Under- Graduate Programme in Mathematics

Courses of study, Schemes of Examinations & Syllabi (Choice Based Credit System)

DEPARTMENT OF MATHEMATICS (DST – FIST sponsored)

BISHOP HEBER COLLEGE (Autonomous) (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC & Identified as College of Excellence by the UGC) DST – FIST Sponsored & DBT Sponsored TIRUCHIRAPPALLI – 620 017 TAMIL NADU, INDIA

2022 – 2023

Under – Graduate Programme in Mathematics

Eligibility:

A pass in Higher Secondary Examination /Junior College with a first class in both Mathematics and Physics.

Parts of the Curriculum	No. of Courses	Credits
Part – I : Language	4	12
Part – II : English	4	12
Part – III	-	
Major		
Core	12	59
Elective	3	15
Allied		
Allied (Physics/	3	12
Computer Science)		
Allied (Statistics)	3	10
Group Project	1	3
Part – IV		
SBEC	3	6
NMEC	2	4
VLOC	1	2
Env. Studies	1	2
SBC	1	1
Part – V		
Extension Activities	1	1
Gender Studies	1	1
Total	40	140

Structure of the Curriculum

List of Core Courses

- 1. Algebra, Trigonometry and Differential Calculus
- 2. Integral Calculus and Analytical Geometry of Three Dimensions
- 3. Sequences & Series
- 4. Differential Equations and Laplace Transforms
- 5. Theory of Equations and Fourier Series
- 6. Algebra
- 7. Real Analysis
- 8. Mechanics
- 9. Numerical Methods
- 10. Complex Analysis
- 11. Discrete Mathematics
- 12. Elementary Number Theory

List of Elective Courses:

- 1. Vector Calculus
- 2. Mathematical Modeling
- 3. Operations Research
- 4. Graph Theory
- 5. Fundamentals of Data Structures and Algorithms

List of Non-Major Elective Courses (NMEC) (Offered to students of other discipline)

- 1. Mathematics for Competitive Examinations
- 2. Statistical Applications

List of Skill Based Elective Courses (SBEC):

- 1. Mathematics for Competitive Examinations
- 2. Introduction to Scientific Computing (OCTAVE)
- 3. Programming in C (Linux OS)

Skill Based Course (SBC)

1. Life Skills

Extra Credit Courses:

- 1. Data Structures and Algorithms
- 2. Fourier Transforms
- 3. Fuzzy Mathematics
- 4. Simulation

Learning Outcomes of Under-Graduate Programme in Mathematics

General Outcomes	Specific Outcomes			
On successful completion of the	After the successful completion of the			
programme, the student will be	under-graduate programme in			
1. skillful in logical thinking and	Mathematics, the student is			
reasoning.	expected to			
able to apply mathematics for	1. be able to clear exams in			
problems occurring in different	mathematical aptitude			
fields of science and	2. be able to analyze any data using			
engineering.	statistical tools			
3. be able to take up mathematics	3. be able to develop codes using C-			
programme at Master's level	language for simple problems			
anywhere in and outside India.	be able to use packages like			
	octave, R etc.			
	5. be able to apply mathematics for			
	solving transportation problems,			
	assignment problems and some			
	physical problems involving			
	differential equations, transforms,			
	vector calculus etc.			

B.Sc. Mathematics – Programme Description

(For the students admitted from the year 2022 onwards)

Sem.	Part	Course	Course	Course Title	Prerequisite	Hrs /	Credits	Marks		
			Code		S	week		CIA	ESA	Total
	I	Tamil I /*	U122TM1L1	செய்யுள், இலக்கிய வரலாறு, உரைநடை, மொழிப்பெயர்ச்சி, படைப்பாக்கமும்		6	3	25	75	100
		English I	U22EGNL1	Language through Literature: Prose & Short Stories		6	3	40	60	100
		Core I	U21MA101	Algebra, Trigonometry and Differential Calculus		5	4	25	75	100
		Allied I	U22PHY01/ U16CSY11	Mechanics, Sound, Thermal Physics and Optics / Fundamentals of C Programming		4	4	25	75	100
I		Allied Practical	U22PHYP1/ U16CSYP1	Allied Physics Practical/ Allied Computer Science Practical		3				
		Env. Stud.	U16EST11	Environmental Studies		2	2	25	75	100
	IV	VLOC.	U22VLO11/ U22VLO12	Value education (RI / MI)		2	2	25	75	100
		SBEC I	U21MA1S1	Mathematics for Competitive Examinations		2	2	25	75	100
	I	Tamil II /*	U22TM2L2	செய்யுள், இலக்கிய வரலாறு, சிறுகடைதிரட்டு, மொழிப்பெயர்ச்சி & படைப்பாக்கம்		6	3	25	75	100
	II	English II	U22EGNL2	Language through Literature: Poetry and Shakespeare		6	3	40	60	100
П		Core II	U21MA202	Integral Calculus and Analytical Geometry of Three Dimensions	U21MA101	5	5	25	75	100
		Elective I	U21MA2:1	Vector Calculus	U21MA101	6	5	25	75	100
	Ш	Allied II	U22PHY02/ U16CSY22	Electricity, Atomic Physics and Digital Electronics / Object Oriented Programming with JAVA		4	4	25	75	100
		Allied Practical	U22PHYP1/ U16CSYP1	Allied Physics Practical/ Allied Computer Science Practical		3	4	40	60	100
	I	Tamil III/*	U22TM3L3	செய்யுள் 🗆 காப்பியங்கள், இலக்கிய வரலாறு, நாவல், மொழிப்பெயர்ச்சி		6	3	25	75	100
	II	English III	U22EGNL3	English for Competitive Examinations		6	3	40	60	100
		Core III	U21MA303	Sequences and Series		5	4	25	75	100
III		Core IV	U21MA304	Differential Equations and Laplace Transforms	U21MA101, U21MA202	5	4	25	75	100
		Allied III	U21MAS31	Mathematical Statistics I		4	4	25	75	100
		SBEC II	U21MAPS2	Introduction to Scientific Computing (OCTAVE)		2	2	40	60	100
	IV	NMEC I		To be selected from courses offered by other departments		2	2	25/ 40	75/ 60	100

			Course		Pre	Hrs /	Credi		Mark	S
Sem.	Part	Course	Code	Course Title	requisites	week	ts	CIA	ES A	Total
	I	Tamil IV /*	U22TM4L4	செய்யுள் – நாடகம், இலக்கிய வரலாறு, மொழிப்பயிற்சி		5	3	25	75	100
	Ш	English IV	U22EGNL4	English through Literature		5	3	40	60	100
		Core V	U21MA405	Theory of Equations and Fourier Series		6	5	25	75	100
N7		Allied IV	U21MAS42	Mathematical Statistics II	U21MAS31	6	4	25	75	100
IV		Allied Practical	U22MA4P1	Mathematical Statistics III	U21MAS31	4	2	40	60	100
	IV	NMEC II		To be selected from courses offered by other departments		2	2	25/ 40	75/ 60	100
		SBC	U22LFS41	Life Skills		2	1	100		100
	V	Extension Activities	U16ETA41				1	-	-	-
		Core VI	U21MA506	Algebra		6	6	25	75	100
		Core VII	U21MA507	Real Analysis	U21MA303/ U21MA303	6	6	25	75	100
v		Core VIII	U21MA508	Mechanics	U21MA101, U21MA2:1	6	5	25	75	100
		Core IX	U21MA509	Numerical Methods	U21MA101 U21MA202	5	4	25	75	100
		Core Project	U21MA5PJ	Project		5	3	40	60	100
	IV	SBEC III	U21MAPS3	Programming in C (Linux OS)		2	2	40	60	100
		Core X	U21MA610	Complex Analysis	U21MA507	6	6	25	75	100
		Core XI	U21MA611	Discrete Mathematics		6	5	25	75	100
		Core XII	U21MA612	Elementary Number Theory		6	5	25	75	100
VI		Elective II	U21MA6:2	Mathematical Modeling		6	5	25	75	100
		Elective III	U21MA6:3	Operations Research	U21MA101, U21MA202	6	5	25	75	100
	V		U16GST61	Gender Studies			1	20	80	100
Total 140									3800	

SBEC- Skill Based Elective Course VLOC- Value added Life Oriented Course CIA- Continuous Internal Assessment NMEC- Non Major Elective Course SBC- Skill Based Course ESA- End Semester Assessment

* Other Languages	Hindi	Sanskrit	French		Hindi	Sanskrit	French
Semester I	U22HD1L1	U22SK1L1	U22FR1L1	Semester III	U22HD3L3	U22SK3L3	U22FR3L3
Semester II	U22HD2L2	U22SK2L2	U22FR2L2	Semester IV	U22HD4L4	U22SK4L4	U22FR4L4

UG - Non-Major Elective Courses (NMEC)

Som	Courso	Codo	Titlo	Hrs./	Crodite	Marks				
Jem.	Course	Code	The	week	Cieuns	CIA	ESA	TOTAL		
III	NMEC-I	U21MA3E1	Mathematics for Competitive Examinations	2	2	25	75	100		
IV	NMEC - II	U21MAPE2	Statistical Applications (Practicals)	2	2	40	60	100		

Core Course I – Algebra, Trigonometry and Differential Calculus

Sem. I Total Hrs. 75 Code : U21MA101 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know the properties of Eigen values, Eigen vectors and the applications of characteristic equations.
- 2. know the expansions of circular and hyperbolic functions, their inter-relations.
- 3. be able to understand higher order differentiation and differentiation of functions of several variables and to comprehend the applications of differential calculus.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find the eigen values, eigen vectors of a given matrix.
- 2. expand circular functions as a series.
- 3. evaluate limits of combination of trigonometric functions.
- 4. find higher derivatives of given functions.

Algebra

Unit I

Characteristic equation – Eigen values and Eigen vectors of the matrix – Cayley-Hamilton theorem.

Trigonometry

Unit II

Expansion of $\cos n\theta$, $\sin n\theta$ and $\tan n\theta$ (n is a positive integer) – derivations and problems - Expansion of $\cos^n \theta$, $\sin^n \theta$ and $\tan^n \theta$ in a series of sines, cosines and tangents of multiples of θ , θ given in radians – Expansion of $\cos\theta$, $\sin\theta$ and $\tan\theta$ in terms of θ - Hyperbolic functions – Relation between the circular and hyperbolic functions.

Differential Calculus

Unit III

Leibnitz formula for the nth derivative of product - Curvature – circle, radius and center of curvature – Cartesian formula for the radius of curvature - The co-ordinates of the center of curvature - Evolute and involute - Radius of curvature (polar co-ordinates).

Unit IV

Meaning of the derivative – Meaning of the sign of the differential coefficient – Related problems – Maxima and Minima – Conditions for maximum and minimum values of f(x) – Related problems.

Unit V

Partial differentiation – Total differential coefficient – Implicit functions – Homogeneous functions – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

Text Books

- 1. T. K. Manickavasagam Pillay, T. Natarajan and K. S. Ganapathy, Algebra Volume II, S. Viswanathan (Printers & Publishers) Pvt. Ltd., Reprint 2011 (Unit I).
- 2. S. Narayanan, T. K. Manickavasagam Pillay, Trigonometry, S. Viswanathan (Printers and Publishers) Pvt. Ltd., Reprint 2009 (Unit II).
- 3. S. Narayanan and T. K. Manickavasagam Pillay, Calculus Volume I, S. Viswanathan (Printers & Publishers) Pvt. Ltd. Reprint 2011 (Units III, IV and V).

Unit I Chapter 2 § 16 Unit II Chapter 3 § 1-5 (excluding formation of equations) Chapter 4§ 1, 2 Unit III Chapter 3 § 2.1, 2.2 Chapter 10 § 2.1 – 2.6 Unit IV Chapter 4 § 1, 2.1, 2.2 Chapter 5 § 1.1 - 1.5Unit V Chapter 8 § 1.3 - 1.7, 4 & 5

- 1. Dr Perumal Mariappan, Differential Calculus An Application, New Century Book House, Pvt. Ltd, Chennai.
- 2. Dr P Mariappan, Dr V Franklin and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.
- 3. Dr P. Mariappan, Dr A Emimal Kanaga Pushpam and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt.Ltd, Chennai.
- 4. S. Sudha, Algebra, Analytical Geometry of (2D) and Trigonometry, Emerald Publishers, Chennai, First Edition 1998.
- 5. S. Sudha, Calculus, Emerald Publishers, Chennai, First Edition 1998.

Core course II - Integral Calculus and Analytical Geometry of Three Dimensions

Sem. II Total Hrs. 75 Code : U21MA202 Credits: 5

General objectives:

On completion of this course, the learner will

- 1. know the evaluation of indefinite integrals of standard forms.
- 2. know methods of solving multiple integrals.
- 3. be able to understand properties of straight lines and spheres.

Learning outcomes:

On completion of the course, the student will be able to

- 1. evaluate indefinite integrals and multiple integrals.
- 2. find equations of straight lines and spheres satisfying given conditions.

Integral Calculus

Unit I

Integration of the forms

- (i) $\int [(px+q) / (ax^2+bx+c)]dx$ (ii) $\int [(px+q) / (\sqrt{ax^2+bx+c})]dx$
- (iii) $\int [(px+q)\sqrt{(ax^2+bx+c)}]dx$ (iv) $\int dx/(a+bcosx)$ Properties of definite integrals Integration by parts.

Unit II

Reduction formula, Beta and Gamma functions.

Unit III

Multiple integral - Double integral - Change of order of integration - Triple integral.

Analytical Geometry of Three Dimensions

Unit IV

Equation of the straight line – shortest distance between two skew lines – Equation to the line of shortest distance.

Unit V

Sphere – Standard equation – Length of the tangent from any point – Sphere passing through a given circle – Intersection of two spheres – tangent plane.

Text Books

- 1. S. Narayanan and T. K. Manickavasagam Pillay, Calculus Volume II, S. Viswanathan (Printers and Publishers) Pvt. Ltd., Reprint 2011. (Units I, II & III)
- 2. T. K. Manickavasagam Pillay and T. Natarajan, A Textbook of Analytical Geometry (Part II Three Dimensions), S. Viswanathan (Printers and Publishers) Pvt. Ltd., Reprint 2008. (Units IV & V).
 - Unit
 I
 Chapter 1
 § 7.3 (Rule b, type (ii)), 8 (Cases (ii) & (iii)), 9, 11, 12

 Unit
 II
 Chapter 1
 § 13.1 13.10
 Chapter 7
 § 2.1,2.3,3,4,5

 Unit
 III
 Chapter 5
 § 1, 2.1,2.2 (Problems Only), 3.1,3.2,4

 Unit
 IV
 Chapter 3
 § 1 8

 Unit
 V
 Chapter 4

- 1. Dr Perumal Mariappan, Integral Calculus An Application, New Century Book House, Pvt.Ltd, Chennai.
- 2. Dr P Mariappan, Dr V Franklin and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.
- 3. Shanthi Narayanan and Mittal P.K., Analytical Solid Geometry, 16th Edition, S. Chand & Co., New Delhi, 1999.

Elective I - Vector Calculus

Sem. II Total Hrs. 90

General objectives:

On completion of this course, the learner will

- 1. know the physical applications of derivatives of vectors.
- 2. be able to understand line integral, surface integral and volume integral and understand their interrelations and their applications.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find derivatives of vector functions.
- 2. evaluate line, surface and volume integrals.

Vector Differentiation

Unit I

Limit of a vector function – Continuity of vector functions – Derivative of a vector function – Geometrical significance of vector differentiation – Physical application of derivatives of vectors – Partial derivatives of a vector function – Scalar and vector point functions – Level surface – Gradient of a scalar point function – Directional derivative of a scalar point function – Equation of tangent plane and normal line to level surface.

Unit II

Divergence and curl of a vector point function – Solenoidal vector – Irrotational vector – Vector identities.

Vector Integration

Unit III

Vector integration – Line integral – Application of line integral.

Unit IV

Surface and Volume integrals – Applications - Gauss Divergence theorem

Unit V

Stoke's theorem – Green's theorem in plane.

Code : U21MA2:1 Credits : 5

Text Book

P. R. Vittal and V. Malini, Vector Analysis, Margham Publications, Chennai, 2006.

UnitIChapter 1Page1 - 20UnitIIChapter 1Page22 - 51UnitIIIChapter 2Page54 - 72UnitIVChapter 2Page75 - 106UnitVChapter 2Page108 - 140

- 1. Dr P. Mariappan, Dr A Emimal Kanaga Pushpam and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt.Ltd, Chennai.
- 2. T. K. Manickavasagam Pillay and Others, Vector Calculus, S. Viswanathan Publications.
- 3. S. Shanti Narayan, A Text Book of Vector Calculus, S. Chand and Co., New Delhi, 2003.

Core Course III - Sequences and Series

Sem. III Total Hrs. 75 Code : U21MA303 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. be able to understand the different types of sequences and subsequences.
- 2. be able to understand and the tools of testing the convergence of sequences in the light of metric spaces and the algebra of sequences.
- 3. be able to understand the convergence of series through convergence of sequences.
- 4. know the binomial, exponential and logarithmic series.

Learning outcome:

On completion of the course, the student will be able to test convergence of a given sequence and of a given series.

Unit I

Definition of a metric space – 'R' as a metric space with usual metric – Infinite Sequences – Bounded Sequences – Limit of a sequence– Convergent, Divergent and Oscillating Sequences.

Unit II

Properties of convergent and divergent sequences – Monotonic sequences – Behavior of monotonic sequences - Theorems on limits.

Unit III

Subsequences - Cauchy's general principle of convergence. Infinite Series – Convergence, Divergence and oscillation of a series – General properties of series - Geometric series.

Unit IV

Cauchy's general principle of convergence for infinite series - Comparison test for convergence and divergence of series of positive terms – The k-series- Application of the comparison tests (simple problems) – Binomial theorem for rational index – Exponential theorem – Logarithmic series.

Unit V

An important property of convergent series - D'Alembert's ratio test with simple problems - Cauchy's root test - Cauchy's integral test and their simple problems - Raabe's test - Alternating series - Series of positive & negative terms - Tests for absolute convergence.

Text Book

M. K. Venkatraman and Manorama Sridhar, Sequences and Series, The National Publishing Company, 2002.

Unit I Chapter 2 § 2.1 - 2.6Unit II Chapter 2 § 2.7 - 2.11Unit III Chapter 2 § 2.12, 2.15, 2.16 Chapter 3 § 3.1 - 3.5Unit IV Chapter 3 § 3.6 - 3.12 Chapter 4 § 4.4Chapter 5 § 5.3 Chapter 6 § 6.1, 6.2Unit V Chapter 3 § 3.13 - 3.16, 3.19, 3.20, 3.25 - 3.28

- 1. Sequences and Series by Lakshmi Narayanan and Karthiga
- 2. M. K. Singal and Asha Rani Singal, A First Course in Real Analysis, R. Chand & Co., 2008.
- 3. S. Arumugam, A. Thangapandi Isaac, Sequences and Series, New Gamma Publishing House, 1999.
- 4. T. K. Manicavachagom Pillay, T. Natarajan and K. S Ganapathy, Algebra (Volume 1), S. Viswanathan Pvt. Ltd., 2004.
- 5. Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co. Pvt. Ltd., 2017.

Core Course IV - Differential Equations and Laplace Transforms

Sem. III Total Hrs. 75 Code : U21MA304 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know methods of solving first order and second order and non-linear (first order) ordinary differential equations with constant and variable coefficients.
- 2. know methods of solving first order, higher degree partial differential equations of standard forms.
- 3. know methods of finding Laplace transforms and inverse Laplace transforms for real functions.
- 4. be able to apply Laplace transforms for solving ordinary differential equations.

Learning outcomes:

On completion of the course, the student will be able to

- 1. classify and solve specific types of ordinary and partial differential equations.
- 2. solve differential and integral equations using Laplace transforms.

Differential Equations

Unit I

Differential Equations - Linear differential equations with constant co-efficient – The operators D and D^{-1} – Particular Integral – Special methods of finding particular integral – Linear equations with variable co-efficient – To find the particular integral – Special method of evaluating the particular integral when x is of the form x^m.

Unit II

Exact differential equations – conditions of integrability of Mdx + Ndy = 0 – Practical rule for solving an exact differential equation – Rules for finding integrating factors – equations of the first order but of higher degree – Solvable for x, y, dy/dx – Clairaut's form – equations that do not contain x explicitly - Equations that do not contain y explicitly- Equations homogeneous in x & y.

Unit III

Partial differential equations - Derivation of partial differential equations by elimination of constants, arbitrary functions – Different Integrals of P.D.E. – Solutions of P.D.E. in some simple cases- Standard types of first order equations – Standard I, II, III, IV - Equations reducible to the standard forms - Lagrange's equation.

Laplace Transforms

Unit IV

The Laplace Transforms – Sufficient conditions for the existence of the Laplace Transforms – Laplace Transforms of periodic functions – General theorems – Evaluation of certain integrals using Laplace Transforms.

Unit V

The inverse transforms – Inverse transforms of functions – Method of partial fractions – Application of Laplace Transforms to solve ordinary differential equations. **Text Book**

S. Narayanan & T. K. Manickavasagam Pillay, Calculus Volume III, S. Viswanathan Pvt. Ltd., 2008.

Unit	Ι	Chapter	2 §	1, 1.2, 2, 3, 4, 8, 8.1,8.2,8.3
Unit	Ш	Chapter	1 §	3.1 – 3.3, 4, 5, 5.1 – 5.5, 6.1, 7.1 - 7.3
Unit		Chapter	4 §	1, 2, 2.1, 2.2, 3, 4, 5, 5.1 – 5.5, 6
Unit	IV	Chapter	5§	1, 1.1, 1.2, 2, 3.4, 5
Unit	V	Chapter	5§	6, 7, 8, 9

- 1. Dr P Mariappan, M. Maragatham, Laplace Transforms An Application, Lambert Academic Publishing, 2021.
- 2. Dr Perumal Mariappan, Differential Equations, New Century Book House, Pvt. Ltd, Chennai, 2020.
- 3. Dr R Gethsi Sharmila, Dr R Janet and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai, 2020.
- 4. P. R. Vittal, Differential Equations and Laplace Transforms, Margham Publications, 2004.

Allied Course III - Mathematical Statistics I

Sem. III Total Hrs. 60 Code : U21MAS31 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know continuous discrete random variables, their probability functions and distribution functions.
- 2. know the definition and properties of standard discrete distributions and their applications in analyzing data.
- 3. know methods of finding correlation and regression co-efficients between two data sets and their applications.

Learning outcome:

On completion of the course, the student will be able to analyse discrete and continuous data through measures of central tendency and measures of dispersions.

Unit I

Measures of central tendency – Arithmetic mean - Median – Mode – Geometric mean – Harmonic mean – Measures of dispersion - Range – Quartile deviation – Mean deviation – Standard deviation and root mean square deviation – coefficient of dispersion – Skewness - Kurtosis.

Unit II

Probability – Mathematical Notion – law of multiplication – Baye's theorem – random variable – distribution function – discrete random variable – continuous random variable.

Unit III

Joint probability mass function and marginal and conditional probability function – joint probability distribution function – narginal density function – independent random variables – The conditional distribution function and conditional probability density function – mathematical expectation – addition and multiplication theorem of expectation – covariance.

Unit IV

Expectation of a continuous random variable – conditional expectation and conditional variance – moment generating function – cumulants – characteristic function.

Unit V

Bi-variate distribution, correlation – scatter diagram – Karl Pearson coefficient of correlation – calculation of the correlation coefficient for a bivariate frequency distribution – rank correlation – regression – lines of regression.

Text Book

S.C. Gupta, V.K. Kapoor, Elements of Mathematical Statistics, Sultan Chand & sons, Educational Publishers, New Delhi, 3rd Edition, Reprint 2008.

Unit		Chapter 2	§	2.3, 2.5-2.9
		Chapter 3	§	3.3-3.6, 3.7,3.7.1,3.7.2, 3.8,3.11,3.12
Unit	II	Chapter 4	§	4.6, 4.7, 4.8
		Chapter 5	§	5.1, 5.2, 5.3, 5.4
Unit	III	Chapter 5	§	5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.5
		Chapter 6	§	6.1, 6.2, 6.3, 6.4
Unit	IV	Chapter 6	§	6.7, 6.8, 6.9, 6.10, 6.11
Unit	V	Chapter 10	§	10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.7.1

- 1. Perumal Mariappan, Statistics for Business, 1st Edition, CRC Press Taylor & Francis Group, Boca Raton London Newyork, 2019; ISBN: 978 1 138 33617 9.
- 2. A. M. Mood, F. A. Gaybill, and O. C. Bosses, Introduction to Theory of Statistics, McGraw Hill, 2001.
- 3. Rahatgi, U. K., An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern, 1984.

Core Course V - Theory of Equations and Fourier Series

Sem. IV Total Hrs. 90 Code : U21MA405 Credits : 5

General objectives:

On completion of this course, the learner will

- 1. be able to understand the relation between the roots and coefficients of a polynomial.
- 2. know the methods of finding Fourier series expansion for periodic functions and their applications.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find roots of a given algebraic equation and find algebraic equation having given roots.
- 2. find Fourier series of a given periodic function.

Theory of Equations

Unit I

Relations between the roots and coefficients - Symmetric functions of the roots – Sum of the powers of the roots - Newton's theorem.

Unit II

Transformations of equations – Reciprocal equations – Diminishing and increasing the roots – form of the quotient and remainder when a polynomial is divided by a binomial – Removal of terms.

Unit III

Formation of equation whose roots are any power of the roots of a given equation –Transformation in general – Descartes' rule of signs – Horner's Method.

Fourier series

Unit IV

Definition of Fourier series – Finding Fourier series expansion of a periodic function with period 2π - Odd and even functions.

Unit V

Half Range Fourier series - Development in cosine series-development in sine series-Change of interval-Combination of series.

Text Books

- 1. T. K. Manickavasagam Pillay, T. Natarajan, K. S. Ganapathy, Algebra Volume I, S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2011 (Units I, II & III).
- 2. T. K. Manickavasagam Pillay, S. Narayanan, Calculus Volume III, S. Viswanathan Pvt. Ltd., 2008 (Units IV & V).

Unit I	Chapter 6	§ 11 to 14
Unit II	Chapter 6	§ 15 to 19
Unit III	Chapter 6	§ 20,21,24,30
Unit IV	Chapter 6	§ 1 to 3
Unit V	Chapter 6	§ 4 to 7

- 1. Dr P Mariappan, Fourier Series, Lap Lambert Publications, 2021.
- 2. Dr R Gethsi Sharmila, Dr R Janet and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.
- 3. S. Arumugam and Issac, Trigonometry & Fourier Series 2000.
- 4. M. L. Khanna., Theory of Equations, Jaiprakash, Merrut, 1983.

Allied Course IV - Mathematical Statistics II

Sem. IV Total Hrs. 90 Code : U21MAS42 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know some standard continuous distributions.
- 2. know different sampling techniques.
- 3. know and apply tests of significance.
- 4. be able to deduce statistical inference of a data through sampling techniques.

Learning outcome:

On completion of the course, the student will be able to deduce statistical inference of a given data through sampling techniques.

Unit I

Bernoulli distribution - Binomial distribution - Poisson distribution - rectangular distribution

Unit II

Normal distribution - Gamma distribution – Beta distribution of first and second kind – exponential distribution – Chi-square variate – derivation of the Chi-square distribution – MGF of Chi-square distribution.

Unit III

Sampling introduction – types of sampling – parameters and statistic - Introduction to theory of estimation – characteristics of estimators – method of estimation – Rao-Cramer inequality.

Unit IV

Tests of significance – null hypothesis – errors in sampling – critical region and level of significance – tests of significance for large samples – sampling of attributes.

Unit V

Chi-square probability curve - Applications of Chi-square distribution – Introduction – student's 't' – F-statistic – ANOVA (one way classification)

Text Book

S.C. Gupta, V.K. Kapoor, Elements of Mathematical Statistics, Sultan Chand & Sons, Educational Publishers, New Delhi, 3rd Edition, Reprint 2008.

Unit	I	Chapter	7	§	7.1, 7.2, 7.3
		Chapter	8	§	8.1
Unit	II	Chapter	8	§	8.2, 8.3 - 8.6
		Chapter	13	§	13.1 – 13.3
Unit		Chapter	12	§	12.1 – 12.3
		Chapter	15	§	15.1 - 15.4
Unit	IV	Chapter	12	§	12.4 – 12.9
Unit	V	Chapter	13	§	13.4,13.5
		Chapter	14	§	14.1-14.3
		Chapter	17	§	17.1,17.2

- Perumal Mariappan, Statistics for Business, 1st Edition, CRC Press Taylor & Francis Group, Boca 1. Raton London Newyork, 2019; ISBN: 978 – 1 – 138 – 33617 – 9. A. M. Mood, F. A. Graybill and O. C. Boses, Introduction to Theory of Statistics, McGraw Hill ,1974. Rahatgi U. K., An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern, 1984.
- 2.
- 3.

Allied Practical – Mathematical Statistics III

Sem. IV

Total Hrs. 60

Code : U22MA4P1

Credits : 2

General objectives:

On completion of this course, the learner will

1. be able to apply the software R to derive statistical inferences.

2. know the different commands and packages available in R and their applications in different statistical studies.

Learning outcomes:

On completion of the course, the student will be able to

- 1. develop codes using R for analyzing statistical data.
- 2. use different modules of R for different applications to analyze a data.

List of Experiments:

- 1. Calculation of measures of central tendency
- 2. Calculation of measures of dispersion
- 3. Calculation of Skewness and Kurtosis
- 4. Import data from Excel
- 5. Graphical display of data
- 6. Analyzing data using tables
- 7. Expectations of discrete and continuous random variables
- 8. Binomial, Normal and Poisson Distributions
- 9. One sample t-test
- 10. Independent sample t-test
- 11. Dependent sample t-test
- 12. One-way Between-Groups ANOVA
- 13. Two-way Between-Groups ANOVA

- 14. Chi-square test of independent samples
- 15. Bi-variate correlation
- 16. Partial correlation
- 17. Rank Correlation
- 18. Linear regression
- 19. Performing Statistics using R Packages

References

1. Mark Gardener, Beginning R – The Statistical Programming Language, Wiley Publications, 2015.

2. W. John Braun and Duncan J. Murdoch, A First Course in Statistical Programming with R, Cambridge University Press, 2007.

Core Course VI – Algebra

Sem. V Total Hrs. 90

Code : U21MA506 Credits : 5

General objective:

On completion of this course, the learner will be able to understand various algebraic structures including sets, groups, rings and vector spaces and their properties.

Learning outcome:

On completion of the course, the student will be able to identify different algebraic structures, isomorphic and non-isomorphic structure.

Unit I

Groups-Subgroups-Cyclic Groups-Order of an element-Cosets and Lagrange's Theorem.

Unit II

Normal subgroups and Quotient groups -Isomorphism and Homomorphism.

Unit III

Rings and Fields-Elementary properties of Rings-Isomorphism-Types of Rings - Characteristic of a Ring – Subrings-Ideals - Quotient rings -Homomorphism of Rings.

Unit IV

Vector Spaces – Subspaces – Linear Transformations-Span of a set-Linear independence.

Unit V

Basis and Dimensions – Rank and Nullity-Matrix of a Linear Transformation.

Text Book

N. Arumugam and A. Thangapandi Issac, Modern Algebra, Scitech Publishing House 2003. 5th Reprint July 2006.

 Unit I
 Chapter 3 § 3.5 to 3.8

 Unit II
 Chapter 3 § 3.9 to 3.11

 Unit III
 Chapter 4 § 4.1 to 4.8 and 4.10

 Unit IV
 Chapter 5 § 5.1 to 5.5

 Unit V
 Chapter 5 § 5.6 to 5.8

- 1.
- M. L. Santiago, Modern Algebra, Tata McGraw Hill,2003 R. Balakrishnan and N. Ramabhadran, A Text Book of Modern Algebra, Vikas, New Delhi, 2000. Shanthi Narayanan, A Text Book of Modern Abstract Algebra, S. Chand & Co., New Delhi, 1983. 2.
- 3.

Core Course VII – Real Analysis

Sem. V Total Hrs. 90 Code : U21MA507 Credits : 6

General objectives:

On completion of this course, the learner will

- 1. know the structure of real line.
- 2. know the properties of functions defined on the real line.

Learning outcomes:

On completion of the course, the student will be able to

- 1. analyze continuity, derivability, integrability of given real valued function and find derivatives, integrals of given real valued function through limits.
- 2. analyze the structure of the real line.

Unit I

Real number system – field axioms. Order relations in R. Absolute Value of a real number and its properties – Supremum and infimum of a set. Order Completeness property – countable and uncountable sets - Neighbourhoods – Open sets -Closed sets

Unit II

Continuous functions – Limit of functions – Algebra of limits – Continuity of function – Types of discontinues. Elementary properties of continuous functions and Uniform continuity of a function.

Unit III

Differentiability of a function – derivability and continuity – Algebra of derivatives – inverse function's theorem: Darboux's theorem on derivatives.

Unit IV

Rolle's theorem – Mean value theorems on derivatives Taylor's theorem with Remainder. Power series expansion.

Unit V

Riemann Integration – Definition – Darboux's theorem conditions for Integrability – Integrability of continuous and monotonic functions - Integral functions continuity and derivability of integral functions. The first mean value theorem and the fundamental theorem of calculus.

Text Books

- 1. M. K. Singal & Asha Rani Singal, A First Course in Real Analysis, R. Chand & Co., 2008 (Units I, II, III & IV).
- 2. Shanthi Narayan, A Course of Mathematical Analysis, S. Chand & Co., 1986. (Unit V)

Unit I	Chapter 1 – Section:1-10
Unit II	Chapter 5 – Section:1-8
Unit III	Chapter 6 – Section:1-5
Unit IV	Chapter 7 – Section:1-6
Unit V	Chapter 6

- 1. S. L. Gupta and N. R. Gupta, Principles of Real Analysis, Pearson Education Pvt. Ltd., New Delhi, Second Edition 2003.
- 2. Tom Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 2002.

Core Course VIII – Mechanics

Sem. V Total Hrs. 90

Code : U21MA508 Credits : 5

General objectives:

On completion of this course, the learner will

- 1. know various methods of finding the resultant of a finite number of forces and methods of resolving forces.
- 2. be able to understand the effect of different types of forces acting at a point in equilibrium.
- 3. know the various properties of motion of a projectile, a simple harmonic motion and orbital motion.

Learning outcomes:

On completion of the course, the student will be able to

- 1. resolve a given force and find equation of catenary.
- 2. analyze the motion of a projectile.
- 3. analyze simple harmonic and orbital motions.

Statics

Unit I

Law of parallelogram of forces – Lami's theorem – Resolution of forces

Unit II

Like parallel forces – Unlike parallel forces – Moments – Varigon's theorem of moments – Generalized theorem of moments – Equation to common catenary – Tension at any point – Geometrical properties of common catenary.

Dynamics

Unit III

Projectiles – Path of a projectile – Time of flight – Horizontal range – Motion of a projectile up an inclined plane.

Unit IV

Definition of S.H.M. – Geometrical representation of S.H.M. – Composition of S.H.M. of the same period and in the same line – Composition of S.H.M's of the same period in two perpendicular directions.

Unit V

Radial and transverse components of velocity and acceleration – Differential equation of a central orbit – Given the orbit to find the law of force – Given the law of force to find the orbit.

Text Books

- 1. M. K. Venkataraman, Statics, Agasthiar Publications, 2007 (Units I & II)
- 2. M. K. Venkataraman, Dynamics, Agasthiar Publications, 2009 (Units III, IV & V).

Unit I Chapter 2 § 1 - 4 & § 9 - 16 Unit II Chapter 3 § 1 - 13 Chapter 11 § 1 - 9 Unit III Chapter 6 § 1 - 16 Unit IV Chapter 10 § 1 - 7 Unit V Chapter 11 § 1 - 13

- 1. K. Viswanath Naik, M. S. Kasi, Statics, Emerald Publishers, 2000.
- 2. K. Viswanath Naik, M. S. Kasi, Dynamics, Emerald Publishers, 2001.

Core Course IX –Numerical Methods

Sem. V Total Hrs. 75 Code : U21MA509 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know and apply different numerical techniques to solve algebraic and differential equations.
- 2. know methods of finding approximate values for definite integrals.

Learning outcome:

On completion of the course, the student will be able to solve algebraic, differential and integral equations numerically.

Unit I

Introduction – Meaning of numerical analysis -The solution of algebraic and transcendental equations – Bisection method – Iteration method – Regular Falsi method, Newton-Raphson method.

Unit II

Introduction to Linear System of Equations – Row Transformation Technique– Gauss elimination method – Gauss-Jordan method – Iterative methods – Jacobi method – Gauss-Seidal method.

Unit III

Finite Differences – Forward Difference Operator – Backward Difference Operator - Central Difference Operator – Shift Operator/ Displacement Operator – Fundamental theorem of Finite Differences – Relation between the Operators – Interpolation & Extrapolation – Introduction – Interpolation – Gregory Newton Forward Interpolation Formula – Gregory Newton Backward Interpolation Formula – Lagrange's Interpolation Formula.

Unit IV

Numerical differentiation and integration – Newton's formulae to compute the derivative – Numerical integration – A general quadrature formula – Trapezoidal rule - Simpson's one third rule – Simpson's three-eighth rule.

Unit V

Numerical solution of ordinary differential equation – Introduction - Taylor series method – Picard's Method - Euler's method – Runge-Kutta methods – Adam's Moulton Method - Milne's Predictor corrector methods.

Text Book

Dr Perumal Mariappan, Numerical Methods for Scientific Solutions, New Century Book House (P) Ltd, Chennai, (2021).

Unit I Chapter 1 § Chapter 2 § 2.1 – 2.5 Unit II Chapter 3 § 3.1-3.6 Unit III Chapter 4 & Chapter 5 Unit IV Chapter 7 § 7.1 – 7.4 Unit V Chapter 6

- 1. S. S. Sastry, Introducing Methods of Numerical Analysis, Prentice Hall of India Private Limited, New Delhi, 3rd Edition 2002.
- 2. M. K. Venkataraman, Numerical Methods in Science and Engineering, The National Publishing Company, Chennai, 2004.

GROUP PROJECT

Sem. V Total Hrs.: 75 Code : U21MA5PJ Credits : 5

Core Course X - Complex Analysis

Sem. VI Total Hrs. 90

Code : U21MA610 Credits: 5

General objectives:

On completion of this course, the learner will

- 1. know the definition of analytic functions and understand their properties.
- 2. know bilinear transformations and understand its properties.
- 3. be able to understand integration of complex valued functions and their higher derivatives.
- 4. be able to understand zeros and singularities of an analytic function and to apply their properties in the evaluation of definite integrals.

Learning outcomes:

On completion of the course, the student will be able to

- 1. identify analytic functions
- 2. analyze the effect of BT on the complex plane.
- 3. evaluate complex integrals through residues.

Unit I

Analytic functions – Continuous functions – Differentiability - Cauchy Riemann equations – Harmonic functions.

Unit II

Bilinear transformations – Cross ratio – Fixed points of a bilinear transformation – Some special bilinear transformations.

Unit III

Complex integration - Definite Integral – Cauchy's theorem – Cauchy's integral formula – Higher derivatives.

Unit IV

Series, Expansions – Taylor's series – Laurent's series – Zeros of an analytic function – Singularities.

Unit V

Calculus of residues – Cauchy residue theorem – Evaluation of definite integrals.

Text Book

S. Arumugam, A. Thangapandi Issac, A. Somasundaram, Complex Analysis, New Gamma Publishing House, 5th Reprint, January 2006.

 Unit
 I
 Chapter
 2
 §
 2.4 - 2.8

 Unit
 II
 Chapter
 3
 §
 3.1 - 3.5

 Unit
 III
 Chapter
 6
 §
 6.1 - 6.4

 Unit
 IV
 Chapter
 7
 §
 7.1 - 7.4

 Unit
 V
 Chapter
 8
 §
 8.1 - 8.3

- 1. S. Narayanan, T. K. Manickavasagam Pillay, Complex Analysis, S. Viswanathan Printers & Publishers, 1989.
- 2. P. Duraipandian, Laxmi Duraipandian, D. Muhilan, Complex Analysis, Emerald Publishers, Revised Edition 2003.
- 3. Ruel V. Churchill, James Ward Brown, Complex Variables and Application, McGraw Hill Publishing Company, 5th Edition 1990.

Core Course XI - Discrete Mathematics

Sem. VI Total Hrs.: 90 Code : U21MA611 Credits: 5

General objectives:

On completion of this course, the learner will

- 1. know the formal languages.
- 2. be able to understand the applications of Lattices and Boolean algebra in compiling techniques.
- 3. be able to apply the knowledge of the formal languages in encoding and decoding of messages.

Learning outcomes:

On completion of the course, the student will be able to

- 1. construct compiling techniques based on lattices & Boolean algebra.
- 2. encode & decode messages through formal languages.

Unit I

Recurrence relations – Recurrence – An introduction, Polynomials and their Evaluations-Recurrence Relations – Solution of finite order Homogeneous (linear) relations – Solution of Non-homogeneous Relations.

Unit II

Generating functions – Some common Recurrence Relations – Primitive Recursive functions – Recursive and Partial Recursive functions.

Unit III

Lattices – Some properties of Lattices – New Lattices – Modular and distributive Lattices.

Unit IV

Boolean Algebra – Boolean Polynomials – Karnaugh Map.

Unit V

Coding theory – Introduction - Hamming distance - Encoding a message – group codes-procedure for generating group codes - decoding and error correction - an example of a single error correcting code.

Text Book

M. K. Venkatraman., N. Sridharan and N. Chandrasekaran, Discrete Mathematics, The National Publishing Company, September 2007.
Unit I	Chapter 5	§	1-5
Unit II	Chapter 5	§	6-9
Unit III	Chapter 10	§	1-4
Unit IV	Chapter 10	§	5-7
Unit V	Chapter 8	§	1-7

- J. P. Trembly and R. Manohar, Discrete Mathematical Structures with Applications to Computer 1. Science, McGraw Hill book Company, 2000.
- J. E. Hop Croft and J. D. Willman, Introduction to Automata Theory, Nicosia Publishing House, 1986. C. L. Liu, Elements of Discrete Mathematics, McGraw-hill Book Company, 2003. 2.
- 3.

Core Course XII – Elementary Number Theory

Sem. VI Total Hrs. 90

General objectives:

On completion of this course, the learner will

- 1. be able to understand the properties of prime and composite numbers.
- 2. know the famous theorem due to Fermat and Euler.

Learning outcomes:

On completion of the course, the student will be able to

- 1. analyze integers
- 2. solve problems in combinatorics

Unit I

Absolute value-Divisibility of integers-Division Algorithms-Greatest common divisor-Euclidean Algorithm-Least common multiple.

Unit II

Prime and Composite numbers-The sieve of Eratosthenes-Euclid's theorem-Unique factorization theorempositional representation of an integer-Divisors of an integer-Arithmetic functions-product of divisors.

Unit III

Perfect numbers-Euclid's theorem-Abundant, deficient and amicable numbers-Triangular number-Euler function-Greatest integer functions.

Unit IV

Congruences-Residues-Residue classes-complete residue system-Reduced residue system-Magic number-Divisibility tests-linear congruence.

Unit V

Introduction-Fermat's theorem-Euler's Extension of Fermat's theorem-Wilson's theorem-Lagrange's theorem.

Text Book:

S. Kumaravelu and Susheela Kumaravelu, Elements of Number Theory, Nagarcoil, January 2002.

Code : U21MA612 Credits : 5

Unit I	Chapter 2	Section	53 - 57
	Chapter 3	Section	61 - 76
Unit II	Chapter 4	Section	77 - 97
Unit III	Chapter 4	Section	98 - 113
Unit IV	Chapter 6	Section	155 - 188
Unit V	Chapter 7	Section	191 - 211

- 1.
- David M. Burton, Elementary Number Theory, Allyn and Bacon, Inc., 1994. Ivan Niven and H. Zuckerman, An Introduction to Theory of Numbers, John Wiley & Sons; 5th edition, 2. 1991.

Elective II– Mathematical Modeling

Sem. VI Total Hrs. 90 Code : U21MA6:2 Credits : 5

General objectives:

On completion of this course, the learner will

- 1. be able to understand physical systems through Mathematical models.
- 2. be able to understand applications of differential equations, difference equations and graph theory in Mathematical modeling.

Learning outcome:

On completion of the course, the student will be able to deduce inferences from a given mathematical model.

Unit I

Ordinary differential equation – Linear growth model – Growth of science and scientists – Non-linear growth and decay models – Diffusion of glucose or a medicine in the bloodstream.

Unit II

Modeling in population dynamics – Prey-predator models – Competition models – Multi-species models – Modeling of epidemics – Simple epidemic models – A model for diabetic-mellitus.

Unit III

Modeling in second order O.D. E. – Modeling of planetary motion – Motion under central force – Circular motion – Elliptic motion of a satellites – Rectilinear motion.

Unit IV

Modeling through difference equations – Linear difference equation – Obtaining complementary function by use of matrices – Harrod model – cob-web model – Applications of Actuarial science.

Unit V

Modeling through graphs – seven bridge problem – representing results of tournament – Genetic graph – Food web – Communication network – Matrices associated with a directed graph – Detection of clique – Terms of signed graph.

Text Book

J. N. Kapur, Mathematical Modeling, Wiley Eastern Limited, New Age International Pvt. Ltd., Reprint 2013.

Unit I Chapter 2 § 2.1 – 2.3 , 2.4.2 Unit II Chapter 3 § 3.1.1 – 3.1.3, 3.2.1 & 3.5.1 Unit III Chapter 4 § 4.1.1 – 4.3.1 Unit IV Chapter 5 § 5.2.1 – 5.2.6, 5.3.1, 5.3.2 & 5.3.4 Unit V Chapter 7 § 7.1.2 – 7.3.1

- 1. J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East-West Press, New Delhi, 1985.
- 2. R. Olink, Mathematical Models in Social and Life Sciences, 1978.

Elective III - Operations Research

Sem. VI Total Hrs. 90 Code : U21MA6:3 Credits : 5

General objectives:

On completion of this course, the learner will

- 1. be able to understand Linear Programming Problems (LPP) and to know methods of solving them.
- 2. be able to apply LPP to solve transportation and assignment problems.
- 3. know the basics and the methods of solving network problems.
- 4. know the basics of inventory models and to solve inventory problems.

Learning outcome:

On completion of the course, the student will be able to analyze and solve Linear Programming Problems, Transportation Problems, Assignment Problems, network & inventory problems.

Unit I

Introduction – The history of Operations Research – The meaning of Operations Research – Models of Operations Research – Scope of Operations Research – Phases of Operations Research – Limitations of Operations Research - The Linear Programming Problem – Introduction – General Model of an LPP – Characteristics of a LPP – Assumptions of a LPP - Formulation of an LPP – Standard form of an LPP – Solution to an LPP – Types of possible Solution to an LPP – Convex Set and Extreme Points – Graphical Solution to an LPP.

Unit II

Simplex Method – Big M Method – Two Phase Method – The Duality Concept in a Linear Programming Problem - Dual Simplex Method.

Unit III

Transportation Problem – Introduction – Conversion of TP into an Equivalent LPP form – Formulation of a Transportation Problem – Concepts of Feasibility Basicness, and degeneracy in the Solution – Methods used to find the solution to a TP – Description of various methods to find the initial basic feasible solution – Stepping Stone Method/ Modified Distributive Method – Assignment Problem – Introduction – General Model of the assignment problem – Conversion into an Equivalent LPP – Solution to the assignment problem.

Unit IV

PERT – CPM – Introduction – Method for Construction of a Network – Numbering the nodes – Critical Path Method – Project Evaluation review technique.

Unit V

Inventory Control – Introduction – Variables related to Inventory Control – Merits and Demerits of Inventory – Classification of Inventory Models – Economic Order Quantity – General Notation used in the Inventory Control – Model I – Model II – Model IV – Model V – Model VI – Inventory Problems with uncertain demand – Inventory Problems with Price Breaks – Multi Item Deterministic Model – Probabilistic Inventory Model – Selective Inventory Management Technique.

Text Book

1. P. Mariappan, "Operations Research Methods and Applications", New century Book House, 2002.

Unit	1	Chapter 1
		Chapter 2 : 2.1 – 2.10
Unit	II	Chapter 2 : 2.11 – 2.15
Unit		Chapter 4 : 4.1 – 4.7
		Chapter 5 : 5.1 – 5.4
Unit	IV	Chapter 6 : 6.1 – 6.5
Unit	V	Chapter 8 : 8.1 – 8.17

- 1. Hamdy M. Taha, Operations Research, Prentice Hall, New Delhi, 2000.
- 2. S. D. Sharma, Operations Research, Kedar Nath Ram Nath and Co., India, 1985.

Elective Course – Graph Theory

Total Hrs.: 90

General objectives:

On completion of this course, the learner will

- 1. know the basic concepts of Graph theory.
- 2. know the applications of Graphs in other disciplines.

Learning outcomes:

On completion of the course, the student will be able to

1. identify standard graphs and list their properties.

2. use standard graphs to model different networks and study the networks.

Unit I

Definition of a graph – Finite and infinite graphs – Incidence and Degree - Isolated and pendent vertices – Isomorphism's – Sub-graphs – Walks, paths and circuits – Connected and disconnected graphs – Components – Euler graphs – Operations on graphs – More on Euler's graphs - Hamiltonian paths and circuits.

Unit II

Trees – Properties of trees – Pendent vertices in a tree – Distances and centre in a tree – Rooted and binary trees – Spanning trees – Fundamental circuits – Finding all spanning trees of a graph – Spanning trees in a weighted graph.

Unit III

Cut-sets – Properties of a Cut set – All Cut sets in a graph – Fundamental circuits and Cut-sets-Connectivity and Reparability.

Unit IV

Planar graphs – Kuratowski's two graphs – Representation of a planar graph – Detection of planarity – Geometrical dual – Combinatorial dual.

Unit V

Matrix representation of graphs – Incidence matrix – Circuit matrix – Fundamental circuit matrix and rank of the circuit matrix – Cut-set matrix - Adjacency matrix – Chromatic number – Chromatic partitioning – Chromatic polynomial.

Credits: 5

Text Book

Narasing Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, New Delhi, Fifteenth printing, 2009.

Unit I	Chapter 1 § 1.1 – 1.5 Chapter 2 § 2.1, 2.2, 2.4 - 2.9
Unit II	Chapter 3 § 3.1 – 3.10 (except 3.6)
Unit III	Chapter 4 § 4.1 – 4.5
Unit IV	Chapter 5 § 5.2 – 5.7
Unit V	Chapter 7 § 7.1, 7.3, 7.4, 7.6, 7.9 Chapter 8 § 8.1, 8.2, 8.3

- 1. S. Arumugam, S. Ramachandran, Invitation to Graph Theory, Gamma Publication, Palayamkottai, 1994.
- 2. F. Harray, Graph Theory, Narosa publishing House, New Delhi.
- 3. S. A. Chudum, Graph Theory, Macmillan India Limited, New Delhi

Elective Course: Fundamentals of Data Structures and Algorithms

Total Hrs. 90

Credits: 5

General Objectives

- 1. To understand the various representations of data.
- 2. To learn the different algorithms involved in sorting and finding the shortest path.

Unit I

Arrays and Sequential Representations: Ordered Lists – Stacks and Queues – Evaluation of Expressions – Multiple Stacks and Queues – Singly Linked Lists – Linked Stacks and Queues – Doubly Linked Lists and Dynamic Storage Management.

Unit II

Trees: Binary Tree Representations – Tree Traversal – Threaded Binary Trees – Binary Tree Representation of Trees – Graphs and Representations – Traversals, Connected Components and Spanning Trees – Shortest Paths: Single Source All Destinations – Activity Networks – Topological Sort and Critical Paths.

Unit III

Divide and Conquer: General Method – Binary Search – Finding the Maximum and Minimum – Merge Sort – Quick Sort – The Greedy Method: General Method – Knapsack Problem – Job Sequencing with Deadlock – Minimum Cost Spanning Trees: Krushcal's Algorithm – Optimal Storage on Tapes – Optimal Merge Patterns.

Unit IV

Dynamic Programming: General Method – Reliability Design – All Pairs Shortest Paths – 0/1 Knapsack Problem – The Traveling Salesperson Problem.

Unit V

Backtracking: The General Method – The 8-Queen's Problem – Graph Coloring – Hamiltonian Cycles – Knapsack Problem.

Text Book

1. Ellis Horowitz, Sartaj Sahni, Rajasekaran, *Fundamentals of Computer Algorithms*, Silicon Press, 2010.

- 1. Anany Levitin, *Introduction to the Design and Analysis of Algorithms*, Pearson Education, 2nd edition,2011.
- 2. Ellis Horowitz and Sartaj Sahni, *Fundamentals of Data Structure*, Galgotia Book House, 2003. <u>www.studytonight.com/data-structures/</u>

UG - Skill Based Elective Courses (SBEC)

Sem.	Course	Code	Title	Hrs./	Credits		Marks	
				week		CIA	ESA	Total
I	SBEC I	U21MA1S1	Mathematics for Competitive Examinations	2	2	25	75	100
111	SBEC II	U21MAPS2	Introduction to Scientific Computing (OCTAVE)	2	2	40	60	100
V	SBEC III	U21MAPS3	Programming in C (Linux OS)	2	2	40	60	100

SBEC Course I - Mathematics for Competitive Examinations

Sem. I Total Hrs. 30

Code : U21MA1S1 Credits: 2

General objective:

On completion of this course, the learner will be able to apply arithmetic and logical reasoning in solving brain teasers.

Learning outcome:

On completion of the course, the student will be able to solve arithmetic problems in various screening examinations.

Unit I

Numbers - HCF & LCM – Decimal Fractions – Simplification.

Unit II

Square roots and Cube roots - Percentage – Average – Ratio and Proportion - Partnership.

Unit III

Profit and Loss - Time and Work- Pipes and Cisterns - Time and Distance

Unit IV

Problems on Trains – Problems on Boats and Streams - Problems on Numbers - Problems on ages.

Unit V

Simple Interest – Compound Interest Area - Volume & Surface Areas.

Text Book

R.S. Aggarwal, Objective Arithmetic, S. Chand and Company Ltd., New Delhi, 2003.

SBEC Course II – Introduction to Scientific Computing (OCTAVE)

Sem. III Total Hrs. 30

Code : U21MAPS2 Credits: 2

General objective:

On completion of this course, the learner will know how to use OCTAVE as a software package and create customized programmes in computing.

Learning outcomes:

On completion of the course, the student will be able to

- 1. develop codes (using OCTAVE) to solve algebraic & differential equations.
- 2. trained in using different modules of OCTAVE to solve algebraic differential equations.

List of Practicals :

- 1. Matrix manipulations such as multiplication, inverse, determinant, random, magic etc.
- 2. Solving system of linear equations.
- 3. To plot 2D and 3D graphs.
- 4. Solving quadratic equations.
- 5. Write an OCTAVE program to check the given string is palindrome or not.
- 6. To find the binomial coefficients nCr
- 7. Program to generate Fibonacci numbers.
- 8. Program to solve an algebraic equation using bisection method.
- 9. Program to solve an algebraic equation using Newton Raphson method.
- 10. Solving first order Ordinary Differential Equations
- 11. Solving second order Ordinary Differential Equations

References

1. Jesper Schmidt Hansen, GNU Octave Beginner's Guide, Packt Publishing, 2011

SBEC Course III – Programming in C (Linux OS)

Code : U21MAPS3

Credits: 2

Sem. V Total Hrs. 30

General objectives:

On completion of this course, the learner will

- 1. know basic concepts of computer programming in C.
- 2. know how to write programmes using C for numerical computing.

Learning outcomes:

On completion of the course, the student will be able to

- 1. develop codes in C to solve algebraic, differential & integral equations.
- 2. work in Linux operating systems.

Unit I

Introduction to C programming in Linux Operating system.

Unit II

Solving Algebraic equation, by using Bisection and Newton-Raphson Method.

Unit III

Numerical Integration by using Trapezoidal and Simpson's method.

Unit IV

Solving initial value problem by using Euler method and RK fourth order method.

Unit V

Solving boundary value problem by using finite difference method.

- 1. E. Balagurusamy, Programming in ANSI C, Tata McGraw Hill Publishing Pvt.Ltd., second edition, 2nd reprint 2001.
- 2. Christopher Negus, Linux Bible, Wiley Publishing, Inc., 2005 Edition.
- 3. Samuel D. Conte, Carl de Boor, Elementary Numerical Analysis An Algorithmic Approach, International Student Edition, McGraw-Hill Book Company,2000.
- 4. T. Veerarajan and T. Ramachandran, Numerical Methods with Programs in C and C++, Tata McGraw-Hill Publishing Company Limited, 2004.

		Ure	Hrc /		Marks			
Sem.	Course	Code	Title	week	Credit	CIA	ES A	TOTAL
IV	SBC-I	U21LFS41	Life Skills	2	1	100	-	100

LIFE SKILLS

Semester IV Total Hrs.: 30 Course code: U21LFS41 Credit 1

General Objectives:

- 1. To acquire skills and abilities for adaptive and positive behavior that helps to deal effectively with the demands and challenges of everyday life.
- 2. To develop creative, communicative and critical thinking skills necessary for employability

Learning outcome:

On completion of the course, the student will be able to face interviews with confidence.

Unit I Basics of Communication skills & Effective Communication

Features of Communication – Process of Communication Verbal, non-verbal, Body Language – Postures & Etiquette –Listening& speaking Skills- Communication Barriers – Listening & speaking Skills.

Unit II Personal Effectiveness

Maslow's theory – Self-esteem- Role Conflict – Intra & Inter personal Skills – Efficiency Vs effectiveness – Team Building – Emotional Intelligence & Quotient

Unit III Interview Skills

Types of Interviews – Resume Formats & preparation - Cover letters – Simple rules to face interviews – Dos &Don'ts in an Interview – Telephonic Interview and Etiquette - Group Discussions – Types – Methods – Ingredients and Tips for a Successful Group Discussion.

Unit IV Test of Reasoning & Numerical Ability

- A. Numerical Ability: Problems related to Average Percentage Profit /Loss Simple & Compound Interest- Time & Work Boats & Streams etc.
- B. Logical reasoning: Logical Detection Nonverbal reasoning Problems related to seating arrangements Relationship model Assertion & Reasoning etc.
- C. Online Tests: Aptitude Logical Reasoning Problem Solving Time management in Online tests-Online tests on Language skills- Aptitude and technical rounds

Unit V Outbound Learning

Physical, Mental, and emotional exercises

Texts for Reference:

- 1. Barun.K.Mitra, Personality Development and Soft Skills, 6th edition, Oxford University press Noida 2012.
- 2. M.Sarada, The complete Guide to Resume Writing, Sterling Publishers Pvt Ltd, New Delhi 2012.
- 3. Gloria J.Galances& Katherine Adams, Effective Group Disscussions, Theory & practice, 12th Edition, Tata McGraw Hill pvt. Ltd. 2012.
- 4. Francis Soundararaj, Basics of Communication in English, Soft Skills for Listening Speaking, Reading& Writing, Macmillan Publishers India Ltd. 2013.

Scheme of Evaluation

	То	otal	100 Marks
7.	OBL Observation / Work bo	ok	40 Marks
6.	Team Work		10 Marks
5.	Group Discussion		10 Marks
4.	Online test 1(aptitude)		10 Marks
3.	Numerical Ability Test		10 Marks
2.	Resume		10 Marks
1.	EQ test		10 Marks

UG – Extra Credit Courses

					A B	Marks		
Sem.	Course	Code	litie		Credits	CIA	ESA	TOTAL
	I	UXMA5:1	Data Structures and Algorithms	-	2	-	100	100
V	II	UXMA5:2	Fourier Transforms	-	2	-	100	100
M		UXMA6:1	Fuzzy Mathematics	-	2	-	100	100
VI	IV	UXMA6:2	Simulation	-	2	-	100	100

Extra Credit Course-I – Data Structures and Algorithms

Sem. V

Code : UXMA5:1 Credits : 2

General objective:

On completion of this course, the learner will be able to understand data structures and algorithms.

Learning outcome:

On completion of the course, the student will be able to analyse and create algorithms.

Unit I

Abstract data types and data structures, classes and objects Complexity of algorithms: worst case, average case and amoritized complexity

Unit II

Algorithm analysis, Algorithms Design Paradigms. Lists: stacks, queues, implementation, garbage collection.

Unit III

Dictionaries: Hash tables, Binary search trees, AVL trees, Red-Black trees, Splay trees, Skip-lists, B-trees. Priority Queues.

Unit IV

Graphs: Shortest path algorithms, minimal spanning tree algorithms, depth – first and breadth –first search.

Unit V

Sorting: Advanced sorting methods and other analysis, lower bound on complexity, order statistics.

Text Book

A.V.Aho, J.E.Hopcroft, and J.D.Ullman, Data Structures and Algorithms, Addison Wesley, Reading Massachusetts, USA, 1983

- 1. S.Sahni, Data Structures, Algorithms and Applications in C++, University press(India) Pvt.Ltd./Orient Longman Pvt.Ltd., 2nd edition, 2005.
- 2. Adam Drozdek, Data Structures, Algorithms and Applications in C++, Vikas Publishing House/ Thomson International Student Edition, Second Edition, 2001.

Extra Credit Course-II -Fourier transforms

Sem. V

Code : UXMA5:2 Credits: 2

General objective:

On completion of this course, the learner will know the definitions, properties and applications of Fourier transforms

Learning outcome:

On completion of the course, the student will be able to solve Partial Differential Equations using Fourier Transforms.

Unit I

Introduction – Fourier integral theorem - Definition of Fourier transforms - Alternative form of Fourier complex integral formula – Problems

Unit II

Properties of Fourier transform - Convolution theorem - Parseval's identity

Unit III

Inverse Fourier transform – Problems

Unit IV

Finite Fourier transform

Unit V

Solution of Partial Differential equations using Fourier transforms

Text Book:

T.Veerarajan, Engineering Mathematics, third edition, Tata McGraw Hill Publishing Company Limited, New Delhi (2005)

Unit I	:	Chapter 6:Sections 6.1 – 6.4
Unit II & Unit III	:	Chapter 6:Sections 6.6
Unit IV & Unit V	:	Chapter 6:Section 6.7

Reference

J.K.Goyal and K.P.Gupta, Integral Transforms, K.K.Mittal for Pragati Prakashan, 7th edition(1995-96)

Extra Credit Course – III – Fuzzy Mathematics

Sem. VI

General objectives:

Code : UXMA6:1 Credits : 2

On completion of this course, the learner will

- 1. be able to understand fuzzy logic as a tool for quantifying uncertainty
- 2. know to include factors of uncertainty in modeling so as to derive realistic solutions.

Learning outcome:

On completion of the course, the student will be able to identify fuzzy sets and perform set operations on fuzzy sets.

Unit I

Crisp Sets – Fuzzy Sets - Basic Types – Basic Concepts – Characteristics and Significance of the Paradigm shift.

Unit II

Additional properties of a-cuts-representations of fuzzy sets- Extension principle for fuzzy sets.

Unit III

Fuzzy set operations – Fuzzy complements – Fuzzy intersections: t-norms-Fuzzy Unions: t-conorms-combination of operations- Aggregation operations.

Unit IV

Fuzzy Numbers - Linguistic Variables – Arithmetic operations on intervals- arithmetic operations on fuzzy numbers.

Unit V

Lattice of fuzzy numbers-Fuzzy Equations.

- 1. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall of India, 2002, New Delhi.
- 2. George J. Klir, Tina. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall of India, 2003.

Extra Credit Course - IV - Simulation

Sem. VI

Code : UXMA6:2 Credits: 2

General objective:

On completion of this course the learner will be able to understand the theoretical aspects of simulation.

Learning outcome:

On completion of the course, the student will be able to model simple systems.

Unit I

Introduction to Simulation: Advantages and disadvantages, Area of application – systems and environmental components of a system – Discrete and continuous system – model of a system – types of models – Discrete – Event system simulation – steps in simulation study

Unit II

Simulation Examples: Simulation of Queuing systems – simulation of inventory systems – other examples.

Unit III

Random Number Generation – Properties of Random numbers – Techniques for Generating Random numbers – Generation of Pseudo-Random numbers – Tests for Random numbers – The Kolmogorov Smirnov test – The Chi-square test.

Unit IV

Random Variable Generation – Inverse transform techniques – Exponential distribution – Uniform distribution – Triangular distribution – Weibull distribution, Empirical continuous distribution, discrete distribution

Unit V

Direct transformation for the Normal and Lognormal distribution – convolution method – Acceptance – Rejection Technique

Text Book

Jerry Banks, John S.Carson, II, Barry L. Nelson, Davil M.NICOL, Discrete – Event System Simulation, Prentice-Hall of India Private Limited(2005)

 Unit I
 Chapter 1
 Sections 1.1 – 1.11

 Unit II
 Chapter 2
 Sections 2.1 – 2.3

 Unit III
 Chapter 7
 Sections 7.1, 7.2, 7.3, 7.4.1

 Unit IV
 Chapter 8
 Sections 8.1: 8.1.1 – 8.1.7

 Unit V
 Chapter 8
 Sections 8.2, 8.3, 8.4

UG - Non-Major Elective Courses (NMEC) (Offered to Students of other Disciplines)

				Hrs./		Marks			
Sem.	Course	Code	Title	wee k	Credits	CIA	ES A	TOTAL	
===	NMEC- I	U21MA3E1	Mathematics for Competitive Examinations	2	2	25	75	100	
IV	NMEC - II	U21MAPE2	Statistical Applications (Practicals)	2	2	40	60	100	

NMEC - I - Mathematics for Competitive Examinations

Sem. III Total Hrs.: 30

Code : U21MA3E1 Credits : 2

General objective:

On completion of this course, the learner will be able to apply arithmetic and logical reasoning in solving brain teasers

Learning outcome:

On completion of the course, the student will be able to solve arithmetic problems in various screening examinations.

Unit I

Numbers - HCF & LCM – Decimal Fractions – Simplification.

Unit II

Square roots and Cube roots - Percentage – Average – Ratio and Proportion - Partnership.

Unit III

Profit and Loss - Time and Work- Pipes and Cisterns - Time and Distance

Unit IV

Problems on Trains – Problems on Boats and Streams - Problems on Numbers - Problems on ages.

Unit V

Simple interest – Compound interest Area - Volume & Surface Areas.

Text Book

R.S. Aggarwal, Objective Arithmetic S. Chand and Company Ltd., New Delhi, 2003.

NMEC – II – Statistical Applications (Practicals)

Sem. IV Total Hrs.: 30 Code : U21MAPE2 Credits : 2

General objective:

On completion of this course, the learner will

- 1. be able to apply the software R to derive statistical inferences.
- 2. know the different commands and packages available in R and their applications in different statistical studies.

Learning outcomes:

On completion of the course, the student will be able to

- 1. develop code using R for analysing statistical data.
- 2. use different modules of the 'R' package to solve different problems.

List of Experiments:

- 1. Calculation of measures of central tendency
- 2. Calculation of measures of dispersion
- 3. Graphical display of data
- 4. Analyzing data using tables
- 5. Binomial, Normal and Poisson Distributions
- 6. Coefficient of variation
- 7. Measures of skewness
- 8. Calculation of correlation coefficient
- 9. Rank Correlation
- 10. Finding Regression lines

- 1. Mark Gardener, Beginning R The statistical Programming Language, Wiley Publications, 2015
- 2. W.John Braun and Duncan J. Murdoch, A First Course in Statistical Programming with R, Cambridge University Press, 2007.

Allied Mathematics Courses offered to students of Under Graduate Programme in Physics

Sem.	Course	Code	Title	Hrs./	Credits		Marks	
				week		CIA	ESA	Total
I	I	U20MAY11	Algebra, Calculus and Analytical Geometry of 3D	5	4	25	75	100
II	II	U20MAY22	Vector Calculus and Trigonometry	4	4	25	75	100
II	111	U20MAY23	Differential Equations, Laplace Transforms and Fourier Series	4	4	25	75	100

(For the candidates admitted from the year 2022 onwards)

Allied Course I – Algebra, Calculus and Analytical Geometry of Three Dimensions

Sem. I Total Hrs. 75 Code : U20MAY11 Credits: 4

General objectives:

On completion of this course, the learner will

- 1. know the properties of Eigen values, Eigen vectors and the applications of characteristic equations.
- 2. be able to understand higher order differentiation and to know the applications of differential calculus.
- 3. know properties of definite integrals and methods of integration of higher powers of trigonometric functions using recurrence relations.
- 4. be able to understand properties of straight lines and spheres with reference to three-dimensional coordinate geometry.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find the eigen values, eigen vectors of a given matrix.
- 2. find higher derivatives of given functions.
- 3. be able to understand properties of straight lines and spheres.

Algebra

Unit I

Eigen values and Eigen vectors - Cayley - Hamilton theorem – Diagonalization of matrices.

Calculus

Unit II

Leibnitz 's formula for nth derivative of a product – Curvature and radius of Curvature – Cartesian formula for radius of curvature.

Unit III

Properties of Definite Integrals – Reduction Formulae for $\int e^{ax} x^n dx$, $\int \sin^n x dx$, $\int \cos^n x dx$, where n is a positive

integer – Evaluation of $\int_{0}^{\infty} e^{-ax} x^{n} dx$, $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$, $\int_{0}^{\frac{\pi}{2}} \cos^{n} x dx$, where n is a positive integer.

Analytical Geometry of Three Dimensions

Unit IV

Straight line – equation of a straight line – condition for a straight line to lie on a given plane – condition for coplanarity – shortest distance between two straight lines.

Unit V

Sphere – standard equation – length of the tangent from any point – Equation of a tangent plane – condition for the plane to touch the sphere – intersection of a plane and a sphere – intersection of two spheres – Equation of a sphere passing through a given circle.

Text Books

1. Dr P Mariappan, Dr V Franklin and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 5
Unit V	Chapter 5

- 1. T.K. Manichavasagam Pillai, T. Natarajan and K.S. Ganapathy, Algebra (Vol.II), S. Viswanathan Pvt. Ltd, Reprint, 2004.
- 2. S. Narayanan and T.K. Manichavasagam Pillay, Calculus (Vol-I, II), S. Viswanathan Printers and Publishers, Reprint, 2003.
- 3. Vittal. P. R, Allied Mathematics, Margham Publications, Chennai, Reprint 2000.
- 4. M.K. Venkataraman, Engineering Mathematics, National Publishing Company, 1999.

Allied Course II – Vector Calculus and Trigonometry

Sem. II Total Hrs. 60

General objectives:

On completion of this course, the learner will

- 1. know the physical applications of derivatives of vectors especially the divergence and curl.
- 2. be able to understand line integral, surface integral and volume integral, to know their inter-relations and their applications.
- 3. know the expansions of circular and hyperbolic functions and their powers.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find derivatives of vector functions.
- 2. evaluate line, surface and volume integrals.
- 3. expand circular functions as a series.
- 4. evaluate limits of combination of trigonometric functions.

Vector Calculus

Unit I

Scalar and Vector Point Functions - Direction and Magnitude of gradient - Maximum Value of Directional derivative - Divergence and Curl - Definitions (Solenoidal and Irrotational Vectors) - Vector Identities - Formula involving Operator ∇ twice.

Unit II

Vector integration – Line integral – Surface integral – Volume integral

Unit III

Verification of Gauss divergence theorem- Stoke's theorem –Green's theorem (in plane), (No proof is needed)

Trigonometry

Unit IV

Expansions for $sinn\theta$, $cosn\theta$, $tann\theta$ when n is a positive integer- Expansion for $tan(\theta_1 + \theta_2 + \cdots + \theta_n)$ – Expansions for $cos^n\theta$ and $sin^n\theta$ in terms of multiples of θ – Expansions of $sin\theta$ and $cos\theta$ in terms of θ - Expansion of $tan\theta$.

Code : U20MAY22 Credits : 4

Unit V

Euler's formula – Hyperbolic functions- Relations between circular and hyperbolic functions- Inverse hyperbolic functions $sinnh^{-1}x$, $cosh^{-1}x$, and $tanh^{-1}x$ in terms of logarithmic functions – Separation into real and imaginary parts of sin(x + iy), cos(x + iy), tan(x + iy), sinh(x + iy), cosh(x + iy), tanh(x + iy), and $tan^{-1}(x + iy)$.

Text Book

1. Dr P. Mariappan, Dr A Emimal Kanaga Pushpam and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt.Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 4
Unit V	Chapter 5

- 1. S. Narayanan, T.K. Manichavasagam Pillai, Ancillary Mathematics Vol.III, S. Viswanathan Pvt. Ltd, Reprint 1999.
- 2. S. Narayanan, T.K. Manichavasagam Pillai, Trigonomety, S. Viswanathan Pvt. Ltd, Reprint 2004.
- 3. P. Duraipandian, Laxmi Duraipandian and Jayamala Paramasivan, Trigonometry, Emerald Publishers, Reprint 1999.

Allied Course – III Differential Equations, Laplace Transforms and Fourier Series

Sem : II Total Hrs.: 60 Code : U20MAY23 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know methods of solving differential equations of one dimension and higher dimension.
- 2. know application of Laplace transforms in solving ordinary differential equations.
- 3. be able to understand periodic functions through circular functions as Fourier series.

Learning outcomes:

On completion of the course, the student will be able to

- 1. classify and solve specific types of ordinary and partial differential equations.
- 2. solve differential and integral equations using Laplace transforms.
- 3. find Fourier series of a given periodic function.

Differential Equations

Unit I

Ordinary Differential Equations – First Order and Higher Degree – Equation solvable for $\frac{dy}{dx}$ - Equation solvable for

y – Equation solvable for x (simple problems only) – Clairaut 's Form (simple case only).

Unit II

Derivation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions – classification of Integrals – some standard types of First Order Partial Differential Equations – Other standard forms.

Laplace Transforms

Unit III

Definition - Condition for the existence of the Laplace Transforms-Properties of Laplace Transforms - Laplace Transform of some standard functions – Some general theorems.

Unit IV

The Inverse Laplace Transform – Shifting theorem for Inverse Transform – The method of partial fraction can be used to find the Inverse transform of certain functions – Related theorems – Special cases- Applications to solutions of Differential Equations.

Fourier Series

Unit V

Definition – To determine the values of a_0 , a_n and b_n – Bernoulli's Formula – Sufficient conditions for representing f(x) by Fourier Series – Even and Odd functions – Properties of Odd and Even functions – Fourier Series of even and odd functions – Half range Fourier Series.

Text Book

1. Dr R Gethsi Sharmila, Dr R Janet and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 4
Unit V	Chapter 5

- 1. Dr P Mariappan, Differential Calculus, New Century Book House, Pvt. Ltd, Chennai, 2020
- 2. Dr P Mariappan, M. Maragatham, Laplace Transforms An Application, Lambert Academic Publishing, 2021.
 - 3. S. Narayanan and T.K. ManickavasagamPillai, Calculus (Vol. III), S. Viswanathan Printers and Publishers, Reprint 2004.
 - 4. Vittal P.R., Allied Mathematics, Margham Publications, Chennai, Reprint 2000.

Under-Graduate Programme

Allied Mathematics Courses (Chemistry)

Courses of Study, Schemes of Examinations & Syllabi (Choice Based Credit System)

THE DEPARTMENT OF MATHEMATICS (DST – FIST sponsored) BISHOP HEBER COLLEGE (Autonomous) (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC & Identified as College of Excellence by the UGC) DST – FIST Sponsored College & DBT Star College TIRUCHIRAPPALLI – 620 017 TAMIL NADU, INDIA

2022 – 2023

Allied Mathematics Courses offered to students of Under Graduate Programme in Chemistry

Sem.	Course	Code	Title	Hrs./	Credits	Marks		
				week		CIA	ESA	Total
I	I	U20MAC11	Algebra and Calculus	5	4	25	75	100
II	II	U20MAC22	Vector Calculus and Trigonometry	4	4	25	75	100
II	Ш	U20MAC23	Differential Equations and Laplace Transforms	4	4	25	75	100

(For the candidates admitted from the year 2022 onwards)

Allied Course I - Algebra and Calculus

Sem. I Total Hrs. 75 Code: U20MAC11 Credits: 4

General objectives:

On completion of this course, the learner will

- 1. know the properties of Eigen values, Eigen vectors and the applications of characteristic equations.
- 2. be able to understand higher order differentiation and to know the applications of differential calculus.
- 3. know properties of definite integrals and methods of integration of higher powers of trigonometric functions using recurrence relations.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find the eigen values, eigen vectors of a given matrix.
- 2. find higher derivatives of given functions.

Algebra

Unit I

Eigen values and Eigen vectors - Cayley-Hamilton Theorem – Diagonalisation of matrices(problems only)

Calculus

Unit II

Differentiation – Definition - Rules for differentiation – Standard forms – Successive differentiation – nth derivatives – Standard forms – Use of Partial fractions – Applilcation of De-Moivre's theorem – Trigonometrical transformations.

Unit III

Leibnitz's theorem (statement only) on the nth differential co-efficient of the product of two functions of x (problems only) – curvature and radius of curvature – cartesian formula for radius of curvature.

Unit IV

Introduction – Methods of Integration – Integrals of the functions involving $a^2 \pm x^2$ - Integrals of functions of the form $\int f(x)^n f'(x) dx$ – Definite Integrals – Properties of definite integrals - Reduction formulae for the three definite integrals: $\int_0^\infty e^{-ax} x^n dx$, $\int_0^{\frac{\pi}{2}} \sin nx dx$ and $\int_0^{\frac{\pi}{2}} \cos nx dx$ where n is a positive integer. (Problems only)
Unit V

The Gamma and Beta functions – Gamma function – recurrence formulae for $\Gamma(n)$ - connection between gamma function and factorials – Beta function – relation between beta and gamma functions – applications of Beta and Gamma functions.

Text Books

1. Dr P Mariappan, Dr V Franklin and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.

Unit I	Chapter 1
Unit II & Unit III	Chapter 2
Unit IV	Chapter 3
Unit V	Chapter 4

- 1. Dr P Mariappan, Differential Calculus, New Century Book House, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.
- 2. T. K. Manichavasagam Pillai, T. Natarajan & K. S. Ganapathy, Algebra (Vol.II), Viswanathan Pvt. Ltd. Reprint 2004.
- 3. S. Narayanan and T. K. Manichavasagam Pillai, Calculus (Vol. I, II) Viswanathan Printers and Publishers, Reprint 2003.
- 4. M. K. Venkataraman, Engineering Mathematics, National Publishing Company, 1999.

Allied Course II - Vector Calculus and Trigonometry

Sem. II Total Hrs. 60

General objectives:

On completion of this course, the learner will

- 1. know the physical applications of derivatives of vectors especially the divergence and curl.
- 2. be able to understand line integral, surface integral and volume integral, to know their inter-relations and their applications
- 3. know the expansions of circular and hyperbolic functions and their powers.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find derivatives of vector functions.
- 2. evaluate line, surface and volume integrals.
- 3. expand circular functions as a series.
- 4. evaluate limits of combination of trigonometric functions.

Vector Calculus

Unit I

Scalar and vector point functions – Direction and magnitude of gradient – Maximum value of driectional derivative – Divergence and Curl – Definitions (Solenoidal and Irrotational Vectors) – Vector Identities – Formula involving operator ∇ twice.

Unit II

Vector integration – Line integral – Surface integral – Volume integral.

Unit III

Gauss divergence theorem, Stoke's theorem, Green's theorem (in plane), (No proof is needed-Statements only).

Trigonometry

Unit IV

Expansions for sin $n\theta$, cos $n\theta$, tan $n\theta$ when n is a positive integer – Expansion for $\tan(\theta_1 + \theta_2 + ... + \theta_n)$ -Expansions for $\cos^n \theta$ and $\sin^n \theta$ in terms of multiples of θ - Expansions of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in terms of θ .

Code : U20MAC22 Credits : 4

Unit V

Euler's formula - Hyperbolic functions – Relation between the circular and hyperbolic functions – Inverse hyperbolic functions sinh⁻¹x, cosh⁻¹x and tanh⁻¹x in terms of logarithmic functions- Separation into real and imaginary parts of sin(x+iy), cos(x+iy), tan(x+iy), sinh(x+iy), cosh(x+iy), tanh(x+iy) and $tan^{-1}(x+iy)$.

Text Book

1. Dr P. Mariappan, Dr A Emimal Kanaga Pushpam and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt.Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 4
Unit V	Chapter 5

- 1. S. Narayanan, T.K.Manickavasagam Pillai, Ancillary Mathematics, Vol. III, S. Viswanathan Pvt. Ltd., Reprint 1999.
- 2. S. Narayanan, T.K.Manickavasagam Pillai, Trigonometry, S.Viswanathan Pvt. Ltd., Reprint 2004.
- 3. P. Duraipandian, Laxmi Duraipandian and Jayamala Paramasivan, Trigonometry, Emerald Publishers, Reprint 1999.

Allied Course III – Differential Equations and Laplace Transforms

Sem. II Total Hrs. 60 Code : U20MAC23 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know methods of solving differential equations of one dimension and higher dimension.
- 2. know application of Laplace transforms in solving ordinary differential equations.
- 3. be able to understand periodic functions through circular functions as Fourier series.

Learning outcomes:

On completion of the course, the student will be able to

- 1. classify and solve specific types of ordinary and partial differential equations.
- 2. solve differential and integral equations using Laplace transforms.

Differential Equations

Unit I

Ordinary Differential Equations – First Order and Higher Degree – Equation solvable for $\frac{dy}{dx}$ - Equation solvable for

y – Equation solvable for x (simple problems only) – Clairaut's Form. (simple case only)

Unit II

Derivation of Partial Differential Equations by elimination of arbitrary functions – classification of Integrals – some standard types of First Order Partial Differential Equations – Other standard forms.

Laplace Transforms

Unit III

Definition – Condition for the existence of the Laplace Transforms – Properties of Laplace Transforms – Laplace Transform of some standard functions – Some general theorems.

Unit IV

The Inverse Laplace Transforms – Shifting theorem for Inverse Transform – The method of partial fraction can be used to find the Inverse transform of certain functions – Related theorems.

Unit V

Special cases – applications to solutions of Differential Equations.

Text Book

1. Dr R Gethsi Sharmila, Dr R Janet and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 4
Unit V	Chapter 4

- 1. Dr P Mariappan, Differential Calculus, New Century Book House, Pvt. Ltd, Chennai.
- 2. Dr P Mariappan, Laplace Transforms.
- 3. S. Narayanan and T. K. Manichavasagam Pillai, Calculus (Vol. III) S. Viswanathan Printers and Publishers, Reprint 2004.
- 4. Vittal.P.R., Allied Mathematics, Margham Publications, Chennai, Reprint 2000.
- 3. Narasing Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, New Delhi, Fifteenth printing, 1999.

Under-Graduate Programme Allied Mathematics Courses (Computer Science / Computer Applications)

Courses of Study, Schemes of Examinations & Syllabi

(Choice Based Credit System)

THE DEPARTMENT OF MATHEMATICS (DST – FIST sponsored)

BISHOP HEBER COLLEGE (Autonomous)

(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC & Identified as College of Excellence by the UGC)

> DST – FIST Sponsored College & DBT Star College TIRUCHIRAPPALLI – 620 017 TAMIL NADU, INDIA

> > 2022 - 2023

Allied Mathematics Courses offered to students of

Under Graduate Programme in Computer Science/Computer Applications

(For the candidates admitted from the year 2022 onwards)

Sem.	Course	Code	Title	Hrs./week	Credits	Marks		
						CIA	ESA	TOTAL
Ι	Ι	U20MAZ11	Operations Research	5	4	25	75	100
=	II	U20MAZ22/ U20MAA22	Numerical Methods	4	4	25	75	100
Ш	III	U20MAZ23/ U20MAA23	Probability & Statistics	4	4	25	75	100

Allied Course I – Operations Research

Sem. I

Total Hrs. 75

Code : U20MAZ11

Credits: 4

General objectives:

On completion of this course, the learner will

- 1. Be able to understand Linear Programming Problems (LPP) and to know methods of solving them.
- 2. Be able to apply LPP to solve transportation and assignment problems.
- 3. Know the basics and the methods of solving network problems.
- 4. Know the basics of inventory models and to solve inventory problems.

Learning outcome:

On completion of the course, the student will be able to analyze and solve Linear Programming Problems, Transportation Problems, Assignment Problems & network problems.

Unit I

Introduction to Operations Research – Linear programming problem - Introduction – General model of the LPP – Characteristics of an LPP – Assumptions of Linear Programming – Formulation of an LPP- Standard Form of an LPP - Solution to an LPP – Types of possible solutions to an LPP – Convex set and Extreme points - Graphical solution to an LPP – Simplex methods.

Unit II

Big–M method – Two phase method.

Unit III

Transportation Problem – Introduction – Conversion of a TP into an LPP Form – Formulation of a Transportation Problem - Concepts of Basicness, and Degeneracy in the solution – Methods used to find the solution to a Transportation Problem – Description of various methods to find the Initial Basic Feasible Solution – Stepping Stone Method/ Modified Distributive Method. **Unit IV**

Assignment Problem – Introduction – General Model of the Assignment Problem – Conversion into an Equivalent LPP – Solution to the Assignment Problem.

Unit V

PERT - CPM - Introduction – Method for Construction of a Network – Numbering the nodes – Critical Path Method (CPM) – Project Evaluation Review Technique (PERT).

Text book

P Mariappan, Operations Research An Introduction, Pearson India Limited New Delhi, 2013

Unit I: Chapter 1, Chapter 2: 2.1 – 2.11 Unit II: Chapter 2: 2.12 – 2.13 Unit III: Chapter 4: 4.1 – 4.7 Unit IV: Chapter 5: 5.1 – 5.4 Unit V: Chapter 6: 6.1 -6.5

- 1. Hamdy A., Taha, Operations Research, Keerthi Publishing House, 1997.
- 2. S. Dharani Venkatakrishnan , Operations Research , Keerthi Publishing House, 1997.
- 3. S. D. Sharma Kedarnath , Operations Research, Ramnath Publishers and Co., Meerut 1997.
- 4. M. P. Gupta, J. K. Sharma, Operations Research for Management, National Publishing House, 1992.

Allied Course II – Numerical Methods

Sem. II

Total Hrs. 60

Code : U20MAZ22/U20MAA22

Credits: 4

General objectives:

On completion of this course, the learner will

- 1. know and apply different numerical techniques to solve algebraic and differential equations.
- 2. know methods of finding approximate values for definite integrals.

Learning outcome:

On completion of the course, the student will be able to solve algebraic, differential and integral equations numerically.

Unit I

Introduction to Numerical Analysis-Solution of algebraic and transcendental equations – Bisection method – Iterative method – Regula Falsi method – Newton Raphson Method.

Unit II

Linear System of Equations - Gauss Elimination method – Iterative methods – Gauss Seidel method.

Unit III

Interpolation – Gregory Newton's forward and backward interpolation formulae – Lagrange's interpolation formula.

Unit IV

Numerical Integration – Trapezoidal rule, Simpson's one-third rule.

Unit V

Numerical solution of ordinary differential equations – Euler's method –– Runge- Kutta 2nd order – Runge- Kutta 4th order (Problems only)

Text Book

Dr Perumal Mariappan, Numerical Methods for Scientific Solutions, New Century Book House, Pvt.Ltd, Chennai

Unit I: Chapter 1: 1.1, 1.2; Chapter 2: 2.1 – 2.5 Unit II: Chapter 3: 3.1, 3.3 - 3.6 Unit III: Chapter 5: 5.1 – 5.5 Unit IV: Chapter 7: 7.4, 7.4.1, 7.4.2. Unit V: Chapter 6: 6.1, 6.4, 6.5

Reference

S. S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India Private Limited, 2005.

Allied Course III - Probability & Statistics

Sem. II

Total Hrs. 60

Code: U20MAZ23/U20MAA23

Credits: 4

General objectives:

On completion of this course, the learner will

- 1. Know methods of calculation of measures of central tendency and measures dispersion of a data.
- 2. Know methods of finding correlation and regression co-efficient between two data sets and their applications.
- 3. Know the properties of some discrete and continuous distributions.

Learning outcomes:

On completion of the course, the student will be able

- 1. to analyze discrete and continuous data through measures of central tendency and measures of dispersions.
- 2 to find correlation and regression co-efficient between two data sets.
- 3. calculate the probability for any event and use it to estimate certain possibilities.

Unit I

Range-The mean deviation-The standard deviation- difference between mean and standard deviation-calculation of standard deviation of variation.

Unit II

Skewness - (without derivations) - measure of skewness based on moments- kurtosis- measures of kurtosis.

Unit III

Correlation: Karl Pearson's coefficient of correlation - Spearman's rank correlation coefficient (formula alone)- correlation coefficient-Regression -regression equations of Y on X – regression equations of X on Y.

Unit IV

Classical or a priori probability-axiomatic approach to probability- calculation of probability-Theorems of probability-conditional probability- Baye's theorem - Mathematical expectation - Random variable and probability distribution.

Unit V

Binomial distribution- Poisson Distribution-definition- relation between Binomial, Poisson and Normal distribution-properties of normal distribution- Area under the Normal curve.

Text Book:

Perumal Mariappan, Statistics for Business, 1st Edition, CRC Press Taylor & Francis Group, Boca Raton London Newyork, 2019 Unit I: Chapter 5 Unit II: Chapter 6 Unit III: Chapter 7 Unit IV: Chapter 8: 8.3 – 8.4; Chapter 9 Unit V: Chapter 10: 10.2, 10.3 Chapter 11: 11.2, 11.3 11.4

Reference

S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, fourteenth edition, (2004).