener Diode	K5
2.2	Ohm's law	Verify Ohm's law	K4
2.3	Half and Full wave rectification	Explore the function of half and full wave rectifier circuits	K4
2.4	Transistor - CB, CE characteristics, CE amplifier	Explain the basic characteristics of Transistors	K4
III	Digital Logic Circuits		
3.1	Logic circuits - Adder, Multiplexer, Decoder with 7 -segment display, ALU with function, Comparator	Explain the basic operations of digital circuits	K4
3.2	Latch and flip-flops, Register, Counters	Explain the working of Latch and flip-flops, Register, Counters	K4
3.3	Sensor Modelling	explain the functioning of sensors bymodelling	K2
IV	Thermodynamics and Laser Optics		
4.1	Newton's law of cooling, Thermocouple Seebeck effect, Characteristics of thermistor, Blackbody radiation	Measure the physical parameters involved in Newton's law of cooling, Thermocouple Seebeck effect, Characteristics of thermistor, Blackbody radiation, kinetics and thermodynamics of	K5

		reactions and its mechanisms	
4.2	Laser Optics - Michelson's Interferometer Refractive index of glass plate, Newton's Rings, Refractive index of liquid, wavelength of laser beam, Brewster's angle determination, Numerical aperture of optical fibre	Determine Refractive index Wavelength of laser beam, Brewster's angle determination, Numerical aperture Using suitable experiments	K5
V	Advanced Physics		
5.1	Frank-Hertz experiment - Photo electric effect, Plank's constant,	Determine the physical parameter after virtually setting up the experiments specified	K5
	Abbe's refractometer, Millikan's oil drop experiment, Magnetic Material characterization via hysteresis		
	Resistivity of four probe method, B-H curve, Hall effect, determination of charge carrier density.		

4. MAPPING SCHEME (PO, PSO \& CO)

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test(ModelExams) I, II
2. Cooperative learning report, Assignment, Seminar, Record Note Book, Problem solving etc.
3. End Semester Examination

Indirect

1. Course-endsurvey

CORE-VI: QUANTUM MECHANICS - I

SEMESTER : III
CREDITS : 5

CODE : P16PH306

NO. OF HOURS /WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the student will be able to:

CO. NO.	Course Outcomes	Le vel	Unit Covere d
$\mathbf{C O 1}$	Recall the in adequacy of classical mechanics in the microscopic domain.	K1	I
$\mathbf{C O 2}$	Explain concepts of wave mechanics, use particle duality as a basis to formulate quantum mechanics.	K2	I
$\mathbf{C O 3}$	Construct the Schrodinger equation of microscopic physical systems on the basis of quantum mechanical interpretations and solve it.	K3	I \& II
$\mathbf{C O 4}$	Analyze the dynamics of simple quantum mechanical systems by setting up the Schrodinger equations and solve them.	K4	I \& II
$\mathbf{C O 5}$	Formulate appropriate perturbation techniques to study the behavior of simple quantum mechanical systems under perturbation of various types.	K5	 IV
$\mathbf{C O 6}$	Assess the effects due to various perturbations.	K6	

2. A. Syllabus

Unit-I: The Schrödinger Equation and Stationary States

 (15 hours)Overview of inadequacy of classical concepts (no derivation) - Matter waves -Heisenberg's Uncertainty Principle - The Schrödinger equation - Physical interpretation and conditions on the wave function - Postulates - Self-adjoint operators - Expectation values and Ehrenfest's theorem - Stationary states and energy spectra - Particle in a square well potential.

Unit-II: Exactly Solvable Problems

Linear harmonic oscillator (power series method) - Eigen functions by solving one dimensional Schrödinger equation - Three dimensional harmonic Oscillator - Components of angular momentum and eigenvalue spectra of L^{2} and $L_{z}-$ Rigid Rotator - Hydrogen atom.

Unit-III: Perturbation Theory for stationary states

(15 hours)
Time independent problems - Non-degenerate case - First and second order perturbation Degenerate case - Zeeman Effect - Stark effect - The variation method - Ground state of Helium atom -The WKB Approximation - Application to tunneling problem and quantization rule.

Unit-IV: Perturbation Theory for time evolution problems

(15 hours)
Time dependent problems - Time dependent perturbation theory - First order perturbation Harmonic perturbation - Transition probability - Fermi's golden rule - Adiabatic approximation - Sudden approximation - Application: Semi classical theory of radiation.

Unit-V: Quantum Theory of scattering

The Scattering cross section - Scattering amplitude - Born approximation - Green's function approach - Condition for validity of Born approximation - Scattering by a screened Coulomb potential - Rutherford's scattering formula-Partial wave analysis - Phase shift and optical theorem.

B. TOPICS FOR SELF-STUDY

1. Path integral formulation of quantum mechanics - The Propagator

https://ocw.mit.edu/courses/physics/8-321-quantum-theory-i-fall-2017/lecture-notes/
2. Schrodinger equation from Path integral formulation
https://www.asc.ohio-state.edu/perry.6/
3. Free particle
https://courses.physics.ucsd.edu/2016/Spring/physics142/Lectures/Lecture5/Lecture5.ht ml

4. Harmonic oscillator
 https://www.ks.uiuc.edu/Services/Class/PHYS480/

C. TEXT BOOKS

1. P. M. Mathews and K. Venkatesan, A Text Book of QuantumMechanics, Tata McGraw Hill, New Delhi, 2007.
2. V. K. Thankappan, Quantum Mechanics, New Age International (P) Ltd., New Delhi, 2003.
3. L. Schiff, Quantum Mechanics 3e, Tata McGraw Hill, New Delhi, 2010.

D. REFERENCE BOOKS

1. Richard L. Liboff, Introductory Quantum Mechanics, 4e Pearson Education India 2003
2. AjoyGhatak and S. Loganathan, Quantum Mechanics: Theory and Applications 5e, Macmillan India, 2004.
3. Rajasekar and R. Velusamy, The Fundamentals of Quantum Mechanics, CRC Press, 2015.

E. WEBLINKS

1. https://nptel.ac.in/courses/115/104/115104096/
2. https://nptel.ac.in/courses/115/106/115106066/
3. https://nptel.ac.in/courses/115/101/115101107/
4. https://nptel.ac.in/courses/115/102/115102023/
5. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction
I	The Schrödinger Equation and Stationary States		
1.1	Overview of inadequacy of classical concepts (no derivation)	Recall the inadequacy of classical mechanics with suitable examples	K1
1.2	Matter waves	Relate matter with wave packets	K2
1.3	Heisenberg's Uncertainty Principle	Estimate the uncertainty in measurement	K2
1.4	The Schrödinger equation	Develop Schrödinger equation	K4
1.5	Physical interpretation of wave functions	Interpret the meaning of wave function	K2
1.6	Conditions on the wave function	Deduce the condition for its validity	K4
1.7	Postulates	Define the postulates	K1
1.8	Self-adjoint operators	Summarize the meaning of operators	K2
1.9	Expectation values	Estimate the expectation values physical observables	K4

1.10	Ehrenfest's theorem	Explain and State Ehrenfest's theorem	K2
1.11	Stationary states and energy spectra	Classify the stationary states as per its energy	K4
1.12	Particle in a square well potential.	Evaluate the allowed energy levels	K5
1.13	Particle in a square well potential.	Propose eigen functions for a particle in a box	K6
II	Exactly Solvable Problems		
2.1	I-D Linear harmonic oscillator(power series method)	Develop Schrödinger equation and evaluate the allowed energy levels	K6
2.2	Eigen functions by solving one dimensional Schrödinger equation	Propose eigen functions with integrated physical conditions for Schrödinger equation	K6
2.3	Three dimensional harmonic Oscillator	Compose the three dimensional Schrödinger equations and deduce the eigen values and eigen functions	K6
2.4	Components of angular momentum and eigenvalue spectra of L^{2} and L_{z}	Develop the form of angular momentum operators, simplify eigen value equations and estimate the allowed eigen values	K6
2.5	Rigid Rotator	Describe and represent as a single body (K2)	K6
		Formulate Schrödinger equation and determine the eigen values and eigen functions (K6)	
2.6	Hydrogen atom.	Construct radial equation and determine the eigen values and eigen functions	K6
3	Perturbation theory for Stationary states		
3.1	Time independent problems	Explain the time independent perturbation theory	K2
3.2	Non-degenerate case	Apply the theory to identify correction (Various orders) in energy levels	K3
3.3	Degenerate case	Analyze the effect of perturbation	K4
3.4	First and second order perturbation- Stark effect	Formulate the perturbing Hamiltonian	K6
3.5	Stark Effect	Evaluate the corrections to energy levels and predict the results	K5
3.6	Zeeman Effect	Formulate the perturbing Hamiltonian	K6

		Evaluate the corrections to energy levels and predict the results (K5)	
3.7	The variation method	Describe the method of finding the energy of ground state and exited states	K2
3.8	Ground state of Helium atom	Evaluate the ground state energy of a Helium atom by the method of variation	K5
3.9	The WKB Approximation	Explain the method of solving problems with spatially varying potentials	K2
3.10	Application to tunneling problem	Evaluate the reflection and transmission coefficient of a barrier	K5
3.11	Quantization rule.	Deduce the quantization rule	K4
IV	Perturbation theory of time evolution problem		
4.1	Time dependent problems Time dependent perturbation theory-First order	Explain the time dependent perturbation theory upto first order	K2
4.2	Harmonic perturbation	Deduce first order correction for harmonic perturbation and discuss the results	K4
4.3	Transition probability Fermi's golden rule	Deduce Fermi Golden rule	K4
4.4	Adiabatic approximation	Propose the theory for adiabatic perturbation	K6
4.5	Sudden approximation	Formulate the theory for suddenly changing perturbation	K6
4.6	Application: Semi classical theory of radiation	Develop semi classical theory of radiation and discuss the nature of interaction of radiation with matter	K6
V	Quantum theory of Scattering		
5.1	The Scattering cross section Scattering amplitude	Describe the quantum picture of scattering.	K2
5.2	Born approximation	Explain Born's approximation	K2
5.3	Green's function approach	Deduction of a formal expression for differential scattering crosssection	K6
5.4	Condition for validity of Born	Deduction of conditions for	K4

	approximation	validity	
5.5	Scattering by a screened Coulomb potential	Estimate the scattering cross- section for particles scattered by screened Coulomb potential	K5
5.6	Rutherford's scattering formula--	Modify scattering amplitude to get Rutherford's scattering formula	K6
5.7	Partial wave analysis	Develop a method to categorize particles ba se o o their angular momentum	K6
5.8	Phase shift	Classify the nature of scatterer as per the changes in the phase shift	K2
5.9	Optical theorem	Compare the scattering amplitude with optical theorem and interpret the results	K4

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P20PH30 } \\ 6 \end{gathered}$	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	-	M	-	L	-	L	L	-	M	-	-	M
$\mathrm{CO2}$	L	H	-	-	-	M	L	-	L	-	H	H	-
CO 3	-	-	M	-	-	H	-	-	-	H	-	-	H
CO4	-	-	M	M	H	-	L	-	M	-	M	-	H
CO5	-	-	H	-	-	M	-	H	M	M	-	M	-
CO6	-	M	-	-	L	H	H	-	-	M	-	-	M
							L-Low		M-Medium			H-High	

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exam) I and II
2. Co-operative learning report - Assignment, Seminar, Group Presentation.
3. End Semester Examination.

Indirect

1. Course end survey.

CORE-VII: SOLID STATE PHYSICS - I

SEMESTER : III

CREDITS: 5

CODE: P16PH307
NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Infer the ideas of crystals structure and diffraction phenomenon	K2	I
$\mathbf{C O 2}$	Compare lattice planes, crystals vibration and structure factors	K2	I,II
CO3	Distinguish the thermal and electrical properties of semiconductor crystal	K4	II
$\mathbf{C O 4}$	Identifies energy levels of free electron gas	K3	III
$\mathbf{C O 5}$	Classify the binding and periodic potential	K4	IV
$\mathbf{C O 6}$	Detect imperfections in solids and effect of impurities and defects	K5	V

2. A. SYLLABS

Unit-I: Crystal Structures and X-ray Diffraction

Crystal structure of materials -Fundamental concepts of lattices, symmetries, point groups, and space groups - relationship between crystal symmetries and physical properties - Brillouin zones - Structure factor of the bcc and fcc lattice - Atomic form factor - reciprocal lattice Theory of X-ray diffraction by crystalline matter - Diffraction conditions - Laue equations (Conditions)- Bragg's law, relation to crystal structure - $\mathrm{NaCl}, \mathrm{CsCl}$, Hexagonal Close Packed (hcp) structure, Diamond, Cubic ZnS - Scattered Wave Amplitude - Fourier analysis Application of X-ray diffraction to proteins, electron diffraction and neutron diffraction (Concepts).

Unit-II: Crystal Vibrations and Thermal properties

Vibrations of crystals with mono-atomic basis - Two atoms per primitive basis - Quantization of elastic waves - Phonon momentum - Inelastic scattering by phonons - Phonon heat capacity - Planck distribution - Normal mode - Density of states in 1D and 3D - Debye model - Einstein model - Thermal conductivity: Thermal resistivity - Umklapp processes - Imperfections.

Free electrons - Energy levels in 1D - Effect of temperature on the Fermi-Dirac distribution Free electron gas in 3D - Heat Capacity of the electron gas Classical free electron theory Quantum free electron theory - Electrical and thermal conductivity - Motion in magnetic fields --Nearly free electron model - Bloch functions - Tight binding approximation - Kronig-Penney model - electron in a periodic potential.

Unit-IV: Semiconductor Crystals, Fermi Surfaces and Metals

(15 Hours)

Band gap - Equations of motion - Intrinsic carrier concentration - Impurity conductivity Thermoelectric effect - Construction of Fermi surfaces - Electron orbits, hole orbits and open orbits - Calculation of energy bands - Tight binding method - Experimental methods in Fermi surface studies - de Hass-van Alphen effect.

Unit-V: Imperfections in solids

(15 Hours)

Point defect - Line defect or dislocations - Interfacial defect - Bulk or volume defect - Atomic vibrations - Lattice vacancies- Diffusion - Colour centers -Shear strength of single crystals Dislocations - Burgers vectors - Stress fields of dislocations - Low-angle grain boundaries Dislocation densities - Dislocation multiplication - Slip.

B. TOPICS FOR SELF STUDY

1. Artificially layered structures:
https://www.springer.com/gp/book/9781475700930
2. Charge-density wave:
https://guava.physics.uiuc.edu/~nigel/courses/569/Essays_Fall2009/files/morales.pdf
3. Colloidal crystals:
https://www.tandfonline.com/doi/abs/10.1080/00107518308227471?journalCode=tcph20

4. Ion-solid interactions:

https://physics.uwo.ca/~lgonchar/courses/p9826/Lecture9_Ion_RBS_Impl_partI.pdf
C. TEXT BOOKS

1. Charles Kittel, Introduction to Solid State Physics 8e, John Wiley \& Sons Inc., NJ, 2016 (reprinted)
2. S.L. Gupta and V. Kumar, Solid State Physics, K. Nath\& Co., Meerut, 2013.

D. REFERENCE BOOKS

1. R.L. Singhal, Solid State Physics, KedarNath Ram Nath\& Co., Meerut, 2012.
2. Neil W. Ashcroft and N. David Mermin, Basic Solid State Physics, Brooks/Cole Publishing Company, CA, 2014. (reprinted)
3. M. Ali Omar, Elementary Solid State Physics, Addison-Wesley Publishing Company Inc., USA, 2018. (reprinted)
4. J. S. Blakemore, Solid State Physics 2e, Cambridge University Press, UK, 2012.(Online June)
5. A. Roy Chaudhuri, Basic Solid State Physics, Sarat Book House, Kolkatta, 2014.
6. M. A. Wahab, Solid State Physics: Structure and Properties of Materials, Narosa Publishing House, New Delhi, 2015.
7. A. J. Dekker, Solid State Physics, Macmillan, 2000.
8. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic levels of Transaction
I	Crystal Structures and X-ray Diffraction		
1.1	Material matter and properties	Recall the properties of materials	K1
1.2	Periodic arrays of atoms.	Infer the periodical arrangement of atom	K2
1.3	Lattice translation vectors Basis	Illustrates the vector translation with basis	K2
1.4	Crystal structure Primitive lattice cell	Identify the crystal structure	K3
1.5	Types of lattice	Classify types of lattice	K4
1.6	2D, 3D lattices	Identify the lattice type	K3
1.7	X-ray Diffraction and determination of crystal structure	Analysis crystal structure	K4
1.8	Structure of $\mathrm{NaCl}, \mathrm{CsCl}$, Hexagonal Close Packed (hcp) structure Diamond, Cubic ZnS	Determine the structure	K5
1.9	Bragg's law Scattered Wave Amplitude	Apply the law	K3
1.10	Fourier analysis	Analysis wave property	K4

1.11	Real space and reciprocal space of crystals	Relate the real and reciprocal space	K2
1.12	Diffraction conditions	Apply the condition for diffraction	K3
1.13	Laue equations Brillouin zones	Constructing the zones	K6
1.14	Structure factor of the bcc and fcc lattice Atomic form factor	Identify the structure	K3
II	Crystal Vibrations and Thermal properties		
2.1	Vibrations of crystals with monoatomic basis	Apply atomic crystals vibrations Evaluate the pattern	K3
2.2	Two atoms per primitive basis	Evaluate the pattern	K5
2.3	Quantization of elastic waves	Determine elastic wave quantization	K5
2.4	Phonon momentum Inelastic scattering by phonons	Identify types of scattering	K3
2.5	Phonon heat capacity	Examine the thermal property of Phonon	K4
2.6	Planck distribution	Analysis energy distribution	K4
2.7	Normal mode Density of states in 1D and 3D	Identify the mode \& the density of states	K3
2.8	Debye model Einstein model	Explain the distribution model	K5
2.9	Thermal conductivity: Thermal resistivity	Classifies thermal conductivity \& resistivity	K4
2.10	Umklapp processes Imperfections.	Analyze the type of imperfection	K4
III	Free Electron Fermi Gas and Energy Bands		
3.1	Energy levels in 1D	Construct the 1D energy level	K6

3.2	Effect of temperature on the Fermi- Dirac distribution	Concludes the effect of temperature on FD distribution	K5
3.3	Free electron gas in 3D	Apply \& analyze free electron energy in 3D	K3
3.4	Heat Capacity of the electron gas Electrical conductivity and Ohm's law Thermal conductivity of metals.	Classify heat \& electrical conductivity of electron gas using Ohm's law	K4

4.9	Experimental methods in Fermi surface studies	Construction of Fermi surface	K6
4.10	DeHass-van Alphen effect	Explain the effect	K5
\mathbf{V}	Imperfections in solids	Types of imperfection and Lattice vacancies	Classify different types of imperfection
5.1	Diffusion And Colour centers	Identify the type of imperfection	K4
5.2	Shear strength of single crystals	Analyze the shear strength	K4
5.3	Dislocations	Classify the types of dislocations	K4
5.4	Burgers vectors	Kdentify vectors	
5.5	Stress fields of dislocations	Classifies the cause of dislocations	K4
5.6	Determine the grain boundaries	K5	
5.7	Dislocations densities	Examine the density of dislocations	K4
5.8	Dislocation multiplication Slip.	Distinguish of dislocation types	
5.9			

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P16PH } \\ 307 \end{gathered}$	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	$\begin{gathered} \hline \text { PS0 } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { PS0 } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PS0 } \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \text { PSO } \\ 4 \end{gathered}$
CO1	L	-	M	-	H	M	-	-	-	H	-	M	H
CO2	-	-	M	-	L	-	-	-	-	H	-	M	L
CO3	M	-	H	-	-	-	M	-	L	M	M	H	-
CO4	M	M	H	M	L	L	M	M	L	M	M	M	M
CO5	-	-	M	H	-	-	-	-	-	M	-	M	-
CO6	H	-	H	-	-	H	L	H	-	-	L	H	M

L-Low M-Medium
H-High

5. COURSE ASSESSMENT METHODS

Direct

1. Two continuous internal assessments Test, Closed Book.
2. Two Open Book Assignments
3. Unit Seminars and Quiz
4. Pre-Semester and End-Semester Examinations External Valuation

Indirect

1. Course end survey (Feedback)

Course Co-ordinator: Dr. D. J. S. Anand Karunakaran

CORE -VIII: MICROPROCESSOR AND MICROCONTROLLER

SEMESTER: III

CREDITS: 5
NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After successful completion of the course, students are able to:

CO.NO.	Course Outcomes	Level	Unit Covered
CO1	Outline the architecture of Microprocessor INTEL 8086.	K2	I
CO2	Interface Microprocessor 8086 with different peripherals using 8255	K2	II
$\mathbf{C O 3}$	Apply how the different peripherals (8255, 8254 etc.) are interfaced Microprocessor.	K3	III
$\mathbf{C O 4}$	 Microcontrollers	K4	IV
$\mathbf{C O 5}$	Establish the data transfer information through serial \& parallel ports.	K5	V
$\mathbf{C O 6}$	Develop programs using 8051	K6	V

2. A. SYLLABUS

Unit-I: The $\mathbf{8 0 8 6}$ Microprocessor
(15 hours)
Introduction to 8086 - Microprocessor architecture - Addressing modes - Instruction set and assembler directives - Assembly language programming - Modular Programming - Linking and Relocation - Stacks - Procedures - Macros - Interrupts and interrupt service routines - byte and String Manipulation.

Unit-II: 8086 System Bus Structure

(15 hours)
8086 signals - Basic configurations - System bus timing -System design using 8086 IO programming - Introduction to Multiprogramming - System Bus Structure Multiprocessor configurations - Coprocessor, Closely coupled and loosely Coupled configurations Introduction to advanced processors.

Unit-III: I/O Interfacing (8086)
(15 hours)
Memory Interfacing and I/O interfacing - D/A and A/D Interface - Timer - Interrupt controller - DMA controller - Traffic Light control, LED display, Matrix Keyboard Interfacing .

Unit-IV: Microcontroller (8051)
(15 hours)
Introduction to Microcontroller - Comparison of Microcontrollers and Microprocessor overview of 8051- Pin description of 8051 - Registers - Program counters - ROM \& RAM space - Stack and PSW - Addressing modes - Instruction set.

Unit-V: On-Chip Peripherals of 8051 and Program

(15 hours)
Counters/Timers - Basics of serial communication - RS232 and MAX 232 IC connection Serial communication registers - Serial communication - Interrupts -addition - Multiplication Decimal to Hexadecimal Conversion - Ascending and Descending order - Largest Number in an array - LCD Interfacing, Temperature controller - Stepper motor.

B. TOPICS FOR SELF STUDY

1. https://www.tutorialspoint.com/microprocessor/microprocessor_8086_overview.htm
2. https://www.rcet.org.in/uploads/files/LectureNotes/ece/S6/EEC\ 8691MP\ MC/UNIT\ 2.pdf
3. http://my8086.blogspot.com/2019/03/programmers-model-of-8086.html
4. https://www.eit.edu.au/resources/types-and-applications-of-microcontrollers

C. TEXT BOOKS

1. Yu-Cheng Liu and Glenn A. Gibson, Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design 2e, Prentice Hall of India, 2007.
2.Mohamed Ali Mazidi, Janice GillispieMazidi and RolinMcKinlay, The 8051 Microcontroller and Embedded Systems: Using Assembly and C 2e, Pearson Education, 2011.
3.P.S. Manoharan, Microprocessor \& Microcontroller, Charulatha Publications, Chennai, 2015.

D. REFERENCE BOOKS

1. Doughlas V. Hall, Microprocessors and Interfacing, Programming and Hardware, TMH, 2012

E. WEBLINKS

1. https://www.tutorialspoint.com/microprocessor/microprocessor_8086_overview.htm
2. https://www.researchgate.net/publication/340163935_LECTURE_NINE_8086_MICRO PROCESSOR_MEMORY_AND_IO_INTERFACING
3. https://www.tutorialspoint.com/microprocessor/microcontrollers_8051_architecture.htm
4. SPECIFIC LEARNING OUTCOMES(SLO)

Unit/Section	Course Content	Learning Outcomes	Highest Bloom's Taxonomic Level of Transaction	
I	Introduction To 8086 Microprocessor			
1.1	Introduction to 8086	Recall the evolution of Microprocessor	K1	
1.2	Microprocessor architecture--	Explaining the architecture of 8086	K2	
1.3	Addressing modes	Classifying the addressing mode based on various input methods	K2	
1.4	Instruction set and assembler directives	Analyze the functions of instruction set to be utilized in program	K4	
1.5	Assembly language programming	Develop ALP for various basic mathematical operations	K6	
1.6	Modular Programming	Describe the usage of modular programming	K2	

1.7	Linking and Relocation	Explain the process of linking and relocation	K2
1.8	Stacks - Procedures - Macros	Describing the role-play of Stacks ,Procedures and Macros -1	K2
1.9	Interrupts and interrupt service routines	Explanation and usage of various interrupts available in 8086	K2
1.10	byte and String Manipulation.	Performing byte and string manipulation operations	K3
II	8086 system bus structure		
2.1	8086 signals	Explaining the various signals	K2
2.2	Basic configurations	Sketch the basic configuration	K2
2.3	System bus timing	Draw and explain the timing diagram	K2
2.4	System design using 8086	Explaining the system designing using 8086	K2
2.5	IO programming	Explain IO programming	K2
2.6	Introduction to Multiprogramming	State the advantages and disadvantages of multiprogramming	K1
2.7	System Bus Structure	Describe the 8086 architecture of bus structure	K2
2.8	Multiprocessor configurations	Discussing about the multiprocessor configuration of 8086	K2
2.9	Coprocessor, Closely coupled and loosely Coupled configurations	Distinguish between the Closely coupled and loosely Coupled configurations	K2
2.10	Introduction to advanced processors.	Give an account on Writing some notes on advanced processor	K1
III	I/O interfacing		

3.1	Memory Interfacing and I/O interfacing	Explain 8255 PPI (K2) and Develop control word (K3)	K3
3.2	D/A and A/D Interface	Draw and explain the block diagram of D/A and A/D convertor to interface with 8086.(DAC0800,ADC0808)	K2
3.3	Timer	Explain about Features, applications, pin diagram, block diagram and operational modes of 8254 and control word format.	K2
3.4	Interrupt controller	Explain bout Features, applications, pin diagram, block diagram and priority modes of 8259 A	K2
3.5	DMA controller	Discuss the features and block diagram of DMA 8257	K2
3.6	Traffic Light control,	Design Traffic light control by interfacing 8255 with 8086	K6
3.7	LED display	Design LED display by interfacing seven segment display with 8086	K6
3.8	Matrix Keyboard Interface.	Develop ALP for interfacing 4×4 Matrix Keyboard with 8086 through 8255.	K6
IV	Microcontroller		
4.1	Introduction to Microcontroller	Recall the features of microcontroller	K1
4.2	Comparison of Microcontrollers and Microprocessor	Compare microcontroller and microprocessor	K2
4.3	overview of 8051	Outline 8051	K2
4.4	Pin description of 8051	Describe about various pins of 8051 diagram	K2

4.5	Registers	Classify registers that are available in 8051	K2
4.6	Program counters	Summarize about program counter	K2
4.7	ROM \& RAM space	Describe about RAM and ROM	K2
4.8	Stack and PSW	Explain about stack and PSW	K2
4.9	Addressing modes	Explain about various addressing modes	K2
4.10	Instruction set.	Analyze the operation of instruction set.	K4
V	On-chip peripherals of 8051 and program		
5.1	Counters/Timers	Explaining the functions of counters and timers	K2
5.2	Basics of serial communication	Summarize the methods of serial communications	K2
5.3	RS232 and MAX 232 IC connection	Describe pin configuration hand shaking signal and connection with 8051	K2
5.4	Serial communication registers	Explain various registers like SBUF,SCON	K2
5.5	Serial communication Interrupts	Explain interrupt priority ,triggering the interrupt by software	K2
5.6	Programs Addition, Multiplication, Decimal to Hexadecimal Conversion, Largest Number in an array, Ascending and Descending order,	Develop ALP programs using 8051 to perform the operations	K3
5.7	LCD Interfacing, Temperature controller, Stepper motor.	Develop ALP programs using 8051 to perform the operations	K6

4. MAPPING SCHEME (PO, PSO \& CO)

P16PH308	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	M	L	-	L	L	-	H	---	H	H	M	L
CO2	M	H	L	H	M	H	L	---	M	H	H	M	L
CO3	L	L	H	L	M	H	H	---	---	H	H	L	M
CO4	M	M	H	H	L	M	M	L	H	H	H	H	H
$\mathrm{CO5}$	M	M	M	H	H	H	H	---	---	H	H	H	H
CO6	L	L	M	M	H	H	H	H	H	H	H	H	H
					L-Lo				Mode			High	

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Internal Assessment Tests I \& II
2. Model Exam
3. Open book test, Assignment, Quiz, Seminar, Group Presentation, Poster preparation, Problem solving etc.
4. End Semester Examination

Indirect

1.Course-endsurvey

ELECTIVE-IV: NUCLEAR PHYSICS

SEMESTER: III
CREDITS: 5

CODE: P19PH3:4
NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After successful completion of the course, students are able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Explain the constituents and stability of nucleus, nuclear models and nuclear forces.	K2	I
CO2	Evaluate the energy released during nuclear fission and fusion reactions and study the construction of nuclear reactors.	K5	II
CO3	Explain the theory and applications of various radioactive decays.	K5	III
CO4	Categorize various principle of particle detector.	K4	III
CO5	Classify the nuclear reaction and account for its energetics.	K4	IV
CO6	Analyze the elementary constituents of a nucleon based on several theories and laws of conservation.	K4	V

2. A. SYLLABUS

Unit-I: Nuclear Structure

(12 Hours)
Basic nuclear properties: size, shape, charge distribution, mass, spin, parity and magnetic moment - Binding energy - Semi empirical mass formula - Nuclear shell model - Liquid drop model - optical model - collective model. Nuclear force - Exchange force - Yukawa's meson
theory - Ground state of deuteron - Scattering ideas - Low energy $\mathrm{n}-\mathrm{p}$ scattering: phase shift, scattering length - spin dependence and charge independence of nuclear forces

Unit-II: Nuclear Fission and Fusion

Characteristics of fission - Mass and energy distribution of nuclear fragments - Nuclear chain reaction - Four factor formula - Bohr Wheeler's theory - Atom bomb - Fission reactor - power and breeder reactors - Fusion processes - Solar fusion - controlled thermonuclear reactions stellar energy - evolution and life cycle of a star.

Unit-III: Radioactive Decays

(12Hours)
Alpha decay - Gamow's theory - Geiger-Nuttal law - Neutrino hypothesis - Fermi's theory of beta decay - Non-conservation of parity in beta decay - Gamma decay - Internal Conversion Nuclear isomerism - Basic principles of particle detectors - Ionization chamber - Proportional counter - Geiger-Muller Counter - BF_{3} counter - Scintillation Counter - Solid state detector junction diode detectors - nuclear radiation hazards - safe limits - disposal of nuclear wastes.

Unit-IV: Nuclear Reaction

(12Hours)
Types of Nuclear reactions - Energetics of reactions - Q equation - Nuclear reaction cross section - Partial wave analysis - Level width - Compound nucleus model - Breit-Wigner one level formula - Direct reactions - Theory of Stripping and pick-up reactions

UNIT-V: Elementary Particles

(12Hours)
Types of interactions and classification of elementary particles - Quantum numbers (charge, spin, parity, isospin, strangeness, hypercharge) - Gell-Mann-Nishijima formula - Baryons Leptons - Invariance principle and symmetries - Invariance under charge, parity, time reversal (CPT) - CP violation in neutral K-meson decay - Quark model - SU(2) and SU(3) symmetry Types of quarks and their quantum numbers - Gell-Mann and Okubo mass formula.

B. TOPICS FOR SELF STUDY

1. Alpha Particles:
https://www.youtube.com/watch?v=cPRFF-eCGT8
2. Exotic Nuclei:
https://www.youtube.com/watch?v=Bfh9bURKcJk
3. Atomic Nucleus:
https://www.youtube.com/watch?v=qQ5FfYMTq14
4. Symmetry:
https://www.youtube.com/watch?v=fYGxNucvfR4

C. TEXT BOOKS

1. D.C Tayal, Nuclear physics, Himalaya Publishing House, New Delhi, 2011.
2. S.N. Ghoshal, Nuclear Physics, S. Chand and Co., New Delhi, 2003.
3. V. Devanathan, Nuclear Physics, Narosa publishing house, New Delhi, 2008
D. REFERENCE BOOKS
4. R.R. Roy and B.P. Nigam, Nuclear Physics theory and experiment, New Age International, NewDelhi,1991.
5. ArtherBeiser, Concepts of Modern Physics, 5th Edition, Mc.Graw Hill, Inc. New York, 1995.
E. WEBLINKS
6. https://nptel.ac.in/courses/115/103/115103101/
7. https://onlinecourses.nptel.ac.in/noc21_ph26/preview
8. SPECIFIC LEARNING OUTCOMES (SLO)

Unit / Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic Level of Transaction
I	Nuclear Structure	Kasic nuclear properties: size, shape, charge distribution, mass, spin, parity and magnetic moment	Account for the stability of the nucleus based on magic numbers.
1.2	Binding energy, Semi empirical mass formula	Analyze the various constituent energies in accounting for the total Binding energy of a nucleus.	K4
1.3	Nuclear shell model, Liquid drop model, optical model, collective model	Kxplain various models for nucleus.	K5
1.4	Nuclear force	Explain characteristics nuclear forces	K2
1.5	Properties of Deuteron	Derive the bounded state of deuteron	K5

		Justify why deuteron does not exist in excited state	K5
1.4	Scattering ideas	Explain n-p scattering based on partial wave analysis.	K5
		Discuss nuclear scattering phase shift with energy.	K6
II	Nuclear Fission and Fusion		
2.1	Characteristics of fission	Summarize the characteristics of nuclear fission	K2
2.2	Mass and energy distribution of nuclear fragments.	Evaluate the mass and energy distribution between nuclear fragments during fission	K5
2.3	Nuclear chain reaction	Analyze the conditions for nuclear fission reaction.	K4
		Explain the nuclear chain reaction	K2
2.4	Four factor formula.	Derive four factors formula for nuclear chain reaction	K5
2.5	Bohr Wheeler's theory	Elaborate on Bohr Wheeler's Theory to find address nuclear fission.	K6
2.6	Atom bomb	Explain the principle behind Atom Bomb	K2
		Explain the working of atom bomb by using nuclear fission process	K5
2.6	Fission reactor - power and breeder reactors	State the applications of nuclear fission.	K2
		Explain the fission process in Breeder and Power Reactors.	K2
		Address the role of nuclear fission in power production.	K3
2.7	Fusion processes	Outline the nuclear fusion process.	K2

2.8	Solar fusion	Analyse the source of solar energy on the basis of nuclear reaction.	K4
2.9	Controlled thermonuclear reactions	Explain how nuclear fusion reactions can be realized at the laboratory scale	K2
		Elaborate on controlled thermonuclear reactions	K6
2.10	Stellar energy - evolution and life cycle of a star	Outline the life cycle and evolution of the star	K2
III	Nuclear Disintegration		
3.1	Alpha decay - Gamow's theory, Geiger-Nuttal law	Classify alpha, Beta and gamma particles	K4
		Analyse how tunnel effect is applied on Gamow's theory using Alpha decay	K4
		Explain Geiger-Nuttal law	K2
		Evaluate an expression for decay probability according to Gamow's theory.	K5
3.2	Neutrino hypothesis, Fermi's theory of beta decay.	Assess the controversies in beta decay.	K5
		Explain Neutrino hypothesis	K2
		Account for the role of neutrino according to Fermi's theory of beta decay.	K4
3.3	Non-conservation of parity in beta decay	Justify parity is not conserved in beta decay.	K5
3.4	Gamma decay, Internal Conversion, Nuclear isomerism	Outline the process of gamma decay and nuclear isomerism	K2

3.5	Basic principles of particle detectors	Summarize the principles of particle detectors	K2
3.6	Ionization chamber, Proportional counter, Geiger-Muller Counter, BF_{3} counter, Scintillation Counter	Explain the principles of GeigerMuller Counter	K4
		Analyze the merits and Demerits of BF_{3} counter and Scintillation Counter	K4
3.5	Solid state detector - junction diode detectors	Analyze a simple detector systems for identifying nuclear radiation.	K4
3.6	Nuclear radiation hazards, safe limits	Discuss nuclear radiation hazards and safe limits	K2
3.7	Disposal of nuclear wastes	Measures for the disposal of nuclear waste	K5
IV	Nuclear Reactions		
4.1	Types of Nuclear reactions	Classify the types of nuclear reactions	K2
4.2	Energetics of reactions, Q equation	Derive Q equation and interpret the reaction based on Q value	K5
4.3	Nuclear reaction cross section	Explain nuclear reaction cross section	K2
4.4	Partial wave analysis	Deduce total cross section of nucleus by partial wave analysis.	K5
4.5	Level width	Outline on level width in nuclear reaction	K2
4.6	Compound nucleus model	Explain the formation of compound nucleus model	K2
4.7	Breit-Wigner one level formula.	Estimate energy level of Compound nucleus by BreitWigner one level formula.	K5
4.8	Direct reactions Theory of Stripping and Pick-up reactions.	Explain direct reactions	K2
		Distinguish stripping and pickup	K4

		reactions	
V	Elementary Particles		
5.1	Types of interactions	Summarize the types of interactions	K2
5.2	Classification of elementary particles - Quantum numbers (charge, spin, parity, isospin, strangeness, hypercharge)	Classify the elementary particles according to quantum numbers.	K4
5.3	Gell-Mann-Nishijima formula	Explain the critical condition of the electromagnetic field modes around a hadron.	K2
5.4	Baryons, Leptons, Invariance principle and symmetry	Distinguish Baryons and Leptons using invariance principles.	K4
5.5	Invariance under charge, parity, time reversal (CPT)	Justify that all interactions should be invariant under the combined application of charge conjugation parity and time reversal in any order.	K5
5.6	CP violation in neutral K-meson decay	Explain the violation of CP symmetry.	K2
5.7	Quark model	Classify hadrons in terms of their valence quarks.	K4
5.8	$\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ symmetry.	Explain symmetries which accounts for the spin and interactions of quarks.	K2
5.9	Types of quarks and their quantum numbers	Describe quark and antiquark	K2
		Determine quantum numbers from quark composition.	K5
5.10	Gell-Mann and Okubo mass formula	Explain the sum rule for the masses of hadrons within a specific multiplet.	K2

4. MAPPING SCHEME (PO, PSO\& CO)

P19PH	PO									PSO			
3:4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	L	L	L	L	L	-	-	-	M	L	M	H	-
CO2	H	M	M	L	M	-	L	-		M	L	-	-
CO3	M	M	H	H	H	H	-	M	-	M	H	M	L
CO4	H	H	L	M	H	H	M	-	-	H	L	M	-
CO5	H	-	H	H	M	H	M	-	H	L	M	H	H
CO6	-	L	M	M	L	L	H	H	M	H	L	H	M
									Low	M-Mod	derate	H-Hig	

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exams) I,II
2. Open book test; Cooperative learning report, Assignment, Seminar, Group Presentation, Project report, Poster preparation, Problem solving etc.
3. End Semester Examination

Indirect

1.Course-endsurvey

Course Co-ordinator: Mr. A. VeeraPandian

ELECTIVE-IV: RADIATION PHYSICS

SEMESTER :III

CREDITS : 5

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to

CO.N O.	Course Outcomes	Level	Unit Covered
$\mathbf{C O 1}$	Explain the fundamental concepts of atomic physics and nuclear transformation.	K2	I
$\mathbf{C O 2}$	Explain the different interaction mechanism of radiation with matter.	K3	II
$\mathbf{C O 3}$	Understand the various dosimetric quantities and concepts.	K1	III
$\mathbf{C O 4}$	Analyze the interaction of charged particles and radiation with matter.	K4	II \& IV
$\mathbf{C O 5}$	Evaluate the radiation interaction with matter using radiation monitoring instruments.	K5	 V
$\mathbf{C O 6}$	Estimate the exposure of radiation \&dosimetric quantities using various radiation detecting devices/dosimeters.	K6	III \& IV

2. A. SYLLABUS

Unit-I: Atomic Physics and Nuclear Transformation
(15 Hours)
Structure of matter - atom - nucleus -atomic mass and energy units -distribution of orbital electrons - atomic energy levels -nuclear forces -nuclear energy levels- particle radiation Binding energy - General properties of alpha, beta and gamma rays - modes of radioactive decay -nuclear reactions - natural and artificial radioactivity - reactor and cyclotron produced isotopes - fission products - fusion.

Unit-II: Interaction of Radiation with Matter

(15 Hours)
Interaction of electromagnetic radiation with matter, Thomson scattering, Rayleigh scattering, Compton scattering, Photoelectric absorption, Pair production - Interaction of light (electrons and positrons) and heavy charged particles with matter-specific ionization - Cerenkov radiation-
mass-energy- attenuation and absorption coefficient - Bethe-Block formalism for energy loss by heavy charged particles, mass-collision - Bragg peak, mass-radioactive stopping power, range and path length of charged particles - Interaction of neutron with matter.

Unit-III: Dosimetric Quantities and Units

(15 Hours)
Introduction -exposure-Roentgen - photon fluence and energy fluence -KERMA-Kerma and absorbed dose -CEMA -Absorbed dose - Radiation Dose Equivalent - stopping power relationship between the dosimetric quantities - stopping power ratio.

Unit-IV: Principles of Radiation Detection and Dosimeters (15 Hours)

Principles of Radiation detection - properties of dosimeters - Theory of gas filled detectors - Ion chamber dosimetry systems - free air ion chamber - parallel plate chamber - ionization chamber - proportional chamber - GM counter- thimble chambers working and different applications film dosimetery- Luminescence dosimetry - TLD - OSLD - semiconductor dosimetry - Gel dosimetry - radiographic and radiochromic films - scintillation detections.

Unit-V: Radiation Monitoring Instruments

(15 Hours)
Introduction - operational quantities for Radiation monitoring - Area survey meters - Ionization chambers - proportional counters - neutron area survey meters - GM survey meters scintillation detectors - Personal monitoring -Pocket Dosimeters- film badge - TLD Properties of personal monitors.

B. TOPICS FOR SELF STUDY

1. Dental Radiography

https://www.sciencedirect.com/topics/medicine-and-dentistry/dental-radiography https://www.slideshare.net/masurizvi/radiology-in-dentistry

2. Computed Tomography

https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct

C. TEXT BOOKS

1. E.B.Podgorsak, Radiation Physics for Medical Physicists, 3rd Edition, Springer, 2016.
2. F.M.Khan, The Physics of Radiation Therapy, Fifth Edition, Lippincott W il 1 ia m s and Wilkins, U.S.A.,2015.
3. W. J. Meredith and J. B. Massey, Fundamental Physics of Radiology, John Wright and Sons, U. K., 2000.

D. REFERENCE BOOKS

1. H. E. Johns, J. R. Cunningham, The Physics of Radiology, Charles C. Thomas, New York, 2002
2. Frank Herbert Attix, Introduction to Radiological Physics and Radiation Dosimetry, WileyVCH Verlag, 2007.
3. Donald T. Graham, Paul J. Cloke, Principles of Radiological Physics, Churchill Livingstone, 2003.

E. WEBLINKS

https://www-pub.iaea.org/mtcd/publications/pdf/pub1564webnew-74666420.pdf
2.SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Sectio \mathbf{n}	Course Content	Learning Outcomes	
\mathbf{I}	Atomic Physics and Nuclear Transformation	Highest Bloom's Taxonomic Level of Transaction	
1.1	Structure of matter - atom - nucleus	Explain structure of atom and nucleus	K2
1.2	Atomic mass and energy units	Explain atomic mass and energy units	K2
1.3	Distribution of orbital electrons	Demonstrate the distribution of electrons in orbitals	K3
1.4	Atomic energy levels	Examine the energy levels of an atom	K2
1.5	Nuclear forces	Deduce an expression for nuclear forces	K5
1.6	Nuclear energy levels	Deduce an expression for nuclear energy levels	K5
1.7	Particle radiation	Explain the concept of particle radiation	K4
1.8	Binding Energy	Estimate the binding energy	K5

1.9	General properties of alpha, beta and gamma rays	Explain the general properties of alpha, beta and gamma rays	K3
1.10	Nuclear reactions	List and explain the types of nuclear reactions	K3
1.11	Natural and artificial radioactivity	Explain natural and artificial radioactivity	K3
1.12	Reactor and cyclotron produced isotopes	Explain the reactor and cyclotron produced isotopes	K4
1.13	Fission	Define fission	K1
1.14	Fusion products	Define fusion	K1
II	Interaction of Radiation With Matter		
2.1	Interaction of electromagnetic radiation with matter	Explain the interaction of electromagnetic radiation with matter	K2
2.2	Thomson \quad scattering, Rayleigh \quad scattering, Compton scattering	Analyse the interaction of radiation with matter using different scattering	K4
2.3	Photoelectric absorption	Explain photoelectric absorption	K3
2.4	Pair production	Define pair production	K1
2.5	Interaction of light (electrons and positrons) and heavy charged particles with matter	Analyze the interaction of light and heavily charged particles	K4
2.6	specific ionization	Define specific ionization	K1
2.7	Cerenkov radiation	Explain Cerenkov radiation	K2
2.8	attenuation and absorption coefficient	Define attenuation and absorption coefficient	K1
2.9	Bethe-Block formalism for energy loss by heavy charged particles	Estimate energy loss by heavy charged particles using Bethe-Block formalism	K5
2.10	mass-collision - Bragg peak, mass-radioactive stopping power, range and path length of charged particles	Define mass-collision, Bragg peak, mass, radioactive stopping power, range and path length of charged particles	K1

2.11	Interaction of neutron with matter	Analyze the interaction of neutron with matter.	K4
III	Dosimetric Quantities and Units		
3.1	Introduction	Illustrate Laws of electromagnetic induction	K2
3.2	Exposure	Define Exposure	K1
3.3	Roentgen	Define Roentgen	K1
3.4	photon fluence and energy fluence	Define photon fluence and energy fluence	K1
3.5	Kerma and absorbed dose	Define Kerma and absorbed dose	K1
3.6	CEMA- Absorbed dose	Explain CEMA and absorbed dose	K3
3.7	Radiation Dose Equivalent	Determine radiation dose equivalent	K5
3.8	stopping power	Define stopping power	K1
3.9	relationship between the dosimetric quantities	Obtain the relationship between dosimetric quantities	K5
3.10	stopping power ratio	Estimate stopping power ratio	K6
IV	Principles of Radiation Detection and Dosimeters		
4.1	Principles of Radiation detection	State principles of radiation detection	K1
4.2	properties of dosimeters	List the properties of dosimeters	K2
4.3	Theory of gas filled detectors	Explain the theory of gas filled detectors	K3
4.4	Ion chamber dosimetry systems	Estimate the absorbed radiation using Ion chamber dosimetry system	K6
4.5	free air ion chamber, parallel plate chamber, ionization chamber and proportional chamber	Estimate the intensity of radiation using different type of chamber	K6
4.6	GM counter	Detect \& measure the ionizing radiation	K5
4.7	thimble chambers working and different	Determine the intensity of beam of radiation using thimble chambers	K5

	applications		
4.8	film dosimetery- Luminescence dosimetry	Measure the exposure of radiation using film dosimetry and luminescence dosimetry	K5
4.9	TLD - OSLD	Explain the function of TLD and OSLD	K4
4.10	semiconductor dosimetry - Gel dosimetry	Estimate absorbed radiation dose using semiconductor dosimetry\& Gel dosimetry	K5
4.11	radiographic and radiochromic films	Measure the radiation dose using radiographic and radiochromic films	K5
4.12	scintillation detections	Explain the principle scintillation detection	K3
V	Radiation Monitoring Instruments		
5.1	Introduction	Understand the basic of radiation monitoring instruments	K1
5.2	operational quantities for Radiation monitoring	Define the operational quantities for Radiation monitoring	K1
5.3	Area survey meters	Explain the working of Area survey meters	K3
5.4	Ionization chambers	Explain the principle and working of ionization chambers	K3
5.5	Proportional counters	How does a proportional counter used to measure particles of ionizing radiation	K5
5.6	neutron area survey meters	Evaluate radiation hazard using neutron area survey meters	K5
5.7	GM survey meters	Organize an experiment to detect radiation contamination using GM survey meters	K5
5.8	scintillation detectors	Explain the principle and working of scintillation detector	K3
5.9	Personal monitoring	Understand the principle of personal monitoring	K1
5.10	Pocket Dosimeters	Detect and measure exposure of	K5

		radiation using pocket dosimeters	
5.11	film badge	Explain the measurement of exposure to ionizing radiation	K4
5.12	TLD	Explain how TLD is used to measure radiation exposure	K4
5.13	Properties of personal monitors	List the Properties of personal monitors	K2

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{aligned} & \text { P20P } \\ & \text { H3:A } \end{aligned}$	PO									PSO			
	$\begin{aligned} & \text { PO } \\ & 1 \end{aligned}$	PO	$\begin{aligned} & \text { PO } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 2 \end{aligned}$	PSO	$\begin{aligned} & \text { PSO } \\ & 4 \end{aligned}$
CO 1	-	L	M	-	M	M	L	-	M	H	M	M	M
CO 2	M	H	M	M	H	M	-	L	L	M	H	M	M
CO 3	L	M	H	M	M	M	L	-	L	M	H	H	L
CO 4	M	H	M	M	H	H	-	L	L	M	H	M	L
CO 5	M	H	L	M	H	M	L	-	M	M	H	M	M
CO 6	M	H	M	M	M	M	-	L	M	M	M	M	M

L-Low M-Moderate H-High

5. COURSEASSESSMENTMETHODS

Direct

1. Continuous Assessment Test(Model Exams) I,II
2. Open book test; Cooperative learning report, Assignment, Seminar, GroupPresentation, Project report, Poster preparation, Problem solving etc.
3. End Semester Examination

Indirect

1.Course-endsurvey

CODE: P16PH409
NO. OF HOURS / WEEK: 6

1. COURSE OUTCOMES (CO)

After successful completion of the course, students are able to:

CO.NO.	COURSE OUTCOMES	Level	Unit Covered
CO1	Outline the notion, Dirac, ket-bra vectors, Hilbert space and representation of operators	K2	I
$\mathbf{C O 2}$	Interpret the three pictures of quantum mechanics and analyze to Linear harmonic oscillator using Heisenberg pictures	K5	I
$\mathbf{C O 3}$	Deduce the eigenvalue spectrum for total angular momentum and to determine the Clebsch Gordon (CG) Co-efficient	K5	II
$\mathbf{C O 4}$	Formulate the quantum theory of identical particles	K5	III
$\mathbf{C O 5}$	Justify the need for relativistic quantum theory and apply it to Klein-Gordan and Dirac equations.	K5	IV
$\mathbf{C O 6}$	Develop the second quantization procedure for quantum fields	K6	V

2. A. SYLLABUS

Unit-I: Matrix Formulation

(15 Hours)
The Hilbert space - Dirac's Bra and Ket vectors - Matrix representation - Representation of state vectors and operators - Hermitian operators and their properties - space and time displacements - The Schrödinger, Heisenberg and interaction pictures - Matrix theory of Linear harmonic oscillator.

Unit-II: Angular Momentum

The Eigenvalue spectrum of J^{2} and J_{Z} - matrix representation of J - Spin angular momentum Pauli's spin matrices - spin or wavefunctions ($\mathrm{S}=1 / 2$ and 1) - Addition of angular momentum Clebsch Gordon (CG) Co-efficients - Recursion relation of CG Co-efficient - Calculation of CG Co-efficients for $\mathrm{J}_{1}=1 / 2$ and $\mathrm{J}_{2}=1 / 2$.

Unit-III: Identical Particles and Spin

(15 hours)
System of identical particles - Distinguishability of identical particles - symmetric and antisymmetric wave functions -- Exchange degeneracy - Pauli's exclusion principle - relation between spin and statistics.

Many electron system - Central field approximation - Thomas Fermi statistical model Hartee's self-consistent field.

Unit-IV: Relativistic Wave Mechanics

(15 hours)
Klein-Gordon (KG) equation - free particle - KG equation in the presence of Electromagnetic field - The Dirac equation - Probability density and current densities - Dirac matrices - Plane wave solutions - Spin of Dirac particles - Negative energy states - Dirac's equation for a central field - Spin angular momentum - Spin orbit coupling.

Unit-V: Quantization of Fields

(15 hours)
Lagrangian formulation of classical field: Euler - Lagrange equations - Hamilton's formulation - Poisson brackets - Quantum field: Second quantization - the Klein-Gordon field - Nonrelativistic Schrödinger field - Dirac field.

B. TOPICS FOR SELF STUDY

1. Dirac Delta function, representation in the continuous basis, P. M. Mathews and K.

Venkatesan, A Text Book of Quantum Mechanics 2e, Tata McGrawHill, New Delhi, 2010.
2. SO (3), SO (2) and Euler Rotations inn Quantum Mechanics, Modern Quantum Mechanics, J.J. Sakurai, JIM Napolitano Addison Wesley New York 2011.
3. Spin correlation measurements and Bell's Inequality, Modern Quantum Mechanics, Sakurai, JIM Napolitano Addison Wesley New York 2011.
4. Quantum Entanglement, Basis of Quantum Computing, Quantum Mechanics, A.I.M. Rae, JIM Napolitano CRC Press New York 2016, Quantum Mechanics, L. Schiff, Tata McGraw Hill, New Delhi, 2010.

C. TEXT BOOKS

1. P. M. Mathews and K. Venkatesan, A Text Book of Quantum Mechanics 2e, Tata McGrawHill, New Delhi, 2010.
2. L. Schiff, Quantum Mechanics 3e, Tata McGraw Hill, New Delhi, 2010.
3. V. K. Thankappan, Quantum Mechanics 2e, Wiley-Eastern, New Delhi, 2003.
4. Amitabha Lahiri and P.B. Pal, A First Book of Quantum Field Theory, Narosa Book Distributors Pvt. Ltd., New Delhi, 2005.
D. REFERENCE BOOKS
5. Richard L. Liboff, Introductory Quantum Mechanics, (4 ${ }^{\text {th }}$ Edition) Addison Wesley, New York, 2003.
6. Jasprit Singh, Quantum Mechanics: Fundamentals and Applications to Technology, John Wiley, New York, 2004.
7. AmitGoswami, Quantum Mechanics 2e, Waveland Press, 2003.
8. V. Devanathan, Quantum Mechanics, Narosa Publishing House, 2005.
9. S. Rajasekar and R. Velusamy, Advanced Topics in Quantum Mechanics, CRC Press, 2015.

E. WEBLINKS

1. https://ocw.mit.edu/courses/physics/
2. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Se ction	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
\mathbf{I}	Matrix Formulation	Recall the vector spaces. Study inner product space	K1
1.1	The Hilbert space	Description of Dirac's Bra vectors	K2
1.2	Dirac's Bra and Ket vectors	Formulate the matrix representation of State vector and operators	K2
1.3	Representation of state vectors and operators	Hermitian operators and their properties	Outline the Properties of Hermitian operators
1.5	Space and Time displacements	Construct the unitary operator for and space Time and displacements	K3

1.6	The Schrödinger pictures	Interpret the Schrödinger pictures	K5
1.7	Heisenberg pictures	Interpret the Heisenberg pictures	K5
1.8	Interaction pictures	Interpret the Interaction pictures	K5
1.9	Matrix theory of Linear harmonic oscillator	Apply the matrix theory to analyse the quantum Linear harmonic oscillator	K5
II	Angular Momentum		
2.1	The Eigenvalue spectrum of J^{2} and $\mathrm{J}_{\mathbf{z}}$	Solve the eigen value problem for total angular momentum operator	K3
2.2	Matrix representation of J	Deduce the Matrix representation of total angular momentum	K5
2.3	Spin angular momentum	Derive the matrix for spin angular momentum operator	K5
2.4	Pauli's spin matrices	Construct the spin or wavefunction	K2
2.5	Spin or wave functions ($\mathrm{S}=1 / 2$ and 1)		
2.6	Addition of angular momentum	Formulation of additional angular momentum	K5
2.7	Clebsch Gordon (CG) Co-efficients		
2.8	Recursion relation of CG Co-efficient		
2.9	Calculation of CG Co-efficients for $\mathrm{J}_{1}=1 / 2$ and $\mathrm{J}_{2}=1 / 2$	Determine CG Co-efficients for $\mathrm{J}_{1}=1 / 2$ and $\mathrm{J}_{2}=1 / 2$	K5
III	Identical Particles and Spin		
3.1	System of identical particles	Formulation of identical particle	K5
3.2	Distinguishability of identical particles	Explain the concepts of distinguishability	K2
3.3	symmetric and antisymmetric wave functions	Construct symmetric and antisymmetric wave functions	K5
3.4	Relation between spin and statistics	Establish Connection between spin and statistics	K5
3.5	Exchange degeneracy	Outline the Exchange	K1

3.6	Pauli's exclusion principle.	degeneracy of it particle principle.	K3
3.7	Central field approximation	Summarise Central field approximation	K2
3.8	Thomas Fermi statistical model	Apply Thomas Fermi statistical model to study many electron system	K4
3.9	Hartee's self-consistent field	Analyse many electron systems using Hartee's self- consistent field theory	K4
$\mathbf{I V}$	Relativistic Wave Mechanics		K2

		study for the Classical field	
5.4	Quantum field: Second quantization	Description of Second quantization	K2
5.5	The Klein-Gordon field	Develop the second Quantization procedure toKlein-Gordon field	K6
5.6	Non-relativistic Schrödinger field	Elaborate the quantization of Non-relativistic Schrödinger equation	K6
5.7	Dirac field.	Formulate the quantum theory for Dirac field	K6

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P16PH4 } \\ 09 \end{gathered}$	PO									PSO			
	PO	P	P	P	P	P	PO	PO	P	PSO	PSO	PSO	PSO
	1	O2	03	04	05	O6	7	8	09	,	2	3	4
CO1	H	M	L	L	H	L	M	L	L	M	L	L	M
CO2	H	M	L	L	H	L	M	L	L	H	L	L	M
CO3	H	H	L	L	H	L	M	L	L	H	L	L	H
CO4	H	M	L	L	M	L	M	L	L	H	L	L	M
CO5	H	M	M	L	H	L	M	L	L	H	L	L	L
CO6	M	H	M	M	H	L	M	L	L	M	L	L	H

L- Low M - Medium H-High

5.COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test I \& II
2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)
3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Mr. V. Antony Raj

CORE-X: SOLID STATE PHYSICS - II

SEMESTER: IV
CREDITS : 5

COURSE CODE: P16PH410
NO. HOURS/WEEK : 6

1. Course Outcomes:

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
$\mathbf{C O 1}$	Explain the fundamental theories to explain the behavior of dielectric and ferroelectric materials	K2	I
$\mathbf{C O 2}$	Explain the properties, theories and applications of superconductors	K2	IV
$\mathbf{C O 3}$	Apply the band structure theory to study the optical behavior of conductors, semiconductors and insulators	K3	\mathbf{V}
$\mathbf{C O 4}$	Interpret the phase changes and related properties in magnetic, ferroelectric and superconducting materials	K5	I,II,IV
$\mathbf{C O 5}$	Assess the temperature dependent spontaneous magnetization and dispersion relations of magnons in ferromagnetic and antiferromagnetic materials	K5	III
$\mathbf{C O 6}$	Analyze the origin for non-linear optical properties of materials based on crystal symmetry	K4	\mathbf{V}

2. A. SYLLABUS

Unit-I: Dielectrics and Ferroelectrics

(15 hours)
Macroscopic electric field - Local electric field in an atom - Dielectric constant and polarizability - ClausiusMossotti equation - Response and relaxation phenomenon - Ferro elastic crystals Polarization catastrophe - Landau theory of phase transition - Ferroelectric domains - Antiferroelectricity - Piezo electricity - crystal elasticity - Pyroelectricity.

Unit-II: Diamagnetism and Paramagnetism

(15 hours)
Langevin's diamagnetism theory - quantum theory of diamagnetism Langevin'sparamagnetism theory - quantum theory of Paramagnetism - Weiss theory - Hund's
rule - Iron earth ions - Rare earth ions - crystal field splitting - cooling by isentropic demagnetization - paramagnetic susceptibility of conduction electrons - Kondo effect.
Unit-III: Ferromagnetism, Antiferromagnetism and Ferrimagnetism
(15 hours)
Ferromagnetism - Curie point - Weiss theory of ferromagnetism - Temperature dependance of saturation magnetization - Hysteresis and ferromagnetic domain - Antiferromagnetism Molecular field theory of antiferromgnetism - Susceptibility of antiferromagnetism below the Neel temperature - Ferrimagnetism - Magnons - Ferromagnetic magnons - Antiferromagnetic Magnons - Introduction to Magnetoresistance (GMR,CMR).

Unit-IV: Superconductivity

(15 hours)
Occurrence of Superconductivity - properties- Meissner Effect - Energy gap - Isotope effect Thermodynamics of superconducting transition - Type I \& Type II Superconductors - Vortex state - London equation - BCS theory - Coherence Length - Flux quantization in a ring - single particle tunneling - Josephson Superconductor tunneling, AC and DC effect - Application of Superconductors - Superconducting Quantum Interference Device (SQUID) - Development of High Tc Superconductors.

Unit-V: Optical Properties of Materials

(15 hours)
Optical absorption in metals, semiconductors and insulators - Band to band absorption Luminescence - types - Photoluminescence: Activators - Materials - Excitation and emission spectra - Measurement system - Photoconductivity - Nonlinear polarization - Non-centro symmetric materials and second harmonic generation.

B. TOPICS FOR SELF STUDY

1. Impedance spectroscopy in dielectrics

https://www.youtube.com/watch?v=r5BC2_NvLaA

2. Spintronics

https://www.youtube.com/watch?v=N72g0CcKT3Y

3. Magnetic levitation

https://www.youtube.com/watch?v=RDvH76Cj-UY

4. Z-scan technique

https://www.youtube.com/watch? v=yMhNLLIYb5w

C. TEXT BOOKS

1. C. Kittel, Introduction to Solid State Physics, Wiley India Pvt. Ltd., New Delhi, 2013.
2. S. Gupta and V. Kumar, Solid State Physics, IX Edition, K Nath and Co, Meerut, 2017.
3. S. O. Pillai, Solid State Physics. New Age International (p) Limited, India, 2010.
4. Robert W. Boyd, Nonlinear Optics, Elsevier Science \& Technology, 2008.

D. REFERENCE BOOKS

1. M. Ali Omar, Elementary Solid state physics: Principle and applications, Pearson Education Asia, 2002.
2. S.L. Kakani and C. Hemarajani, Solid State Physics, Sultan Chand \& Sons, New Delhi, 1990.
3. Franc C. Grum and K.D. Mielenz, Measurement of Photoluminescence, Academic Press, 1982.
4. Geoffrey. New, Introduction to Nonlinear Optics, Cambridge University Press, 2011.
5. B.B Laud, Lasers and Non-linear Optics, New Age International Publishers Pvt. Ltd., New Delhi 2011.
6. V. Raghavan, Materials Science \& Engineering, Prentice Hall, India, 2007.

E. WEB LINKS

1. https://nptel.ac.in/courses/115/103/115103039/
2. https://nptel.ac.in/courses/115/104/115104109/
3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Content		Highest Bloom's Taxonomic Level of Transaction	
I	Dielectrics and Ferroelectrics		Define the basic concepts of polarization, dielectric constant Explain macroscopic electric	
field	K1	K2		
1.2	Macroscopic electric field	Local electric field in an atom,	Evaluation of local field in an atom for cubic structured dielectric material	
1.3	Dielectric constant and	Outline the experimental determination of dielectric constant of materials	K2	
1.4	Classius -Mosotti equation	Inspect the relationship between dielectric constant of an insulator	K4	

\left.| | | and the polarisability of atoms | |
| :--- | :--- | :--- | :--- |$\right]$ K2

		temperature	
2.5	Weiss theory of paramagnetism	Interpret the local molecular field and determine Langevin's and Brillouin function to explain the temperature dependent paramagnetic susceptibility	K5
2.6	Hund's rule	Explain the steps to estimate the values of J in the light of Hund's rule	K2
2.7	Rare earth ions	Assess the magnetic moment and account for the validation in rare earth ions	K2
2.8	Iron earth ions	Justify the quenching of orbital angular momentum in iron group ions	K5
2.9	Crystal field splitting	Explain crystal field splitting Apply crystal field splitting and quenching of angular momentum to explain paramagnetism in iron group salts	K5
2.10	Paramagnetic susceptibility of conduction electrons	Apply quantum theory to explain paramagnetism of conduction electrons above the Fermi level	K3
2.11	Cooling by isentropic demagnetization	Analyze the thermodynamics of isentropic demagnetization in materials to achieve temperatures less than 1 mK	K4
2.12	Kondo effect	Explain the Kondo effect Interpret the reason for $\rho_{\text {min }}$ at low temperature upon doping of magnetic impurities	K5
III	Ferromagnetism, Antiferromagnetism and Ferrimagnetism		
3.1	Ferromagnetism and Curie Point	Define curie point and Explain spontaneous magnetization	K1
3.2	Weiss theory -Temperature dependence on saturation magnetization of ferromagnetism	Analyze thetemperature dependent magnetization on the basion ofWeiss theory	K4

3.3	Hysteresis and ferromagnetic domain	Explain Hysteresis Define retentivity and coercivity Classify the ferromagnetic materials on the basis of hysteresis loss Sketch the domain structure of ferromagnetic materials and illustrate B-H loop	K2
3.4	Antiferromagnetism, Molecular field theory of antiferromagnetism Susceptibility of antiferromagnetism	Interpret the susceptibility of antiferromagnetic magnetic materials using molecular field theory	K5
3.5	Ferrimagnetism	Explain Ferrimagnetism	K1
3.6	Magnons: Ferromagnetic magnons and Antiferromagnetic magnons	Derive the dispersion relations of magnons in ferromagnetic and antiferromagnetic materials	K4
3.7	Introduction to magnetoresistance (GMR , CMR)	Explain GMR and CMR	K2
IV	Superconductivity		
4.1	Occurrence of Superconductivity	Recall the history of superconductors.	K1
4.2	Properties	Explain critical current and critical magnetic field. Mention the ways to destroy the superconducting state.	K2
4.3	Meissner effect	Explain Meissner effect Illustrate the Meissner effect with an experiment	K2
4.4	Type-I and Type-II superconductors Vortex state	Categorize different types of superconductors based on critical fields	K4
4.5	Energy gap and Isotope effect	Outline Energy gap and Isotope effect in superconductors	K2
4.6	Thermodynamics of superconducting transition	Analyze the variation of thermodynamic parameters upon superconductor phase transition	K4
4.7	London equations	Explain normal and	K5

		superconducting electrons Derive London Equations and discuss its drawbacks Discuss the electrodynamics of superconducting transition Deduce an expression for penetration depth applying London equations	
4.8	BCS theory - coherence length	Explain Cooper pairs and coherence length Justify the role of phonons in the creation of Cooper pairs Inspect the formation of Cooper pairs according to BCS theory	K5
4.9	Flux quantization in a ring	Illustrate the flux quantization in a superconducting ring is the sum of external and internal field	K2
4.10	Single particle tunneling	Explain single particle tunneling effect across a junction	K2
4.11	Josephson Superconductor tunneling - AC effect	Estimate the frequency of alternating current developed for a d.c potential drop across the junction	K4
4.12	Josephson Superconductor tunneling - DC effect	Analyze the current of superconducting pairs across the junction depends on the phase difference in DC Josephson effect	K4
4.13	Superconducting quantum interface device (SQUID)	Apply Josephson effect to construct superconducting quantum interface device	K3
4.14	Development of High T_{c} Superconductors	Classify the superconductors based on critical temperature Analyze the newly reported compounds with high Tc values	K4
V	Optical Properties of materials		
5.1	Optical absorption in metals, semiconductors and insulators	Illustrate the interaction of light	K2

		with solids.	
5.2	Band to Band absorption	Interpret the different band to band absorption in semiconductors	K3
5.3	Luminescence- Types	Classify the types of luminescence in solids	K2
5.4	Photoluminescence	Explain Photoluminescence Analyze the origin of excitation and emission in photoluminescence spectra	K4
5.5	Activators	Explain the role of activators in enhancing the luminescent property of solids	K2
5.6	Photoluminescence Measurement system	Explain the construction and working of the photoluminescence measurement system	K2
5.7	Excitation and Emission spectra	Apply band theory and Fermi Golden rule to study emission and excitation spectra in solids	K3
5.8	Photoconductivity	Explain photoconduction process in insulators	K2
5.9	Non linear polarization Non-centrosymmetric materials	Outline the process in Nonlinear optical crystals Classify non-linear optically active materials on the basis of symmetry	K2
5.10	Second Harmonic Generation	Analyze the optical harmonic generation of nonlinear crystals Compare the functionality of different nonlinear crystals exhibiting second harmonic generation for various applications	K4

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P16PH41 } \\ 0 \end{gathered}$	PO									PSO			
	PO 1	$\begin{gathered} \text { PO } \\ 2 \\ \hline \end{gathered}$	PO 3	$\begin{gathered} \text { PO } \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { PO } \\ 7 \\ \hline \end{gathered}$	PO 8	$\begin{gathered} \text { PO } \\ 9 \end{gathered}$	PSO 1	$\begin{gathered} \text { PSO } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { PSO } \\ \mathbf{3} \\ \hline \end{gathered}$	$\begin{gathered} \text { PSO } \\ \hline \end{gathered}$
CO 1	M	M	H	H	L	H	H	L	L	H	M	M	M
CO 2	H	M	M	L	L	L	M	L	L	H	M	L	M
CO 3	H	M	M	L	L	M	M	L	L	H	L	M	L
CO 4	H	L	L	L	M	H	H	L	L	H	M	M	M
CO 5	M	M	M	L	M	L	L	L	L	H	M	L	L
CO 6	L	L	L	L	L	L	L	L	L	H	L	L	M

L-Low M-Moderate H-High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Internal Exams) I,II
2. Open book test; Assignment, Seminar, Problem solving etc.
3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Dr. R. Venkatesh

ELECTIVE-V: CRYSTAL GROWTH, THINFILMS AND NANOSCIENCE

SEMESTER : V
CREDITS : 4

CODE : P19PH4:5
NO. OF HOURS/WEEK:6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
$\mathbf{C O 1}$	Summarize the theory of nucleation and crystal growth.	K2	I
$\mathbf{C O 2}$	Explain thermodynamics and kinetics of thin film deposition process	K2	I
$\mathbf{C O 3}$	Classify the different crystal growth techniques and outline their principles.	K4	II
$\mathbf{C O 4}$	Contrast different thin film coating techniques.	K4	III
$\mathbf{C O 5}$	Infer the advantages and disadvantages of various synthesis techniques for nanomaterials.	K4	IV
$\mathbf{C O 6}$	Evaluate the physical parameters from various characterization techniques.	K5	V

2. A. SYLLABUS

Unit-I: Basics of Crystal Growth and Thin Film
(15 Hours)
Nucleation - Different kinds of nucleation - Formation of crystal nucleus - Energy formation of a nucleus - Classical theory of nucleation - Gibbs Thomson equations for vapour and solutionspherical and cylindrical nucleus - Thin films -Thermodynamics of nucleation - Growth kinetics of Thin film - Crystal growth process in thin films - Epitaxial growth of thin films (basic concept only)

Unit-II: Crystal Growth Techniques
(15 Hours)
Classification of crystal growth methods -Growth from low temperature solutions: Meir's solubility diagram - Growth by restricted evaporation of solvent, slow cooling of solution and temperature gradient methods - Basics of melt growth - Czochralski pulling method - Vernueil
flame fusion method - Hydrothermal growth method. Growth by chemical vapour transport reaction: Transporting agents, Sealed capsule method, Open flow systems.

Unit-III: Thin Film Preparation Techniques

(15 Hours)
Thin films - Introduction to vacuum technology - Deposition techniques - Physical methods Resistance heating - Electron beam method - Sputtering - Reactive sputtering - RF sputtering DC planar magnetron sputtering - Pulsed laser deposition - Chemical methods - Chemical bath deposition - Electrodeposition - Electro plating and Electroless plating - Deposition mechanisms - Spin and Dip coating -Spray pyrolysis deposition

Unit-IV: Synthesis of Nanomaterials

Top-Down Approach, Grinding, Ball Milling, Melt mixing, Photolithography. Bottom-Up Approach, Wet Chemical Synthesis Methods, Micro emulsion Approach, Synthesis of metal \& semiconductor nano particles by colloidal route, Langmuir-Blodgett method, Sol Gel Methods, Microwave and Atomization, Gas phase Production Methods: Chemical Vapour Depositions.

Unit-V: Characterization Techniques

(15 Hours)
Characterization using X-ray powder method - Single Crystal methods -Spectroscopic methods: FTIR, Raman, SEM, EDAX, U.V. Visible - Band gap energy calculation. Thermal properties: Thermogrametric analysis (TGA), Differential thermogram (DTA) and Differential Scanning Calorimetry (DSC) - Vicker micro hardness - Thin Film thickness measurement - Microbalance method - Optical interference method, Four probe method to determine film resistivity- Hall effect.

B. TOPICS FOR SELF STUDY

1. Types of nucleation in thin films

https://nptel.ac.in/courses/113/104/113104075/
2. Bridgman Technique
https://www.alineason.com/en/knowhow/crystal-growth/
3. Molecular beam epitaxy
https://nptel.ac.in/content/storage2/courses/115103039/module16/lec38/5.html
4. Applications of crystals, thin films and nanomaterials
https://nptel.ac.in/courses/104/106/104106093/
https://nptel.ac.in/courses/118/102/118102003/
https://www.youtube.com/watch?v=qK6yoptt9Is

C. TEXT BOOKS

1 .P. SanthanaRaghavan and P. Ramasamy, Crystal Growth Processes and Methods, KRV Publication, Kumbakonam, 2001.
2.A. Goswami, Thin Film Fundamentals, New Age international (P) Ltd., New Delhi, 2013
3. C.P. Poole Jr. and Franck J. Ownes, Introduction to Nanotechnology, Wiley India Pvt Ltd, 2007.
4. K.K. Chattopadhyay and A.N. Banerjee, Introduction to Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd., 2009.
5. H.H. Willard, L.L. Merritt, J.A. Dean and F.A. Settle, Instrumental Methods of Analysis 7e, CBS Publishers and Distributors, New Delhi, 1988

D. REFERENCE BOOKS

1. G. Dhanraj, K. Byrappa, V. Prasad, Michael Dudley (Eds.), Handbook of Crystal Growth, Springer Heidelberg Dordrecht London New York, 2010.
2. A.W. Vere, Crystal Growth: Principles and Progress, Plenum Press, New York, 1987.
3. M. Ohring, Materials Science of Thin Films: Deposition and Structure, 2e, Academic Press (An Imprint of Elsevier), 2002.
4. L. I. Maissel and R. Clang, Hand Book of Thin Films Technology, McGraw Hill, New York, 1970.
5. K. L. Chopra, Thin Film Phenomena, McGraw Hill, New York, 1990.
6. M. S. RamachandraRao and S. Singh, Nanoscience and Nanotechnology, Fundamentals to Frontiers, Wiley, 2013.
7. C.N.R. Rao, A. Muller and A. K. Cheetham (Eds.), The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Wiley VCH VerlagGmbh\&Co, Weinheim, 2004.
8. Kaufmann, Characterization of Materials, 2e, Wiley, 2003.

E. WEBLINKS

1. https://nptel.ac.in/content/storage2/courses/112108092/module2/lec08.pdf
2. https://nptel.ac.in/content/storage2/courses/103104045/pdf_version/lecture19.pdf
3. https://nptel.ac.in/courses/118/102/118102003/
4. https://nptel.ac.in/content/storage2/courses/118102003/downloads/module1.pdf
5. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Course Contents	Learning Outcomes	Highest Blooms Taxonomic level of Transaction
I	Basics of Crystal Growth and Thin Film		
1.1	Nucleation	Explain the process of nucleation	K2

1.2	Different kinds of nucleation	Classify nucleation	K2
1.3	Formation of crystal nucleus	Explain the formation of nucleus	K2
1.4	Energy formation of a nucleus	Explain energy formation of a nucleus	K2
1.5	Classical theory of nucleation	Analyze the kinetics of nucleation.	K2
1.6	Gibbs Thomson equations for vapour and solution	Apply classical theory of nucleation to construct Gibbs Thomson equations for vapour and solution	K3
1.7	spherical and cylindrical nucleus	To deduce Gibbs Thomson equations for spherical and cylindrical nucleus	K3
1.8	Thin films	Define Thin Films	K1
1.9	Thermodynamics of nucleation	Outline the steps involved in nucleation on the basis of thermodynamics	K2
1.10	Growth kinetics of Thin film	Summarize the kinetics involved in thin film growth.	K2
1.11	Crystal growth process in thin films	Explain the crystal growth of thin films	K2
II	Crystal Growth Techniques		
2.1	Classification of crystal growth methods -	Classify the various methods of crystal growth	K1
2.2	Growth from low temperature solutions:	Elaborate on low temperature solution growth methods	K4
2.3	Meir's solubility diagram	Analyze Meir's solubility diagram	K4

2.4	Growth by restricted evaporation of solvent, slow cooling of solution and temperature gradient methods -	Explain solvent evaporation, slow cooling and temperature gradient methods of crystal growth	K2
2.5	Basics of melt growth	Outline the basics of melt growth	K2
2.5	Czochralski pulling method, Vernueil flame fusion method, Hydrothermal growth method.	Compare the experimental design and crystal growth by Czochralski, Vernueil and hydrothermal method	K4
2.6	Growth by chemical vapour transport reaction:	Explain chemical vapour transport reaction	K2
2.7	Transporting agents Sealed capsule method, Open flow systems.	List various transporting agents Explain sealed capsule method and open flow systems.	K1
2.8	K2		
III	Thin Film Preparation Techniques	K1	K2
3.1	Thin films	Classify thin films with reference to thickness	K2
3.2	Introduction to vacuum technology method.	Illustrate the method of vacuum technology	Categorize various deposition techniques under physical and chemical methods
3.3	Deposition techniques heating, Electron beam method, Sputtering, Reactive sputtering, RF sputtering, DC planar magnetron sputtering, Pulsed laser deposition.	Explain the experimental design, coating process, advantages and limitations of various physical deposition methods	K2

\begin{tabular}{|c|c|c|c|}
\hline 3.5 \& Chemical methods: Chemical bath deposition, Electrodeposition, Electro plating and Electroless plating, Spin and Dip coating, Spray pyrolysis deposition. \& Compare the experimental design, coating process, advantages and limitations of various physical deposition methods \& K2 \\
\hline 3.6 \& Physical/Chemical Methods \& Contrast the difference between physical and chemical methods of thin film preparation technique \& K2 \\
\hline IV \& \multicolumn{3}{|l|}{Synthesis of Nanomaterials} \\
\hline 4.1 \& \begin{tabular}{l}
Top-Down/Bottom-Up \\
Approach
\end{tabular} \& Classify Top-Down and bottom up approaches \& K2 \\
\hline 4.2 \& Grinding, Ball Milling, Melt mixing, Photolithography \& Explain the design and synthesis of nanomaterial using various methods under Top-Down approach \& K2 \\
\hline 4.3 \& \begin{tabular}{l}
Wet Chemical Synthesis Methods, Micro emulsion Approach, Synthesis of metal \& semiconductor nano particles by colloidal route, Langmuir-Blodgett method, Sol Gel Methods, Microwave and Atomization, Gas phase Production Methods: \\
Chemical Vapour Depositions
\end{tabular} \& Discuss the synthesisof nanomaterial using various methods under Bottom-Up approach \& K2 \\
\hline V \& \multicolumn{3}{|l|}{Characterization Techniques} \\
\hline 5.1

5.2 \& \begin{tabular}{l}
Characterization using X-ray powder method - Single Crystal methods

Spectroscopic methods:

FTIR, Raman, U.V. Visible -

Band gap energy calculation.

 \&

Characterize the synthesized materials using powder and single crystal XRD

Apply the knowledge of various spectroscopic techniques to characterize materials and calculate energy band gap value
\end{tabular} \& K4

\hline
\end{tabular}

5.3	SEM, EDAX	Explain the experimental design and working of SEM and EDAX.	K2
5.4	Thermal properties: Thermo gravimetric analysis (TGA), Differential thermo gram (DTA) and Differential Scanning Calorimetry (DSC)	Apply various thermo gravimetric analysis to study the thermal properties	K3
5.5	Vicker's micro hardness	Explain micro hardness testing	K2
5.6	Thin Film thickness measurement Microbalance method Optical interference method	Measurement of thin film thickness by various methods	K4
5.7	Four probe method to determine film resistivity-	Determination of electrical properties by four probe method	K4
5.8	Hall effect	Examine the magnetic properties by Hall effect	K4

4. MAPPING SCHEME (PO, PSO \& CO)

P19PH4:5	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO8	PSO9	PSO1	PSO2	PSO3	PSO4
CO1	L	L	-	L	-	-	-	L	L	M	M	L	L
CO 2	L	L	-	L	-	L	-	L	L	M	M	M	M
CO3	H	L	M	H	L	L	M	L	M	M	H	M	H
CO4	H	L	M	H	M	L	M	L	L	H	H	M	M
CO5	H	L	H	H	M	M	M	L	M	H	H	H	H
CO6	H	H	H	H	H	H	M	L	M	H	H	H	H

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Assessment Test (Model Exams) I,II
2. Slip Test/Surprise Test, Assignment, Quiz, Seminar, Group Presentation, Oral presentation,

Problem solving etc.
3. End Semester Examination

Indirect

1. Course-end survey

Course Co-ordinator: Mrs. H. Sirajunisha

ELECTIVE-V: ASTROPHYSICS

SEMESTER: IV

CREDITS: 4

CODE: P20PH4:A
NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Unit Covered
CO1	Analyze the Positions of stars, Proper motions of stars and planets, All-Sky Surveys and Virtual Observatories	K4	I
CO2	Explain the Physical Processes in the solar system, Formation of Planetary Systems, Search for Extra solar Planets	K2	II
CO3	Categorize the Spectral classification, Stellar rotation, Stellar magnetic fields, Stars with peculiar spectra	K4	III
CO4	Infer the characteristics of Inter stellar extinction and reddening	K4	IV
CO5	Analyze the galactic magnetic field and cosmic rays	K4	IV
CO6	Estimate the kinematics, expansion of the Universe, active galaxies, clusters of galaxies	K6	V

2. A. SYLLABUS

Unit-I: Celestial Mechanics and Astrometry

(15 hours)
The celestial Sphere-Positions of stars-Proper motions of stars and planets-Distances of nearby stars -Tools of Astronomy: Telescopes:BasicOptics-OpticalTelescopes-RadioTelescopesInfrared, Ultraviolet, X-ray and Gamma- Ray Astronomy-detectors and observatories Gravitational Waves detectors and Neutrino detectors All-Sky Surveys and Virtual Observatories.

Unit-II: The Solar System

The sun, the physical processes in the solar system-the terrestrial and the giant planets, formation of planetary systems

Basic Stellar Parameters:

The brightness of the stars- Color-magnitudediagrams (TheHRdiagrams), The luminosities of the stars-Angular radii of stars-effective temperatures of stars-masses and radii of stars: Binary stars-search for Extra solar Planets

Unit- III: The Nature of Stars
(15 hours)
Spectral classification- Understanding stellar spectra- Population II stars- Stellar rotation, Stellar magnetic fields-Stars with peculiar spectra-Pulsating stars-explosive stars-interstellar absorption.

Unit-IV: Our Galaxy and the Interstellar Matter

(15 hours)
The shape and size of our Galaxy-Interstellar extinction and reddening-Galactic coordinatesGalactic rotation-Stellar population-Inter Stellar Medium-the galactic magnetic field and cosmic rays

Unit-V: Extra galactic Astronomy

(15 hours)
Normal galaxies-Morphological classification and kinematics-expansion of the Universe-Active galaxies-Clusters of galaxies-Large-scale distribution of galaxies-Gamma ray bursts

B. TOPICS FOR SELF STUDY

1. The Solar System

https://youtu.be/P2nw2UWV-dU
2. Astrophysics \& Cosmology - Video course
https://nptel.ac.in/courses/115/105/115105046/
C. TEXT BOOKS

1. T. Padmanabhan, Theoretical Astrophysics vols 1-3, Latest Edition, Cambridge University Press.
2. BW Carroll \& DA Ostlie, An Introduction to Modern Astrophysics, Latest Edition, AddisonWesley.
3. Frank Shu, The Physical Universe, Latest Edition, University Science Books
4. Martin Harwit, Astrophysical Concepts, Latest Edition, Springer.

D. REFERENCES BOOKS

1. Introduction to Stellar Astrophysics, Volume 1, Basic stellar observations and data, By Erika Bohm-Vitense, Cambridge University Press
2. An Introduction to Modem Astrophysics, Second Edition, By Carroll B.W., Ostlie D.A., Pearson Addison Wesley.
3. "Astrophysics for Physicists" by Amab Rai Chaudhuri, Cambridge University Press,2010
4. Galactic Astronomy: Structure and Kinematics by Mihalas \& Binney, W.H.Freeman \& Co Ltd; 2ndRevisededition1981.
E. WEBLINKS
5. https://youtu.be/P2nw2UWV-dU
6. https://nptel.ac.in/courses/115/105/115105046/
7. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Sec tion	Course Content	Learning Outcomes	Highest Blooms Taxono mic level of transac tion
I	Celestial Mechanics and Astrometry		
1.1	The celestial Sphere, Positions of stars	Recollect the basic concepts celestial Sphere, Positions of stars	K2
1.2	Proper motions of stars and planets, Distances of near by stars	Explain motions of stars and planets	K5
1.3	Telescopes: Basic Optics, Optical Telescopes	Explain the operation principle of the telescopes	K2
1.4	RadioTelescopes,Infrared,Ultraviolet, X-ray,andGamma-RayAstronomy	Illustrate the operational characteristics of RadioTelescopes,Infrared,Ult raviolet,X-ray, andGammaRayAstronomy	K5
1.5	Detectors and observatories GravitationalWavesdetectorsandNeutri nodetectorsAllSkySurveysandVirtualObservatories.	Explain the detectors and observatories Gravitational Waves detectors and Neutrino detectors.	K2
II	The Solar System		
2.1	The Sun,The Physical Processes in the solar system, The Terrestrial and the Giant Planets, Formation of Planetary Systems.	Explain the basics of the solar system, Terrestrial and the Giant Planets	K2
2.2	The brightness of the stars, Colormagnitude diagrams (The HR diagrams),	Explain the brightness of the stars, Color-magnitude diagrams.	K2
2.3	The luminosities of the stars, Angular radii of stars.	Analyze the luminosities of the stars, Angular radii of stars	K4
2.4	Effective temperatures of stars,	Explain the effective temperatures of stars	K2

2.5	Masses and radii of stars: Binary stars, Search for Extra solar Planets	Analyze the masses and radii of stars: binary stars	K4
III	The Nature of Stars		
3.1	Spectral classification, Understanding stellar spectra	Summarize the Spectral classification, Understanding stellar spectra	K3
3.2	Population II stars	Interpret the Population II stars	K5
3.3	Stellar rotation, Stellar magnetic fields	Analyze the stellar rotation, tellar magnetic fields	K4
3.4	Stars with peculiar spectra, Pulsating stars, Explosive stars, Interstellar absorption	Outline the stars with peculiar spectra, pulsating stars, explosive stars, Interstellar absorption	K2
IV	Our Galaxy and The Interstellar Matter		
4.1	The shape and size of our Galaxy	Classify the galaxy	K2
4.2	Interstellar extinction and reddening	Illustrate the Interstellar extinction and reddening	K2
4.3	Galactic coordinates, Galactic rotation	Calculate the Galactic coordinates and Galacticrotation	K3
4.4	Stellar population, Inter Stellar Medium	Analyze the stellar population, Inter Stellar Medium	K4
4.5	The galactic magnetic field and cosmic rays	Interpret the galactic magnetic field and cosmic rays	K5
V	Extra galactic Astronomy		
5.1	Normal galaxies	Describe the Normal galaxies	K2
5.2	Morphological classification and kinematics	Explain the Morphological classification and kinematics	K2
5.3	Expansion of the Universe.	Explain the expansion of the Universe	K2
5.4	Active galaxies, Clusters of galaxies, Large-scale distribution of galaxies	Revise the activegalaxies,clustersofgalaxi	K3

		es,large- scaledistributionofgalaxies	
5.5	Gamma ray bursts	Analyze the Gamma raybursts	K4

4. MAPPING SCHEME (PO, PSO\& CO)

P20PH4: A	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	H	M	H	H	M	M	L	L	M	H	M	H	L
CO2	H	M	H	H	L	L	L	M	L	H	L	H	M
CO3	H	M	M	H	L	L	M	M	L	H	L	M	L
CO4	H	M	L	M	L	L	L	L	M	M	L	H	L
CO5	H	M	L	M	M	L	L	M	M	H	L	M	L
CO6	H	M	H	M	L	L	L	M	M	H	M	H	L

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

1. Continuous Internal Assessment Tests I \& II
2. Model Exam
3. Open book test, Assignment, Quiz, Seminar, Group Presentation, Poster preparation, Problem solving etc.
4. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICAL - I

SEMESTER: I

CREDITS: 3

CODE: P16PH1P1

NO. OF HOURS/WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

$\begin{aligned} & \hline \text { CO. } \\ & \text { NO. } \\ & \hline \end{aligned}$	Course Outcomes	Level	Experiment Covered
CO1	Observe and study the mechanical, optical, thermal, magnetic, dielectric, electrical and electronic properties of various materials.	$\begin{gathered} \mathrm{K} 2 \\ \underset{\mathrm{~K}}{ } \end{gathered}$	
CO2	Understand and explain various properties of materials and the modern equipment's used for investigation of the same.	$\begin{gathered} \mathrm{K} 2 \\ \& \\ \text { K3 } \end{gathered}$	
$\mathrm{CO3}$	Determine and describe certain constants and coefficients and other properties of the various materials.	$\begin{gathered} \text { K3 } \\ \& \\ \text { K4 } \end{gathered}$	7,8 \&9
CO4	Analyze, Discuss, Calculate and Compare some properties at large and other related properties of the materials using various means and methods.	$\begin{gathered} \text { K3 } \\ \underset{\&}{K} \\ \text { K4 } \end{gathered}$	10
CO5	Operate and optimize various mechanical, electrical, electronic and other modern equipment's used for characteristic analysis of materials.	$\begin{gathered} \text { K4 } \\ \& \\ \text { K5 } \end{gathered}$	$\begin{gathered} 11,12,13 \\ \& 14 \end{gathered}$
CO6	Apply the various concepts learned to Design modern equipment's to perform characteristic analysis of materials and to support the Research and Development.	K6	$\begin{gathered} 15,16,17 \\ \& 18 \end{gathered}$

2. SYLLABUS

List of Experiments

Any 15 of the following experiments

1. Four Probe method - Determination of resistivity of powdered sample
2. Determination of carrier concentration and Hall coefficients in semi-conductors
3. Determination of magnetic susceptibility of liquid by Gouys method
4. Determination of magnetic susceptibility of a solid in the form of a thin rod by Gouys method
5. Determination of magnetic susceptibility of liquid by Quincke's method
6. Determination of dielectric constant of a liquid by RF oscillator method
7. Determination of wavelength of monochromatic source using biprism
8. Determination of refractive index of liquids using biprism (by scale \& telescope method)
9. Rydberg's constant using spectrometer
10. Determination of coefficient of coupling of AC bridge method
11. Forbe's method of determining thermal conductivity
12. " g " factor determining by using ESR spectrometer
13. Polarization of liquid - Hollow prism
14. Optical fiber - Determination of numerical aperture, acceptance angle and power loss
15. Determination of wavelength by using Michelson's interferometer
16. Determination of thickness of a film using Michelson's interferometer
17. Determination of wavelength of the laser source - Michelson Interferometer
18. Determination of thickness of glass plate - Michelson Interferometer

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Level of Transaction
1	Four Probe method - Determination of resistivity of powdered sample	Determine the resistivity of a semiconductor for varying temperature.	K2
2	Determination of carrier concentration and Hall coefficients in semiconductors	Determine the Hall Coefficients of the semiconductor by varying the voltage and current.	K3
3	Determination of magnetic susceptibility of liquid by Gouys method	Observe and calculate the magnetic susceptibility value of the solid or liquid substance using Guoys balance by varying the magnetic field. Perform fine adjustments and measure precisely the minor differences in the weight of the substance under study.	K4
4	Determination of magnetic susceptibility of a solid in the form of a thin rod by Gouys method		
5	Determination of magnetic susceptibility of liquid by Quincke's method		
6	Determination of dielectric constant of a liquid by RF oscillator method	Determine the dielectric constant of the liquid substance by varying the RF.	K3
7	Determination of wavelength of monochromatic source using biprism	Determine the wavelength from the spectral lines formed using the monochromatic source with the help of the biprism and spectrometer. Determine the refractive	K5
8	Determination of refractive index of liquids using biprism (by scale \& telescope method)	with the same arrangement. Apply the concept of reflection and make precise adjustments	
9	Rydberg's constant using spectrometer	Observe and calculate the Rydberg's constant from the spectral lines formed using hydrogen source.	K4

10	Determination of coefficient of coupling of AC bridge method	Apply Wheatstone's bridge concept to determine the Self and mutual induction of the coils.	K4
11	Forbe's method of determining thermal conductivity	Determine the thermalproperty of the material using forbes method by observing the temperature	K5
12	" g " factor determining by using ESR spectrometer	Determine the ' g ' factor by forming and matching the spectral peaks observed using Cathode Ray Oscilloscope.	K5
13	Polarization of liquid - Hollow prism	Determine the polarization of liquid using hollow prism.	K4
14	Optical fiber - Determination of numerical aperture, acceptance angle and power loss	Observe, adjust and calculate the NA of the given fiber using laser source.	K4
15	Determination of wavelength by using Michelson's interferometer	Observe and calculate the wavelength of the monochromatic source by performing fine adjustments	
16	Determination of thickness of a film using Michelson's interferometer	Michelson Interferometer. Determine the thickness of the glass plate using hydrogen	
17	Determination of wavelength of the laser source - Michelson Interferometer	source along with the monochromatic source. Determine the above said thing using a laser source by	K6
18	Determination of thickness of glass plate - Michelson Interferometer	manually creating the Michelson Interferometer setup applying the concept of light and optics.	

4. MAPPING SCHEME (PO, PSO \& CO)

P16PH1P1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	M	M	L	M	L	L	L	-	-	M	M	L	-
CO2	M	M	-	M	L	L	L	-	-	M	M	L	-
CO3	M	L	-	M	L	L	L	-	-	M	M	L	-
CO4	M	L	-	M	L	L	L	-	-	M	M	L	-
CO5	M	M	L	M	L	L	L	-	-	M	M	L	L
CO6	H	M	M	M	L	L	L	L	M	M	M	L	M

5. COURSE ASSESSMENT METHODS

Direct

1.Continuous Assessment Test (Model Practical Exams)
2. Record, Assignment, Problem solving, Design new circuits and set up, Skill Assessment etc.,
3. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICAL - II

SEMESTER: II
CREDITS: 3

CODE: P16PH2P2
NO. OF HOURS/ WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the student will be able to:

CO. NO.	Course Outcomes	Level	Experiments covered
$\mathbf{C O 1}$	Test the charge and mass ratio using various experimental methods.	$\mathbf{K 2}$	$\mathbf{1 , 2 , 5 , 6}$
$\mathbf{C O 2}$	Construct the circuits and verify characteristics of given electronic components.	$\mathbf{K 3}$	$\mathbf{1 - 1 6}$
$\mathbf{C O 3}$	Examine the function of semiconductor switching devices (Thyristors).	$\mathbf{K 4}$	$\mathbf{1 5 , 1 6 , 1 7}$
$\mathbf{C O 4}$	Measure Young's modulus, Numerical aperture, Thermal conductivity and energy loss of various materials.	$\mathbf{K 5}$	$\mathbf{1 - 7 , 1 4}$
$\mathbf{C O 5}$	Determine physical constants such as specific charge of electron, Stefan's constant and Planck's constant.	$\mathbf{K 5}$	$\mathbf{3 , 5 , 6 , 7}$
$\mathbf{C O 6}$	Construct amplifier, oscillator circuits and analyze their frequency responses.	$\mathbf{K 6}$	$\mathbf{8 , 9 , 1 0 , 1 1 ,}$

2. SYLLABUS

List of Experiments

General Experiments

1. Determination of $\mathrm{q}, \mathrm{n}, \sigma$ by elliptical fringes method.
2. Determination of $\mathrm{q}, \mathrm{n}, \sigma$ by hyperbolic fringes method.
3. Determination of Stefan's constant.
4. B-H loop - Energy loss of a magnetic material - Anchor ring using B.G.
5. Determination of e / m of an electron by magnetron method.
6. Determination of e / m of an electron by Thomson's method.
7. Photoelectric effect - determination of Planck's constant.

Electronics Experiments

8. Study of feedback amplifier - Determination of bandwidth, input and output impedances.
9. Design and study of monostable multivibrator.
10. Design and study of phase shift oscillator.
11. Characteristics of UJT and UJT relaxation oscillator.
12. FET oscillator.
13. Darlington pair amplifier.
14. Characteristics of LDR.
15. Characteristics of SCR.
16. Characteristics of DIAC.
17. Characteristics of TRIAC.
18. Frequency divider using IC 555.
19. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
1	Determination of $\mathrm{q}, \mathrm{n}, \sigma$ by elliptical fringes method.	Estimate the Young's modulus, Poison's ratio and Rigidity modulus of the glass material by applying cornus method.	K2
2	Determination of $\mathrm{q}, \mathrm{n}, \sigma$ by hyperbolic fringes method.	Estimate the Young's modulus, Poison's ratio and Rigidity modulus of the glass material by applying cornus method.	K2
3	Determination of Stefan's constant.	Calculate the following physical constants. (a) Stefan's constant (b) Specific charge of electron (c) Planck's constant	K4
4	Determination of e / m of an electron by magnetron method.		K4
5	Determination of e / m of an electron by Thomson's method.		K4
6	Photoelectric effect - determination of Planck's constant.		K4
7	BH loop - Energy loss of a magnetic material - Anchor ring using B.G.	Discuss the energy loss of a magnetic material	K3

8	Study of feedback amplifier- Determination of bandwidth, input and output impedances.	Design and construct the amplifier and analyze its frequency response.	K5
9	Design and study of monostable multivibrator.	Design and construct the monostable multivibrator and measure the pulse width.	K5
10	Design and study of phase shift oscillator.	Design the RC circuit and analyze the phase shift of sine wave.	K6
11	Characteristics of UJT and UJT relaxation oscillator.	Analyze the characteristics of UJT and construct the relaxation oscillator.	K5
12	Frequency divider using IC 555	Construct the circuit to reduce the frequency.	K5
13	Characteristics of SCR	Investigate the voltage current characteristics unidirectional solid-state device.	K6
14	Characteristics of DIAC	Investigate the voltage current characteristics of bidirectional solid-state devices and analyze the switching ability.	K6
15	Characteristics of TRIAC	K6	
16	Characteristics of LDR	Investigate the spectral response of Light dependent resistor.	K6

4.MAPPING SCHEME (PO, PSO \& CO)

P16PH2P2	PO									PSO			
	PO	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \end{gathered}$	$\begin{gathered} \text { PO } \\ 6 \end{gathered}$	$\begin{gathered} \text { PO } \\ 7 \end{gathered}$	$\begin{gathered} \text { PO } \\ \mathbf{8} \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PSO } \\ \mathbf{3} \\ \hline \end{gathered}$	$\begin{gathered} \text { PSO } \\ 4 \\ \hline \end{gathered}$
CO 1	H	M	H	H	M	-	L	-	-	H	-	M	-
CO 2	H	-	M	-	M	-	-	-	-	H	M	-	M
CO 3	H	-	M	L	-	-	-	-	-	H	-	M	-
CO 4	H	L	-	M	L	-	-	M	L	H	L	H	-
CO 5	H	-	M	M	-	-	-	-	-	H	-	-	L
CO 6	H	M	H	-	-	H	-	M	M	-	M	-	L

L- Low M-Moderate
H-High

5. COURSE ASSESMENT METHODS

Direct

1. Record and Observation Evaluation
2. Continuous Assessment (Minimum Two)
3. End Semester Practical Examinations

In-Direct

1. Assignments
2. Laboratory / Field visits
3. Course end survey/Feedbacks

MAJOR PRACTICAL- III

SEMESTER: III
CREDITS: 3

CODE: P16PH3P3
NO. OF HOURS /WEEK: 6

1. COURSE OUTCOMES (CO)

After the successful completion of this course the students will be able to:

CO. NO.	Course Outcomes	Level	Experiment Covered
CO1	Construct the OPAMP circuits and study characteristics and responses of circuits.	K3	$\mathbf{1 , 2 , 3 , 4 , 5}$.
$\mathbf{C O 2}$	Apply the concepts of operational amplifier to solve differential and simultaneous equations.	K2	$\mathbf{6}$
$\mathbf{C O 3}$	Construct the circuits and verify the characteristics of non-linearity and modulation -demodulation.	K4	$\mathbf{7 , 8 , 9 , 1 0}$
$\mathbf{C O 4}$	Make use of light to determine the physical properties of materials, Measure dielectric properties of solid and liquid materials.	K5	$\mathbf{1 1 , 1 2 , 1 3 , 1 4 .}$
$\mathbf{C O 5}$	Develop thin film and study the physical properties of prepared materials.	K5	$\mathbf{1 5 , 1 6 , 1 7}$
$\mathbf{C O 6}$	Determine magnetic properties of materials.	$\mathbf{K 5}$	$\mathbf{1 8 , 1 9}$

2. SYLLABUS

List of Experiments

Analog

1. Characteristics of Op-amp, open loop differential gain, output resistance, CMRR and frequency
response.
2. Op-amp low pass, high pass, band pass and active filters.
3. Op-amp Integrator and differentiator.
4. Op-amp sine, square, triangular and ramp wave generator.
5. Op-amp Log and antilog and second order transfer function amplifier.
6. Op-amp solving simultaneous equations.
7. D/A Conversion R-2R and weighted resistor network - to determine the resolution, linearity
and accuracy.
8. Modulation - demodulation.
9. Characteristics of Chua diode. Chaotic dynamics of Chua diode.
10. Nonlinear exhibited by Colpitts oscillator and Wein bridge oscillator

Material Science Lab

11. Linear Optical studies - UV - Visible Studies (absorbance and optical bandgap)
12. Dielectric studies using microwave- parameters of a liquid.
13. Dielectric studies using microwave - parameters of a solid.
14. Thin film preparation by dip coating - measurement of thickness.
15. Electrical properties of thin film - Calculation of activation energy by Resistance variation with temperature. (Two probe).
16. X-ray diffraction analysis - $\mathrm{D}, \dot{\mathrm{I}}, \mathrm{N}$ and \mathfrak{i}.
17. Gas sensing properties of a thin film.
18. Susceptibility of a material by Hysteresis.
19. Zeeman effect.
20. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of transaction
1	Characteristics of Op-amp, open loop differential gain, output resistance, CMRR and frequency response.	Prove the characteristics of Op-Amp gain, output resistance, CMMR and frequency response. Analyze the low pass, high pass and band pass active filter using OP-Amp.	K5
2	Op-amp low pass, high pass, band pass and active filters.	K4	
3	Op-amp Integrator and differentiator.	Make use of Op-Amp to verify integrator and differentiator.	K4

4	Op-amp sine, square, triangular and ramp wave generator.	Analyze the sine, square, triangular, ramp wave generations using Op-Amp circuit. Test for second order transfer function using Op-Amp Log and anti-Log.	K4
5	Op-amp solving simultaneous equations.	Solve simultaneous equation using Op-Amp.	K5
6	Modulation - demodulation.	Construct the circuits to verify modulation and demodulation.	K6
7	Characteristics of Chua diode. Chaotic dynamics of Chua diode.	Construct the Chua diode and verify the characteristics and dynamics.	K3
8	Nonlinear exhibited by Colpitts oscillator and Wein bridge oscillator	Determine characteristics of non-linearity using Colpitts and Wein bridge oscillator.	K5
9	Linear Optical studies - UV Visible Studies (absorbance and optical bandgap)	Evaluate the band gap of materials by UV-Visible spectroscopy.	K5
10	Dielectric studies using microwave-- parameters of a liquid.	Estimate the dielectric properties of liquids by source of microwave instrument.	K5
11	Dielectric studies using microwave - parameters of a	Investigate the dielectric properties of solids by source of microwave instrument.	K6
12	Thin film preparation by dip coating - measurement of thickness.	Construct the dip coating setup to prepare the thin film and measure the thickness of coatings.	K6
13	Electrical properties of thin film - Calculation of activation energy by Resistance variation	Construct the dip coating setup to prepare the thin film and measure the activation	K6

	with temperature. (Two probe).	energy and variation of resistances of coatings.	
14	X-ray diffraction analysis - D, $\dot{\mathrm{I}}$, N and \mathfrak{i}.	Analyze the crystallographic information by X-ray diffraction data's.	K5
15	Gas sensing properties of a thin film.	Determine gas sensing properties of thin film.	K5
16	Susceptibility of a material by Hysteresis.	Interpret the susceptibility of the materials by Hysteresis loop.	K5
17	Zeeman effect.	Construct and verify the Zeeman effect.	K6
18	Photoelectric determination effect Pras \quad of constant.	Determine the Planck's constant by photoelectric effect.	K5

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{aligned} & \text { P16PH } \\ & \text { 3P3 } \end{aligned}$	PO									PSO			
	PO	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	M	H	H	M	-	L	-	-	H	-	M	-
CO2	H	-	M	-	M	-	-	-	-	H	M	-	M
CO3	H	-	M	L	-	-	-	-	-	H	-	M	-
CO4	H	L	-	M	L	-	-	M	L	H	L	H	-
CO 5	H	-	M	M	-	-	-	-	-	H	-	-	L
CO 6	H	M	H	-	-	H	-	M	M	-	M	-	L

L- Low M-Moderate H-High

5. COURSE ASSESMENT METHODS

Direct

1. Record and Observation Evaluation
2. Continuous Assessments (Minimum Two)
3. End Semester Practical Examinations

In-Direct

1. Assignments
2. Laboratory / Field visits
3. Course end survey/Feedbacks

MAJOR PRACTICAL- IV

SEMESTER: IV
CREDITS: 3

CODE: P16PH4P4
NO. OF HOURS /WEEK: 6

1. COURSE OUTCOMES (CO)

After successful completion of the course, the students will be able to:

CO. NO.	Course Outcomes	Level	Experiment covered
$\mathbf{C O 1}$	Examine the functionalities of basic combinational circuits.	K4	$\mathbf{1 , 2 , 3 , 4}$
$\mathbf{C O 2}$	Make use of basic sequential circuits using Flip-flop.	K3	$\mathbf{5 , 6 , 7}$
$\mathbf{C O 3}$	Construct logic circuits and simplify the Boolean expression.	$\mathbf{K 5}$	$\mathbf{8 , 9 , 1 0}$
$\mathbf{C O 4}$	Test and debug ALP using microprocessor (8085) and microcontroller (MCS51) systems	$\mathbf{K 4}$	$\mathbf{1 1 , 1 2}$
$\mathbf{C O 5}$	Interface various A/D, D/A convertor, Traffic light controller and Stepper motor controller.	$\mathbf{K 5}$	$\mathbf{1 3 , 1 4 , 1 5 ,}$
$\mathbf{C O 6}$	Make use of numerical methods to the application of physics (RK2, RK4, Newton-Rapson) and Programming and plotting the data using Origin.	$\mathbf{K 5}$	$\mathbf{1 8 , 1 9 , 2 0}$

2. SYLLABUS

List of Experiments

Digital Electronics

1. Multiplexer - Demultiplexer.
2. Study of 7490 (0-9 and 0-99).
3. One shot multivibrator - Using ICs, determination of pulse width.
4. Digital comparator using EXOR and NAND gates.
5. Study of 7-segment display decoder - IC 7447.
6. Study of FLIP FLOP, Synchronous UP and Down counter.
7. Shift register using FLIP FLOPS.
8. Study of memory circuits - RAM, ROM, EPROM, PROM.
9. Half adder, Half Subtractor and Full adder, Full Subtractor circuits using NAND Gates.
10. Simplification of Boolean expression by Karnaugh Map method and verification.

Microcontroller and Microprocessor Practical

11. a) 8-bit addition, multiplication, multibyte addition, subtraction, division and multibyte subtraction.
b) 16-bit addition Subtraction by 1's complement and 2's complement.
12. Conversion from decimal to octal and hexa systems, octal and hexa to decimal systems
13. Study of DAC interfacing (DAC 0800)
14. Study of ADC interfacing (ADC 0809)
15. Traffic Control System using microprocessor
16. Generation of square, triangular, sawtooth, staircase and sine waves using DAC 0800
17. Control of stepper motor using microprocessor.

Computer Practicals (C Language)
18. Solving equations by Newton - Raphson method
19. Numerical differentiation by Runge-Kutta Method (II and IV Order)
20. Plotting, merging and editing the data using Origin.
3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment No.	Course Content	Learning Outcomes	Highest Bloom's Taxonomic level of Transaction
1	Multiplexer Demultiplexer.	Examine Mux and Demux	K4
2	Study of 7490 (0-9 and 0- $99)$.	Verify the output of decade counter	K4
3	One shot multivibrator - Using ICs, determination of pulse width.	Determine one shot multivibrator using IC.	K4
4	Digital comparator using EXOR and NAND gates.	Construct digital comparator using EXOR and NAND	K3
5	Study of 7-segment display decoder - IC 7447	Apply 7-segment display with IC 7447	K3
6	Study of FLIP FLOP, Synchronous UP and Down counter	Construct synchronous up and down counter using IC7476	K3
7	Shift register using FLIP	Analyze the function of shift	K4

	FLOPS.	register using flip flop	
8	Study of memory circuits RAM, ROM, EPROM, PROM.	Construct RAM, ROM, EPROM and PROM studied.	K5
9	Half adder, Half Subtractor and Full adder, Full Subtractor circuits using NAND Gates.	Construct half adder, half adder and full subtractor using NAND gates	K5
10	Simplification of Boolean expression by Karnaugh Map method and verification.	Simplify Boolean expression by Karnaugh map method.	K4
11	a) \quad 8-bit addition, multiplication, multibyte addition, division \quad and subtraction, subtraction. multibyte b) 16-bit addition Subtraction by 1 's complement complement. and 2's	Solve 8-bit \quadaddition multiplication, multibyteaddition, subtraction, division,multibyte subtraction and 16 -bit addition Subtraction by1'scomplement and \quad 2'scomplement using 8085 MP .	K3
12	Conversion from decimal to octal and hexa systems, octal and hexa to decimal systems	Develop ALP for conversion from decimal to octal, hexa systems, octal and hexa to decimal systems	K3
13	Study of DAC interfacing (DAC 0800)	Study and recall DAC 0800	K1
14	Study of ADC interfacing (ADC 0809)	Determinegeneration character of 0809	K5
15	Traffic Control System using microprocessor	Analyze the traffic control system using 8085 processor	K4
16	Generation of square, triangular, sawtooth, staircase and sine waves using DAC 0800	Determine Generation of square, triangular, saw tooth, staircase and sine waves using DAC 0800	K5
17	Control of stepper motor using microprocessor.	Develop ALP for stepper motor control using 8085MP	K3
18	Solving equations by Newton - Raphson method	Develop a C program by Newton-Raphson mehod.	K3
19	Numerical differentiation by Runge Kutta Method (II and IV Order)	develop a C program by Runge Kutta Mehod (II and IV order)	K5

20	Plotting, merging and editing the data using Origin.	Interpret plotting, merging and editing the data using Origin	K5

4. MAPPING SCHEME (PO, PSO \& CO)

$\begin{gathered} \text { P16PH4 } \\ \text { P4 } \end{gathered}$	PO									PSO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	$\begin{gathered} \hline \text { PSO } \\ 1 \end{gathered}$	$\begin{gathered} \text { PSO } \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PSO } \\ \mathbf{3} \\ \hline \end{array}$	$\begin{gathered} \text { PSO } \\ 4 \end{gathered}$
CO1	H	M	M	H	L	-	M	-	-	H	H	H	M
CO2	H	M	M	H	L	-	M	-	-	H	H	H	M
CO 3	H	H	M	M	L	-	H	-	-	H	M	L	M
CO4	H	H	L	L	M	-	H	-	-	M	M	H	M
CO5	H	H	L	M	M	-	H	-	-	H	H	H	M
CO6	H	H	L	M	H	-	H	-	-	H	L	M	M

L-Low M-Moderate H- High

5. COURSE ASSESMENT METHODS

Direct

1. Record and Observation Evaluation
2. Continuous assessments (Minimum Two)
3. End Semester Practical Examinations

In-Direct

1. Assignments
2. Laboratory / Field visits
3. Course end survey/Feedbacks
