

M. Sc., Biotechnology

VISION AND MISSION

OUTCOME BASED EDUCATION

VISION

The Department seeks to – create holistic development through teaching, research and extension activities with mutual love, social commitment and conscience.

MISSION

The Department of Biotechnology & Bioinformatics aims,

- To develop students in technical education and research by imparting knowledge and skill to attain academic excellence and professional competence.
- To serve humanity with exemplary values and professional ethics

PROGRAM OUTCOMES (POs)

On Successful completion of the Program, the Post graduates of Biotechnology will be able to exhibit the following abilities in the respective domains

KNOWLEDGE

PO1: Exhibit advanced knowledge in the biotechnological concepts and principles in real life in both orally and in writing, with confidence and share their views/ideas.

PO2: Critically analyze and evaluate existing hypotheses and knowledge gained through various sources, to solve long standing problems and discover new breakthrough

SKILLS

PO3: Display research-related skills through practical and project work as they are trained to plan, execute, analyze and report their experiments and also publish their findings.

PO4: Apply skills necessary to analyze and interpret qualitative as well as quantitative data independently to develop models with an open mind.

PO5: Demonstrate the outcomes of holistic education for their employment in biotechnology-related jobs and for pursuing higher education in reputed institutions by developing technical and communication skills.

PO6: Trained to identify and address the socially relevant pressing problems both in the national and global setting by using the skills acquired from the programme.

ATTITUDES

PO7: Explore and engage in lifelong learning by accessing library and ICT facilities to evolve new technologies based on the need of the job market. **ETHICAL & SOCIAL VALUES**

PO8: Exhibit the art of teamwork and to conduct themselves with responsibility and character while they pursue shared/group projects and assignments.

PO9: Practice moral and social values in personal and social life to meet the needs of the society as responsible citizens.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Upon Successful Completion of the program, the graduates will be able to

KNOWLEDGE & SKILLS DOMAIN

INTELLECTUAL SKILL

PSO 1: Apply the knowledge of advanced concepts of Biotechnology to solve problems related to different fields of Biotechnology, Genomics, Proteomics, Stem cell biology, Cell biology, DNA technology and biochemistry

PSO 2: Analyze and relate the impact of biotechnological solutions for animals, plants and microbes and understand biotechnology management

PRACTICAL SKILL

PSO 3: Develop practical expertise in the area of Biochemistry, Molecular biology, Cell biology, Microbiology, Genomics, Immunology, Food Biotechnology, Plant and Animal Biotechnology and apply statistical methods.

PSO4 : Understand the applications of Biotechnology in Agriculture, Pharma Industry, Food industry, R&D activities, Clinical research and novel product development to address the societal problems.

M.Sc. BIOTECHNOLOGY Programme Structure

Sem	Course	Course title	Course	Hours/	Credits		Mark	(S
			Code	week		CIA	ESE	Total
	Core I	Cell and Molecular Biology	P20BT101	5	5	25	75	100
	Core II	Biochemistry	P20BT102	5	5	25	75	100
	Core III	Microbiology	P20BT103	5	5	25	75	100
	Core	Biochemistry and Cell Biology	P21BT1P1	5	3	40	60	100
1	Prac. I	Lab.						
	Core	Microbiology Lab.	P20BT1P2	5	3	40	60	100
	Prac. II							
	Elective I	Bioinstrumentation/ Basics	P20BT1:1/	5	4	25	75	100
		Of Bioinformatics	P20BT 1:A					
	Core IV	Animal Biotechnology	P21BT204	5	5	25	75	100
	Core V	Plant Biotechnology	P20BT205	5	5	25	75	100
	Core VI	Industrial Biotechnology	P20BT206	5	4	25	75	100
	Core	Animal, Plant and Industrial	P20BT2P3	5	3	40	60	100
	Prac. III	Biotechnology Lab						
	Elective II	Research Methodology	P20BT2:2/	4	4	25	75	100
		And Biostatistics /	P20BT2:A					
		Nanobiotechnology						
	Elective III	Biosafety, Bioethics IPR/	P20BT2:3/	4	4	25	75	100
	-	Drug discovery &Development	P20BT2:B		-			
	VLO	The Big Picture	P22VLO21/	2	2	25	75	100
		Social Ethics	P22VLO22					
	Core VII	Gene Technology	P22BT307	5	4	25	75	100
	Core VIII	Immunology	P20BT308	5	5	25	75	100
	Core IX	Medical Biotechnology	P20BT309	5	5	25	75	100
	Core	Gene Technology Lab.	P20BT3P4	5	3	40	60	100
	Prac. IV							
	Core	Immunology and Medical	P20BT3P5	-	0	40	60	100
	Prac. V	Biotechnology Lab		5	3	40		100
	Elective IV	Stem Cell Biology/	P20B13:4	4	4	25	/5	100
		Developmental Biology	P20B13:A		4	100		100
	Generic	Scientific Writing and Research	P22B13G1	1	1	100	-	100
	Course1	Publication Ethics						
IV	Core X	Environmental Biotechnology	P20BT410	5	4	25	75	100
	Elective V	Biotechnology management /	P20BT4:5	5	4	25	75	100
		Food Biotechnology						
	Core Project	Project	P20BT/D1	_	5		_	100
		Total		-	<u>an</u>	-	-	100
		iulai			50			

(For the candidates admitted in the academic year 2022 onwards)

PROGRAMME ARTICULATION MATRIX M.Sc., Biotechnology (2022–2023 onwards)

Should be marked on H -M-L Scale

	COURSE		Corre	elatio	n with	n Prog S	gramı pecif	me O ic Ou	utcor itcom	nes a nes	ind Pi	ogra	mme	
COURSE TITLE	CODE	PO1	PO2	PO3	P04	PO5	90d	P07	P08	60d	PS01	PS02	PSO3	PSO4
Cell and Molecular Biology	P20BT101	L	L	-		L	L	L	L	-	Η	-	-	-
Biochemistry	P20BT102	L	Μ	-	L	L	L	L	L	-	Н	-	Н	М
Microbiology	P20BT103	М	М	L	М	L	L	L	L	-	М	Н	-	М
Biochemistry and Cell Biology Lab.	P20BT1P1	М	М	М	М	Η	М	М	Η	-	L	-	Η	М
Microbiology Lab.	P20BT1P2	М	М	М	М	Н	Μ	М	Н	-	М	М	Н	М
Bioinstrumentation/ Basics of Bioinformatics	P20BT1:1/ P20BT 1:A	L	L	L	L	М	-	М	L	-	М	-	М	М
Animal Biotechnology	P20BT204	Η	М	М	М	L	L	L	L	L	Н	Η	L	М
Plant Biotechnology	P20BT205	Η	М	М	М	L	L	L	L	-	Н	Η	L	М
Industrial Biotechnology	P20BT206	Η	М	М	М	L	L	L	L	-	Н	Η	L	М
Animal, Plant and Industrial BiotechnologyLab	P20BT2P3	н	М	н	М	Η	Μ	М	н	-	н	н	Η	н
Research Methodology And Biostatistics / Nanobiotechnology	P20BT:2/. P20BT 2:A	Μ	L	Μ	Μ	М	Μ	Η	Η	-	Μ	L	Η	Μ
Biosafety, Bioethics IPR/ Drug discovery & Development	P20BT2:3/ P20BT2:B	Μ	L	L	L	L	Μ	Μ	L	Η	L	Μ	L	Μ
The Big Picture Social Ethics	P22VLO21/ P22VLO22	-	-	-	-	-	-	-	М	Η	-	-	-	-
Gene Technology	P22BT307	L	L	L	L	L	-	L	L	-	н	Н	L	L
Immunology	P20BT308	М	М	L	М	L	-	L	L	-	М	М	L	L

	COURSE	Correlation with Programme Outcomes and Programme Specific Outcomes												
COURSE TITLE	CODE	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	60d	PS01	PS02	PS03	PS04
Medical Biotechnology	P20BT309	Η	М	М	М	М	М	Μ	L	L	Н	Η	L	L
Gene Technology Lab.	P20BT3P4	М	L	Η	М	Η	L	М	Η	-	Н	Η	Η	Μ
Immunology and Medical Biotechnology Lab	P20BT3P5	Н	М	Н	М	Η	М	М	Н	-	н	Η	Η	Μ
Stem Cell Biology/ Developmental Biology	P20BT3:4 P20BT3:A	М	L	L	L	L	L	L	L	L	н	М	L	Μ
Environmental Biotechnology	P20BT410	Η	М	М	М	М	Η	М	Η	L	М	Η	-	Η
Biotechnology management / Food biotechnology	P20BT4:5 P20BT4:A	М	М	L	М	L	М	М	М	-	М	Η	Η	Η
Project	P20BT4PJ													

Structure of the Curriculum for M.Sc.Biotechnology (2022-23)

Parts of the Curriculum	No. of Courses	No. of Hours	Credits	Total Credits
Major				
Core(Theory)	10	50	48	68
Core(Practical)	5	25	15	
Core(Project)	1	-	5	
Elective(Theory)	5	23	20	20
VLO	1	2	2	2
Total	22	100	90	90

List of suggested courses

Sem	Course	Coursetitle	Course code	Hours	Credit	Marks
	Value added course	Logical Reasoning and Analytical Ability for Competitive Examinations		30	-	Certificate will be issued
II	Value added course	EffectiveCommunicationSkills		30	-	Certificate will be issued
	Value added course	Effective presentations using online and offline tools		30	-	Certificate will be issued
Ι	Self-Study course	SelectedTopics for Competitive Exam 1		30	2	100
II	Self-Study course	SelectedTopics for Competitive Exam 2		30	2	100
	Add on course	ScientificWriting		30	2	100

At the end of this course the students will be able to

Core Course: I - CELL AND MOLECULAR BIOLOGY

CO. No	Course Outcomes	Level	Unit
C01	Classify the cell into prokaryotes and eukaryotes based on the intracellular structures	K2	Ι
CO2	Distinguish the organization and structures of different cytoskeleton	K4	II
CO3	Evaluate the mutagenicity of the chemicals	K6	III
CO4	Differentiate the process of replication, transcription and translation	K4	IV
C05	Apply basic knowledge on siRNA to use siRNA as therapeutic agents	К3	V
C06	Illustrate cell cycle mechanism	K2	V

2.A. Syllabus

Unit -I

Basics of Cell and Organelles

Discovery-Cell theory-Prokaryotes & Eukaryotes-Cellular Organelles: Structure, Organization and Functions of Plasma membrane, Nucleus & nucleolus, Mitochondria, ER-rough and smooth, Ribosomes, Golgi apparatus, Plastids, Vacuoles, Lysosomes, Peroxisomes and Microbodies. Cell junction.

Unit -II

Cell Cycle and Signaling

Overview, Structure and Organization of Microtubules and Microfilaments-Cell movement. Cell Division: Cell Cycle-Regulation of Cell Cycle-Cell signaling-(adrenalin receptors, acetylcholine receptors, insulin receptors) Programmed Cell Death. Transformation, Transduction and Conjugation, Recombination -Generalized and Site specific in bacteria-Holiday model.

15hrs

1

15hrs

Semester: 1 Credits : 5

1.

Unit -III

Overview of genetic material

Structure of DNA and RNA-Composition, Types and Functions, Replication mechanisms -Enzymes involved in replication. Mutation: Origin and Classification -Types-Molecular Mechanism of Mutation-Detection of DNA damage at molecular level, Ames test, cytogenetic analysis in mammalian cells-in vitro and in vivo-Host mediated assay-DNA repair and recombination mechanisms. Transposons and transposable elements-Mechanism of transposition.

Unit -IV

Transcription and RNA Processing

Transcription in Prokaryotes and Eukaryotes -Post transcriptional modifications. Genetic code and Translation: Features of genetic code - Deciphering of the codon-Translation in Prokaryotes and Eukaryotes-Post translation modifications-Protein targeting.

Unit -V

Regulation of Gene Expression

Cistron, muton and recon -exons and introns. Regulation of gene expression in prokaryotes and eukaryotes -positive and negative control in prokaryotes-Operon models(Lac,Tryp,Ara)-Spatial and Temporal regulation of eukaryotic genes, mi RNA, siRNA,Micro-satellites.

B.	Topics	for	self	study
D .	ropics	101	JOIL	Scuuy

S.No	Topics	Web Links
1	Active Transport	Gerald, K., Cell and Molecular Biology, Third edition, John Wiley & Sons, New York, 2001
2	Passive Transport	Gerald, K., Cell and Molecular Biology, Third edition, John Wiley & Sons, New York, 2001
3	Membrane Potential	Gerald, K., Cell and Molecular Biology, Third edition, John Wiley & Sons, New York, 2001
4	Second Messenger	Gerald, K., Cell and Molecular Biology, Third edition, John Wiley & Sons, New York, 2001

C. Text Books

1. Geoffrey M Cooper, Robert E Hausman., 2013. The Cell-A Molecular Approach, 6th Edition, ASM Press, Washington.

15hrs

D. Reference Books

- 1. Harvey Lodish., Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P, 2008. Scott Lawrence Zipursky., James Darnell., Molecular Cell Biology, 6th Edition.
- 2. Gerald K., 2001.Cell and Molecular Biology, 3rd Edition, John Wiley & Sons, New York.
- 3. Alberts B., Bray D., Hopkin K., Johnson A. D., Lewis J., Martin R., Roberts K and Walter P, 2003. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell, 2nd Edition, Garland Science Taylor & Francis Group, New York.
- 4. Benjamin A Pierce.,2006. Genetics-A Conceptual Approach, W.H.Freeman& Company, New York, 2nd Edition.

E. Web Links

- 1. https://nptel.ac.in/courses/102/106/102106025/#
- 2. https://onlinecourses.swayam2.ac.in/cec20_ma13/preview

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	Basics of Cell and Organelles		
1.1	Discovery-Cell theory-Prokaryotes & Eukaryotes	Classify prokaryotes and eukaryotes based on their internal structures	K2
1.2	Cellular Organelles: Structure, Organization and Functions of Plasma membrane, Nucleus & nucleolus	Describe the different models proposed to explain the arrangement of protein and lipids in plasma membrane Distinguish protein import and RNA export mechanism from nucleus	K2
1.3	Mitochondria and Plastids	Illustrate the structure and function of mitochondria and plastid	K2
1.4	ER-rough and smooth, Ribosomes, and Golgi apparatus	Explain the structure and function of endoplasmic reticulum and Golgi apparatus Classify the ribosomes based on its subunits	К2
1.5	Vacuoles, Lysosomes and Peroxisomes and microbodies	List the role of lysosomes and peroxisomes	К1
1.6	Cell junction	Explain Cell Junction	K1
1.7	Mitochondria and Plastids	Illustrate the structure and function of mitochondria and plastid	K2

Unit/ Section	Course Content	Learning Outcomes	HBTLT
2	Cell Cycle and Signaling		
2.1	Overview, Structure and Organization of Microtubules and Microfilaments-Cell movement	Illustrate the structure and organization of microtubules and microfilaments	K4
2.2	Cell Division: Cell Cycle-Regulation of Cell Cycle Cell signaling-(adrenalin receptors, acetylcholine receptors, insulin receptors)	Explain the different phases of cell cycle Categorize the cell signaling molecules based on its site of action & its location	К2
2.3	Programmed Cell Death	Distinguish the proteins involved in programmed cell death based on its function	K4
2.4	Transformation, Transduction and Conjugation	Describe the mechanisms of gene transfer between bacteria	K1
		Illustrate that DNA is genetic material through an experiment	K4
2.5	Recombination - Generalized and Site specific in bacteria- Holiday model	Distinguish generalized and site specific recombination in bacteria	K4
3	Overview of genetic material		
3.1	Structure of DNA and RNA- Composition,	Illustrate the structure and composition of nucleic acids	K4
3.2	Types and Functions, Replication mechanisms -Enzymes involved in replication.	Distinguish the enzymes involved in replication	K4
3.3	Mutation: Origin and Classification -Types- Molecular Mechanism of Mutation-	Explain the molecular mechanism of mutation	K4
3.4	Detection of DNA damage at molecular level, Ames test, cytogenetic analysis in mammalian cells-in vitro and in vivo- Host mediated assay-DNA repair and recombination mechanisms	Identify the DNA damage at molecular level	К6
3.5	Transposons and transposable elements- Mechanism of transposition	Describe the mechanism of Transposons and transposable elements	K6
4	Transcription and RNA Processing		
4.1	Transcription in Prokaryotes and Eukaryotes -Post transcriptional modifications	Illustrate transcription mechanism in prokaryotes and eukaryotes	K2
4.2	Genetic code and Translation: Features of genetic code -Deciphering of the codon-	Identify the amino acids coded by particular codon	K3
	Provide the translation of the translation of the translation modifications	Differentiate the mechanism of protein synthesis in prokaryotes and eukaryotes	K4
4.3	Protein targeting	Distinguish protein target mechanism of different cell organelles	K4

Unit/ Section	Course Content	Learning Outcomes	HBTLT
5	Regulation of Gene Expression		
5.1	Cistron, muton and recon -exons and introns	Assess regulation of gene expression in prokaryotes and eukaryotes	K4
	prokaryotes and eukaryotes-positive and negative control in prokaryotes		
5.2	Operon models(Lac and Ara)	Illustrate the control of gene expression of lactose and arabinose	K2
5.3	Tryp operon	Explain Trp operon	K2

4. Mapping Scheme

P20BT101	P0 1	P0 2	PO 3	P0 4	PO 5	P0 6	P0 7	PO 8	6 0d	PS0 1	PSO 2	PSO 3	PS0 4
CO 1	Η	Н	L	М	М	L	L	L	L	Η	L	L	L
CO 2	Η	Η	L	Μ	М	L	L	L	L	Η	L	L	L
CO 3	Η	Н	Н	Н	Η	Η	Н	Η	Н	Η	Η	Н	Н
CO 4	Η	Н	L	L	L	L	L	L	L	Η	L	L	L
CO 5	Η	Н	М	Н	Η	Н	Н	Н	Н	Η	Η	Н	Н
CO 6	Н	Н	L	М	М	L	L	L	L	Н	L	L	L

L: Low M: Medium H: High

5. Course Assessment Methods

Dire	ct
1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
3.	End Semester Examination
Indi	rect
1.Co	urse-end survey

Name of the Course Coordinator: Dr.R.Sharmila

Core Course: II- BIOCHEMISTRY

1. CourseOutcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Unit
C01	Recall the basic chemistry of elements & molecules and know the structure-function aspects of biomolecules	K1	Ι
CO2	Illustrate the biosynthesis, metabolic fates and regulation of biochemical pathways and perceive the overall scheme of energy metabolism in health and disease with a particular focus on enzymes	K2	II
CO3	Develop a keen interest for biomolecular chemistry and identify the methods of chemical analysis of various biomolecules	К5	III
CO4	Analyze, compare and contrast the structure and function of biomolecules and survey their commercial uses	K4	III
CO5	Determine and estimate various biomolecules qualitatively and quantitatively	K2	IV
C06	Formulate strategies and plan assays to study, isolate and purify biomolecules from their natural sources	K5	V

2. A. Syllabus

Unit I

15hrs

Chemistry of Biomolecules

Structure of atoms, molecules and chemical bonds; Covalent and Noncovalent interactions - Van der Waals, Electrostatic, Hydrogen bonding and hydrophobic interactions. Chemical foundations of Biology pH, pK, acids, bases and buffers, Henderson - Hasselbach equation, biological buffer solutions. Energy metabolism (concept of free energy); Principles of thermodynamics; Kinetics, dissociation and association constants.

Unit –II

Carbohydrates and Lipids

Monosaccharides, Disaccharides, Polysaccharides – Types, properties & their role. Homoglycans: structure and properties of starch, glycogen and cellulose. Heteroglycans: structure and properties of agar, alginic acid (sea weed polysaccharide), glycosaminoglycans and pectins. Lipids: Triglycerides, phosphoglycerols, derived lipids-steroids, prostaglandins and leukotrienes. Membrane lipids and their alignment in membrane.

Unit –III

Amino acids, Proteins & Lipids

Amino acids: General structure and classification. Glutathione: synthesis and function. Phenylalanine and tyrosine metabolism, Tetrapyrole from glycine, Cysteine and methionine metabolism, Coenzyme A from valine, aspartate and cysteine. Polyamines from methionine and arginine. Proteins: Peptide bond, Primary structure of proteins, structural comparison at secondary, tertiary levels (Ramchandran map), quaternary and domain structure. Protein sequencing strategies – chemical and enzymatic.

Unit –IV

Concept of Enzymes & Kinetics

Classification of enzymes. Mechanisms of enzyme action; Determination of Michaelis - Menten parameters, Lineweaver – Burk Plot, types of inhibition & models for substrate and product. Allosteric regulation of enzymes, pH and temperature effect on enzymes, Enzyme immobilization.

Unit –V

Metabolism

General scheme of metabolism, glycolysis - aerobic and anaerobic, regulation. Krebs cycle and its regulation; HMP shunt, glyoxylate and glucoranate pathways Cori's cvcle. Interconversion of sugars, gluconeogenesis, disaccharides synthesis of and polysaccharides. Glycogenesis, gluconeogenesis and glycogenolysis and their regulation. TCA cycle and its central role in metabolism. Biosynthesis of purines and pyrimidines, Oxidation of fatty acids; Biosynthesis of fatty acids.

15hrs

15hrs

15hrs

B. Topics for self study

S.No	Topics	Web Links
1.	Protein purification methods: role of buffers and detergents	https://ecampusontario.pressbooks.pub/ microbio/chapter/energy-matter-and- enzymes/
2	Methods for determining biomolecular structure	http://www.chem.ox.ac.uk/vrchemistry/p otential/Text/redox1.htm
3	Biochemistry of signal transduction	https://www.thermofisher.com/in/en/ho me/life-science/protein-biology/protein- purification-isolation/protein- purification.html
4	Reactive oxygen species in health and disease	https://www.photophysics.com/circular- dichroism/biophysical-characterization/

C. Text Books

- 1. Nelson L. D., Cox M.M., 2013. Lehninger's Principle of Biochemistry, Macmillan, Worth Publication Inc., 6th Edition.
- 2. Deb A.C., 2001. Fundamentals of Biochemistry, New Central Book Agency, Calcutta, 7th Edition.
- 3. David Rawn J., 2005. Biochemistry, Neil Patterson Publications.

D. Reference Books

- 1. Berg J.M., Stryer L., 2007. Biochemistry, W.H. Freeman & Co. NY, 7th Edition.
- 2. Thomas M. Devlin, 2002. Biochemistry with Clinical Correlation, Wiley- Liss Publication, 5th Edition.
- 3. Voet&Voet, 1995. Biochemistry, John Wiley and Sons, 2nd Edition.
- 4. JeoffreryZubay, 1993. Biochemistry, Wm C. Brown Publications, 3rd Edition, Volumes 1, 2, 3.
- 5. JeoffreryZubay, 1995. Principles of Biochemistry, Wm C. Brown Publications, 4th Edition.
- 6. Mathews C.K., K.E.vanHolde, 1990. Biochemistry, Benjamin/ Cumming Publications.
- 7. Satyanarayana U, 1999. Biochemistry, Books and Allied Pvt. Ltd., Calcutta.

E. Web Links

- 1. https://nptel.ac.in/courses/102/106/102106087/
- 2. https://nptel.ac.in/courses/104/105/104105076/
- 3. https://www.coursera.org/learn/energy-metabolism

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course content	Learning Outcomes	HBTLT				
1	Chemistry of Biomolecules						
1.1	Basic chemistry in life science	Recall High School teaching on atomic, molecular structure and chemical bonding	K1				
		Compare the different elements of the periodic table	K2				
		Categorize the different kinds of chemical bonds and examine the properties of matter based on their atomic/molecular bonding and structure	K4				
1.2	Structure and properties	Define the physicochemical properties of water	K1				
	of water	Illustrate the various kinds of bonds in water	K2				
		Interpret the influence of hydrogen bonding on physicochemical properties	K3				
		Discover the role of structural water and influence of water on macromolecular function	K4				
1.2	Measurement of pH,	What are acids and bases?	K1				
	determination of pKa	Explain the concept of pH	K2				
	(Henderson Hasselbalch equation)	Identify the roles of acids and bases in biochemical reactions	K3				
		Measure the pH of biological solutions	K4				
		Estimate the concentration of hydrogen ion or hydroxyl ion in solutions	K5				
		Measure the pH of a solution using the pH electrode Predict the pK values of compounds using	K5				
		chemoinformatics tools and predict the pH-based behaviour of compounds	K4				
	Henderson -	Apply HH equation to find pH	K3				
	Hasselbach (HH)	Determine the pH of a solution	K5				
	equation	Solve for pH using HH equation	K4				
	Biological buffer	What is an acid or base?	K1				
	solutions	Classify biological buffers based on pH	K2				
		Solve biochemical/medical problems related to acid- base imbalance	K3				

Unit/ Section	Course content	Learning Outcomes	HBTLT
		Discover the mechanisms of buffering in blood and cells	K4
		Examine the effects of acid-base imbalance	K5
		Assess changes in pH in biological buffers	K4
1.3	Energy metabolism (concept of free energy)	Recall the basic physics and chemistry concepts related to energy and work	K1
		Define Gibbs free energy	K2
		Compare the Gibbs free energy of high energy phosphate compounds	K3
		Discover the mechanisms of electron transfer and oxidative phosphorylation	K4
		Contrast biochemical reactions based on free energy	K2
		Assess the influence of free energy on the fate of biochemical reaction	K5
		compounds in cellular biochemistry	K4
1.4	Principles of	Recall and define the laws of thermodynamics	K1
	thermodynamics	Explain free energy, enthalpy and entropy	K2
		Compare exothermic and endothermic biochemical reactions	K2
		Dissect the importance of thermodynamics in biochemistry	K4
		Measure free energy change using biochemical methods	K5
1.5	Kinetics, dissociation and association	Recall elementary concepts related to kinetics of reactions-rate and order	K1
	constants	Identify, analyze and summarize reaction rates and orders of reactions using graphs	K2, K3
		Perceive the influence of physical and chemical factors and their influence on reaction rates in	
		cellular/enzymatic reactions	K4
		Determine the rate of a biochemical reaction Design experiments to determine rate, association	K5
		and dissociation constants for a reaction	K4

Unit/ Section	Course content	Learning Outcomes	HBTLT			
2	Carbohydrates and Lipids					
2.1	Monosaccharides, Disaccharides,	Tell the differences between different kinds of sugars	К1 К2			
	Polysaccharides -	Explain the physicochemical properties of sugars	K4			
	Types, properties & their	Identify sugars based on their chemical properties	K2			
	role	Classify carbohydrates into different types	K4			
		Discover the importance and role of carbohydrates in cell biology and biochemistry				
		Estimate the amount of carbohydrates	K5			
		Formulate strategies to research structure-function aspects of carbohydrates	K4			
2.2	Homoglycans: structure	Define homoglycans based on their properties	K1			
	and properties of starch, glycogen and cellulose	Classify homoglycans based on chemical composition	K2			
		Develop a deeper understanding of homoglycans	K3			
		Contrast homoglycans based on their source and	K4			
		functions				
		Explain the reaction and chemical properties of homoglycans	K5			
		Discuss the structures of homoglycans and their importance in biochemistry	K2			
2.3	Heteroglycans: structure	Tell the differences between various heteroglycans	K1			
	and properties of agar, alginic acid (sea weed	Illustrate the structure-function aspects of heteropolysaccharides	K2			
	polysaccharide),	Identify potential sources for sea weed extraction	K3			
	pectins	Discover methods and strategies to utilize heteroglycans for human welfare	K4			
		Estimate heteroglycans and discuss their importance in health and human welfare	K5			
2.4	Lipids: Triglycerides, phosphoglycerols,	Define lipids based on composition, chain length and saturation	K1			
	derived lipids-steroids, prostaglandins and	Classify lipids based on various physicochemical aspects	K2			
	leukotrienes	Identify the analytical methods for lipid analysis	K3			
		Dissect the biochemical roles of various lipids	K4			
		Determine the concentration of lipids using	K5			
		biochemical and analytical techniques	K4			
		Discuss the role of lipids in health and disease				

Unit/ Section	Course content	Learning Outcomes	HBTLT
2.5	Membrane lipids and	Find the lipid composition of various membranes	K1
	their alignment in	Illustrate the packing of membrane lipids	K2
	memprane	Model membrane lipid conformations in membranes	K3
		Assess the mode of lipid-lipid and protein-lipid interactions	K4
		Perceive and predict the orientation and alignment of lipids using bioinformatics tools	K5, K6
3	Aminoacids& proteins		
3.1	Amino acids: General	What are common and uncommon aminoacids	K1
	structure and classification	Classify aminoacids based on their charge, size, side chain and pKa	K2
		Identify the behaviour of aminoacids in proteins based on side chain and pH	K3
		Infer the role of aminoacids in proteins	K4
		Estimate aminoacids using biochemical assays	K5
3.2	Glutathione: synthesis and function.	Find the importance of glutathione in cellular redox chemistry	K1
		Demonstrate clear knowledge of glutathione synthesis and metabolism	K2
		Develop understanding of methods and assays to	K3, K5
		estimate glutathione and its redox potential	K5
		glutathione metabolism	
3.3	Phenylalanine	How are aminoacids synthesized in cells?	K1
	and tyrosine metabolism, Tetrapyrole from glycine,	Illustrate various pathways and critical enzymes involved in aminoacid metabolism	K2
	Cysteine and methionine metabolism	Develop strategies to purify aminoacid metabolites	K3
		Discover the pathways and exploit them for industrial production of metabolites in bacteria	K4
		Examine the mechanistic chemistry of aminoacid metabolism and estimate aminoacids (qualitative and quantitatively)	K4, K5
3.4	Coenzyme A	What is the coenzyme-A production pathway	K1
	from valine, aspartate	Outline the general strategies in industries for	K2
	and cysteine	coenzyme-A production from microbes	
		increase coenzyme A vields	K4
		Improve commercial strains by virtual cloning and	K3
		mutagenesis to improve yields	K5

Unit/ Section	Course content	Learning Outcomes	HBTLT
3.5	Polyamines from methionine and arginine	Show the importance of polyamines Compare the various polyamines and their signalling/redox chemistry	K1 K2
		Identify the role of polyamines in cell division, redox balance and reproduction	K3 K2
		Explain the critical steps in polyamine biosynthesis Learn to determine and estimate polyamine concentrations	K5
4	Concept of Enzymes & K	linetics	
4.1	Classification of enzymes	Define enzymes and outline their mechanisms of action	K1, K2
		Organize enzymes into various classes, subclasses based on their reaction type	K3 K4
		Classify enzymes based on IUB guidelines	
4.2	Mechanisms of enzyme action	Identify the mechanism of enzyme catalysis based on theories of enzyme action-lock and key and induced fit theory	К3
		Explain theories of enzyme action	К2
		Illustrate thermodynamics of enzyme action	K2
		Discover the intricate mechanisms of ES formation and catalysis	K4
		Choose experiments to study physicochemical properties of enzymes	K5
		Critically evaluate existing theories of enzyme action	Ko
4.3	Estimation of Michaelis - Menten (MM)	Discover the MM equation and its mathematical transformations	K4
	parameters	Express, predict and interpret enzymatic rates, MM reaction constants	K4, K5
		Solve for K_M , K_d , K_i and other related MM parameters	K6
		Design experiments to calculate MM parameters	KG
4.4	Lineweaver - Burk (LB) Plot, types of inhibition &	Illustrate the mathematical transformation of MM into LB plot	K2
	models for substrate and product	Identify the mechanisms of enzyme inhibition Compute and predict the reaction outcomes based	K3
		on inhibitor type	r\4, r\J
		Model and curve-fit enzyme kinetics	K4
		and products on enzyme reactions	K5

Unit/ Section	Course content	Learning Outcomes	HBTLT
4.5	Allosteric regulation of enzymes	Define and describe allosteric inhibition Review the importance and mechanistic chemistry of allostery	K1 K2
		Discover and analyze mechanisms of allostery	K4
		Evaluate allosteric reactions and describe their importance in biochemistry	K5
4.6	Enzyme immobilization	What arethe methods of enzyme immobilization	K1
		Demonstrate enzyme the chemistry of immobilization	K2 K5
		Design immobilization reactions and appraise the efficacy of immobilization in industrial processes	K5, K6
5	Metabolism		
5.1	General scheme of	Recall fundamental concepts in metabolism	K1
	metabolism	Underlying thermodynamic principles	K4
		Illustrate the importance of bioenergetics in metabolism	K2
		Examine the regulation of metabolic pathways by hormones and messengers	K5
		Explain and justify the interrelated nature of metabolic pathways	K5
5.2	glycolysis - aerobic and anaerobic, regulation	Describe and discuss the glycolytic pathway in different kinds of cells and organisms	K2, K4
		Demonstrate clear knowledge about glycolysis, types, feeder pathways and the rate limiting steps in the pathway	K2
		Summarize the key reaction steps and explain the importance of the pathway in industries and in medicine	K2, K5
		Construct arguments to substantiate for regulation of glycolysis through feedback and hormonal signalling	K5
5.3	Krebs cycle and its regulation	Recall and describe the TCA cycle and its anaplerotic role in metabolism	K1, K2
		Recognize and examine the role of reduced equivalents in energy metabolism	K2, K4
		Identify the pathways interlinked with TCA cycle and analyze regulation of TCA	K3, K4
		Elaborate on the mechanisms of the enzymes in the entire reaction pathway	K5

Unit/ Section	Course content	Learning Outcomes	HBTLT
5.4	HMP shunt, glyoxylate and glucuronate	Show the biochemical foundations for carbohydrate metabolism	K1
	pathways, Cori's cycle	Explain the pathways and their physiological relevance	K2
		Discover the similarities and differences	K4
		explain their regulation mechanisms	K3, K5
		Elaborate on the connections between these pathways and their significance	K5
5.5	Interconversion of sugars, gluconeogenesis,	Relate the interconversion of sugars to cellular metabolic fates and match gene corresponding expression profiles	K2, K1
	synthesis of disaccharides and	Discover the importance of simple sugars and their roles as fuel and building blocks	K2
	polysaccharides	Develop knowledge of <i>in vivo</i> biosynthesis and dissect the importance of epimerases and isomerases	K3, K4
5.6	Glycogenesis, gluconeogenesis and	Show, demonstrate and analyze the importance of glucose in metabolism	K1, K4
	glycogenolysis and their regulation	Compare the different fates of glucose and explain the regulation of glucose metabolism	K2, K5
		Construct logical inferences for changes in glucose metabolism during health and disease	К5
5.7	TCA cycle and its central role in metabolism	Recall and describe the TCA cycle and its anaplerotic role in metabolism	K1, K2
		Recognize and examine the role of reduced equivalents in energy metabolism	K4
		Identify the pathways interlinked with TCA cycle and analyze regulation of TCA	K3, K4
		Elaborate on the mechanisms of the enzymes in the entire reaction pathway	K5
5.8	Biosynthesis of purines and pyrimidines	Find the differences between de novo synthesis and salvage pathway	K1
		Illustrate the pathways and mechanisms of purine and pyrimidine biosynthesis	K2
		Identify, discover and discuss the applications such as hybridoma technology	кз, к4, К5

Unit/ Section	Course content	Learning Outcomes	HBTLT
5.9	Oxidation of fatty acids; Biosynthesis of fatty	Show the physiological role of lipids and explain their roles in metabolism	K1, K2
	acids	Identify the key steps and enzymes involved in fatty acid, triglyceride, phospholipid, sphingolipid and other compound/derived lipid biosynthesis	К3
		Compare and examine the role of fatty acids in cellular architecture, signalling & energy metabolism and discuss their structure-function aspects	K2, K4

4. Mapping Scheme

P20BT102	P01	P02	P03	P04	P05	P06	P07	P08	909	PS01	PS02	PSO 3	PS0 4
CO1	М	Н	L	М	Н	L	Н	L	L	Н	М	L	L
CO2	Н	Н	Н	Н	М	М	Н	М	L	Н	L	М	L
CO3	Н	Н	Н	М	Н	Н	Н	М	М	Н	Н	Н	М
CO4	Н	Н	Н	Н	М	М	М	L	L	М	Н	М	М
CO5	Н	Н	Н	Н	L	Н	М	М	L	Н	Н	М	L
CO6	Н	Η	Н	Η	М	Н	Η	М	L	Н	Η	Н	L

L: Low M: Medium H: High

5. Course Assessment Methods

Dire	ct
1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
3.	End Semester Examination
Indir	ect
1.	Course-end survey

Name of the Course Coordinator: Dr.S.Sriram

Core Course : III - MICROBIOLOGY

1. Course Outcome

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Recollect the basic concepts of microbiology and advanced developments	K2	Ι
CO2	Explain the advanced concepts and significance of the microbial physiological process	K2	II
CO3	Articulate the various mechanisms of microbial control and apply the concepts for obtaining practical solutions and breakthrough towards drug resistance in research	КЗ	III
CO4	Analyze the role of microbes as tools in finding sustainable solutions related to environment and societal issues	K4	IV
CO5	Evaluate the significance of biopesticides over chemicals	K5	IV
CO6	Develop strategies to understand the pathogenicity and identify the modes of transmission of microbial diseases and their control	К5	V

2. A.Syllabus

Unit – I

15hrs

Discovery and Diversity of microbes

Discovery and development of microbiology-contributions by Antony Von Leeuwenhoek, Louis Pasteur, Robert Koch and Edward Jenner. Microbial taxonomy-kingdom concept, domain concept, molecular characterization-16S rRNA, Numerical, DNA-DNA hybridization. Characteristic features of bacteria, algae, fungi, protozoans and viruses.

Unit – II

15hrs

Bacterial cell organization and genetics

Overview of prokaryotic cell- Cell wall of Gram positive and Gram negative bacteria, cell membranes, capsules, slime, endospores, flagella and motility.

Bacterial recombination-bacterial plasmids, fertility factors, conjugation, transformation and transduction-generalized and specialized.

Unit – III

Microbial metabolism and control

Bacterial respiration and photosynthesis. Bacterial growth-requirements, factors, growth curve and measurement agents - physical and chemical. Antibiotics (each with one example) affecting cell membrane, nucleic acid synthesis, protein synthesis and metabolism & their side effects - Antifungal and antiviral drugs. Drug resistance. Bioactive natural products.

Unit – IV

Applied Microbiology

Bioinsecticides, Mycoinsecticides - advantages and mode of action - Bacillus thuringiensis, Baculoviruses. Biodegradation of xenobiotics, Bioleaching, Biodetoriation, Bioremediation, Phytoremediation. Biostimulation of oil spill degradation.

Unit – V

Diseases

Microbial Disease- Water borne disease (Cholera), food borne disease (Typhoid), Air borne (tuberculosis), Sexually transmitted disease (Syphilis), Vector borne disease (Malaria), Viral disease (HIV), Fungal disease (Mycoses), Nosocomial infection (Pneumonia).

B. Topics for self-study

S.No	Topics	Web Links
1.	Viral taxonomy	www.ncbi.nlm.nih.gov > pmc > articles
2	Extremozymes	www.frontiersin.org
3	Different Approaches to a Coronavirus Vaccine	www.nytimes.com
4	Biospray	www.infectioncontroltech.com

C. Text Books

- 1. Prescott, Harley, Klein.,2016. Microbiology, 10th Edition, Mc Graw Hill.
- 2. Ananthanarayan ,Paniker,2013, C.TEXT BOOKS of Microbiology, 9th edn.,Univ Press, New Delh

15hrs

15hrs

D. Reference Books

- 1. Glazer and Nikaido, Microbial Biotechnology, 2nd Edition,Cambridge University Press,2007.
- 2. Ronald M. Atlas., Richard Bartha R., Microbial Ecology, Fundamentals and Applications, Pearson Education Limited, 2004.
- 3. Jacquelyn G. Black, Microbiology Principles & Explorations, 7th Edition, John Wiley, 2008.
- 4. Gerard J. Tortora., Berdell R. Funke., and Christian L.Case,.Microbiology: An Introduction, 12th Edition, Benjamin Cummings Publications, 2015.
- 5. Rajan S., Selvi Christy R., Essentials of Microbiology, CBS Publishers,2018
- 6. Satyanarayana U and Charapani U, Biotechnology.12th Edition., Books & Allied (P) Ltd. Kolkata, 2019.

E. Web Links

- 1. https://onlinecourses.swayam2.ac.in/cec19_bt11/preview
- 2. https://nptel.ac.in/courses/102/103/102103015/
- 3. https://onlinecourses.swayam2.ac.in/cec19_bt11

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	Disc	overy and Diversity of microbes	
1.1	Discovery of microbial world & growth of microbiology	State the scope of microbiology Discuss the growth of microbiology	K2 K2
		scientists towards the growth of microbiology	٢Z
1.2	Features of microbes &	Summarize the features of microbes	K2
	Kingdom &Domain concept	Analyse the principles involved in classifying microorganisms	K4
1.3	New approach of bacterial taxonomy	Differentiate bacteria by comparing their similarities and differences	K5
		Apply new molecular techniques to classify bacteria	K3

Unit/ Section	Course Content	Learning Outcomes	HBTLT					
2	Bacterial cell organization and genetics							
2.1	Structure & synthesis of cell wall and organelles	Explain the structure & synthesis of bacterial cell wall	K2					
		Differentiate the cell wall composition of Gram positive and Gram negative bacteria	K4					
2.2	Bacterial cell membranes, capsules, slime, endospores, flagella and motility	Understand the structure and function of cellular extensions	K2					
2.3	Bacterial recombination- Conjugation, Transformation,	Comprehend the process & significance of bacterial recombination	K2					
	Transduction	Evaluate the significance of the different types of recombination	K5					
3	N	licrobial metabolism and control						
3.1	Bacterial Respiration	Explain the concept & process of bacterial photosynthesis	K2					
3.2	Bacterial Photosynthesis	Discuss the mechanism and significance of bacterial reproduction	K2					
3.3	Bacterial growth measurement	Distinguish the various stages of bacterial growth & to infer the measurement of growth	K4					
3.4	Control of bacteria-Physical, Chemical, Antibiotics	Categorize the various methods of bacterial control and evaluate their efficiency	K5					
4		Applied Microbiology						
4.1	Bioinsecticides-Bacillus thuringiensis, Baculovirus & Mycoinsecticides	Analyze the role of bacteria, virus &fungi as biocontrol agents	K4					
4.2	Biodegradation of xenobiotics	Categorize the success of biodegradation of xenobiotics	K4					
4.3	Bioleaching, Biodeterioration	Identify the significance of the process of bioleaching & biodeterioration	K2					
4.4	Bioremediation & Phytoremediation	Evaluate the pros & cons of bioremediation & phytoremediation	K5					
4.5	Degradation of oil spills	Solve the problems in petroleum degradation employing microbes	K3					
5		Diseases						
5.1	Water borne disease-cholera	Identify the spread of <i>V.cholera</i> & role of toxins in disease production	K2					

Unit/ Section	Course Content	Learning Outcomes	HBTLT
5.2	.Food borne disease-typhoid	Determine the cause & control of typhoid	K2
5.3	Air borne-Tuberculosis	Relate the diagnosis & symptoms of Pneumonia	K4
5.4	Sexually transmitted -syphilis	Describe the transmission of syphilis	K2
5.5	Vector borne-Malaria	Assess the transmission of malaria through vector	K5
5.6	Viral disease-HIV	Explain the diagnosis, transmission & pathogenicity of HIV	K2
5.7	Fungal-Mycoses	Comprehend the symptoms, spread and control of mycotic infections	K2
5.8	Nosocomial -Pneumonia	Report on the complications and spread of Pneumonia through hospitals	K4

4. Mapping Scheme

P20BT103	P01	P02	P03	P04	P05	904	P07	P08	60d	PS0 1	PSO 2	PS03	PS04
CO1	М	L	L	М	L	-	L	М	-	Н	L	-	-
CO2	М	М	М	Н	Н	М	L	М	L	Н	М	-	-
CO3	Н	М	Н	Н	М	М	М	Н	М	Н	Н	М	М
CO4	Н	Н	Н	Н	Н	М	М	М	Н	М	Н	Н	Н
CO5	М	-	М	L	Н	L	-	L	М	L	М	М	М
CO6	М	L	Η	М	Н	М	М	М	Н	Н	М	L	L

L: Low M: Medium H: High

5. Course Assessment Methods

Dire	ct
1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
3.	End Semester Examination
Indi	rect
1.	Course-end survey

Name of the Course Coordinator: Dr.Beatrice Valdaris

Core Practical : I - BIOCHEMISTRY AND CELL BIOLOGY LAB

1. Course Outcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Experiments Covered
C01	To recall the basic concepts pertaining to preparation of various kinds of reagents (molar, normal solutions) and buffers	K1	1,2
CO2	To observe how a spectrophotometer works and how to assay the concentrations of unknown solutions	K2	3
CO3	To develop working knowledge of estimation of biomolecules and learn to report their findings through construction of tables and lab reports	К5	4,5
CO4	To apply theoretical knowledge of Biochemistry in the laboratory setting and formulate newer alternative methodologies to estimate the concentration of biomolecules	K4	6,7
CO5	To distinguish between assay methods and comprehend the principle underlying the assays/experiments	K4	8
C06	The student will learn to stain cells, visualize them and to isolate as well as estimate nucleic acids from various sources	К3	9, 10, 11, 12, 13

2. Syllabus

List of Experiments

Biochemistry

- 1. Preparation of primary and secondary solutions (Molarity and Normality).
- 2. (Colorimetry): To demonstrate Beer Lambert's law and construction of standard graph

- 3. Spectrophotometry: Quantitative estimation of biomolecules by means of spectrophotometer.
 - Estimation of Protein by Bradford Method
 - Estimation of Carbohydrates(Glucose & Starch) by Anthrone Method
 - Estimation of Cholesterol by Zaks Method
- 4. Absorption spectra of Proteins and Nucleic Acids
- 5. Determination of Pka values of Buffers
- 6. Paper Chromatography of Amino Acids.
- 7. Thin Layer Chromatography of Plant Pigments.
- 8. Separation of proteins using FPLC technique.
- 9. Extraction, seperation and determination of absorption spectra of plant pigments-qualitative and quantitative assessment through UV-Visible spectrophotometry.
- Enzyme kinetics and effect of inhibitors for a) Lactate dehydrogenase
 b) Alpha amylase-Determination of Michaelis-Menten constant (KM), Vmax,/C50, Ki and identification of inhibitor type using Lineweaver-Burke (LB) plot.

Cell Biology

15hrs

- 1. Mitosis of Onion root tip
- 2. Observation of Giant Chromosomes from Chironomus larva
- 3. Isolation of DNA from Buccal smear
- 4. Isolation of Genomic DNA from plants
- 5. Isolation of Genomic DNA from animal tissues

Reference Books

- 1. Jayaraman. J, Techniques in biology, Higginbothams Pvt., Ltd., 1972.
- 2. Jayaraman. J, Laboratory manual in Biochemistry, Wiley Eastern Ltd.,1992,
- 3. Sam Brook et al., Molecular Cloning : A Laboratory Manual Volumes I III, Cold spring Harbor Laboratory, 1989.
- 4. Frederick M. Ausbel, Roger Breut, Short protocols in Molecular Biology, Volumes I & II, 5th Edition, John Wiley & Sons Inc., 2002.

Web Link

- 1. https://nptel.ac.in/courses/104/105/104105102/
- 2. https://onlinecourses.nptel.ac.in/noc21_bt36/preview
- 3. https://nptel.ac.in/courses/102/103/102103012/#

Exercises	Course Content	Learning Outcomes	HBTLT
EX 1	В	iochemistry	
EX 1.1	Preparation of primary and secondary solutions (Molarity and Normality).	Recall basic concepts related to solution preparation	K1
		Compare the different types of reagents	K2
		Categorize solutions and calculate the amount of solute and solvent required to prepare solutions	K4
		Develop the skill of reagent preparation	K5
EX 1.2	Colorimetry: To demonstrate Beer	Define Beer-Lambert's law	K1
	Lambert's law and construction of standard graph	Illustrate the importance of Beer- Lambert's law in analytical biochemistry and spectroscopy	K2
		Interpret the effect of solute concentration on absorbance	K3
		Discover the applications of spectroscopy	K4
		Construct a standard graph and test the concentration of solute in an unknown solution	K5
EX 1.3	Spectrophotometry: Quantitative	What is a spectrophotometer?	K1
	estimation of biomolecules by means of spectrophotometer.	Explain the roles of the parts of a spectrophotometer	K2
	 Estimation of Protein by Bradford 	Identify the importance of analytical biochemistry in everyday life	K3
	Method Estimation of Carbohydrates(Glucose & Starch) by Anthrone Method 	Determine and Analyze- a) wavescan b) single wavelength c) kinetics d) λ_{max} e) isosbestic point	K5, K4
	 Estimation of Cholesterol by Zaks Method 	Estimate the concentration of solutes in a given solution	K5
		Measure the pH of a solution using the pH electrode	K5
		Predict and deduce the solute concentration from absorbance in estimation of proteins, carbohydrates and cholesterol	K6
		Test real samples in clinical and analytical biochemistry fields	K5

3. Specific Learning Outcomes(SLO)

Exercises	Course Content	Learning Outcomes	HBTLT
EX 1.4	Absorption spectra of Proteins and Nucleic Acids	How and why estimation of nucleic acids is important	K1
		Compare the UV absorbance of single/double stranded DNA and RNA	K2
		$\begin{array}{llllllllllllllllllllllllllllllllllll$	К3
		Analyze the concentration of DNA and RNA using UV spectra data	K4
		Discover the influence of temperature on DNA structure	K4
		Determine the T _m of DNA	K3
		Formulate strategies and experiments to test the influence of binding agents on spectral signature of nucleic acids	K5
EX 1.5	Determination of Pka values of Buffers	Recall the importance of buffers in biological research	K1
		Define pH, Ka, pKa, buffer action and buffer capacity	K2
		Compare different kinds of buffers and their applications	K3
		Contrast buffers based on pKa	K4
		Measure the pH of buffers and solutions	K5
		Discuss the change in pH when dilute solutions of acid/base are added	K4
EX 1.6 to	Paper Chromatography of Amino Acids	Recall and define the principles of chromatography	K1
EX 1.8	Thin Layer Chromatography of Plant	Explain the importance of solvents	K2
	Pigments	Compare the effect of hydrophilic and hydrophobic solvents on solute separation	K2
	Separation of proteins using FPLC technique	Dissect the importance of chromatography in analytical chemistry	K4
		$\label{eq:measure} \textbf{Measure} \text{ the } R_{f} \text{ value of separated solutes}$	K5
EX 1.9.	Extraction, separation and determination of absorption spectra of plant pigments- qualitative and quantitative assessment	Examine and differentiate the spectra of photosynthetic pigments based on their spectral signatures.	K2
	through UV-Visible spectrophotometry.	Estimate the concentration of different photosynthetic pigments.	K4
		Correlate the structure of photosynthetic pigments and their UV-Vis spectraldata,and thereby,perceive structure -function aspects of pigments in photosynthesis.	К5

Exercises	Course Content	Learning Outcomes	HBTLT
EX 1.10.	Enzyme kinetics and effect of inhibitors for a) Lactate dehydrogenase b) Alpha amylase-Determination of Michaelis- Menten constant (KM), Vmax,/C50, Ki and identification of inhibitor type using	Practically determine the enzymes kinetics parameters-KM and V max for two different enzymes and thereby,understand,compare and test different enzymes.	К1
	Lineweaver-Burke (LB) plot.	Practically evaluate the mechanism of enzyme inhihibition by inhibitors and differentiate the patterns of enzyme inhibition	K2
		Perceive and analyze the mathematical transformation of enzymes kinetics profiles using different kinds of plots-MM,LB and Eadie-Hofstee.	K3
EX 2	C	cell Biology	
EX 2.1	Mitosis of Onion root tip	Tell the differences between different stages of mitosis	K1
		Explain the role of cell division in plants Identify various stages based on morphological appearances under the microscope	K2 K4
		Classify various stages of mitosis and understand the underlying biochemical processes	K2
		Discover the importance and role of cell division in biology	K4
		Formulate strategies to research how cell structure is affected by mitosis inhibitors such as colchicine	K5
EX 2.2	Observation of Giant Chromosomes from Chironomus larva	Define the importance of chromosomes in living organisms	K1
		Compare giant chromosomes with other normal chromosomes	K2
		Develop a deeper understanding of how DNA is packed into chromosomes	K3
		Examine the morphological features of giant chromosomes	K4
		Explain the role of polytene chromosomes in cells	K5
		Propose reasons for the existence of polytene chromosomes	K4

Exercises	Course Content	Learning Outcomes	HBTLT		
EX 2.3	Isolation of DNA from Buccal smear	Recall the structural aspects of DNA and how they can be purified	K1		
	Isolation of Genomic DNA	Illustrate the roles of various reagents on purification methodology	K2		
	from plants	Identify the mechanism of DNA precipitation and purification	K3		
	Isolation of Genomic DNA	Discover how DNA can be purified and quantified			
	from animal tissues	Estimate the concentration of DNA from samples and apply the findings in analytical biochemistry	K5		

4. Mapping Scheme

P20BT1P1	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS01	PS02	PS03	PS04
CO1	L	L	Н	М	L	L	L	М	L	М	М	Н	Н
CO2	Н	L	М	М	М	L	L	М	L	М	М	Н	Н
CO3	Н	L	Н	Н	Н	L	L	L	L	Н	Н	Н	Н
CO4	Н	М	Н	Н	Н	L	L	L	L	М	М	Н	Н
CO5	М	Н	Н	М	Н	L	L	L	L	Н	Н	Н	Н
CO6	М	L	М	М	М	L	L	L	L	L	Μ	Η	М

L: Low M: Medium H: High

5. Course Assessment Methods

Dire	ct			
1.	Periodical Assessment			
2.	Record of results, Punctuality, Observation note maintenance, Regular Submission of results, Discussion of results obtained			
3.	Model Practical Examination			
4.	End Semester Practical Examination			
Indirect				
1.	Course-end survey			

Name of the Course Coordinator: Dr.M.G Daniel Andrew

Core Practical : II - MICROBIOLOGY LAB

1. Course Outcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Experiments Covered
CO1	Apply basic knowledge on basic staining techniques to differentiate bacteria based on grams reaction	КЗ	1
CO2	Differentiate bacterial spores from vegetative cells	K4	2
CO3	Design and conduct experiments involving bacterial growth	K5	3,4
CO4	Analyze the role of various factors affecting bacterial growth	K4	3,4,5,6
CO5	Apply pure culture techniques in isolation of bacteria from different samples and analyzing the quality based on microbial load	К3	2
C06	Evaluate the potability of water sample	K4	7

2. Syllabus

List of Experiments

Microbiology

- 1. Staining- Differential (Gram staining), spore staining
- 2. Isolation & Enumeration of organisms from soil, water & food samples
- 3. Turbidometric measurement of bacterial growth
- 4. Effect of temperature and pH on bacterial growth
- 5. Effect of disinfectant on bacterial growth-phenol co-efficient test
- 6. Effect of radiation (UV) on bacterial growth
- 7. Assess water quality by MPN test
Reference Books

- 1. Collins J., Microbial Methods, 7th Edition, CRC Press, 1995.
- 2. Robert Cruickshank, Medical Microbiology, Guide to the laboratory Diagnosis & Control of Infection, 12th Edition, Churchill Livingstone Publishers,1973.
- 3. Cheever F.S., Laboratory Manual of Microbiology, Pubmed Central,2006.

Web links

- 1. https://catalog.byu.edu/life-sciences/microbiology-and-molecularbiology/ general-microbiology-laboratory
- 2. https://vlab.amrita.edu/?sub=3&brch=73&sim=1105&cnt=3750
- 3. https://courses.lumenlearning.com/suny-microbio-labexperience/ front-matter/introduction-2/

Exercises	Course Content	Learning Outcomes	HBTLT
EX 1.	Staining- Differential (Gram staining), spore staining	Apply the Gram staining protocol and differentiate Gram positive and Gram negative bacteria	K3
		Practice spore staining to differentiate spores from vegetative cells	K3
EX 2.	Isolation & Enumeration of organisms from soil, water & food samples	Apply the principles of pure culture technique to isolate the bacteria from various samples	K3
		Analyze the quality of samples by estimating the bacterial load	К4
EX 3	Turbidometric measurement of bacterial growth	Differentiate the various stages of bacterial growth	K4
EX 4	Effect of temperature and pH on bacterial growth	Evaluate the effect of temperature and pH on bacterial growth	K5
EX 5	Effect of disinfectant on bacterial growth-phenol co- efficient test	Formulate an experiment to determine the influence of phenol on bacterial growth	K5
EX 6	Effect of radiation (UV) on bacterial growth	Evaluate the effect of radiation on bacterial growth	K6
EX 7	Assess water quality by MPN test	Evaluate the quality of different water samples	K5

3. Specific Learning Outcomes (SLO)

P20BT1P2	P01	P02	P03	P04	P05	P06	P07	P08	909	PS0 1	PSO 2	PSO3	PS04
CO1	-	-	Н	Н	Н	Η	L	Η	L	М	М	Н	М
CO2	-	-	Н	Н	Н	Η	L	Η	L	М	М	Н	М
CO3	-	-	Н	Н	Н	Η	L	Η	L	М	М	Н	М
CO4	-	-	Н	Н	Н	Η	L	Η	L	М	М	Н	М
CO5	-	-	Н	Н	Н	Η	L	Η	L	М	М	Н	М
CO6	-	-	Н	Н	Н	Н	L	Н	L	М	М	Н	М

L: Low M: Medium H: High

5. Course Assessment Methods

Direct

1.	Periodical Assessment			
2.	Record of results, Punctuality, Observation note maintenance, Regular Submission of results, Discussion of results obtained			
3.	Model Practical Examination			
4.	End Semester Practical Examination			
Indirect				
1.	Course-end survey			

Name of the Course Coordinator Dr.Beatrice Valdaris

Semester: 2

Credits : 4

1.

CO1

CO2

CO3

CO4

CO5

2. A. Syllabus

CourseOutcomes

At the end of this course the students will be able to

Construct the basic operators of Centrifuges

Understand the characteristics of chemical

Describe the principle of Electrophoresis and

Define the accession and passing arguments

Analyze and categorize the concepts of

Electrochemistry and Centrifugation						
Principles of	Electrochemical	Techniques,	Redox	Reactions,	the	pН
Electrode, Gla	ss Electrode and	Reference Ele	ctrode.	Centrifugatio	on: Sr	nall
Bench Top Centrifuges, Large Capacity Refrigerated Centrifuges, High Speed						
Refrigerated Centrifuges, Preparative and Analytical Ultra Centrifuge.						

Unit – II

Chromatography

Principles of Chromatography, Ion Exchange and Affinity Chromatography. Performance Liquid Chromatography (HPLC), High Gas liquid Chromatography (GLC), Thin layer Chromatography (TLC), Paper Chromatography.

Unit -III

Electrophoresis

Principles of Electrophoresis, Electrophoresis of Proteins: SDS-PAGE, 2D-PAGE, Detection, Estimation and Recovery of Proteins, Electrophoresis of

2	1
J	

CourseCode: P20BT1:1 Total Hrs/Week:5

Level

K1

K2

K4

К2

К5

15hrs

15hrs

Unit

Ι

Ι

Π

Ш

IV

15hrs

Unit – I

Elective Course : IA - BIOINSTRUMENTATION

CO. No Course Outcomes

reactions

Chromatography

list out its types

in functions of Spectroscopy

Nucleic Acid: Agarose Gel Electrophoresis of DNA, Pulsed Field Gel Electrophoresis.

Unit - IV

15hrs

Spectroscopy and Microscopy

Properties of Electromangnetic Ionic Radiation. UV and Visible Spectroscopy, FTIR, Infrared and Raman Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, ICP, Spectrofluorimetry, Mass Spectroscopy (GC-MS), and XRD. Types of Microscopes-TEM and SEM.

Unit -V

15hrs

Radioactivity

The nature of radioactivity, detection and measurement of radioactivity: detection based on gas ionization- Geiger Muller Counter- principles and applications. Detection based on excitation- Liquid Scintillation Counter-principles and applications. Supply, storage and purity of radio labelled compounds, specific activity, inherent advantages and restrictions of radiotracer experiments, safety aspects, applications of radio isotopes in biological sciences. Autoradiography labelling.

S.No **Topics** Web Links 1. http://www.iitgn.ac.in/research/facilities The role of central instrumentation facility /cif in a research institute/ https://www.pondiuni.edu.in/departmen university t/central-instrumentation-facility/ https://www.jnu.ac.in/airf_Instruments 2 How can we differentiate Prescott. Harley, Klein.. 2016. different Microbiology, 10th Edition, Mc Graw types of Hill. microscopes 3 R K Singal, 2014, Nuclear Reactors. Explain the mechanism of nuclear power https://www.energy.gov/ne/articles/nucl reactors ear-101-how-does-nuclear-reactor-work 4 Enumerate the Jadiyappa S. Radioisotope: applications, of occupational applications effects. and protection. radioisotopes Principles and Applications in Nuclear Engineering: Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment. 2018 Sep 19:19.

B. Topics for self study

C. Text Books

- 1. Keith Wilson., and John Walker., Principles and Techniques of Biochemistry and Molecular Biology, Seventh Edition, Cambridge University Press London, UK, 2010
- 2. Arumugam , Bioinstrumentation, MJP Publications, Chennai, 2018(Reprinted).

D. Reference Books

- 1. Douglas A. Skoog., James Holler F., and Stanley R. Crouch, Instrumental Analysis, Cengage Learning India Pvt., Ltd., New Delhi, 2009
- 2. Puri B.R., Sharma L.R., and Madan S. Pathania., Principles of Physical Chemistry, Vishal Publishing Co., Jalandhar, 2005
- 3. Singh P.R., Gupta D.S., and Bajpal K.S., Experimental Organic Chemistry, Vol (1),- Basic Techniques and preparations, Tata Mc-Graw-Hill Publishing Company Ltd., 1980
- 4. Harborne J.B., Phytochemical Methods A Guide to Modern Techniques of Plant Analysis, Third Edition, Published by Chapman and Hall (L), London, 1998

E. Web Links

- 1. https://onlinecourses.nptel.ac.in/noc20_bt16/preview
- 2. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
- 3. https://nptel.ac.in/courses/102/103/102103044/

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	Electrochemistry	v and Centrifugation	
1.1	Principles of Electrochemical Techniques, Redox Reactions, the pH Electrode, Glass Electrode and Reference Electrode	Define the basic concepts Electrochemical Techniques.	K1
1.2	Centrifugation Small Bench Top Centrifuges, Large Capacity Refrigerated Centrifuges, High Speed Refrigerated Centrifuges, Preparative and Analytical Ultra Centrifuge.	Illustrate the concepts of Centrifugation and RCF Apply the principle of Centifuge to isolate the molecular samples.	K1 K4

Unit/ Section	Course Content	Learning Outcomes	HBTLT
2	Chroma	atography	
2.1	Principles of Chromatography, Ion Exchange and Affinity Chromatography. High Performance Liquid Chromatography (HPLC),Gas	Classify the Types of Chromatography and Separate the Amino acids and various Biochemical Samples.	K2
	liquid Chromatography (GLC), Thin layer Chromatography (TLC), Paper Chromatography.	Analyze separation of mixture of chemical Compounds by chromatography	K4
3	Electro	ophoresis	
3.1	Principles of Electrophoresis, Electrophoresis of Proteins: SDS -PAGE, 2D-PAGE, Detection, Estimationand Recovery of Proteins.	Describe electrophoretic method of separating protein samples. Explain the different types of electrophoresis	K2 K2
3.2	Electrophoresis of Nucleic Acid: Agarose Gel Electrophoresis of DNA, Pulsed Field	Describe the concept of Electrophoresis	K2
	Gel Electrophoresis.	Discuss the method of analyzing the DNA samples to identify the Mol wt.	K2
4	Spectroscopy	and Microscopy	
4.1	Properties of Electromagnetic Ionic Radiation. UV and Visible Spectroscopy,	Explain the principle of Electromagnetic radiation.	K2
	FIIR, Infrared and Raman Spectroscopy	Apply the concept and mechanism of Spectroscopy.	K3
4.2	Nuclear Magnetic Resonance Spectroscopy, ICP, Spectrofluorimetry	Interpret the concept and applications of NMR Spectrum.	K2
	,Mass Spectroscopy (GC-MS),and XRD.	Identify the applications of various	K2
		Analyze the applications of TEM and SEM	К4
5	Radio	pactivity	
5.1	The nature of radioactivity, detection and measurement of radioactivity	Review the various concepts of Radioactivity.	K2
	Detection based on gas ionization- Geiger Muller Counter- principles and applications. Detection based on excitation- Liquid Scintillation Counter- principles and	Analyze the accession of using Radioactive Detecting methods/ Instruments.	K4
	applications.	Apply the usage of expression and arrays in pointers	K3
5.2	Applications of radio isotopes in biological sciences. Autoradiography labeling.	List out the applications of radioisotopes in biology	K2

P20BT1: 1	P01	P02	P03	P04	P05	P06	P07	P08	60d	PSO 1	PSO 2	PS03	PS04
CO1	М	L	L	М	L	-	L	М	-	Н	L	-	-
CO2	М	М	М	Н	Н	М	L	М	L	Н	М	-	-
CO3	Н	М	Н	Н	М	М	М	Н	М	Н	Н	М	М
CO4	Н	Н	Н	Н	Н	М	М	М	Н	М	Н	Н	Н
CO5	М	-	М	L	Н	L	-	L	М	L	М	М	М
CO6	М	L	Η	Μ	Η	М	М	М	Η	Η	М	L	L

5. Course Assessment Methods

Dire	ct
1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
3.	End Semester Examination
Indi	rect
1.	Course-end survey

Name of the Course Cordinator Mr.J.Dinesh Raja

Elective Course: IB - BASICS OF BIOINFORMATICS

1. CourseOutcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Understand the basic information of Bioinformatics tools and software	K2	Ι
CO2	Describe the features of the Biological databases	K1	II
CO3	Analyze the pair wise sequence alignment methods	K4	III
CO4	Determine the major principle aspects of protein-protein interaction, BLAST and PSI- BLAST	КЗ	IV
CO5	Apply and explain the application of Bioinformatics	К3	V
CO6	Distinguish the importance of Bioinformatics in the drug designing	К5	V

2. A. Syllabus

Unit – I

15hrs

15hrs

Introduction to Bioinformatics

Overview : Definition and History. Milestones in Bioinformatics. Methods in Bioinformatics. Role of Bioinformatics in various fields. Useful Bioinformatics web sites. Dogmas: Central and Peripheral. Introduction to single letter code of aminoacids, symbols used in nucleotides. Pubmed: Europen molecular biology network Bioinformatics programme in India

Unit -II

Biological Data and Databases

Introduction to Biological Databases- Nucleotide sequence database, Protein sequence & Structure Databases, Organism specific databases.Metabolic pathway databases, Bibliographic databases, Biodiversity databases and Specialized databases.

Unit -III

Sequence formats and Information retrieval

Sequence formats in Biological databases: FASTA, Phylip, Clustal, Genbank, EMBL, SWISS PROT. Data retrieval: Entrez, SRS, Protein identification resources (PIR), Expasy, Ensembl.

Unit -IV

Database Searches- Similarity, homology, assessing significance of sequence similarity- Z score, P value, E value. Similarity search programs-fast searching methods-BLAST, FASTA, Dynamic programming searching methods, profile based methods-PSI- BLAST, Sensitivity and Specificity.

Unit -V

Applied Bioinformatics

Commercial bioinformatics, Survey of bioinformatics companies in India and abroad –Economics prospects, pharama informatics, combinatorial chemistry, HT screening – in silico screening – from lead to commercialization. Role of bioinformatics resources: Agricultural-Transgenic plants and Animals. Pharmaceutical-Drug design and medical-SNP, Genetic disorders.

B. Topics for self study

S.No	Topics	Web Links
1.	Bioinformatics help in handling and analysis of the genomics data and annotation	https://www.intechopen.com/books /bioinformatics-updated-features- and-applications/bioinformatics- basics-development-and-future
2.	Structural bioinformatics: molecular folding, modeling, and design	Ibrokhim Y. Abdurakhmonov (July 27th 2016). Bioinformatics: Basics, Development, and Future, Bioinformatics
3.	Biological networks and system biology	https://www.hindawi.com/journals /bmri/2014/428570/
4.	Intelligent Systems for Molecular Biology	https://academic.oup.com/bioinfor matics/article- abstract/10/2/199/184414?redirec tedFrom=fulltext

15hrs

15hrs

C. Text Books

- 1. M. Michael Gromiha, Protein Bioinformatics From Sequence to Function, Elsevier India Pvt. Ltd, New Delhi, 2010.
- 2. Lesk, A.M, Introduction to Bioinformatics, Oxford University Press, New Delhi, 2003

D. Reference Books

- 1. Attwood T.K., and Parry-Smith D.J., 2004. Introduction to Bioinformatics, Pearson Education Ltd., New Delhi.
- 2. Westhead D.R., Parish J.H., and Twyman R.M.2003. Instant notes in Bioinformatics, Viva Books Pvt. Ltd.
- 3. Manju Bansal., 2009. Basic Bioinformatics, Atlantic Publishers & Distributors.
- 4. Harshawardhan, P, 2005.Bioinformatics principles and application, Tata McGraw Hill Publishers,New Delhi.
- 5. Mount, D.W, 2005. Bioinformatics Sequence and Genome Analysis, Second Edition, CBS Publishers, New Delhi.

E. Web Links

- 1. https://nptel.ac.in/courses/102/106/102106065/
- 2. https://onlinecourses.swayam2.ac.in/cec21_bt04/preview

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT	
1	Introduction	n to Bioinformatics		
1.1	Overview- Definition and History. Milestones in Bioinformatics. Methods in Bioinformatics. Role of Bioinformatics in various fields. Useful Bioinformatics web sites.	Apply the most common problems of modeling biological processes at the molecular level	K4	
1.2	Dogmas: Central and Peripheral. Introduction to single letter code of aminoacids, symbols used in nucleotides.	Understand the properties of amino acid by charge, hydrophobicity and polarity.	K4	
1.3	Pubmed: Europen molecular biology network Bioinformatics programme in India.	Apply the molecular biology network through PUBMED center.	K3	

Unit/ Section	Course Content	Learning Outcomes	HBTLT			
2	Biological D	ata and Databases				
2.1	Introduction to Biological Databases- Nucleotide sequence database, Protein sequence & Structure Databases, Organism specific databases.	Differentiate between nucleotide and protein sequences retrieved from the Biological databases.	K4			
2.2	Metabolic pathway databases, Bibliographic databases, Biodiversity databases and Specialized databases.	Illustrate how reactions carry on linkage pathways and KEEG pathway of reaction mechanisms including that enzyme commission number (EC).	K5			
3	Sequence formats	and Information retrieval				
3.1	Sequence formats in Biological databases:FASTA, Phylip, Clustal, Genbank, EMBL, SWISS PROT.	Analyze the different formats of sequences input in their respective Biological databases.	K4			
3.2	Data retrieval: Entrez, SRS, Protein identification resources (PIR), Expasy, Ensembl.	Evaluate the biological processes at the molecular level from the respective data retrieval.	K5			
4	Databa	ise Searches				
4.1	Similarity, homology, assessing significance of sequence similarity-Z score, P value, E value. Similarity search programs-fast searching methods-BLAST, FASTA, Dynamic programming searching methods, profile based methods-PSI- BLAST, Sensitivity and Specificity.	Discuss the mechanism of various Biological parameters and substitute the reaction for biological applications.	К2			
5	Applied Bioinformatics					
5.1	Commercial bioinformatics, Survey of bioinformatics companies in India and abroad -Economics prospects, pharama informatics, combinatorial chemistry, HT screening - in silico screening - from lead to commercialization.	Apply the various bioinformatics tools in biological research	КЗ			
5.2	Role of bioinformatics resources: Agricultural-Transgenic plants and Animals. Pharmaceutical-Drug design and medical-SNP, Genetic disorders	Analyze and identify the drug targets for vaccine design	K4			

P20BT1: A	P01	P02	P03	P04	P05	P06	P07	P08	909	PS0 1	PSO 2	PS03	PS04
CO1	Н	Н	Н	Н	М	М	М	М	М	L	L	L	М
CO2	М	L	L	М	М	L	L	Н	Н	Н	Н	L	М
CO3	М	L	Н	М	М	L	L	М	Н	Н	М	L	L
CO4	Н	М	М	Н	Н	L	L	L	L	L	Н	Н	Н
CO5	L	Н	Н	Н	Н	М	М	М	М	Н	Н	Н	Н
CO6	Н	Μ	Μ	Н	М	Η	Н	Η	Η	L	М	Н	Н
L: Low		M: M	lediu	m	l	H: Hi	gh						

5. Course Assessment Methods

Dire	ct			
1.	Continuous Assessment Test I,II			
2.	Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototypeor Product Demonstratione tc.(as applicable)			
3.	End Semester Examination			
Indir	Indirect			
1. Co	urse-end survey			

Name of the Course Cordinator : Dr.M.Rajadurai

Core Course IV - ANIMAL BIOTECHNOLOGY

1. Course Outcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Understand the significance of maintenance of cell lines & their application in cancer studies & toxicity testing	К2	Ι
CO2	Gain knowledge in the various techniques such cell synchronization & cell hybridization	К2	Ι
CO3	Compute the methods of construction of viral vectors in transfer of gene of interest to host in gene therapy	КЗ	II
CO4	Analyze the importance & advantages of recombinant vaccines over conventional vaccines	K4	II
CO5	Appraise the use of transgenic animals as models for human disease & for commercial products & explain the concepts in selective & cross breeding	К5	IV
C06	Evaluate the application of employing <i>C.elegans,</i> mice, zebra fish & drosophila as alternative animal models in research	К5	V

2. A. Syllabus

Unit - I

15hrs

Animal Cell Culture

Development and maintenance of cell lines, continuous cell lines, culture media for cultured cells & tissues - natural & defined media, Preparation of various tissue culture media, sterilization, Cell hybridization, hybridoma & monoclonal antibodies production. Cell synchronization.

Unit -II

Biology and Methods for the Construction of Animal Viral Vectors

SV 40, adeno virus, retro virus, vaccinia virus, herpes virus, adeno associated virus and Baculo virus. Recombinant vaccines (r-subunit vaccine, r-live vaccines, Anti-idiotipic), Interferon and growth factor and other therapeutic proteins and gene therapy.

Unit - III

Conventional Methods of Animal Improvement

Selective and Cross Breeding. Artificial insemination, Superovulation, Oestrus Synchronization. In vitro maturation of animal oocytes - Methods of transferring genes into animal oocytes, eggs, embryos and specific tissues -IVF - gamete selection - In vitro culture of Oocyte / embryo and storage. Embryo collection, sex selection and transfer. Somatic cell cloning.

Unit – IV

Transgenics

Transgenic animal production and application; transgenic animals as models for human disease; transgenic animals as living bioreactorstransgenic animals in livestock improvement; transgenic in industry; chimera production; xenografting; ethical issues in animal biotechnology.

Unit – V

Animal models

Animal models to assess and understand toxicology-Life cycle and genetics of Drosophila, *Caenorhabditis elegans*, Mice and Zebra fish.

B. Topics for self study

S.No	Topics	Web Links
1.	Animal feed additives	www.wattagnet.com
2	Role of Probiotics in enhancing animal health	www.mdpi.com
3	Intracellular mini-binders	www.nature.com> nature methods
4	From gene editing to genome engineering	www.botanik.kit.edu > molbio

15hrs

15hrs

15hrs

C. Text Books

- 1. Freshney R.I., Culture of Animal Cells, Manual of Basic technique, 4th Edition, John Wiley Publications,2000.
- 2. Ranga M.M.,Animal Biotechnology, 2nd Edition, Agrobios, India, 2004.
- 3. SasidharaR., Animal Biotechnology, MJP Publishers, 2006.

D. Reference Books

- 1. Babiuk L.A., John. P. P., and Murray M., Animal Biotechnology, Pergamm Press, Oxford, 1989
- 2. Primrose, S.B., Twyman, R.W., Principles of Gene Manipulation and Genomics, VII edition, Wiley Blackwell, 2006.
- 3. Glick B. R., and Pasternak J. J., Molecular Biotechnology- Principles and Applications of Recombinant DNA, 3rd Edition, American Society for Microbiology,2003.
- 4. Watson J.D., Caudy A. A., Myers R. M., Witkowski J.A., Recombinant DNA: Genes and Genomics: A short course, 3rd Edition, W.H.Freeman& Co Ltd.,2006.
- 5. Ashish Verma, Anchal Singh, Animal Biotechnology: Models in Discovery and Translation, Academic Press, 1st Edition, 2014.

E. Web Links

- 1. https://www.coursera.org/lecture/methods-of-molecular-biology/ animal-biotechnology-and-its-methods-0DFte
- 2. http://ecoursesonline.iasri.res.in/course/view.php?id=350
- 3. https://nptel.ac.in/noc/courses/noc21/SEM2/noc21-bt47/

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT				
1	ļ	Animal Cell Culture					
1.1	Introduction -Animal Cell Culture	Explain the basics of animal cell culture	K2				
1.2	Cell lines & media	Describe the maintenance and culture of cell lines	K2				
1.3	Media for cultured cells & tissues - natural & defined media, Preparation of various tissue culture media, sterilization	Discuss the different types of cell culture media	K2				

Unit/ Section	Course Content	Learning Outcomes	HBTLT			
1.4	Cell hybridization Hybridoma technology & Monoclonal antibodies production.	Assess the application of hybridoma technique in production of Monoclonal antibodies	K5			
	Cell synchronization	Analyze the significance of cell hybridization and cell synchronization technique	К4			
2	Biology and Methods fo	r the Construction of AnimalViral Vecto	rs			
2.1	Viral vectors for gene transfer	Explain the construction of viral vectors Assess the role of viruses as vectors	K2 K5			
2.2	Recombinant vaccines	Evaluate the significance of recombinant vaccines	K5			
2.3	Therapeutic Proteins	Explain recombinant therapeutic proteins and highlight the significance of therapeutic proteins	K3			
2.4	Gene therapy	Discuss the application of gene therapy for solving genetic disorders	K4			
3	Conventional Methods of Animal Improvement					
3.1	Conventional Methods of Animal Improvement-	Explain the concept of selective and cross breeding	K2			
	 a. Selective and Cross Breeding b. Artificial insemination 	Analyze the significance of artificial insemination	К4			
	c. Super ovulation, Oestrus Synchronization	Demonstrate the applications of Super ovulation, Oestrus Synchronization	К3			
3.2	In vitro fertilization	Evaluate the pros and cons of <i>in vitro</i> fertilization	K5			
3.3	Somatic cell cloning	Explain steps in somatic cell cloning	K2			
4		Transgenics				
4.1	Transgenics- production & Application	Explain the mechanism involved in the production of transgenic animals	K3			
	a.Transgenic animal production and application	Evaluate the advantages and	K5			
	b.Transgenic animals as models for human disease	disadvantages of transgenic animals				
	c. Transgenic animals in livestock improvement & industry					
4.2	Chimera production	Describe the features of chimera	K2			

Unit/ Section	Course Content	Learning Outcomes	HBTLT
4.3	Xenografting	Illustrate the significance of xenografting	K2
4.4	Ethical issues in animal biotechnology.	Analyze the various ethical issues in animal biotechnology	K4
5		Animal models	
5.1	1. Animal models to assess & understand toxicology	Evaluate the levels of toxicology using animal models	K5
5.2	2. Life cycle and genetics of Drosophila	Explain the use of drosophila as alternate animal model	K2
5.3	3. Life cycle and genetics of Caenorhabditis elegans	Investigate the application of <i>C.elegans</i> as animal model	K4
5.4	4. Life cycle and genetics of mice	Assess the use of mice as animal model	K3
5.5	5. Life cycle and genetics of Zebra fish	Justify the use of zebra fish as animal model	K4

P20BT204	P01	P02	P03	P04	P05	P06	P07	P08	909	PS0 1	PSO 2	PSO 3	PS0 4
CO1	Н	Н	М	М	Н	Η	L	-	-	Н	Н	Н	-
CO2	Н	L	М	М	М	-	-	-	-	М	М	Н	-
CO3	Н	М	М	Н	Н	Н	-	-	L	М	Н	Н	-
CO4	Н	Н	Н	М	Н	М	-	-	L	Н	Н	Н	-
CO5	Н	Н	Н	Н	Н	М	-	L	-	М	Н	Н	М
CO6	Η	Η	М	М	Η	Μ	-	М	Μ	Η	М	Η	М

L: Low

M: Medium H: High

5. Course Assessment Methods

Direct1. Continuous Assessment Test I,II2. Open book test, Assignment, Journal paper review, Case study, Mini
Project report, Poster presentation3. End Semester ExaminationIndirect1. Course-end survey

Name of the Course Coordinator: Dr.R.Jasmine

Semester : 2 Credits : 5

Course Code : P20BT205 Total Hrs/ Week : 5

Core Course : V-PLANT BIOTECHNOLOGY

1. Course Outcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Explain the basics, methodology and applications of plant tissue culture	K2	Ι
CO2	Experiment with the function and composition of different plant structures, tissues, and organelles	КЗ	II
CO3	Categorize the role of GM crops and products in the market and pipeline, and their contributions towards food security, sustainable environment and medicine	K4	III
CO4	Determine plant transformation, selection of desirable genes for crop improvement, design binary vector and procedure for generating GM crops	К5	IV
CO5	Compose plant related research, government regulatory bodies, education, food industry and other plant-based product development and related businesses	К5	V
CO6	Combinethe topics of technical insights into plant breeding, tissue culture, plant genes and genetic modification	К5	V

2. A. Syllabus

Unit – I

15hrs

Genome Organization in Plants

Genome Organization in Nucleus, Chloroplast and Mitochondria, Molecular Marker-Aided Breeding: RFLP maps, Linkage Analysis, RAPD markers, STS, Microsatellites. Plant Hormones – Biosynthesis, storage, breakdown and transport; physiological effects and mechanisms of action.

Unit –II

Plant Cell and Tissue Culture

Brief historical account, Laboratory organization, Tissue culture media composition and preparation, Callus and Cell suspension culture, Somaclonal variation, Micropropagation, Organogenesis, Somatic embryogenesis, Embryo culture, Synthetic seeds, Protoplast isolation, Somatic hybridization and Cybrids, Anther, Pollen and Ovary culture for production of haploid plants.

Unit –III

Plant Genetic Transformation Methods

Cryopreservation and DNA banking for Germplasm conservation. Production of secondary metabolites, Genetic engineering of metabolic pathways, Production of secondary metabolites in bioreactors and downstream processing.

Unit –IV

Application of Plant Genetic Transformation

Agrobacterium and Crown gall tumours, Mechanism of T-DNA transfer, Ti and Ri plasmid vectors, Agro infection. Direct transfer of plants by physical methods, Selectable marker and reporter genes, Chloroplast transformation. Mechanism of soil bacteria and cyanobacteria for enhanced nitrogen fixation, Azola as biofertilizers, advantage of biofertilizers over chemical fertilizers, activity to control insect pests, Plant host-insect interactions- nif and nod genes.

Unit – V

Metabolic Engineering and Biopharmaceuticals

Transgenic plants: Genetic engineering of plants for herbicide resistance, Pest resistance, Virus resistance, Disease resistance, Stress tolerance, Cytoplasmic male sterility, Delayed fruit ripening. Genetic engineering in floral industries Genetic engineering of seed storage proteins. Vaccine production in plants-plantibodies, Edible vaccine, Transgenic plants: Bt cotton, Bt brinjal, vitamin enrichment, Golden rice.

15hrs

15hrs

15hrs

B. Topics for self study

S.No	Topics	Weblinks
1	BioFEDs	https://www.frontiersin.org/articles/10.3389/ fpls.2020.598103/full
2	Plant Science's Contribution to Fighting Viral Pandemics: COVID- 19 as a Case Study	https://www.frontiersin.org/research- topics/13779/plant-sciences-contribution-to- fighting-viral-pandemics-covid-19-as-a-case- study
3	Gene stacking by recombinases	https://www.bionity.com/en/publications/852 877/gene-stacking-by-recombinases.html
4	Green catalysts	https://pubmed.ncbi.nlm.nih.gov/29914650/

C. Text Books

1. Mantell S.H., and Smith H., Plant Biotechnology, Cambridge University Press, UK, 1983.

D. References Books

- 1. Mantel., Mathews., and Mickee., An Introduction to Genetic Engineering in Plants, Blackwell Scientific Publishers, London, 1985
- 2. Pierik R.L.M., In Vitro Culture of Higher Plants, MartinusNijhoff Publisher, Dordrecht, 1987
- 3. Dixon R.A., and Gonzales R.A., Plant Cell Culture. A Practical Approach. Second Edition, Oxford University Press, Oxford, 1994
- 4. Donald Grierson., and Convey S.V., Plant Molecular Biology, Blackie and Son Limited. New York, 1984
- 5. Henry R.J., Practical Application of Plant Molecular Biology, Chapmans and Hall, 1997
- 6. KirsiMarjaOksmanCaldentey., and Wolfgang H. Barz., Plant Biotechnology and Transgenic Plants, Marcel Dekker, Inc., New York, 2002.

E. Web Links

- 1. https://nptel.ac.in/courses/102/103/102103016/
- 2. https://nptel.ac.in/content/storage2/courses/102103016/module1/ lec1/5.html

Unit/ Section	Course Content	Learning Outcomes	HBTLT					
1	Genome Organization in Plants							
1.1	Genome Organization in Nucleus	Define Gene & Genome Recall the structure of Gene & Genome	K1					
1 0	Chloroplast and Mitachandria	Explain the organization in hucleus	ΝZ					
1.2		Compare the structure of the chloroplast and mitochondria	K2					
1.3	Molecular Marker-Aided Breeding	Explain the molecular marker-Aided breeding Differentiate molecular marker- aided breeding with other breeding	K3					
1.4	RFLP maps	What is RFLP? Explain the RFLP maps	K2					
1.5	RAPD markers	Define RAPD Explain RAPD maps	K1					
1.6	Linkage Analysis	What is Linkage ? Explain Linkage Analysis	K4					
1.7	STS	Define STS Classify STS	K1					
		List out the advantages of STS	K2					
1.8	Microsatellites	Define & classify Microsatellites Show the advantages of using Microsatellites	K1 K3					
1.9	Plant Hormones	Define plant hormone Classify the types of plant hormones Highlight the advantages of using plant	K2 K3 K3					
4.40	Picounthopic	Evolution about the biggunthesis of start						
1.10	Storage, breakdown, transport		К2					
	physiological effects and mechanisms of action.of plant	Explain the storage, breakdown & transport of plant hormones	K2					
	hormone	Compare the physiological effects and mechanisms of action of different plant hormones	K2					

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
2	Pla	ant Cell and Tissue Culture	
2.1	Brief historical account	Trace the history of plant tissue culture	K2
2.2	Laboratory organization	Demonstrate the organization of plant cell laboratory	К3
23	Tissue culture media composition and preparation	Determine the significance of the tissue culture media Recall the media composition	К2
2.4	Callus & Cell suspension culture	Explain the methodology of callus production Determine the development of callus	K2 K4
2.5	Micropropagation & Protoplast isolation	Describe the technique of micropropagation Review protoplast isolation method	K2 K2
2.6	Embryo culture & Organogenesis	Develop invitro embryo culture Experiment with Organogenesis Distinguish direct and indirect organogenesis	K4 K4 K4
2.7	Somaclonal variation & Somatic embryogenesis	Describesomaclonal variation Experiment with somatic embryogenesis	K2 K3
2.8	Synthetic seeds	Identify and choose proper seeds Recall the media composition Develop synthetic seeds	K2 K4
2.9	Somatic hybridization & Cybrids	Identify somatic hybridization Experiment with somatic hybridization Determine the significance of cybrids	K3
2.10	Anther, Pollen and Ovary culture for production of haploid plants.	Define haploid plants Compare between anther, pollen and ovary culture	K1
3	Plant G	enetic Transformation Methods	
3.1	Cryopreservation and DNA banking for Germplasm conservation	Identify cryoprotectants Analyze DNA banking Assume Germplasm conservation	К3
3.2	Production of secondary metabolites	K4	
3.3	Genetic engineering of metabolic pathways	Compare various metabolic pathways Determine Genetic engineering of metabolic pathways	К3

Unit/ Section	Course Content	Learning Outcomes	HBTLT
3.4	Production of secondary metabolites in bioreactors and downstream processing	Classify the bioreactors List out the production of secondary metabolites using bioreactors Inspect the process of downstream processing	К2
4	Applicatio	n of Plant Genetic Transformation	
4.1	Agrobacterium and Crown gall tumours, Mechanism of T- DNA transfer	Compare the relationships of Agrobacterium and crown gall tumours Determine the mechanism of T-DNA transfer	К2
4.2	Ti and Ri plasmid vectors &Agro infection	Discover the presence of Ti and Ri plasmid vectors Compare the Ti and Ri plasmid vectors	K2
4.3	Direct transfer of plants by physical methods	Classify the direct transfer of plants by physical methods Categorize the natural methods Survey the artificial methods Distinguish natural and artificial methods	K2 K2 K4
4.4	Selectable marker and reporter genes	Determine the selectable markers Categorize the reporter genes	K2
4.5	Chloroplast transformation	Explain the structure of chloroplast Analyse chloroplast transformation mechanism	K2 K4
4.6	Mechanism of soil bacteria and cyanobacteria for enhanced nitrogen fixation	Analyse the process of nitrogen fixation Describe the mechanism of soil bacteria and cyanobacteria	K4 K2
4.7	Azola as biofertilizers	Examine Azola as biofertilizers	K2
4.8	Advantage of biofertilizers over chemical fertilizers Activity to control insect pests	Determine the activity of insect pest control, Compare biofertilizers and chemical fertilizers Determine the advantages of biofertilizers	K2
4.9	Plant host-insect interactions- nifand nod genes	Analyze plant host-interactions Categorize nif and nod genes	K4
5	Metabolic E	ngineering andBiopharmaceuticals	
5.1	Transgenic plants : Genetic engineering of plants for herbicide resistance	Determine genetic engineering of plants Explain herbicide resistance Evaluate the genetically engineered herbicide resistance plants	K2 K5

Unit/ Section	Course Content	Learning Outcomes	HBTLT
5.2	Pest resistance plants	Explain pest resistance Discuss about the advantages of pest resistant plants	K2
5.3	Virus resistance plants	Explain virus resistance Discuss about the advantages of virus resistant plants	K2
5.4	Disease resistance plants	Explain disease resistance Discuss about the advantages of disease resistant plants	K2
5.5	Stress tolerance plants	Explain pest resistance Discuss about the advantages of pest resistance plants	K2
5.6	Cytoplasmic male sterility	Determine cytoplasmic male sterility Explain cytoplasmic male sterility Elaborate the importance of cytoplasmic male sterility	К2
5.7	Delayed fruit ripening	Define delayed fruit ripening Explaindelayed fruit ripening Elaborate the mechanism of delayed fruit ripening	K1
5.8	Genetic engineering in floral industries & Genetic engineering of seed storage proteins	Explain the genetic engineering process Describe the floral industries and seed storage proteins Discuss about genetic engineering in floral industries and seed storage proteins Evaluate the advantages of seed storage proteins	K2 K2
5.9	Vaccine production in plants: Plantibodies	Explain the plantibodies Analyze the types of plantibodies DISCUSS the advantages of plantibodies	K2 K4 K4
5.10	Edible vaccine	Define edible vaccines Explain the mechanism of edible vaccines DESCRIBE the advantages of edible vaccines	K1 K2 K4
5.11	Transgenic plants: Bt cotton, Bt brinjal, vitamin enrichment, Golden rice	Explain the production of transgenic plants Estimate the advantages of transgenic plants	K2 K4

P20BT205	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PSO 3	PS0 4
CO1	М	М	L	Н	L	L	L	-	-	Н	L	Н	-
CO2	Н	Н	М	Н	М	М	Н	М	Н	Н	М	Н	-
CO3	М	L	Н	L	М	L	М	L	М	L	Н	Н	-
CO4	Н	Н	М	М	Н	М	Н	М	Н	М	Н	Н	-
CO5	М	М	М	Н	Н	Н	Н	М	М	М	М	Н	М
CO6	М	L	М	Н	Н	М	Н	М	Н	Н	Μ	Н	М

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test I,II
- 2. Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

Name of the Course Coordinator : Dr.C.Cynthia

Core Course : VI - INDUSTRIAL BIOTECHNOLOGY

1. Course Outcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	To acquire knowledge about the screening techniques of industrially important microbes	K1	Ι
CO2	To understand the nutrition sources, types and stages of fermentation systems	K2	II
CO3	To distinguish the components and types of fermentor	K4	II
CO4	To comprehend about the downstream processing	K5	III
CO5	To apply the knowledge about the production of industrially significant products using fermentation technology	К3	IV
CO6	To apply the knowledge in the production of commercially valuable	К3	V

2. A. Syllabus

Unit - I

15hrs

15hrs

Industrial Fermentation

Screening of Primary and Secondary Metabolites; Strain Development for Metabolite Production; Substrates used for Industrial fermentation; Carbon and Nitrogen Sources; Methods of Fermentation - Batch and Continuous fermentation, Different Fermentation Systems, Different Stages of Fermentation Process.

Unit -II

Fermentor Design:

Introduction - Basic functions of fermentor, Components of fermentor: Impellor, Sparger and Baffles. Sterilization of fermentor. Bioreactor control and monitoring process. Role of computer in fermentation technology. Types of reactors: Air lift fermentor, Stirred tank fermentor, tower fermentor, cyclone column fermentor and Rotating disc fermentor.

C. **Text Books**

- 1. Stanbury P.F., Whitaker, A., and Hall S.J., Principles of Fermentation Technology, Third Edition, Butterworth- Heinemann Publishers, 2016.
- 2. Patel.. Microbiology, 1st Edition. A.H. Industrial MacMillan Publication, 20008.

Topics for self study

Unit -V 15hrs **Commercially Valuable Bioproducts:**

L-Threonine, L-Phenyl alanine; Vitamins – Riboflavin, Carotenes.

Fermented Foods- Cheese; Microorganisms and Substrates used for Production of SCP, Advantages of using Microorganisms; Production of Edible Mushrooms; Production of Microbial Polysaccharides- Xanthan

Down Stream Processing:

Release of intracellular products; Concentration- evaporation, liquid –liquid extraction, membrane filtration, precipitation, adsorption; Purification- Ion exchange, Formulation-drying, freeze drying, crystallization.

Solid -liquid separation-flotation, flocculation, filtration, centrifugation;

Production of Industrially Significant Products/Secondary Metabolites:

Antibiotics Production- Tetracycline, Erythromycin; Amino acid Production-

Unit -IV

56

15hrs

15hrs

В.

S. No.	Self - study Topics	Web Links
1.	Enzymes in industry: production and applications.	https://www.cabdirect.org/
2.	Cheese Production by Donkey's Milk Using an Aspartic Protease from Plant Origin	https://www.longdom.org/scholarly /industrial-biotechnology
3.	White /Industrial Biotechnology	https://www.omicsonline.org/schol arly/whiteindustrial-biotechnology
4.	The role of biotechnology in pharmaceutical drug design	https://pubmed.ncbi.nlm.nih.gov/

Unit -III

3. U. Satyanarayan and U. Charapani, Biotechnology, 12th Edition, Books and allied (P) Ltd., 2019.

D. Reference Books

- 1. Casida Jr, L. E. Industrial Microbiology, 1st Edition, New age International (P) Ltd., 2007.
- 2. Wulf Cruger W., Anneliese Crueger A and K.R.Aneja, Crueger's Biotechnology: A Textbook of Industrial Microbiology, 3rd Edition, Medtech Publishers, 2017.
- 3. Presscott, D., Industrial Microbiology, 4th Edition, Agrobios (India) CBS Publication, 2005.
- 4. S.M. Reddy, S. Ram Reddy, G. Narendra Babu, Basic Industrial Biotechnology, 1st Edition, New Age International, 2012.
- 5. Glazer , A.N and Nikaido H., Microbial Biotechnology, W.H.Freeman& Company, New York, 1995.

E. Web Links

- 1. https://www.careers360.com/university/indian-institute-oftechnology-kharagpur/industrial-biotechnology-certification-course
- 2. https://www.coursera.org/learn/industrial-biotech
- 3. https://onlinecourses.nptel.ac.in/noc19_bt20/preview

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	In	dustrial Fermentation	
1.1	Screening of Primary and Secondary Metabolites;	To examine the soils samples for screening the industrially important microorganisms.	K1
1.2	Strain Development for Metabolite Production;	To distinguish the strains and improve the quality for more yield.	K2
1.3	Substrates used for Industrial fermentation; Carbon and Nitrogen Sources;	To classify the components of the media required for fermentation.	K2
1.4	Methods of Fermentation - Batch and Continuous fermentation,	To compare batch and continuous fermentation techniques.	K2
1.5	Different Fermentation Systems,	To differentiate fermentation systems.	K2

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1.6	Different Stages of Fermentation Process.	To describe various stages of fermentation processes.	K2
2		Fermentor Design	
2.1	Introduction - Basic functions of fermentor, Components of fermentor: Impellor, Sparger and Baffles.	To analyze the functions of the fermentor. To classify the basic components of the fermentor.	К4
2.2	Sterilization of fermentor.	To analyze the sterilization techniques of the fermentor.	К4
2.3	Bioreactor control and monitoring process. Role of computer in fermentation technology.	To illustrate how the bioreactor is controlled and monitored.	К2
2.4	Types of reactors: Air lift fermentor, Stirred tank fermentor, tower fermentor, cyclone column fermentor and Rotating disc fermentor.	To correlate and explain the mechanism of different types of fermentor.	K4
3	Do	wn Stream Processing	
3.1	Solid -liquid separation-flotation, flocculation, filtration , centrifugation ; Release of intracellular products;	To assess various stages of downstream processing.	К5
3.2	Concentration- evaporation, liquid -liquid extraction, membrane filtration, precipitation, adsorption;	To distinguish the techniques involved in concentrating the product during downstream processing.	К2
3.3	Purification- Ion exchange , Formulation- drying, freeze drying, crystallization.	To estimate the product how far it is pure.	K5
4	Production of	Industrially Significant Products	
4.1	Antibiotics Production- Tetracycline, Erythromycin;	To discuss a methodology for the production of antibiotics	K4
4.2	Amino acid Production- L- Threonine, L-Phenyl alanine;	To explain the production of Amino acids industrially	K2
4.3	Vitamins - Riboflavin, Carotenes.	To explain the production of vitamins.	K2

Unit/ Section	Course Content	Learning Outcomes	HBTLT
5	Commer	cially Valuable Bioproducts	
5.1	Fermented Foods- Cheese; Microorganisms and Substrates used for Production of SCP, Advantages of using Microorganisms;	To formulate the process for the production of commercially valuable products such as cheese and SCP	K6
5.2	Production of Edible Mushrooms;	To establish the method of production of edible mushroom	K6
5.3	Production of Microbial Polysaccharides- Xanthan.	To assess the production of microbial polysaccharide- xanthan by fermentation technology.	K6

P20BT206	P01	P02	P03	P04	P05	P06	P07	P08	909	PS01	PS02	PS03	PS04
CO1	Н	Н	Н	М	М	М	М	-	-	-	Н	Н	Н
CO2	Н	Н	-	-	М	М	-	-	-	-	Н	М	-
CO3	Н	М	-	-	-	-	-	-	-	-	-	-	-
CO4	-	Н	Н	Н	М	-	-	-	-	Н	Н	-	Н
CO5	М	Н	Н	Н	Н	Н	-	-	-	Н	Н	Н	Н
CO6	М	Н	Н	Н	Н	Н	-	-	-	Н	Н	Н	Н

L: Low

M: Medium

H: High

5. Course Assessment Methods

Direct

1. Continuous Assessment Test I,II

2. Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation

3. End Semester Examination

Indirect

1. Course-end survey

Name of the Course Coordinator : Dr.Beatrice Valdaris

Core Practical : III - ANIMAL, PLANT & INDUSTRIAL LAB

1. Course Outcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Experiments Covered
CO1	Understandthe organization of plant and animal culture labs	K2	1,6
CO2	Familarise in preparation of plant and animal culture media	К2	1,4,7
CO3	Apply the theoretical knowledge in developing practical skills in plant tissue culture techniques	К3	6,7
CO4	Analyse the effect of toxicants in human cells by MTT assay	K4	10,13
CO5	Visualize the live cells and differentiate them from dead cells	K4	2
CO6	Explore the significance of extra cellular enzyme producers	К5	11,12

2. Syllabus

List of Experiments

Animal Biotechnology Laboratory

- 1. Media Preparation for Animal Cell Culture
- 2. Cell viability test- by trypan blue
- 3. Cell toxicity testig-MTT assay
- 4. Primary cell culture-Isolation of cells from organs
- 5. Serum Preparation

Plant Biotechnology Laboratory

- 6. Preparation of Plant tissue culture Medium
- 7. Micropropagation of medicinal plants
- 8. Callus induction
- 9. Somatic Embryogenesis
- 10. Synthetic seeds

Industrial Biotechnology

- 11. Isolation and screening of antibiotic producers by crowded plate technique
- 12. Isolation and screening of microorganism producing proteases
- 13. Isolation and screening of microorganism producing amylases
- 14. Isolation of nitrogen fixers from soil.

D. Reference Books

- 1. Collins J., Microbial Methods, 7th Edition, CRC Press, 1995.
- 2. Robert Cruickshank, Medical Microbiology, Guide to the laboratory Diagnosis & Control of Infection, 12th Edition, Churchill Livingstone Publishers,1973.
- 3. Cheever F .S., Laboratory Manual of Microbiology Pubmed Central, 2006.
- 4. Sharma and Anshan., Manual of Microbiology Tools and Techniques, 2007.
- 5. Ian Freshney R., Culture of Animal Cells: A Manual of Basic Technique, Fifth Edition, John Wiley and Sons Inc., Hoboken, New Jersey, 2005.
- 6. LingarajSahoo.,Plant Biotechnology Laboratory Manual., IIT Gwahathi, 2012.
- 7. McNeil and Harvey., Fermentation– A Practical Approach, IRL Press, 1990.
- 8. Cooney., Wang and Daniel., Computer Aided Material Balancing for Production of Fermentation Parameters, Biotech. Bio Engineering, 1997.
- 9. Scragg, Bioreactors in Biotechnology- A Practical Approach, Ellis Harwood Ltd.,1991.
- 10. Janarthanan S., Vincent S., Practical Biotechnology, 1st Edition, Universities Press, Hyderabad, 2007.

Web Link

- 1. https://www.careers360.com/university/indian-institute-oftechnology-kanpur/cell-culture-technologies-certification-course
- 2. http://ecoursesonline.iasri.res.in/course/view.php?id=350
- 3. https://nptel.ac.in/courses/104/105/104105102/

3. Specific learning outcomes (SLO)

Exercises	Course Content	Learning Outcomes	HBTLT			
EX 1	Animal Biotechnology					
EX 1.1	Media Preparation and filter sterilization for Animal Cell Culture	Remember the media composition and the significance of all components	K1			
		Perform the technique of filter sterilization	K3			
EX 1.2	Cell viability test-by trypan blue	Differentiate viable and non-viable cells by trypan blue method	K4			
EX 1.3	Cell toxicity testing-MTT assay	Evaluate the toxicity of chemicals or natural compounds by estimating cell death	K5			
EX 1.4	Primary cell culture- Isolation of cells from organs	Demonstrate the protocol of isolating cells from organs	K3			
EX 1.5	Serum Preparation	Illustrate serum separation from whole blood	K2			
EX2	Plant Biotechnology					
EX 2.1	Preparation of Plant tissue culture medium	Execute the preparation of MS medium from the basic chemicals	K3			
EX 2.2	Micropropagation of medicinal plants	Illustrate the technique of micropropagation	K2			
EX 2.3	Callus induction	Employ the technique of callus induction	K3			
EX 2.4	Somatic Embryogenesis	Demonstrate the technique of somatic embryogenesis	K3			
EX 2.5	Synthetic seeds	Prepare synthetic seeds	K5			
EX 3	Industrial Biotechnology					
EX 3.1	Isolation and screening of antibiotic producers by crowded plate technique	Analyze antibiotic producers	К4			
EX 3.2	Isolation and screening of microorganism producing proteases	Assess the production of protease by microbes	K5			
EX 3.3	Isolation and screening of microorganism producing amylases	Perform an experiment to isolate amylase producers	K3			
EX 3.4	Isolation of nitrogen fixers from soil.	Conduct an experiment to isolate nitrogen fixers from root nodules	K3			

P20BT2P3	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PSO3	PS04
CO1	I	-	Н	Н	Н	Н	L	Н	L	М	М	Н	М
CO2	I	-	Н	Η	Н	Н	L	Н	L	М	Μ	Н	М
CO3	-	-	Н	Н	Н	Н	L	Н	L	М	М	Н	М
CO4	I	-	Н	Н	Н	Н	L	Н	L	М	М	Н	М
CO5	-	-	Н	Н	Н	Н	L	Н	L	М	М	Н	М
CO6	-	-	Η	Н	Η	Η	L	Η	L	М	М	Η	М

L: Low	M: Medium	H: High
		0

5. Course Assessment Methods

Direct				
1.	Periodical Assessment			
2.	Record of results, Punctuality, Observation note maintenance, Regular Submission of results, Discussion of results obtained			
3.	Model Practical Examination			
4.	End Semester Practical Examination			
Indi	Indirect			
1.	Course-end survey			

Name of the Course Coordinator: Mr.J.Dinesh Raja
Elective Course: IIA RESEARCH METHODOLOGY AND BIOSTATISTICS

1. CourseOutcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
C01	Define the Concept of Research	K1	Ι
CO2	Understand the characteristics of Research in Biological Sciences	K2	II
CO3	Understand the method to write research reports, thesis, and manuscript for publication	К3	III
CO4	Analyze and categorize the concepts of Measuring Central Tendency	K4	IV
CO5	Describe the principle of Mean, Median, and Mode	К5	IV
CO6	Define the accession and passing arguments using Software in Biostatistics	K2	V

2. A. Syllabus

Unit – I

Research Design

Meaning of research, design, research method versus methodology, objectives of research, Types of research, Types of research , significance of research, Criteria of good researches.

Unit –II

Research Problem

Defining of Research problem, Research Design-Meaning – need – Features – Concepts relating to research design – Different Research design –basic Principles of Experimental Design.

15hrs

Unit –III

Interpretation and Report Writing

Interpretation – Meaning, Technique, Precaution; report writing– Significance, Steps in Report Writing –Significance, Steps in Report writing Layout of research report and thesis. writing Preparation of manuscript for publication, Citation and Bibliography, Impact factor.

Unit –IV

Scope of Biostatistics

Scope on Biostatistics in biological research – Variables – Data; Sources and Collection Classification, Presentation; Measure of Central Tendency-Mean(Arithmetic),median-mode, Measures Dispersion- Standard deviation and Standard error-Skewness and kurtosis, coefficient of Variance.

Unit – V

Correlation

Correlation types, Correlation Coefficient , Regression – Simple Linear Regression, Basis Idea of significance test - Hypothesis testing –Type I error – Level of Significance –tests based on Student test, Chi Square Test, ANNOVA,'F' TEST (one way analysis). Introduction to SPSS.Data analysis using Graphpad.

B. Topics for self study

S.No.	Topics	Web Links
1	Indian Institute of Science	https://www.iisc.ac.in/
2	Census Method in India	https://censusindia.gov.in/
3	Tiger Census in India	http://moef.gov.in/wp- content/uploads/2020/07/Tiger- Status-Report-2018_For- Web_compressed_compressed.pdf
4	Field Survey of Wild Animals	zsi.gov.in/App/content.aspx?link=16 02

C. Text Books

1. Panner Selvam R., Research Methodology, Prentice- Hall of India Private Limited, New Delhi, 2006

15 hrs

D. Reference Books

- 1. Pillai R.S.N., and Bhavathy V., Statistics, S.Chand Company Ltd., 2005
- 2. Joseph G., MLA Hand Books for Writers of Research Papers, Sixth Edition, Affiliated East West Press Pvt. Ltd., New Delhi, 2004
- 3. Prasad S., Elements of Statistics, First Edition, Jaico Publishing Home, Mumbai, 2004.

E. Web Links

- 1. https://onlinecourses.nptel.ac.in/noc19_ge21/preview
- 2. https://onlinecourses.swayam2.ac.in/cec20_hs17/preview

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1.	٦	Research Design	
1.1	Meaning of research, design, research method versus methodology	Understand the basic concepts of research Acquire the Knowledge in Research	K1 K2
1.2	Objectives of research, Types of research, Types of research, significance of research, Criteria of good researches.	Illustrate the General principles of Research Recognize main difference between the types of Research	K1
2	Re	esearchProblem	
2.1	Defining of Research problem, Research Design-Meaning - need - Features - Concepts relating to research design	Recognize the concept of Research Problem	К2
2.2	Different Research design -basic Principles of Experimental Design.	Illustrate methods of Experimental Design.	K1
3	Interpreta	ation and Report Writing	
3.1	Interpretation - Meaning, Technique, Precaution; report writing-	Understand the technique of writing research report.	K1
3.2	Steps in Report Writing – Significance, Steps in Report writing Layout of research report and thesis. writing Preparation of manuscript for publication, Citation and Bibliography, Impact factor.	Illustrate the steps and significance of research report writing.	K1

3. Specific learning outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
4	Sco	ope of Biostatistics	
4.1	Scope on Biostatistics in biological research - Variables - Data; Sources and Collection Classification, Presentation;	Define the basic concepts of finding Average and Mean, SD	К1
4.2	Measure of Central Tendency- Mean (Arithmetic),median-mode, Measures Dispersion- Standard deviation and Standard error-Skewness and kurtosis, coefficient of Variance.	Experiment with calculation in Correlation from the given Data.	К1
5	Bios		
5.1	Correlation-types and methods of correlation	Illustrate Correlation Methods. Experiment with calculation in Correlation from the given Data.	K4
5.2	regression, simple regression equation, fitting prediction,	Define the Concept of Regression and its role in Statistics.	K4
	Similarities and dissimilarities of correlation and regression.	Classify the concepts and theory between correlation and regression.	K4
5.3	Statistical inference -hypothesis - simple hypothesis -	Define the principle of Hypothesis Summarize the facts in writing the Hypothesis.	К4
5.4	student't' test -chi square test,	Outline the formula and methods of Student "t" Test. Demonstrate the applications of Student "t" Test.	K4
5.5	ANOVA,SPSS.	Experiment the ANOVA test by using Software.	K5

`4. Mapping Scheme

P20BT2:2	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS01	PSO 2	PSO3	PS04
CO1	Μ	М	L	Н	L	L	L	-	-	Н	L	L	L
CO2	Η	Н	М	Н	М	М	Н	М	Н	Н	М	М	М
CO3	Μ	L	Н	L	М	L	М	L	М	L	Н	М	М
CO4	Η	Н	М	М	Н	М	Н	М	Н	М	Н	Η	Н
CO5	Μ	М	М	Н	Н	Н	Н	М	М	М	М	Н	Н
CO6	М	L	М	Н	Н	М	Н	М	Н	Н	М	Н	Н

L: Low

M: Medium

H: High

5. Course Assessment Methods

Dire	ect
1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
3.	End Semester Examination
Indi	rect
1.	Course-end survey

Name of the Course Coordinator : Dr.A.Anita Margret

70

Semester: 2 Credits : 4

Course Code: P20BT2:A

Total Hrs/Week:4

1. **Course Outcomes**

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Unit
CO1	Understand the concepts of nanoscale and its related dimension among natural components	K1	Ι
CO2	Associate the perception of nanotechnology in biotechnology and promote its interdisciplinary aspect	K2	Ι
CO3	Construe the working mechanisms of instruments in synthesizing and characterizing nanomaterials	КЗ	II
CO4	Focus on the various approaches of fabricating nanomaterials, along with significance and limitations	КЗ	III
CO5	Appraise the importance of engineered nanomaterials for biomedical, therapeutic and environmental applications	K4	IV
CO6	Formulate novel implants to improve physical impairments and evaluate the potential toxic effects of nanotechnology on living organisms related to the environment	К6	V

2. A. Syllabus

Unit – I

Biology Inspired Concepts

Introduction to Nanoscience and basic concepts; Interaction of surface molecules and its chemical and physical properties; Nanoprocess in nature lotus effect, colour patterns in butterflies, adhesive pads in lizards-Reflections of Nanotechnology on Nanobiotechnology.

Unit -II

Synthesis and Characterization of Nanoparticles

Synthesis of nanoparticles - The principle of self assembly - Top down and bottom up approaches-Synthetic method -physical and chemical method-

15hrs

Biological method-using plants and microbes; Characterization of nanoparticles – Instrumentations and their working principle in perspective of nanoscale- spectroscopic methods (UV-visible, FTIR, Raman spectroscopy, NMR), microscopic (AFM, Scanning and Transmission Electron microscopy), Structural (XRD), EDAX.

Unit –III

Types and fabrication of Nanomaterials

Types of nanomaterials -Quantum, wells, wires and dots-nano rods,nanowires, nano fibers, nano shells- Nano tubes-Carbon nano tubes(CNTs).Fabrication of nanomaterials: Lithography and Thin film deposition, high energy Arc discharge. Polymer nanoparticles, biomaterials, nanocomposities- Its Significance and application.

Unit –IV

Biomedical applications of nanoparticles

Drug carriers-liposomes, nanoshells, micelles, dendrimers and hydrogels; functionalisation of nanomaterials and Targeted drug delivery.Imaging technique; quantum dots and magnetic nanoparticles, Bionanosensors: nanocantilevers based on single stranded DNA.

Unit – V

Health environmental issues and Future Challenges about nanoparticles

Nanotoxicology, Immune response to nanoparticles, Safety concerns about using nanotechnology Guidelines for working with nanomaterials. New generations ofprosthetic and medical implants - artificial organs and implants- orthopaedic, vascular artificial scaffolds or biosynthetic coatings – biocompatibility and reduced rejection ratio - retinal,cochlear.

B. Topics for self study

S.No	Topics	Web Links									
1.	Bionanopolymers in drug delivery	Fasiku V.O. et al. (2019) Bionanopolymers for Drug Delivery. In: Gnanasekaran D. (eds) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8063- 1_8									

15hrs

15hrs

S.No	Topics	Web Links
2	Green Nanotechnology for the Environment and Sustainable Development	Dhorali Gnanasekaran,2019 Green Biopolymers and their Nanocomposites. Springer Nature Singapore Pte Ltd. 10.1007/978-981-13-8063-1,XXII, 437
3	Bucky balls for disease diagnosis	Sisodia, Siddhraj & Bharkatiya, Darshana & K., Nema. (2018). Bucky balls: A novel drug delivery system. Journal of Chemical and Pharmaceutical Research. 2010, 2. 240-248.
4	Nanotoxicants as a hazardous pollutant	Ray, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews, 27(1), 1–35. https://doi.org/10.1080/10590500802708267

C. Text Books

- 1. Balaji, S. Nanobiotechnology. MJ.P.Publications, New Delhi,2010.
- 2. Tuan Vo Dinh, Nanotechnology in Biology and Medicine: Method, Devices and Applications.
- 3. CRC Press, 2007
- 4. Murthy B.S., Shankar P., Raj B., Rath B. B. and J. Murday, Textbook of Nanoscience and Nanotechnology, Universities Press-IIM, 2012.

D. Reference Books

- 1. LeggettG.J., Jones R. A. L, John. Bionanotechnology: In Nanoscale Science and Technology",
- 2. Wiley & Sons, Hoboken, New Jersey, United States, 2005.
- 3. Bhatia, M. Nanotechnology. Anmol Publications Pvt.Ltd.,, New Delhi, 2007.
- 4. Chattopadhyay, K.K. and Banerjee, A.N. Introduction to Nanoscience and Nanotechnology. PHI Learning Pvt. Ltd., New Delhi,2012
- 5. Niemeyer, C.M. and Mirkin, C.A. Nanobiotechnology Concepts: Application and properties.
- 6. Wiley, VCH Publishers, 2006.
- 7. Poole, Jr. C.P. and Owens, F.J. Introduction to Nanotechnology. Wiley India Pvt. Ltd., New Delhi, 2009.
- 8. Goodsell, D.S. Bionanotechnology ,John Wiley & Sons , Hoboken, New Jersey, United States

- 9. Springer Handbook of Nanotechnology Eds: Bhushan, 2nd edition, 2004.
- 10. Encyclopedia of Nanoscience and Nanotechnology", Eds: H. S. Nalwa, American Scientific Publishers,2004
- 11. Pradeep, T. Nano: The Essentials. Tata Mc Graw Education Private Ltd., New Delhi, 2011.
- 12. Ratner, M and Ratner, D.Nanotechnology: A Gentle Introduction to the Next Big Idea. Pearson education.Inc.2005.

E. Web Links

- 1. https://nptel.ac.in/courses/118/107/118107015/
- 2. https://nptel.ac.in/courses/118/106/118106019/

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	Biology	y Inspired Concepts	
1.1	Introduction to Nanoscience and basic concepts; Interaction of surface molecules and its chemical and physical properties;	Enumerate the attributes of nanoparticles and their interactive aspects	К1
1.2	Nanoprocess in nature - lotus effect, colour patterns in butterflies, adhesive pads in lizards-Reflections of	Associate and justify the nanoscale properties in natural systems and organisms.	K2 K5
1.3	Nanotechnology on Nanobiotechnology.	Analyze the influence of Nanotechnology on Nano biotechnology based on applications	К4
2	Synthesis and Ch	aracterization of Nanoparticles	
2.1	Synthesis of nanoparticles - The principle of self-assembly - Top down and bottom up approaches- Synthetic method -physical and chemical method-Biological method-using plants and microbes;	Understanding the principal mechanisms of various methods of nanoparticle synthesis.	К2
2.2	Characterization of nanoparticles - Instrumentations and their working principle in perspective of nanoscale- spectroscopic methods (UV-visible, FTIR, Raman spectroscopy, NMR), microscopic (AFM, Scanning and Transmission Electron microscopy), Structural (XRD), EDAX	Experimenting the produced by effective characterization instruments	К5

Unit/ Section	Course Content	Learning Outcomes	HBTLT							
3	Types and fa	brication of Nanomaterials								
3.1	Types of nanomaterials -Quantum, wells, wires and dots-nano rods, nanowires, nano fibers, nano shells Nano tubes Carbon nano tubes(CNTs).	Differentiating the various types of nanomaterials interactions	K1							
3.2	Fabrication of nanomaterials: Lithography and Thin film deposition, high energy Arc discharge.	Devise production strategies to fabricate nano materials	K4							
3.3	Polymer nanoparticles, biomaterials, nanocomposities- Its significance and application.	Produce compatible nano composites using polymer and biomaterials which can be manifested in living systems.	K6							
4	Biomedical applications of nanoparticles									
4.1	Drug carriers-liposomes, nanoshells, micelles, dendrimers and hydrogels; functionalisation of nanomaterials and Targeted drug delivery.	Cataloging and inferring the specific properties of biological drug carriers.	К1							
4.2	Imaging technique; quantum dots and magnetic nanoparticles	Apply the features of nanoparticle in disease diagnosis	K3							
4.3	Bionanosensors: nanocantilevers based on single stranded DNA	Validate and sense the influence of external factors in changing the serenity of environment using nano scale devices	K5							
5	Health environmental issues a	nd Future Challenges about nanopa	rticles							
5.1	Nanotoxicology, Immune response to nanoparticles, Safety concerns about using nanotechnologyGuidelines for working with nanomaterials.	Justify the influence of nanotoxicity in the o the environment	К5							
5.2	New generations of prosthetic and medical implants - artificial organs and implants-orthopaedic , vascular artificial scaffolds or biosynthetic coatings - biocompatibility and reduced rejection ratio - retinal, cochlear.	Construct artificial inserts to support the physiological deformity in system	K6							

4. Mapping Scheme

P20BT2:A	P01	P02	P03	P04	P05	P06	P07	P08	909	PS0 1	PSO 2	PS03	PS04
CO1	М	М	L	Н	L	L	L	-	-	Н	L	L	L
CO2	Н	Н	М	Н	М	М	Н	М	Н	Н	М	L	L
CO3	М	L	Н	L	М	L	М	L	М	L	Н	М	М
CO4	Н	Н	М	М	Н	М	Н	М	Н	М	Н	М	М
CO5	М	М	М	Н	Н	Н	Н	М	М	М	М	Н	Н
CO6	М	L	М	Н	Н	М	Н	М	Н	Н	М	Н	Н

5. Course Assessment Methods

Direct

1. Continuous Assessment Test I,II

2. Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation

3. End Semester Examination

Indirect

1. Course-end survey

Semester: 2 Credits : 4

Course Code: P20BT2:3

Elective Course: III - BIOSAFETY, BIOETHICS AND IPR

1. CourseOutcomes

At the end of this course the students will be able to

C01	Discuss the importance of Biosafety	K2	Ι
CO2	Explain the role of Ecological and Ethical issues related to GMOs	К3	II
CO3	Discuss about the Ethical issues biomedical research	K2	III
CO4	Understand the basics of IPR and marketing regulations	K1	IV
CO5	Illustrate the role of IPR in pharm sector	K4	IV
C06	Evaluate the risk management in IPR commercialization	К5	V

2. A. Syllabus

Unit - I

Principles of Biosafety

The Cartagena Protocol in Biosafety (CPB, 2000). Advanced Informed Consent, Precautionary Principle, Substantial Equivalence. GMO Labeling, Containment, Post- market Surveillance and Evolution and Management of Risks arising from the use release of GMOs.

Unit - II

Safety of Food & Animal Feed Derived From GM Crops

Nutritional and Toxicological Difference in the Food Environmental impacts; invasiveness / Persistence; toxicity to wildlife; Development and resistance; New Weed Control Strategies; Horizon; Changes in agricultural practices; Limitation of Science.

Unit –III

Bioethics

The growing impact of the new genetics on the courts - Integrating DNA Technology into the Criminal Justice System; Genes, Dreams & Reality- the

15hrs

15hrs

promises and risks of the new genetics; Protecting Genetic Privacy; Gene testing - Pros & Cons. Human Cloning & Human Dignity - an ethical enquiry; Ethical, Legal and Social Issues concerning recent advancements in key areas of biotechnology such as pre-natal diagnostics, GMF etc

Unit –IV

Patents

IP patents – case studies on patents –Basmati Rice, Turmeric, and Neem, Copyrights and related rights- Trade mark – Industrial designs and integrated circuits-geographical indications-protection at national and international levels-Application procedures

Unit – V

International Convention relating to intellectual property

Establishment of WIPO mission and activities – History – General agreement on trade and tariff (GATT) Legal Protection of Biotechnological Inventions. Indian IPR legislation commitments to WTO, WTO guidelines.

B.	Topics	For	Self	Study
	ropics	1 01	Den	Deady

S.No	Topics	Web Links
1.	Register of Patents	V.K.Ahuja, Law relating to Intellectual
2	Preservation of Patents	Property rights, 2 nd Edition, (2013) LexisNexis
3	Protection of Industrial Designs	Dr. Bhandari, M.K. Law relating to IPR, Central Law Publication, (4th
4	Plant Patent Protection in	Edition 2015)
	India	Hyde William Cornish, Intellectual
5.	Licensing Process and Management	Property Right, New Delhi: Global Vision Publication House.

C. Text Books

- 1. Trayror P.C., Frederic R., and Koch M., Biosafety Board of Trustees, Michigan State University, USA, 2002
- 2. Sasson A., Biotechnologies and Development, UNESCO Publications, 1988
- 3. Sibi G. Intellectual Property Rights, Bioethics, Biosafety and Entrepreneurship in Biotechnology New Delhi and Karnataka State Council for Science and Technology, Bangalore 2020.

15hrs

D. Reference Books

- 1. Paul R.C., Situation of Human Rights in India Efficient Offset Printers, 2000
- 2. Belmont T.L., and Leroy W., Cotemporary Issue in Bioethics, Wards Worth Publishing Co Belmont, California, 1999
- 3. Vadakar Praveen., Theories and Practice of Human Rights, Raja Publication, 2000.

E. Web Links

- 1. https://nptel.ac.in/courses/109/106/109106092/
- 2. https://nptel.ac.in/courses/110/105/110105139/

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT							
1	Р	rinciples of Biosafety								
1.1	The Cartagena Protocol in Biosafety (CPB, 2000). Advanced Informed Consent Precautionary	Understand the mechanisms of protocol of Biosafety	K1							
	Principle, Substantial Substantial	modified foods based on applications	K4							
	Equivalence. GMO Labeling, Containment, Post- market Surveillance and Evolution and Management of Risks arising from the use release of GMOs.	Understand the concept of genetically engineered labeling analysis.	K1							
2	Safety of Food & Animal Feed Derived From GM Crops									
2.1	Nutritional and Toxicological Difference in the Food Environmental impacts; invasiveness / Persistence; toxicity to wildlife.	Define the nutrition. Classify the types of nutrition and toxicity.	K1 K2							
2.2	Development and resistance; New Weed Control Strategies; Horizon; Changes in agricultural practices; Limitation of Science	Recall the development of weed control or management strategies.	K1							
3		Bioethics								
3.1	The growing impact of the new genetics on the courts - Integrating DNA Technology into the Criminal Justice System.	Understanding the basic mechanism of DNA Technology.	K1							

Unit/ Section	Course Content	Learning Outcomes	HBTLT					
3.2	Genes, Dreams & Reality- the promises and risks of the new genetics; Protecting Genetic Privacy.	Analyze the applications of Genetic testing in the prediction of the risk of developing a genetic disease.	K4					
	Gene testing - Pros & Cons. Human Cloning & Human Dignity - an ethical enquiry; Ethical, Legal and Social Issues concerning recent advancements in key areas of biotechnology such as pre-natal diagnostics, GMF etc	Analyze the ethical, legal, and social issues in human cloning.	K4					
4	Patents							
4.1	IP patents - case studies on patents -Basmati Rice, Turmeric, and Neem, Copyrights and related rights.	Understand the role of Intellectual property rights and Copyright as legal means of protecting an author's work.	K1					
4.2	Trade mark - Industrial designs and integrated circuits – geographical indications- protection at national and international levels-Application procedures	Explain the process of Patents, Utility Models Cultural, artistic and literary works, including computer software and compilation of data Copyright.	K2					
5	International Conv	ention relating to intellectual property						
5.1	Establishment of WIPO mission and activities - History - General agreement on trade and tariff (GATT) Legal Protection of Biotechnological Inventions.	Understanding the General Agreement on Tariffs and Trade (GATT) and legal agreement minimizing barriers to internationFal trade.	K1					
5.2	Indian IPR legislation commitments to WTO, WTO guidelines.	Discuss aboutworld trade organization rules and agreements. Recall fundamental concepts in WTO	K1 K1					

4. Mapping Scheme

P20BT2:3	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PS03	PS04
CO1	М	М	L	Н	L	L	L	-	-	Н	L	L	Н
CO2	Н	Н	М	Н	М	М	Н	М	Н	Н	М	М	М
CO3	М	L	Н	L	М	L	М	L	М	L	Н	М	М
CO4	Н	Н	М	М	Н	М	Н	М	Н	М	Н	М	Н
CO5	М	М	М	Н	Н	Н	Н	М	М	М	М	М	Н
CO6	М	L	М	Η	Η	Μ	Η	Μ	Η	Н	М	Η	Н

L: Low M: Medium

H: High

5. **Course Assessment Methods**

Dire	ect				
1.	Continuous Assessment Test I,II				
2.	Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Projectreport, Poster preparation, Prototype or Product Demonstration etc.(as applicable)				
3.	End Semester Examination				
Indirect					
1.	Course-end survey				

Name of the Course Coordinator: Dr.M.Vineeth

Semester: 2 Credits : 4

Elective Course: III B DRUG DISCOVERY AND DEVELOPMENT

Course Code: P20BT2:B

Total Hrs/ Week : 4

1. Course Outcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Describe the detailed study of drugs dosage and its type of nature, particularly their actions on living systems	К2	Ι
CO2	Understand the drug discovery process, starting with target selection, to compound screening to designing lead candidates	К2	II
CO3	Analyze the various drug action of ADME process and methods that are used for finding and identifying a new drug	К4	III
CO4	Determine the major principle, method and designing a new drug	КЗ	III
CO5	Predict the importance of chemotherapeutic value and pharmacokinetic action of drugs in human bodies	К5	IV
CO6	Design the basic concepts of drug manufacturing principles and development of product and its importance	К6	V

2. A. Syllabus

Unit I

Drugs

Definition, source and nature, types of classification and nomenclature, dose response curve and LD50. Role of drugs, Drug – protein interactions, routes of drug administration.

Unit - II

Drug targets

Enzymes, receptors, carrier proteins. Structural proteins, nucleic acids, lipids and carbohydrates. Forces in drug : receptor interaction, Receptor

151115

15hrs

theories. Therapeutic Categories Vitamins, Analgesics, Antibiotics, Hormones.

Unit -III

Pharmacophore design

Drug absorption, distribution, metabolism, excretion and dosing.Pharmacokinetic oriented drug design – Drug solubility and drug stability.

Unit –IV

Biological testing and bioassays

Testing drugs in vitro and in vivo. Drug discovery. Lead compounds – Natural sources and synthetic sources. Radio activity pharmacokinetic action of drugs in human bodies.

Unit – V

Drug development

Target – oriented drug design, computer aided drug design, Quantitative structure, activity relationship – binding interaction, Functional groups and Pharmacophore. High thoroughput screening and Molecular docking.

B. Topics for self study

S.No	Topics	Web Links

C. Text Books

- 1. Barar F.S.K., Essentials of Pharmacotherapeutics, S. Chand &Co,Ltd., New Delhi, 2004
- 2. Patrick G., Medicinal Chemistry, Instant Notes Series, Viva Books, 2002.
- 3. Practical Pharmacology for the Pharmacy Technician, USA, 2019.

D. Reference Books

- 1. Trends in Molecular Pharmacology, Elsevier Publications.
- 2. Marshall and Motoc., Molecular graphics in drug design

15hrs

15hrs

3. Luca Pinzi and Giulio Rastelli. Molecular Docking: Shifting Paradigms in Drug Discovery;Int. J. Mol. Sci.20, 4331, 2019.

E. Web Links

1. http://downloads.lww.com/wolterskluwer_vitalstream_com/sampleco ntent/9780781773485_Sakai/samples/Sakai_Ch03.pdf.

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1		Drugs	
1.1	definition, source and nature, types of classification and nomenclature, dose response curve and LD_{50} .	To define the mechanism of pharmacokinetic DDIs focusing the interest on their clinical implications.	K1
		To determine the concentration of drug in the blood stream, and is dependent upon the ADME processes.	K3
1.2	Role of drugs, Drug – protein interactions, routes of drug administration.	To analyze the drug target features for getting a better understanding on principles of their mechanisms.	K2
		To understand how the drug targets work in the PPI network.	K4
2	Dr	ug targets	
2.1	Enzymes, receptors, carrier proteins. Structural proteins, nucleic acids, lipids	To identified the drug targets in the biomedical research	K2
	and carbohydrates.	To analyze the detailed structural characteristics of drug targets.	K4
2.2	Forces in drug - receptor interaction, Receptor theories.	To recognize the different type of receptors and it actions.	K1
		To understand the binding of drug receptors and its effect.	K2
	Therapeutic Categories Vitamins, Analgesics, Antibiotics, Hormones.	To determine that binding of drug targets to an adjacent site or a different site on a receptor	К3

Unit/ Section	Course Content	Learning Outcomes	HBTLT							
3	Pharmacophore design									
3.1	Drug absorption, distribution, metabolism, excretion and dosing.	To explain the meaning of the terms absorption, distribution, metabolism, and excretion.	K2							
3.2	Pharmacokinetic oriented drug design - Drug solubility and drug stability.	To study the bodily processes that affects the movement of a drug in the body.	K3							
4	Biological testing and bioassays									
4.1	Testing drugs in vitro and in vivo. Drug discovery.	Explain how bioavailability can impact drug response and product selection.	K2							
	Lead compounds – Natural sources and synthetic sources. Radio activity	Compare the roles of passive diffusion and carrier-mediated transport in drug absorption.	K3							
	pharmacokinetic action of drugs in human bodies	Describe two types of drug interaction and explain how they might affect drug response and safety.	K4							
5	Druç	g development								
5.1	Target – oriented drug design, computer aided drug design, Quantitative structure, activity	To explain the large numbers of compounds, high throughput virtual screening and molecular docking.	K2							
	relationship - binding interaction, Functional groups and Pharmacophore. High thoroughput screening and Molecular docking.	To understanding the mechanisms of molecular recognition between small and large molecules, uses and applications of docking in a new drug.	К3							

4. Mapping Scheme

P20BT2:B	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PSO 3	PS0 4
CO1	Н	Н	М	L	М	М	М	М	М	L	М	L	L
CO2	М	L	L	М	М	L	L	М	М	М	Н	L	L
CO3	М	L	Н	М	L	М	М	М	М	М	М	Η	Η
CO4	Н	М	М	Н	Н	L	L	L	L	L	Н	L	L
CO5	L	Н	Н	Н	М	М	М	М	М	М	М	Н	Η
CO6	Η	М	М	Η	М	Η	Η	Η	Η	Η	Η	L	L

M: Medium

5. **COURSE ASSESSMENT METHODS**

Direct

:

1.	Continuous Assessment Test I,II
2.	Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Projectreport, Poster preparation, Prototype or Product Demonstration etc.(as applicable)
3.	End Semester Examination
Inc	direct

1. Course-end survey

Core Course : VII - Gene Technology

1. Course Outcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Unit
C01	Recollect the basic knowledge about the strategies of cloning used in genetic engineering	K1	Ι
CO2	Understand the tools of recombinant DNA technology and genetic engineering	K2	II
CO3	Compare the principle and working mechanisms of DNA sequencing methodologies	КЗ	III
CO4	Analyze the function and expression of genes by using various expression vector systems	K4	IV
CO5	Develop steps into the promising area of research in the field of recombinant DNA technology	К5	V
C06	Assess the genome 4.Mapping Scheme and sequencing and methods for gene therapy	K6	V

2. A. Syllabus

Unit – I

15hrs

15hrs

DNA Modifying Enzymes and Molecular Scissors

Generation of DNA in prokaryotic and eukaryotic system, Construction of cDNA library, Cutting and joining of DNA molecules- exonucleases, endonucleases, ligases, DNA modifying Enzymes - methylase, alkaline phosphatase, topoisomerase, DNA gyrase; linkers, adaptors, genome 4.Mapping Scheme and chromosome walking.

Unit – II

Carrier Systems

Basic system of genetic engineering: Vectors in Gene Cloning: Natural -Plasmids, Bacteriophages, (λ phage, M13 phage), Phagemids, Cosmids, Fosmids, Tumor inducing plasmids and Root inducing Plasmids. Artificial -PAC, Bacterial Artificial Chromosomes, Yeast Artificial Chromosomes, Human artificial chromosome, Expression Vectors, Shuttle Vectors.

Unit – III

DNA Manipulation Techniques

Purification of genomic DNA from living cells, manipulation of purified DNA; construction of prototype vector pBR322, cloning strategies. Chemical synthesis of DNA, DNA sequencing methods- chemical degradation, chain termination and automated sequencing. Genome editing –CRISPR

Unit – IV

Gene Transfer Methods

Natural Methods: Bacterial Transformation, Conjugation, Transposition, Transduction. Agrobacterium Mediated Transfer, Retroviral Phage Methods Microiniection. Transduction. Artificial -Physical Methods: Macroiniection, Biolistic Transformation, Chemical Methods: Calcium phosphate mediated DNA transfer, Use of polyethylene glycol (PEG), Use of DEAE- Dextran (diethyl aminoethyl), Use of liposomes. Electrical Methods: electroporation, electrofusion).

Unit – V1

Selection and screening

Selection of recombinants (antibiotics, expression basis - GUS expression), blotting techniques-Southern, Northern and Western Blot. Principles, types and applications of PCR. DNA finger printing - restriction fragment length polymorphism (RFLP); random amplified polymorphic DNA (RAPD); DNA footprinting.

B. Topics for self study

S.No	Topics	Weblinks
1	Silencing genes with CRISPR/TALEN/RNAi	https://old.abmgood.com/marketing/k nowledge_base/Gene-Silencing-CRISPR- TALEN-RNAi.php
2	Prime Editing as a Precision Gene Editing Tool	https://www.synthego.com/guide/crisp r-methods/prime-editing
3	NIPD	https://www.genomicseducation.hee.nh s.uk/blog/what-is-nipd/
4	CRISPR'd babies: human germline genome editing	https://academic.oup.com/jlb/article/6 /1/111/5549624

15hrs

15hrs

C. Text Books

1. Primrose S.B., and Twyman R.M., Principles of Gene Manipulation and Genomics, University of California, Seventh Edition,2006

D. Reference Books

- 1. Glick B.R., and Pasternak J.J., Molecular Biotechnology, ASM Press, USA,2003
- 2. GloverD.M.,and HamesB.D.,DNA cloning Iand2,IRLPress, 1995
- 3. Sambrook J., Fritsch E.F., and Maniatis T., Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring HaT Laboratory, USA,1987
- 4. Primrose S.B., Molecular Biotechnology, Second Edition, Blackwell Scientific Publishers, Oxford,1994.

E. Web Links

- 1. https://nptel.ac.in/courses/102/103/102103013/
- 2. https://nptel.ac.in/courses/102/103/102103074/

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	DNA Modifying E	Enzymes and Molecular Scissors	
1.1	Generation of DNA in prokaryotic	To define the DNA	K1
	and eukaryotic system	To classify Prokaryotes and Eukaryotes	K2
		To relate and distinguish between the	K2
		Prokaryotes and Eukaryotes	
1.2	Construction of cDNA library	To find the Construction methods	K2
1.3	Cutting and joining of DNA	To explain the techniques	K2
	molecules- exonucleases,	to list out the cutting and joining	K1
	endonucleases, ligases	molecules	K2
		To show how far it is useful for rDNA	
1.4	DNA modifying Enzymes –	To explain the modifying enzymes	K2
	Methylase, alkaline phosphatase,	To summarize the most useful	K2
	topoisomerase, DNA gyrase, Linkers and adaptors	enzymes	
1.5	Genome 4.Mapping Scheme&	To relate the 4.Mapping Scheme	K2
	chromosome walking.	To label the techniques	K1

Unit/ Section	Course Content	Learning Outcomes	HBTLT
2		Carrier Systems	
2.1	Basic system of genetic engineering	To show the basic knowledge To illustrate genetic engineering techniques	K2 K2
2.2	Vectors in Gene Cloning: Natural vectors- Plasmids,Bacteriophages (λ phage, M13 phage), Phagemids, Cosmids, Fosmids, Tumor inducing plasmids, Root inducing Plasmids Artificial vectors- PAC, Bacterial Artificial Chromosomes, Yeast Artificial Chromosomes, Human artificial chromosome, Expression Vectors, Shuttle Vectors	To explain the vector To classify the vectors To construct the vectors To choose the various types of vectors To select the most advantageous vectors	K3 K2 K3 K1
3	DNA M	anipulation Techniques	
3.1	Purification of genomic DNA from living cells	To apply the purified products	K3
3.2	manipulation of purified DNA	To analyze the manipulated DNA	K4
3.3	construction of prototype vector pBR ³²²	To construct the pBR ³²² To compare with natural vector	K3 K4
3.4	cloning strategies	To analyse the cloning strategies	K4
3.5	Chemical synthesis of DNA	To identify the chemical synthesis	K2
3.6	DNA sequencing methods: chemical degradation, chain termination, automated sequencing	To contrast the DNA sequencing To compare the methods To choose the best characters Assume the method	K2 K4
3.7	Genome editing -CRISPR	To select the genome editing To utilize the CRISPR technology To assume the miRRNAse	K4 K3 K4
4	Ger	ne TransferMethods	
4.1	Natural Methods :Bacterial Transformation, Conjugation, Transposition, Phage Transduction, Agrobacterium Mediated Transfer, Retroviral Transduction.	To apply the natural methods To compare the methods To Evaluate the methods	K3 K2 K5

Unit/ Section	Course Content	Learning Outcomes	HBTLT
4.2 4.2.1	Artificial Methods : Physical Methods: Microinjection, Macro injection, Biolistic Transformation	To explain the methods To compare the methods	K3 K5
4.2.2	Chemical Methods:Calciumphosphate mediated DNA transfer,Use of polyethylene glycol (PEG),Use of DEAE-Dextran(diethyl aminoethyl),Use of liposomes.	To explain the methods To compare the methods	K3 K5
4.2.3	Electrical Methods: electroporation, electrofusion	To explain the importance of electrical methods	K4
5	Selection and screening		
5.1	Selection of recombinants: antibiotics, expression basis - GUS expression.	To measure the recombinants	K5
5.2	Blotting techniques : Southern blot, Northern blot, Western Blot.	To agree the difference between these techniques To choose the techniques To maximize the awareness about blotting	K4 K5 K6
5.3	Principles, types and applications of PCR.	To compare the Principle with amplifier To compare the types To agree the Disadvantages To list out the applications	K2 K2 K5 K1
5.4	DNA finger printing	To agree the DNA finger printing To apprise the importance To maximize awareness about this technology	K5 K4 K6
5.5	Restriction fragment length polymorphism (RFLP)	To apprise the RFLP To choose the importance of RFLP	K4 K5
5.6	Random amplified polymorphic DNA (RAPD)	To apprise the RAPD To determine the importance of RAPD	K4 K3
5.7	DNA foot printing.	To evaluate the foot printing To choose the importance To maximize awareness about technology	K5 K5 K6

Mapping Scheme 4.

P20BT307	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PSO 3	PS0 4
CO1	М	М	Н	L	L	L	М	М	L	Н	L	Н	L
CO2	М	Н	М	М	Η	М	Н	М	Н	Н	М	Н	М
CO3	М	Н	Н	М	М	М	Н	Н	М	Н	Н	Н	Н
CO4	Н	Н	М	Н	Η	М	Н	М	Н	М	Н	М	Н
CO5	М	М	М	М	Η	L	М	L	М	L	М	L	М
CO6	М	Н	Н	М	Η	М	М	М	Н	Н	М	Н	М
L: Low M: Medium						H: H	igh						

5. **COURSE ASSESSMENT METHODS**

Direct

1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report. Poster presentation
	roject report, roster presentation
3.	End Semester Examination
Indir	rect
1.	Course-end survey

Name of the Course Coordinator: Dr.C.Cynthia

Course Code :P20BT308 Total Hrs/ Week : 5

Core Course: VIII - IMMUNOLOGY

1. Course Outcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Recall the role of immune cells, organs and their mechanism in body defense Mechanism	K1	Ι
CO2	Describe the cellular and resistance mechanisms against foreign bodies	K2	II
CO3	Demonstrate the association of immune system with allergic and infectious disease thereby developing vaccines	КЗ	III
CO4	Differentiate the defense mechanism of complicated immune diseases and disorders that can strategize remedies	K4	IV
CO5	Access the solutions to various infections and physiological problems	K5	V
CO6	Apply immune associated mechanisms in medical research to formulate design novel drugs and vaccine	КЗ	V

2. A. Syllabus

Unit –I

15hrs

Introduction

Historical perspective and overview of Immune system, Haematopoiesis and differentiation; cells of immune system: Haematopoietic stem cells, T-cells, B-cells, Macrophages, Monocytes, Polymorphs, Platelets and Null cells. Immunity: Innate and acquired immunity. Lymphoid organs: Primary lymphoid organs (Thymus, Bone marrow), Secondary lymphoid organs (Spleen, Lymph node, MALT). Theory of clonal selection.

Unit – II

Cellular Responses

T- Cells and B- Cells: Development, maturation, activation and differentiation. Antigen: Properties and Biology. Immunoglobulin: Structure, functions and Classifications. Monoclonal antibodies - Principles and applications; APC's, MHC, antigen processing and presentation, regulation of T and B cell responses.

Unit – III

Infection and Immunity

Injury and Inflammation; Immune response to infections; Complement system; Immunity to - Bacteria, Virus, Fungi, and Parasites; Cytokines; Hypersensitivity; AIDS and Immunodeficiency, resistance and immunization; vaccines.

Unit – IV

Transplantation and Tumor Immunology

Transplantation: Mechanism, Graft rejection, General and specific immunosuppressive therapy; Clinical transplantation; Tumor immunology; Autoimmunity: Autoimmune diseases, diagnosis and treatment.

Unit – V

Immunotechniques

Immunization protocol and procedures, RIA, ELISA. Immuno electrophoresis, SDS- PAGE, FAC's, Immuno-flourescence, Western Blotting. Hybridoma technology murine monoclonal antibody production and enrichment, Human monoclonal antibodies, T cell hybridomas;Abzymes;antibodyengineering;Chimericandhumanizedantibo diesandtheir applications.

B. Topics for self study

S.No	Topics	Weblinks
1	Immuno modulation and its clinical applications	Rajeev K. Tyagi (March 21st 2019). Introductory Chapter: Immunity and Immunomodulation, Immune Response Activation and Immunomodulation, Rajeev K. Tyagi and Prakash S. Bisen, IntechOpen, DOI: 10.5772/intechopen.85299.

15hrs

15hrs

15hrs

S.No	Topics	Weblinks
2	Clinical tissue typing	Althaf MM, El Kossi M, Jin JK, Sharma A, Halawa AM. Human leukocyte antigen typing and crossmatch: A comprehensive review. World J. Transplant. 2017; 7: 339–48 Lee D, Kanellis J, Mulley WR. Allocation of deceased donor kidneys: A review of international practices. Nephrology (Carlton) 2019; 24: 591–8.
3	Antibody Engineering	https://www.atum.bio/assets/pdf/Antibody %20Engineering.pdf
4	Immunofluorescence	Babu, Arvind & Chandrasekar, P & Lalith, K & Chandra, Prakash & Reddy, G & Kumar, K & Reddy, Bvr. (2013). Immunofluorescence and its application in dermatopathology with oral manifestations: Revisited. Journal of Orofacial Sciences. 5. 2-8. 10.4103/0975- 8844.113680.

C. Text Books

- 1. Verma P.S. and Agarwal V.K. (2016) Cell Biology (Cytology, Biomolecules, Molecular Biology), Paperback, S. Chand and Company Ltd.
- 2. Kumar P. and Mina U. (2018) Life Sciences: Fundamentals and Practice, Part-I, 6th Edn., Pathfinder Publication. p.608.

D. Reference Books

- 1. Hardin J. and Bertoni G. (2017) Becker's World of the Cell. 9th Edn (Global Edition). Pearson Education Ltd., p. 923
- Karp G., Iwasa J. and Masall W. (2015) Karp's Cell and Molecular Biology – Concepts and Experiments. 8th Edn. John Wiley and Sons. p.832.
- 3. Cooper G.M. (2019) The Cell A Molecular Approach, 8th Edn., Sinauer Associates Inc., Oxford University Press p.813
- 4. Urry L.A. Cain M.L., Wasserman S.A., Minorsky P.V., Jackson R.B. and Reece J.B. (2014) Campbell Biology in Focus. Pearson Education. p.1080.
- 5. Albert B., Hopkin K., Johnson A.D., Morgan D., Raff M., Roberts K. and Walter P. (2018) Essential Cell Biology 5th Edn.,(paper back) W.W. Norton & Company p.864.
- 6. Mason K.A., Losos J.B. and Singer S.R. (2011) Raven and Johnson's Biology. 9th Edn. Mc Graw Hill publications. p.1406.

- 7. Alberts B., Johnson B., Lewis J., Morgan D., Raff M., Roberts K. and Walter P. (2015) Molecular biology of cell, 6th edn., Garland Science, Taylor and Francis, p. 1465
- 8. Challoner J. (2015) The Cell: A visual tour of the building block of life, The University of Chicago Press and Ivy Press Ltd., p.193

E. Web Links

- 1. https://www.classcentral.com/course/swayam-immunology-14117
- 2. https://alison.com/course/introduction-to-immunology-revised
- 3. https://www.mooc-list.com/tags/immunology

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1		Introduction	
1.1	Historical perspective and overview of Immune system, Haematopoiesis and differentiation	List out historical findings of immunology	K 1
1.2	Cells of immune system: Haematopoietic stem cells, T- cells, B-cells, Macrophages, Monocytes, Polymorphs, Platelets and Null cells.	Recall and compare the organization of the cells of immune system	К2
1.3	Immunity: Innate and acquired immunity.	Define Immunity Classify the types of Immunity and distinguish their functions	K 1 K 2
1.4	Lymphoid organs: Primary lymphoid organs (Thymus, Bone marrow), Secondary lymphoid organs (Spleen, Lymph node, MALT). Theory of clonal selection.	Identify the various parts related to the organs of immune system	К1
2	C	ellular Responses	
2.1	T- Cells and B- Cells: Development, maturation, activation and differentiation. Antigen: Properties and Biology.	Compare the unique features and role of one organelle from the other.	K 2

Unit/ Section	Course Content	Learning Outcomes	HBTLT
2.2	Immunoglobulin: Structure, functions and Classifications. Monoclonal antibodies - Principles and applications; APC's, MHC, antigen processing and presentation, regulation of T and B cell responses.	Illustrate the morphological differences among organelles by pictorial representations.	К3
3	Infe	ction and Immunity	
3.1	1.Injury and Inflammation; Immune response to infections; Complement system	State the process of inflammation with response to injury Describe the working mechanism of complement system and classify the pathways of complement activation	K1 K2
3.2	2. Immunity to - Bacteria, Virus, Fungi, and Parasites; Cytokines; Hypersensitivity; AIDS and Immunodeficiency,	List out the pathogenic diseases Distinguish diseases based on their immune response Determine the disease using their	K3 K4 K5
		symptoms	
3.3	Resistance and immunization; vaccines.	Interpret the mechanism of antigen resistance	K5
		Develop strategies to formulate vaccine.	K6
4	Transplantat	ion and Tumor Immunology	
4.1	Transplantation: Mechanism, Graft rejection, General and	Understand the mechanism of graft rejection	K1
	specific immunosuppressive therapy;	Contrast graft acceptance and rejection	K2
4.2	Clinical transplantation; Histocompatibility testing - HLA typing - HLA 1 and 2,)	Deduce clinical strategies for tissue typing and detecting sample identity.	K 3
4.3	Cross matching, serological, cellular and genomic typing. Tumor immunology; Autoimmunity: Autoimmune diseases, diagnosis and treatment.	Formulate therapies and treatments by justifying the impairment in the immune system	К б

5	Immunotechniques							
5.1	Immunization protocol and procedures,RIA, ELISA,	Appraise the various techniques involved K 5 in immunology.						
	Immunoelectrophoresis, SDS- PAGE, FAC's, Immuno-	Relate the immunotechniques to specific K 2 diseases based on their principle.						
	flourescence, western Blotting	Examine the immune samples to detect K 3 disease						
5.2	Hybridoma technology - murine monoclonal antibody production and enrichment, Human monoclonal antibodies, T cell hybridomas; Abzymes; antibody engineering; Chimeric and humanized antibodies and their applications.	Design antidotes to enhance immunity by K 6 developing monoclonal antibodies.						

4. Mapping Scheme

P20BT308	P0 1	P0 2	PO 3	P0 4	PO 5	P0 6	P0 7	PO 8	6 0d	PS0 1	PSO 2	PSO 3	PS0 4
CO 1	Η	Н	Н	L	Н	L	М	L	L	Н	М	L	Н
CO 2	Η	Н	Н	L	М	Н	М	L	L	Н	М	L	Н
CO 3	Η	Н	Н	Н	Н	М	L	L	L	Н	L	Н	Н
CO 4	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO 5	Η	Н	Н	Н	Η	Н	М	L	Н	Н	Н	Н	М
CO 6	Η	Η	Η	Η	Η	Η	М	Н	М	Н	Н	Н	Н
L: Low M: Medium H: High 5. Course Assessment Methods													
Direct													
1. Continuous Assessment Test I,II													

- 2. Case study, Mini Project report, Poster presentation
- 3. End Semester Examination

Indirect

1. Course-end survey

Name of the Course Coordinator: Dr.A.Anita Margret

Semester: 3 Credits: 5

Course Code: P20BT309

Total Hrs/ Week : 5

Core Course : IX - MEDICAL BIOTECHNOLOGY

1. Course Outcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Unit
CO1	Recognize the role of enzymes and nucleic acids in health sector	K1	Ι
CO2	Identify the various markers and techniques in cancer diagnosis	К2	II
CO3	Determine the safety measures on handling the clinical samples for diagnosis.	K4	III
CO4	Evaluate and analyze the disorders of carbohydrate metabolism and their detection	К5	IV
CO5	Appraise the novel drug application and approval in pharmaceutical industries	К5	V

2. A. Syllabus

Unit - I

Biotechnology in Health Care

Worldwide market – Enzymes Diagnostics, nucleic acid based diagnostics, PCR based diagnostics and Sequencing – Blood Products – Biosensors – types; Biochips

Unit – II

Cancer diagnostics

Molecular markers - Cancer phenotyping-molecular, immuno and fluorescent based diagnostics FACS- Cancer gene therapy - microsatellite and telomeric analysis-FISH-Vaccines-DNA Vaccines and synthetic Vaccines - novel routes of delivery.

Unit – III

Pathology Handling of clinical samples

Precautions and Safety measures Physical and Chemical examination of body fluids (Blood and Urine) Types - Colour, Transparency, P^H, Specific

15hrs

15hrs

gravity; Protein, Sugar, Ketone bodies, Bile pigment/salt, Chyle and Blood. Laboratory diagnosis of UTI.

Unit - IV

Clinical Biochemistry

Disorders of carbohydrate metabolism and their detection, measurement of glucose in plasma and urine, ADA classification of diabetes mellitus, glucose tolerance test, detection of gestational diabetes and self monitoring of blood glucose.

Unit – V

Clinical Research in Drug Discovery

New Drug Application and Approval - Pharmaceutical Industry – Global and Indian Perspective - Clinical trial market. Selection of drugs – Threats behind self medication- Monitoring the prescribed drug advised, Clinical data management, Ethical issue in clinical studies.

B. Topics for self study

S.No	Topics	Web Links		
1.	Fetal Blood Sampling (FBS)	www.webmd.com		
2	Thalassemia	www.cdc.gov> ncbddd> thalassemia> facts		
3	Nanotechnology Cancer Therapy	www.cancer.gov> nano > treatment		
4	Biorobotics-The next Generation of Medicine	www.biorobotics.com > biorobotics-next-generation		

C. Text Books

1. Gupta S.K., Basic Principles of Clinical Research and Methodology, Jaypee Brothers Medical Publishers, 2007

D. Reference Books

- 1. Pillai., Biochemistry and Clinical Pathology, CBS Publications, 2012
- Stephen Hulley., Outlines & Highlights for Designing Clinical Research: An Epidemiologic Approach, Academic Internet Publishers, 2011
- 3. Dan Wood., and Daron Smith., Research in Clinical Practice, Springer Publications, 2012

15hrs

- 4. Robert J. Levine., Ethics and Regulation of Clinical Research: Second Edition, Yale University Press, 2010
- E. Web Links
- 1. https://www.coursera.org/learn/cancer-metastasis
- 2. https://www.coursera.org/specializations/drug-developmentproduct-management

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT				
1	Biotechnology in Health Care Worldwide market						
1.1	- Enzymes Diagnostics, nucleic acid based diagnostics	State the scope of biotechnology in health sectors	K2				
		Discuss the various diagnosis method to detect the diseases	K3				
		Summarize the different types diagnostic techniques at molecular level	K4				
1.2	Blood Products - Biosensors - types;Biochips	Evaluate and correlate test results with associated diseases at advanced technology level.	K5				
2	Cancer diagnostics Molecular markers						
	Cancer diagnostics Molecular	Analyse how cancer cells are diagnosed	K4				
2.1	markers	Explain the hallmarks of cancer cells	K2				
2.2	Cancer gene therapy – microsatellite and telomeric analysis	Applying the diagnostic method using molecular markers for cancer and its control measures	K5				
2.3	Vaccines-DNA Vaccines and synthetic Vaccines - novel routes of delivery	Evaluate and produce DNA vaccines to control and prevent diseases with novel route of delivery	K6				
3	Pathology a	nd Handling of clinical samples					
3.1	Precautions and Safety measures	Acquire knowledge on handling the pathogenic clinical samples and its safety measures	K2				
3.2	Physical and Chemical examination of body fluids (Blood and Urine) Types -Colour, Transparency,pH, Specific gravity; Protein, Sugar, Ketone bodies, Bile pigment/salt, Chyle and Blood	Formulate methods to examine the physical and chemical properties of body fluids.	K5				
Unit/ Section	Course Content	Learning Outcomes	HBTLT				
------------------	---	---	--------				
3.3	Laboratory diagnosis of UTI	Explain the symptoms tof UTI and its remedy to cure the infection	K1				
		Analyse the steps to diagnose UTI	K4				
4	Clinical Biochemistry Disorder	s of carbohydrate metabolism and their dete	ection				
4.1	Clinical Biochemistry Disorders of carbohydrate metabolism and their detection	Analyse the and acquire knowledge on principle and detection of carbohydrate disorder	K4				
4.2	Measurement of glucose in plasma and urine, ADA classification of diabetes mellitus,	Learn and importance of detecting the glucose level in blood and urine	K2				
	of gestational diabetes and self monitoring of blood glucose.	Apply and evaluate the level of diabetes by lab test and self monitoring	K5				
5	New Dru	g Application and Approval					
5.1	Pharmaceutical Industry - Global and Indian Perspective - Clinical trial market	Show the value of bioethics in formulating the novel drugs and the experiments performed in life science labs before marketing	K2				
		Evaluate the success of various applications for drug approval	К5				
5.2	Selection of drugs - Threats behind self medication- Monitoring the prescribed drug advised	Understand the consequence and side effects of self medication and prescribed drugs	K2				
5.3	Clinical data management, Ethical issue in clinical studies	Analyse the methods and steps involved in Clinical data management	K4				
		Apply the value of ethics on clinical studies and management of clinical data	K3				

P20BT309	P01	P02	P03	P04	P05	P06	P07	P08	909	PS01	PSO 2	PS03	PS04
CO1	L	М	L	L	М	L	L	М	М	Н	L	Н	L
CO2	М	L	L	Н	М	L	L	М	L	Н	М	L	Н
CO3	L	М	L	Н	М	М	Н	Н	М	Н	Н	М	М
CO4	Н	Н	Н	Н	Н	М	М	М	Н	М	Н	М	М
CO5	L	М	М	L	Н	М	Н	L	М	Н	М	Н	Н
CO6	М	L	L	М	Н	М	L	М	L	Н	М	Н	М

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test I,II
- 2. Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation, Group discussion, seminars
- 3. End Semester Examination

Indirect

1. Course-end survey

Name of the Course Coordinator: Dr.R.Jasmine

Core Practical : IV - GENE TECHNOLOGY LAB

1. Course Outcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Experiments Covered
CO1	Comprehend the principles in PCR amplification for DNA fingerprinting analysis via RAPD and restriction digestion	K1	5,3,7
CO2	Apply skills on techniques of construction of recombinant DNA - Cloning vectors and isolation of gene of interest through restriction digestion and ligation methods	К2	3,4
CO3	Analyze gene amplification experiments by PCR analysis Purification of Protein through SDS and Native PAGE	К3	5,8,9
CO4	Identify the concept of integration of transgenes by Southern blot analysis	K4	10
CO5	Evaluate the importance of plasmids, cloning of gene and transformation into suitable bacteria for selection of recombinant clones	К5	11
C06	Conclude with the introduction of rDNA into bacterial cells. Selection of transformants and recombinants (Blue and white screening)	K6	11

2. Syllabus

List of Experiments

- 1. Isolation of Genomic DNA frombacteria
- 2. Agarose gelelectrophoresis
- 3. Restriction digests of DNA
- 4. Ligation- T DNALigase
- 5. Polymerase Chain Reaction(PCR)
- 6. RFLP

- 7. RAPD
- 8. SDS PAGE
- 9. NativePAGE
- 10. SouthernBlotting
- 11. Transformation- Blue and White method
- 12. Isolation of plasmidDNA

References

- 1. Brenda D.Spangler., Methods in Molecular Biologyand Protein Chemistry, John Wiley and Sons, Ltd.,2002.
- 2. Sambrook., Molecular Cloning: A Laboratory ManualVol. I III, Cold Spring Harbor Laboratory,1989.
- 3. Ausbel M., and Roger Breut., Short Protocols in Molecular Biology, Vol-I&II, FifthEdition, FrederickJohnWileyandSons Inc., 2002

Web links

- 1. https://onlinecourses.nptel.ac.in/noc21_bt35/preview
- 2. https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-bt32/

3. Specific Learning Outcomes (SLO)

Exercises	Course Content	Learning Outcomes	HBTLT
EX 1	Isolation of Genomic DN frombacteria	A Explain the Genomic DNA Show the Genomic DNA	K2
EX 2	Agarose gelelectrophoresis	Explain the agarose gel electrophoresis method	K2
EX 3	Restriction digests of DNA	Choose restriction digestion enzymes & DNA	K3
		Solve the Restriction digestion process	K6
EX 4	Ligation- T DNALigase	Choose T DNALigase enzyme	K3
		Predict the Ligation process	K6
EX 5	Polymerase Cha	n Test the PCR technique	K6
	Reaction(PCR)	Discuss with its advantages	
EX 6	RFLP	Predict the RFLP	K6
EX 7	RAPD	Compare with PCR	K2
		Predict the RAPD	K6

Exercises	Course Content	Learning Outcomes	HBTLT
EX 8	SDS PAGE	Relate with Native PAGE	K2
		Analyze the SDS PAGE	K4
EX 9	NativePAGE	Relate with SDS PAGE	K2
		Analyze the Native PAGE	K4
EX 10	SouthernBlotting	Test the Southern Blotting	K6
		Discuss with its advantages	
EX 11	Transformation- Blue and White method	Construct the transformation method	K3
EX 12	Isolation of plasmid DNA	Explain the Plasmid DNA	K2S
		Show the Plasmid DNA	

P20BT3P4	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PSO 3	PS0 4
CO1	М	М	Η	L	L	L	М	М	L	Н	L	Η	L
CO2	М	Н	М	М	Н	М	Н	М	Н	Н	М	Н	М
CO3	М	Н	Н	М	М	М	Н	Н	М	Н	Н	Н	Н
CO4	Н	Н	М	Н	Н	М	Н	М	Н	М	Н	М	Н
CO5	Μ	Μ	М	М	Н	L	М	L	М	L	М	L	М
CO6	Μ	Η	Η	Μ	Η	Μ	Μ	Μ	Η	Η	Μ	Η	Μ

L: Low

M: Medium

H: High

5. Course Assessment Methods

Direct

- 1. Periodical Assessment
- 2. Record of results, Punctuality, Observation note maintenance, Regular Submission of results, Discussion of results obtained
- 3. Model Practical Examination
- 4. End Semester Practical Examination

Indirect

1. Course-end survey

Name of the Course Coordinator: Dr.R.Sharmila

Semester : 3 Credits : 3 Course Code :P20BT3P5 Total Hrs/ Week : 5

Core Practical: V IMMUNOLOGY AND MEDICAL BIOTECHNOLOGY LAB

1. CourseOutcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Experiments Covered
CO1	Understand the key concepts in immunology through demonstration and visual examination.(K1)	K1	1,2
CO2	Comprehend the salient features of antigen antibody reaction and its application in disease diagnostics.(K2)	K2	3,4
CO3	Recognize the biochemical and genetic basis of immune response and disease resistance.(K3)	К3	7,8
CO4	Analyze the structural and physiological features of immune cells and organs.(K4)	K4	2,6
CO5	Apply advance immunological techniques to diagnose and procure remedies against various physiological ailments.(K5)	К5	2
C06	Decipher the pathogenic mechanisms and develop skills to produce novel antidotes (K4)	K4	3,4

2. A. Syllabus

List of Experiments

IMMUNOLOGY

- 1. Antigen preparation and routes of Immunization
- Preparation of soluble antigen human serum
- Preparation of cellular (particulate) antigen bacterial antigen
- Immunization protocols
- Routes of antigen administration.
- 2. Identification of the cells and organs in immune system
- Visualization and study of Lymphoid Organs from mice and Chicken (Virtual Model)
- Determination of differential leukocyte count.

- 3. Isolation and characterizing lymphocytes and immunoglobins
- Isolation and enumeration of lymphocytes from human blood.
- Determination of lymphocyte viability by trypan blue exclusion test
- Purification & Estimation of IgG
- 4. Antigen-antibodyreactions and immunological techniques
- Direct agglutination to determine ABO blood grouping
- Immunoelectrophoretic and diffusion technique
- a. RocketImmunoelectrophoresis.
- b. Radialimmunodiffusion.
- Immunodiagnosis
- a. Pregnancy test
- b. HIV (Dot ELISA)
- c. WesternBlotting

D. Reference Books

- A Handbook of Practical and Clinical Immunology, 2009,Vol. II, Second Edition. G.P. Talwar & S.K. Gupta (Eds). Published by CBS Publishers & Distributors Pvt. Ltd
- Practical Immunology, Frank C Hay; Olwyn M R Westwood; Paul N Nelson; Leslie Hudson2002,4th ed. Blackwell Scientific Publication.
- Pravash Sen. Gupta, Clinical Immunology.2003. Oxford University Press.
- Noel R. Rose, Herman Friedman, John L. Fahey.1986, 3rd ed., Manual of Clinical Laboratory Immunology. Amer Society for Microbiology (ASM)

Medical Biotechnology

- 5. Handling & Processing of a few Clinical Samples
- 6. Detection of drug resistant bacteria from clinical samples
- 7. Biochemical tests to differentiate various bacteria

References

- 1. "Medical Microbiology", Guide to the Laboratory Diagnosis & Control of Infection, Robert Cruickshank, Churchill Livingstone Publishers vol 1, 12th Edition 1973
- 2. "Laboratory Manual of Microbiology"-F.S Cheever, Pubmed Central 2006.

Web links

- 1. https://onlinecourses.nptel.ac.in/noc20_bt43/preview
- 2. https://www.digimat.in/nptel/courses/medical/microbiology/ MB15.html

3. Specific Learning Outcomes(SLO)

Exercises	Course Content	Learning Outcomes	HBTLT			
EX 1		IMMUNOLOGY				
1.1	 Antigen preparation and routes of Immunization Preparation of soluble antigen - human serum 	Understand principles of antigen preparation and their recognition	K1			
	 Preparation of cellular (particulate) antigen - bacterial antigen Immunization protocols 	Employ the various immunization protocols and their administration	1/2			
	 Routes of antigen administration. 		К3			
1.2	Identification of the cells and organs in immune system	Recall and compare the organization of the cells / organs of immune system	K1			
	 Visualization and study of Lymphoid Organs from mice and Chicken (Virtual Model) 	Discriminate the molecular, metabolic and structural differences among immunological cells Apply their variations in disease	K4 K3			
	Determination of differential leukocyte count	diagnosis				
1.3	Isolation and characterizing lymphocytes and immunoglobins	Identify the importance of analytical immunology.	K2			
	 Isolation and enumeration of lymphocytes from human blood. 	Estimate and measure the amount of immune cells and proteins present in a biological sample.	К4			
	 Determination of lymphocyte viability by trypan blue exclusion test 					
	Purification & & Estimation of IgG					

Exercises	Course Content	Learning Outcomes	HBTLT
1.4.	 Antigen-antibodyreactions and immunological techniques Direct agglutination to determine ABO blood grouping 	Appraise students with the various immunological techniques which includes quantitation and interactions of antigen-antibody reactions	K5
	 Immuno electrophoretic and diffusion technique a. Rocket Immuno electrophoresis. b. Radial immuno diffusion. Immunodiagnosis a. Pregnancy test b. HIV (Dot ELISA) c. Western Blotting 	Evaluate and correlate test results with associated diseases or immunological ailments	K5
EX 2.	MEDI	CAL BIOTECHNOLOGY	
2.1	Handling & Processing of a few Clinical Samples	Identify the various bacterial pathogens from urine , blood and sputum samples.	K3
2.2	Detection of drug resistant bacteria from clinical samples	Distinguish drug sensitive and resistant bacteria	K4
2.3	Biochemical tests to differentiate various bacteria	Identify different bacterial species through Biochemical tests	K2

P20BT3P5	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PSO 3	PS0 4
CO 1	Н	М	Н	Н	Н	М	L	Μ	L	Н	Н	Η	Η
CO 2	Н	Н	Н	Н	М	Н	L	М	L	Н	Н	Н	Н
CO 3	Н	Н	Н	Н	Н	Н	L	Н	L	Н	Н	Н	Н
CO 4	Н	Н	Н	Н	М	М	L	М	L	Н	Н	М	М
CO 5	Н	Н	Н	Н	Н	Н	М	М	М	М	Н	Н	Н
CO 6	Н	Н	Н	Н	Н	Н	М	М	М	М	Н	Н	Н
L: Low		M: 1	Mediu	ım		H: Hi	gh						

5. Course Assessment Methods

Dire	ct
1.	Periodical Assessment
2.	Record of results, Punctuality, Observation note maintenance, Regular Submission of results, Discussion of results obtained
3.	Model Practical Examination
4.	End Semester Practical Examination
India	rect
1.	Course-end survey

Name of the Course Coordinator: Mr.J.Dinesh Raja

Semester : 3 Credits: 4

Course Code :P20BT3:4 Total Hrs/ Week : 4

Elective III A : STEM CELL BIOLOGY

1. CourseOutcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Understand basic biology of stem cells, and cell cycle regulators in stem cells	K1	Ι
CO2	Describe the characteristics of stem cells and the different types of stem cells	K2	II
CO3	Apply the knowledge on the isolation process and cultivation of various stem cells and can learn the importance of preservation of stem cells	К3	III
CO4	Inspect the ethical and regulatory issues associated with use of stem cells	K4	IV
CO5	Integrate the application of stem cell therapy for various diseases	K5	IV
C06	Review the Opportunities and Policy of Stem Cells	K6	V

2. A. Syllabus

Unit - I

Basics of Stem Cells: Concepts of stem cells and historical perspectives -Characteristic features- stem cell niche, stem cell plasticity, potency of stem cells: Unipotent-totipotent-multipotent-pluripotent. Mechanism of stem cell self renewal. Cell cycle regulators in stem cell. Differentiation and propagation of stem cells.

Unit -II

Types of Stem Cells: Embryonic stem cells & Germ stem cells -Fetal-adult's stem cells: Bone marrow stem cell, hematopoietic stem cell– Mesenchymal stem cell- Neural stem cells - Cancer stem cells Induced pluripotent stem cells & patient-specific stem cells -Genetically engineered stem cells.

Unit -III

Stem Cells isolation and culture: Isolation, characterization and maintenance of stem cells-stem cell markers, Fluoresence based cell sorting. Stem Cell banking-types: Public Bank &Private Bank. Methods involved in

15hrs

15hrs

- 1. Kaushik D Deb ,Sathish M Totey " stem cell basics and applications "Tata McGraw Hill Education Private Limited,New Delhi,2009.
- 2. Marshak, "Stem Cell Biology", Cold Spring Harbar Symposium Publication. 2001.

112

stem cell banking and its importance. Stem cell preservation in cancer patients.

Unit -IV

Applications of Stem Cells: Stem cell therapy in neurodegenerative disorders: Spinal cord injury-Parkinson's disease, cardiovascular disorders, diabetes, autoimmune diseases, organ disorders, reproductive failures, stem cells in aging, baldness, stem cells and gene therapy. Ethical issues in the use of stem cells.

Unit – V

С.

Text Books

Opportunities and Policy of Stem Cells: Research scope and human resource development, National and global need for stem cell research-therapy & medical tourism, Institutions involved in stem cell research-therapy, Guidelines & SOPs on stem cell research-therapy, Informational resources on stem cells.

B. Topics for self study

S.No	Topics	Web Links
1.	Stem cell therapy for COVID-19: Possibilities and challenges.	https://doi.org/10.1002/cbin.11440
2	Umbilical cord blood research: current and future perspectives	https://pubmed.ncbi.nlm.nih.gov/174 74296/
3	Amniotic fluid cells and human stem cell research: a new connection	https://pubmed.ncbi.nlm.nih.gov/124 44390/
4	Stem cells: past, present, and future	https://www.ncbi.nlm.nih.gov/pmc/ar ticles/PMC6390367/
5	Analysis of the Expectation of Stem Cell Therapy in Patients with Alzheimer's Disease	https://pubmed.ncbi.nlm.nih.gov/309 06354/

15hrs

3. Hossein Baharvand. Trends in stem cell biology and Technology. Humana Press, NY.2009.

D. Reference Books

- 1. Stewart Sell. "Stem Cells Handbook", Humana Press, NY ,2003. (Ed).
- 2. Robert Paul Lanza.. Essentials of Stem Cell biology. Elsevier Academic Press,2006.
- 3. Krusade Turksen. "Adult stem cells", Human press, USA, 2004.
- 4. Daniel Levitt and Ronald Mertelsmann. "Hematopoietic Stem Cells-Biology and Therapeutic application", Informal Health care, 1995.
- 5. Suzanna Holland, Karan and Lauria. "The Human Embryonic Stem Cell Debate", MIT Press, 2001.

E. Web Links

- 1. https://www.coursera.org/learn/stem-cells
- 2. https://nptel.ac.in/courses/102/106/102106036/
- 3. https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-bt35/

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	Basics of Stem Cell		
1.1	Concepts of stem cells and historical perspectives - Characteristic features- stem cell niche, stem cell plasticity, potency of stem cells: Unipotent-totipotent- multipotent-pluripotent.	Define the Basic Concepts of stem cells. Discuss the various characteristics of stem cells.	K1 K2
1.2	Mechanism of stem cell self renewal. Cell cycle regulators in stem cell. Differentiation and propagation of stem cells.	Illustrate general mechanism of stem cell self renewal. Explain the principles of cell cycle regulators. Recognize main differentiation and propagation of stem cells.	К3 К4 К5

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
2	Ţ	ypes of Stem Cells	
2.1	Embryonic stem cells & Germ stem cells -Fetal-adult's stem cells:	Classify the stem cells based on the sources cells.	K1
		Differentiate embryonic stem cell with adult stem cell.	K2 K2
		Discuss the importance of stem cell for therapeutic purpose.	
2.2	Bone marrow stem cell, hematopoietic stem cell	Recognize the concept of Bone marrow stem cells	K3
		Illustrate methods of isolation of hematopoietic stem cell.	K3
		Evaluate different types of eggs and formation.	K5
2.3	Mesenchymal stem cell- Neural stem cells - Cancer stem cells	Illustrate how the Mesenchymal stem cells are isolated and cultured for medical applications.	К3
		Explain the neural stem cells isolation and its uses.	K4
		Distinguish between stem cell and cancer stem cell.	K4
2.4	Induced pluripotent stem cells & patient-specific stem cells -	Explain the mechanism of iPSC and its development pattern.	K2
	Genetically engineered stem cells.	Analyze the applications of genetically engineered stem cells	K4
3	Stem C	ells isolation and culture	
3.1	Isolation, characterization and maintenance of stem cells-stem cell	Report how the stem cells are isolated from the normal cell population	K1
	markers, Fluoresence based cell sorting.	Interpret the concept of stem cell markers.	K2
		Record the availability of stem cells by fluoresence based cell sorting.	K3
3.2	Stem Cell banking-types: Public Bank &Private Bank. Methods	Describe the importance of stem cell banking.	K4
	involved in stem cell banking and	List the different banking of stem cells.	K4
		Explain the protocols and procedures involved in stem cell banking.	K3
3.3	Stem cell preservation in cancer patients.	Analyze the significance of Stem cell preservation in cancer patients	K4

Unit/ Section	Course Content	Learning Outcomes	HBTLT
4	Appl	ications of Stem Cells	
4.1	Stem cell therapy in neurodegenerative disorders:	Analyze various applications stem cells.	K4
	disease,	Describe how stem cells are used for the treatment of neurodegenerative disorders: Spinal cord injury-Parkinson's disease,	K4
		Develop new methods for the treatment of Spinal cord injury-Parkinson's disease with stem cells.	К4
4.2	Cardiovascular disorders, diabetes, autoimmune diseases,	Comprehend the treatment of cardiovascular disorders, diabetes by stem cells.	К5
		Apply the knowledge of stem cells in the treatment of autoimmune diseases.	K5
4.3	Organ disorders, reproductive failures, stem cells in aging, baldness,	Create the idea about organ disorders treatment, reproductive failures treatment by stem cells.	K6
		Explain how the stem cells are used for baldness and aging problems.	K2
4.4	Stem cells and gene therapy. Ethical issues in the use of stem cells.	Describe the methods of gene therapy and how the stem cells used gene therapy.	К5
		Conclude various ethical issues in the use of stem cells.	K5
5	Opportunit	ies and Policy of Stem Cells	
5.1	Research scope and human resource National and global need	Describe about Opportunities and Policy of Stem Cells.	K3
	for stem cell research-therapy & medical tourism,	Illustrate research scope and human resource National and global need for stem cell research.	K4
		Discuss about medical tourism with its significance.	
5.2	Institutions involved in stem cell research-therapy, Guidelines &	List the different Institutions involved in stem cell research-therapy.	K3
	SOPs on stem cell research- therapy, Informational resources on stem cells.	Review the Informational resources on stem cells.	K3
		Explain the Guidelines & SOPs on stem cell research-therapy,	K6

P20BT3:1	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS0 1	PSO 2	PS03	PS04
CO1	Н	L	М	М	L	-	-	-	-	Н	L	L	М
CO2	L	М	М	М	Н	М	-	-	-	Н	М	-	-
CO3	Н	М	М	Н	М	М	-	-	-	Н	Н	М	Н
CO4	М	Н	М	М	L	М	-	-	Н	М	Н	М	Н
CO5	Μ	Η	М	L	Н	L	-	-	-	Н	М	L	Η
CO6	М	L	Η	М	Η	Η	-	-	Η	Η	М	М	L
	L	1	_	1		1	_	L			1	1	1

L: Low M: Medium

H: High

5. **Course Assessment Methods**

Dire	ct
1.	Continuous Assessment Test I,II
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation
3.	End SemesterExamination
Indi	rect
1.	Course-end survey

Name of the Course Coordinator: Dr.R.Sharmila

Elective IV B – DEVELOPMENTAL BIOLOGY

1. CourseOutcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Defining the general concepts of organisms developement. general principles of cell and cell communication in development	K1	Ι
CO2	Illustration of fertilization, development and sex determination in humans and their germ layers	K2	II
CO3	Inference on organogenesis-I of central nervous system and the epidermis and the formation of neural tube	К3	III
CO4	Explaination on organogenesis-II of mesoderm and endoderm layers	K4	IV
CO5	Medical implications of developmental biology, determine the infertility, and diagnosis infertility of IVF	К5	V
C06	Enumerating the mechanisms of evolutionary changes	K6	V

2. A. Syllabus

Unit - I

15hrs

Basic Concepts

General concept of organisms development: Potency, commitment, specification, induction, competence, determination & differentiation; morphogenetic gradients; cell fate & cell lineages; genomic equivalence and cytoplasmic determinants; imprinting. General principles of cell and cell communication in development: cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrins, paracrine factors.

Unit – II

Fertilization, Development and Sex Determination in Humans

Fertilization. Development and Sex Determination in Humans. Gametogenesis and Sperm & Egg formation; Ultra structure of sperm and types, egg membrane. Fertilization,Cleavage, ovum, Egg Morula. Implantation, Blastulation, Gastrulation, Formation of germ layers, Axis formation - Anterior and Posterior. Sex determination, Chromosomes and Environment.

Unit-III

Organogenesis - I

Organogenesis: Central nervous system and the epidermis and Formation of neural tube, Differentiation of the neural tube, Tissue architecture of the central nervous system, Origin of cutaneous structures. Neural crest cells and axonal specificity, Trunk neural crest, Pattern generation in the nervous system.

Unit-IV

Organogenesis - II

Paraxial and intermediate mesoderm, Somites formation, Osteogenesis, Urogenital system. Lateral plate mesoderm and endoderm-Heart formation, Digestive tube and its derivatives.

Unit - V

Implications of Developmental Biology

Medical implications of Developmental Biology and Genetic disorders, Environmental assaults on human development, Environmental regulation of animal development and environment as a part of normal development, Polyphenisms and plasticity, Learning system. Mechanisms of macro evolutionary change, Heterotrophy, Heterochrony and Heterometry.

B. Topics for self study

S.No	Topics	Web Links
1	Production of gametes	https://www.ncbi.nlm.nih.gov/books/N BK10005/
2	Sex Determination in Human	https://www.researchgate.net/publicati on/265092990_A_novel_method_for_sex _determination_by_detecting_the_numb er_of_X_chromosomes

15hrs

15hrs

S.No	Topics	Web Links
3	cell fate and cell lineages	https://ebook.vip-files.de/cell-lineage- and-fate-determination-moody-sally- a.pdf
4	Production of gametes	https://embryology.med.unsw.edu.au/ embryology/index.php/Ovary_Develop ment

C. Text Books

1. Gilbert S.F., Developmental Biology, Sinauer Associates Inc. Pub., Sunderland, Massachusetts, 2010

D. Reference Books

- 1. Alberts B., Molecular Biology of the Cell, Garland Science, New York, 2002
- 2. Lodish H., Molecular Cell Biology, W.H. Freeman, New York, 2000.

E. Web Links

- 1. https://nptel.ac.in/courses/102/106/102106084/
- 2. https://ocw.mit.edu/courses/biology/7-22-developmental-biologyfall-2005/
- **3.** https://bit.ly/2YHJvRO

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT			
1	Basic Concepts General concept of organisms development					
1.1	Potency, commitment, specification, induction, competence, determination& differentiation; morphogenetic gradients; cell fate & cell lineages; genomic equivalence and cytoplasmic determinants; imprinting.	Basic Concepts of Developmental Biology. Get the Knowledge in Organogenesis Recognize Cell Linages and Cytoplasmic determinants	К1 К2 К3			

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1.2	General principles of cell and cell communication in development: cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrins, paracrine factors.	Illustrate General principles of cell and cell communication in development. Recognize main difference between cell factors and molecules.	К1 К2
2	Fertilization, Developm	ent and Sex Determination in Humans	
	Fertilization, Development and Sex Determination in Humans	Understand the Basic Concepts of Fertilization, Development and Sex Determination in Humans	K1
2.1	Fertilization, Development and Sex Determination in Humans. Gametogenesis and Sperm & Egg formation	Recognize the concept of fertilization. Illustrate methods of sex determination in Humans. Evaluate different types of eggs and formation.	K1 K2 K2
2.2	Ultra structure of sperm and ovum, Egg types, egg membrane. Fertilization, Cleavage, Morula, Implantation, Blastulation, Gastrulation, Formation of germ layers, Axis formation - Anterior and, Posterior. Sex determination,	Illustrate how sperm and ovum interacts each other Understand the different steps in fertilization. Apply how the germs layers are forming in	K1 K2 K4
	Chromosomes and Environment.	determination of sex.	
3	C	organogenesis – I	
3.1	Central nervous system and the epidermis and Formation of neural tube, Differentiation of the neural tube, Tissue architecture of the central nervous system,	Understand how the formation of neural tissues organogenesis. Understand the concept of Central Nervous System.	K1 K2
3.2	Organogenesis - I Origin of cutaneous structures. Neural crest cells and axonal specificity, Trunk neural crest, Pattern generation in the nervous	Illustrate the concept of neural crest cells, axonal specificity. Apply Pattern generation in the nervous system.	К1 К2
	system.		
4	0	rganogenesis – II	
4.1	Paraxial and intermediate mesoderm, Somites formation, Osteogenesis, Urogenital system.Lateral plate mesoderm and endoderm-Heart formation	Write the mechanism of various organ formation and the concept Design different organ formation structures.	K1 K2

Unit/ Section	Course Content	Learning Outcomes	HBTLT
4.2	Digestive tube and its derivatives.	Comprehend chirality of Digestive tube and its derivatives.	K1
5	Implication	s of Developmental Biology	
5.1	Medical implications of Developmental Biology and Genetic disorders, Environmental assaults on human development, Environmental regulation of animal development and environment as a part of normal development.	Predict the Medical implications of Developmental Biology and Genetic disorders. Substantiate based on evidences the factors causes genetic disorders.	K5 K3
5.2	Polyphenisms and plasticity, Learning system. Mechanisms of macro evolutionary change, Heterotrophy, Heterochrony and Heterometry.	Comprehend the role of the Polyphenisms and plasticity Substantiate based on evidences in macro evolutionary change	K1 K3

P20BT3:A	P01	P02	P03	P04	P05	904	P07	P08	60d	PSO 1	PSO 2	PS03	PS04
CO1	Η	М	L	М	L	-	-	-	-	Н	L	L	М
CO2	L	М	М	М	Н	М	-	-	-	Н	М	-	-
CO3	Η	М	L	М	М	L	-	-	-	Н	Н	Н	Н
CO4	М	Н	М	М	L	М	-	-	Н	М	Н	М	М
CO5	М	Н	L	L	Н	L	-	-	-	Н	М	Н	Н
CO6	М	М	Η	М	Н	Н	-	-	Н	Н	М	М	М

L: Low

M: Medium

H: High

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test I,II
- 2. Open book test, Assignment, Journal paper review, Case study, Mini Projectreport, Poster presentation
- 3. End SemesterExamination

Indirect

1. Course-end survey

GENERIC COURSES FOR POST GRADUATE PROGRAMMES (2022-2024)

Total Hours : 15 Hours Course Type : Generic Course1

Course Code : P22BT3G1

Semester III	Scientific Writing and Research Publication Ethics	Code: GC
Credits: 1		Hours Per Week: 1

Course Outcomes

On Completion of the Course, the students will be able to:

Sl.No	Course Outcomes	Level	Unit
1	Describe the fundamentals of Scientific writing	K1	Ι
2	Identify the different resources & search engines in research	K2	II
3	Explain the concept of Plagiarism and the consequences of violating plagiarism.	КЗ	III
4	Identify and make use of various software tools	K2	IV
5	Identify the quality journals from the appropriate data base according to their field of interest	КЗ	IV
6	Evaluate the quality of journals based on various Bibliometrics	K4	V

UnitI :

Fundamentals of Scientific Writing : Introduction to different kinds of publications, specialized journalsin Biotechnology and Bioinformatics; Types of papers – Short communications, Research articles, Review articles, Systematic Review and Meta-analysis. Barriers to Scientific writing, Grammarly, Paraphrasing tools

Unit II :

Literature Review -Article finding : Conducting article search using search tools/resources-UGC care, Googles cholar, PubMed, Cochrane database, Science direct, ProQuest, Embase, Web of Science, ERIC, DOAJ, JSTOR, Biological Abstracts, BioOne, CINAHL, IndexCopernicus, Scopus. Referencing – EndNote, Mendeley

Unit III:

Publication ethics: Plagiarism – concept and problem that leads to unethical behaviour – violation of publication ethics- predatory publishers and journals-redundant publications–overlapping publications

UnitIV:

Open access publishing – initiatives–software tool to identify predatory publications-Journal finder – journal suggestions – journal suggestor-Publication misconduct – specific ethical issues – authorship – conflicts of interest – complaints and appeals - examples of fraud – use of plagiarism software – URKUND –TURNITIN.

Unit V: Databases and Research Metrics – Indexing databases – Citation databases: Web of Science,

Scopus – Impact Factors of journal as per Journal Citation Report, SNIP, SJR, IPP. Cite Score – Metrics: h-index, g index, i10 index, altmetrics.

References

- 1. Bairagi, Vinayak, and Mousami V. Munot, eds. Research methodology: A practical and scientific approach. CRCPress, 2019.Guidelines for Safety Assessment of Foods Derived from Genetically EngineeredPlants.2008.
- 2. Kothari, Chakravanti Rajagopalachari. Research methodology: Methods and techniques.New Age International, 2004.
- 3. Kuhse, H. (2010).**Bioethics**: An anthology. Malden, MA: Blackwell.Kumar, Ranjit. Research methodology: A step-by-step guide for beginners. Sage, 2018. National Biodiversity Authority. Recombinant DNA Safety Guidelines. 1990 Department of Biotechnology, Ministry ofScience and Technology, Govt. of India. Richard, Pring. Philosophy of Educational Research. Continuum, 2000.
- 4. Surbhi Jain, Research Methodology in Arts, Science and Humanities. Society Publishing, 2019.
- 5. Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., Wu, F. (2009). Problem formulation in the environmental risk assessment for geneticallymodified plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9

Core Course : X - ENVIRONMENTAL BIOTECHNOLOGY

1. CourseOutcomes

At the end of this course the students will be able to

CO. No	Course Outcomes	Level	Unit
CO1	Remember and list the types of pollutions and environmental issues	K1	Ι
CO2	Describe and compare the methodologies of waste water treatment	K2	II
CO3	Apply the strategies of waste water treatments and recycle pollutants into bioenergy	К3	II
CO4	List out the diversity of life forms and develops the methodologies for biodiversity conservation	К3	III
CO5	Apply genetic engineered microbes in the field of agriculture and bioremediation for sustainable growth	КЗ	IV
C06	Analyze the environmental toxicity using different parameters and predict the safe limits of drugs	K4	V

2. A. Syllabus

Unit –I

15hrs

15hrs

Ecology and ecosystem

Global environmental changes: Global warming, Green house effect, acid rain, ozone depletion, thermal inversion and photochemical smog. Sources, types, effects of Environmental Pollutions - Water, Air, Thermal, Industrial, oil, Metal Toxic Hazardous wastes and radiation environmental issues, management strategies and safety biotechnological approach for management, Biomagnifications.

Unit –II

Waste water treatment

Aerobic and anaerobic methods of waste water treatment (Primary, Secondary and Tertiary) use of aquatic plants in waste water treatment. Solid waste management, Bio-energy and SCP from waste, microbial desulphurization of coal recycling and processing of organic residues.

Unit –III

Xenobiotics

Ecological considerations - decay behavior and degradative plasmids, Biotransformation of xenobiotics - Detoxification, Surfactants, Pesticides. Biopesticides integrated pest management. Biodiversity -treaties and protocols for Biodiversity Conservation, Biodiversity - definition, hot spots of Biodiversity, strategies for Biodiversity Conservation.

Unit –IV

Bioremediation

Biosensors in Bioremediation- Biotechnology in pulp and paper industry, Advanced and emerging Biotechnological applications for industrial effluent (tannery and distillery). Pesticide waste disposal, oleophilic fertilizers and use of genetically engineered microbes. Principles of Biosorption and Bioaccumulation. Giant bacteria and their ecological significance. Sea weeds for removal of heavy metal pollutants. Hazards of genetically engineered microbes plants and animals to the environment.

Unit V

Environmental toxicology

Toxicology – Basic probit analysis concepts – Toxicants – Toxicity, Acute, sub acute, chronic, dose effect, LD 50 and response safe limits. Dose response safe limits. Dose response relationship, graphs, concentration response relationship. Carcinogens in air, chemical carcinogenicity, mechanism of carcinogenicity, Environmental carcinogenicity testing.

B. Topics for self study

S.No	Topics	Web Links
1.	Solid waste management- Composting, Vermiculture	Introduction to Environmental Biotechnology by A. K Chatterji, PHI Learning Publishers, 2011
2	Genotoxicity	Environmental Biotechnology, Concepts and Applications. Hans-Joachin Jordening and Josef Winter. Winter-VCH. 2005
3	Microbial biosensor	Environmental Biotechnology, Concepts and Applications. Hans-JoachinJordening and Josef Winter. Winter-VCH. 2005
4	Theory of island biogeography	Introduction to Environmental Biotechnology by A. K Chatterji, PHI Learning Publishers, 2011

15hrs

C. Text Books

1. Alan S., Environmental Biotechnology, Pearson Education Limited, England, 1999.

D. Reference Books

- 1. Eugene P.ODUM., Fundamentals of Ecology, W.E. Saunders Company, London, 1972.
- 2. Metcalf and Eddy, Waste water engineering –Treatment Disposal and Reuse, Tata McGraw Hill, New Delhi,1979.
- 3. Donald G. Crosby., Environmental Toxicology and Chemistry, Oxford University Press, 1998.

E. Web Links

- 1. https://onlinecourses.nptel.ac.in/noc21_bt41/preview
- 2. https://onlinecourses.nptel.ac.in/noc19_ge23/preview

Unit/ Section	Course Content	Learning Outcomes	HBTLT				
1	Ecology and ecosystem						
1.1	Global environmental changes: Global warming, Green house effect, acid rain, ozone depletion, thermal inversion and photochemical smog.	Understand and explain the human activities and sources involved in global changes	K2				
	Sources, types, effects of Environmental Pollutions - Water, Air, Thermal, Industrial, oil, Metal Toxic Hazardous wastes and radiation	Summarize the sources involved in various type of environmental pollutions.	K2				
1.2	Environmental issues, management strategies and safety biotechnological approach for management	Develop new ways needed for efficient management of environmental issues through biotechnological approach	K5				
2	Wast	e water treatment					
2.1	Aerobic and anaerobic methods of waste water treatment (Primary, Secondary and Tertiary)	Describe the various methods involved in the waste water treatment using microbes	K2				
	Use of aquatic plants in waste water treatment. Solid waste management	Apply the aquatic plant as a source to treat manage waste water and solid waste	K3				
	Bio-energy and SCP from waste	Formulate protocols for the production of bioenergy and SCP from waste.	K5				

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT			
2.2	Microbial desulphurization of coal recycling and processing of organic residues.	Apply microbes for bioenergy production by recycling organic residues	К3			
3	Xenobiotics					
3.1	Ecological considerations - decay behavior and degradative plasmids	Develop the genetically engineered microbes to clean up the environmental issues	K5			
3.2	Biotransformation of xenobiotics - Detoxification, Surfactants, Pesticides. Biopesticides integrated pest management	Formulate genetically engineered microbes as a solution of controlling pest wastes	K4			
3.3	Biodiversity -treaties and protocols for Biodiversity Conservation, Biodiversity - definition, hot spots of Biodiversity, strategies for Biodiversity Conservation	Understand the concepts of biodiversity and list out the endangered species for conservation Develop strategies for Biodiversity Conservation	K2 K5			
4	Bioremediation					
4.1	Biosensors in Bioremediation- Biotechnology in pulp and paper industry	Adapt safe and effective measures in biotechnology	K5			
	Advanced and emerging Biotechnological applications for industrial effluent (tannery &distillery).	Describe the methods and apply knowledge to treat industrial effuluents	K3			
4.2	Pesticide waste disposal, oleophilic fertilizers and use of genetically engineered microbes.	To understand the use and role of genetically engineered microbes	K2			
4.3	Giant bacteria and their ecological significance. Sea weeds for removal of heavy metal pollutants.	Analyze the importance of giant bacteria and sea weeds to clean the ecosystem	K5			
4.4	Hazards of genetically engineered microbes plants and animals to the environment.	Analyze the disadvantage and hazards on usage of engineered microbes in the environment	K3			
5	Enviro	nmental toxicology				
5.1	Toxicology - Basic probit analysis concepts - Toxicants	Understand the concept of toxicology and toxicants	K2			
5.2	Toxicity, Acute, sub acute, chronic, dose effect, LD 50 and response safe limits. Dose response safe limits. Dose response relationship, graphs, concentration response relationship.	Analyze the effect of toxicity on human, Minimum dose and safe limit of toxicants usage in environment	K4			

Unit/ Section	Course Content	Learning Outcomes	HBTLT
5.3	Carcinogens in air, chemical carcinogenicity, mechanism of carcinogenicity	Analyze the role of chemicals which causes carcinogenicity in air	K4
5.4	Environmental carcinogenicity testing.	Assess and detect the level of carcinogens in environment	K4

P20BT410	P01	P02	P03	P04	P05	P06	P07	P08	P09	PS0 1	PSO 2	PSO 3	PS0 4
CO1	Η	-	L	L	-	L	Μ	-	-	Μ	Н	L	Μ
CO2	L	-	L	-	-	-	L	-	-	Μ	L	L	Μ
CO3	Η	Н	L	-	Μ	Н	Μ	Μ	L	Μ	L	L	Н
CO4	Η	Μ	-	L	Μ	Н	Μ	Μ	L	Μ	L	Μ	Μ
CO5	L	-	L	-	-	L	L	-	Μ	L	Μ	-	Μ
CO6	Μ	Μ	Η	L	Μ	Η	Μ	L	L	L	Μ	L	Μ

L: Low

M: Medium H: High

5. COURSE ASSESSMENT METHODS

Dire	Direct				
1.	Continuous Assessment Test I,II				
2.	Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation, Group discussion, seminars				
3.	End Semester Examination				
Indir	rect				
1.	Course-end survey				

Name of the Course Coordinator: Dr.S.Sriram

Elective : V A - BIOTECHNOLOGY MANAGEMENT

1. Course Outcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Build a foundation in mangement and main business processes needed within the biotechnology field and plan to develop the strategies, project management, risk and entrepreneurship	К2	Ι
CO2	Correlate the ideas of biotechnology in safety and hazard management especially using timely techniques like nanotechnology	К3	III
CO3	Specify the basic processing methods followed in food and such related industries and manage to integrate them	K2	II
CO4	Trace the pollution preventive measures, develop and adher to the procedures wherever necessary	K4	IV
CO5	Practice and prioritize life science industry customs including ethical practices, laboratory guidelines and other standards followed in research	K5	V
C06	Display both leadership skills as well as neccessary knowledge of biotechnology to help in career advancement	K4	Ι

2. A. Syllabus

Unit –I

15hrs

Emerging trends in Biotechnology industries.

Strategies for research and development, business/maintenance expansion, licensing, generic versus brand-name proprietary drug business. Production management – fundamentals of production planning and control for Biotechnology. Innovation and knowledge management for Biotechnology. IPR and technology transfer. Entrepreneurship within the biotechnology and biopharma industries.

Unit -II

Food safety management

Management of Food and other Industrial Wastes. Processing of Fruit and Vegetable wastes, Dairy products, Meat, Poultry and Sea food, Beverage and Fermentation of Industrial wastes. Processing and Utilization of Grain milling industries, Spices and Condiments, Sugar and Paper Industrial wastes.

Unit -III

Safety and hazard management in Biotechnology

Waste Management by NanotechnologyNanotechnology for waste minimization, Nanofiltration, Nanocatalysts, Magnets and Detectors, Electro spinning nanofibres for Water Treatment and Potential risks.

Unit -IV

Environmental Impacts

Environment management systems. Regulatory affairs and biosafetyregulations. Pollution prevention, Measurement-COD, BOD, DOC; Control measures, Legal and environmental issues. Ecosystem managements-Biodiversity conservation using Biotechnological principles.

Unit - V

Bioethics

Methods in bioethics, Autonomy Organ transplantation, Biobanking, Morality of human embryos and stem cell research; Therapeutic cloning; Genetic screening and enhancement; Animal experimentation; International guidelines. Quality management and accreditation of biotechnology laboratories. Guidelines and Standards followed in India and globally.

B. Topics for self study

S.No	Topics	Web Links

C. Text Books

- 1. Sangita Malvee., Biotechnology Management, Astral International Pvt. Ltd., 2014.
- 2. Joshi V.K., and Sharma S.K., Food Processing Waste Management, New India Publishing Agency, New Delhi, 2011

15hrs

15hrs

D. Reference Books

- 1. Shaleesha A Stanley., Bioethics, Wisdom Educational Services, Chennai, 2008
- 2. Bonnie Steinbock., The Oxford Handbook of Bioethics, Oxford University Press, New Delhi, 2007
- 3. Lewis Vaughn., Bioethics, Principles, Issues and Cases, Oxford University Press, New Delhi, 2012
- 4. Pete Harpum.,Portfolio, Program, and Project Management in the Pharmaceutical and Biotechnology Industries, Wiley; 1 edition. 2010

E. Web Links

- 1. https://nptel.ac.in/courses/102/104/102104082/
- 2. https://nptel.ac.in/courses/102/105/102105058/
- 3. https://nptel.ac.in/courses/102/105/102105088/

3. Specific Learning Outcomes(SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT
1	Emerging trends	in Biotechnology industries	
1.1	Emerging trends in Biotechnology industries.	Explain the recent developments in Biotechnology in industrial sector	K2
1.2	Strategies for research and development, business/maintenance expansion, licensing, generic versus brand-name proprietary drug business.	Illustrate the plans or ideas practiced in Biotechnology management	K3
1.3	Production management – fundamentals of production planning and control for Biotechnology.	Summarize the basic workplan followed in production area	K2
1.4	Innovation and knowledge management for Biotechnology.	Develop new ways which are needed for efficient management in Biotechnology industries	K3
1.5	IPR and technology transfer. Entrepreneurship within the biotechnology and biopharma industries.	Discuss and describe the importance of IPR in Biotechnology industry	K2

Unit/	Course Content	Learning	HBTLT	
Section	Outcomes			
2	Food safety management			
2.1	Management of Food and other Industrial Wastes.	Indicate how food waste can be controlled and managed	K2	
	Processing of Fruit and Vegetable wastes, Dairy products, Meat, Poultry and Sea food, Beverage and Fermentation of Industrial wastes.	Report the methods which operate to process various waste	K3	
	Processing and Utilization of Grain milling industries, Spices and Condiments, Sugar and Paper Industrial wastes.			
3	Safety and hazard r	nanagement in Biotechnology		
3.1	Safety and hazard management in Biotechnology Record the nature of waste prevalent and also consider the measures		K3	
3.2	WasteManagementby NanotechnologyFormulate methods to clean way using nanotechnologyNanotechnologyNanotechnology for wasteusing nanotechnologyWasteminimization, Nanocatalysts, Magnets and Detectors, Electro spinning nanofibres for Water Treatment and Potential risks.Formulate methods to clean way using nanotechnology		K6	
4	Environmental Impacts- Environment management system			
4.1	Environmental Impacts- Environment management systems	Adapt safe and effective measures to manage waste	K6	
4.2	Regulatory affairs and biosafety regulations.Pollution prevention, Measurement-COD, BOD, DOC; Control measures, Legal and environmental issues.	Devise methods based on the quality of waste	К4	
4.3	Ecosystem managements-Biodiversity conservation using Biotechnological principles.	Choose apt biotechnology methods/techniques to clean the ecosystem	K3	
5	Bioethics			
5.1	Methods in bioethics, Autonomy Organ transplantation, Biobanking, Morality of human embryos and stem cell research; Therapeutic cloning; Genetic screening and enhancement; Animal experimentation; International guidelines.	Show the importance of bioethics	K2	

Unit/ Section	Course Content	Learning Outcomes	HBTLT
5.2	Quality management and accreditation of biotechnology laboratories.	Formulate guidelines based on the nature of experiments performed in lifescience labs	K6
5.3	Guidelines and Standards followed in India and globally.	Assess the guidelines followed in laboratories	K5

P20BT4:5	P01	P02	P03	P04	P05	P06	P07	P08	60d	PS01	PS02	PS03	PS04
C01	М	М	М	L	Н	М	L	Н	-	L	М	М	М
CO2	L	М	L	М	-	L	L	М	I	L	L	L	L
CO3	L	М	L	М	-	L	L	М	-	L	L	L	L
CO4	L	М	L	М	-	L	L	М	-	L	L	L	L
CO5	М	L	-	-	-	L	L	-	Н	L	L	L	L
CO6	М	М	М	М	L	М	Η	М	М	М	М	М	М

L: Low M: Medium H: High

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test I,II
- 2. Open book test, Assignment, Journal paper review
- 3. Group discussion, Poster presentation, oral presentations/seminars
- 4. End Semester Examination

Indirect

1. Report and group assignments of industrial visits

Name of the Course Coordinator: Mr.J.Dinesh Raja

Elective : VB. FOOD BIOTECHNOLOGY

1. CourseOutcomes

At the end of this course the students will be able to

CO.No	Course Outcomes	Level	Unit
CO1	Remember and recognize sources of microorganisms and food borne illness	K1	II
CO2	Learn and understand a new dimension in food industry	K2	IV, I
CO3	Apply concepts related to food technology in a fundamental way and it can be applied to in a professional domain. Apply the principles of food science to control and assure the quality of food products		V
CO4	Analyze the chemistry underlying the properties and reactions of various food components	K4	III, I
CO5	Evaluate the food Processing industries and preservation techniques	K5	IV
C06	Demonstrate practical proficiency in a food analysis laboratory	К3	III, II

2. A. Syllabus

Unit – I

15hrs

15hrs

Food chemistry

Constituents of food - contribution to texture, flavor and organoleptic properties of food; food additives - intentional and non-intentional and their functions; enzymes in food processing.

Unit – II

Food Microbiology

Sources and activity of microorganisms associated with food; food fermentation; food chemicals; food borne diseases - infections and intoxications, food spoilage - causes.

136

Raw material characteristics; cleaning, sorting and grading of foods; physical conversion operations – mixing, emulsification, extraction, filtration, centrifugation, membrane separation, crystallization, heat processing.

Food preservation

Unit – IV

Unit – III

Food processing

Use of high temperatures – sterilization, pasteurization, blanching, canning - concept, procedure & application; Low temperature storage - freezing curve characteristics. Factors affecting quality of frozen foods; irradiation preservation of foods

Unit – V

Manufacture of food products

Bread and baked goods, dairy products – milk processing, cheese, butter, ice cream, vegetable and fruit products; edible oils and fats; meat, poultry and fish products; confectionery, beverages.

B. Topics for self study

S.No	Topic	Web links
1.	Plant derived vaccines	https://www.slideshare.net/Lee- Ann786/plant-derived-vaccines
2.	Safety evaluation of novel food products	https://www.eufic.org/en/food- production/article/safety-evaluation-of- novel-foods-a-european-and-international- perspective
3.	Genetically manipulated food products	https://www.motherjones.com/environment /2013/08/what-are-gmos-and-why-should- i-care/
		https://www.fda.gov/food/agricultural- biotechnology/gmo-crops-animal-food-and- beyond
4.	Putrescine fermentation	https://www.academia.edu/8822257/Form ation_Degradation_and_Detoxification_of_Put rescine_by_Foodborne_Bacteria_A_Review

15hrs

15hrs
C. Text Books

1. Gupta S.K., Basic Principles of Clinical Research and Methodology, Jaypee Brothers Medical Publishers, 2007

D. REFERENCE BOOKS

- 1. Pillai., Biochemistry and Clinical Pathology, CBS Publications, 2012
- 2. Stephen Hulley., Outlines & Highlights for Designing Clinical Research: An Epidemiologic Approach, Academic Internet Publishers, 2011
- 3. Dan Wood., and Daron Smith., Research in Clinical Practice, \backslash Springer Publications, 2012
- 4. Robert J. Levine., Ethics and Regulation of Clinical Research: Second Edition, Yale University Press, 2010

E. Web Links

- 1. https://nptel.ac.in/courses/126/105/126105015/
- 2. https://nptel.ac.in/courses/126/105/126105011/
- 3. https://nptel.ac.in/courses/126/105/126105013/

3. Specific Learning Outcomes (SLO)

Unit/ Section	Course Content	Learning Outcomes	HBTLT			
1		Food chemistry				
1.1	Constituents of food - contribution to texture, flavor and organoleptic properties of food.	Explain and understand the constituents of food and properties of food in industrial sector	K2			
1.2	Food additives - intentional and non-intentional and their functions; enzymes in food processing.	Illustrate the role of additives in various food products and to understand the importance of enzymes in food processing.	K4			
2	Food Microbiology					
2.1	Sources and activity of microorganisms associated with food	Indicate the route cause and activity of microbes on food and its control measures	K2			
2.2	Food fermentation	Understand the mass production of food products through fermentation	K2			

Unit/ Section	Course Content	Learning Outcomes	HBTLT				
2.3	Food chemicals; food borne diseases - infections and intoxications, food spoilage - causes.	Evaluate the transmission of food borne diseases through spoiled food and preventive measures to overcome the infection.	K6				
3	Food processing						
3.1	Raw material characteristics; cleaning, sorting and grading of foods	To produce and operate methods to process various raw materials based on the characteristics	K5				
3.2	Physical conversion operations – mixing, emulsification, extraction, filtration, centrifugation, membrane separation, crystallization, heat processing.	To apply and formulate different processing methods of various foods	K5				
4	Food preservation						
4.1	Use of high temperatures - sterilization, pasteurization, blanching, canning concept, procedure & application; Low temperature storage	To adapt safe protocols and effective measures to preserve and storage of foods using temperatures	К5				
4.2	Factors affecting quality of frozen foods; irradiation preservation of foods	Gain knowledge on various physical and chemical factors affecting the preserved foods	K2				
5	Manufacture of food products						
5.1	Bread and baked goods, dairy products	Develop the production of various food products	K6				
5.2	Milk processing, cheese, butter, ice cream, vegetable and fruit products; edible oils and fats; meat, poultry and fish products; confectionery, beverages	To create a good nutritional value dairy products and other food products	К5				

4. Mapping Scheme

P20BT4:A	P01	P02	P03	P04	P05	P06	P07	P08	P09	PS01	PSO 2	PS03	PS04
CO1	Н	М	L	Μ	L	Н	L	М	L	Н	L	М	М
CO2	L	L	М	Н	Н	М	L	М	L	Н	М	Η	Н
CO3	М	L	Н	L	М	М	М	Н	М	Н	Н	Н	Н
CO4	М	L	Н	М	Н	М	М	М	Н	М	Н	М	М
CO5	М	М	М	Η	М	L	М	L	М	L	М	М	Н
CO6	Н	Н	Н	М	М	Н	L	М	Н	Н	Μ	Η	Н

L: Low M: Medium H: High

5. Course Assessment Methods

Direct

- 1. Continuous Assessment Test I,II
- 2. Open book test, Assignment, Journal paper review, Case study, Mini Project report, Poster presentation, Group discussion, seminars
- 3. End Semester Examination

Indirect

1. Course-end survey

Value Added Courses For M.Sc. Students

Course Code

Logical Reasoning And Analytical Ability For Competitive Exams

Course Objectives

- To Enhance the Problem Solving Skills and Analytical Skills
- To help students especially in Non Mathematics platform to clear any Indian Govt Examinations
- To ensure that students learn to think critically about mathematical models for relationship between different quantities and use those models effectively and accurately to solve problems and reach sound conclusions about them.
- To Comprehend work with and apply general mathematical techniques and models to different situations ,not just plug problem specific data into a given formula.
- To prepare the students to become Efficient Government Officers for serving the Society

Unit -I :

Basic Aptitude and Mental Ability (6Hrs)

- (i) Simplification Percentage Highest Common Factor (HCF) Lowest Common Multiple (LCM).
- (ii) Ratio and Proportion.
- (iii) Simple interest Compound interest Area Volume Time and Work.
- (iv) Logical Reasoning Puzzles-Dice Visual Reasoning Alpha numeric Reasoning- Number Series

Unit – II

Logical Thinking (6Hrs)

- Basic Concept of Logic types of propositions methods and rules for reducing propositions – inference – inductive, deductive inference – methods and rules for solving inferences.
- (ii) Rules and concept of inversion

Unit – III

Critical Thinking (6Hrs)

- (i) Statement argument Fallacies in argument Deciding and strong and weak arguments statements
- (ii) Assumption difference between assumptions and implications Extraction the assumption hidden in the statement.
- (iii) Course of action finding a suitable course of action punchlines judging the statement qualifies as a punchline – deriving inference from passages – deleting inference from passages

Unit – IV

Analytical Thinking (6Hrs)

- Input/Output Problems Problems dealing with recording problems involving mathematical operations.
- (ii) Concept of Binary Number convert binary to decimal decimal to binary numbers

Unit – V

Data Sufficiency (6Hrs)

- (i) Introduction Problems dealing with day and date relationship and ages analysis of the situation
- (ii) Syllogistic Problems Rules and methods to solving Problems.

Reference Books

- Analytical Reasoning MK Pandey -BSc Publishing Pvt Ltd ,5th Edition (2019)
- 2. Logical and analytical Reasoning R.Guptha's Ramesh Publishing House , Delhi – 4th Edition 2019.
- 3. A Modern Approaches to Logical Reasoning -RS Aggarwal S Chand Publishing – Delhi – 1 (Edition -2018)
- 4. Non Verbal Reasoning RS Aggarwal S Chand Publishing Delhi 1 (Edition - 2018)
- 5. UPSC Indian Civil Services (Prelims CSAT Paper II)Arahant Publishing(P) Ltd (2018)- Dhiraj Pandey

Evaluation Methods : (ONLINE & OFFLINE MODE)

Tests based on Govt Exam Levels : Short Time Negative Marking, Survey Based Calculations Tests based on Previous years Govt Exam Question Papers.

Value Added Course Effective Communication Skills

Course Code

Total Hours

Course Objectives:

- 1. To acquire knowledge about the fundamentals of communication and to improve the vocabulary, reading and writing skills.
- 2. To learn how to frame a grammatically correct sentence.
- 3. To understand and apply vocabulary in the right sense while communicating effectively.
- 4. To develop effective writing skills and avoid errors.
- 5. To improve their presentation skills and gain confidence in public speaking.
- 6. To critically use the language skills for effective communication.

Unit - I: Grammar

Articles, Tenses- Past, Present, Future & Continuous Tenses, Active & Passive Voice.

Unit – II : Understanding and Applying Vocabulary

Vowel and consonant – Useful Vocabulary for Everyday Conversation, Synonyms and Antonyms, Word formation : Prefixes and Suffixes

Unit - III : Introduction to Writing Skills

Effective Writing Skills, Avoiding Common Error, Paragraph Writing

Unit - IV : Letter Writing

Letter Types & Format, Resume Writing

Unit - V : Public Speaking

Pronunciation, Guidelines to an Effective Presentation, Group Discussion, Effective Public Speaking.

Text Book

Wren, P.C., and H. Martin.High School English Grammar & Composition. Pub: S Chand, 2017.

Reference Book

Hargie, Owen. The Handbook of Communication Skills. Pub: Routledge, 2006.

Evaluation Pattern (MARKS: 100)

Writing Exam	:	50 Marks
Oral Exam	:	50 Marks
Total	:	100 Marks

VALUE ADDED COURSE

"EFFECTIVE PRESENTATION USING ONLINE AND OFFLINE TOOLS"

Course Code:

Total Hours

Course objectives

After completion of the programme, students will be able to

- Design different types of powerpoint presentation slides (K5)
- Demonstrate the online tools used for presentations (K3)
- Categorize different tools used for presentations (K4)
- Describe the tricks for effective presentations (K1)
- Compare various online and offline powerpoint presentation tools (K2)
- 1. Introduction to Presentations
- 2. Types of Presentations
- 3. Inserting Pictures, Audio and Video
- 4. Inserting Charts, SmartArts, Shapes
- 5. Transitions and Animations
- 6. Tricks in Slideshow, Exporting in different formats
- 7. Introduction to LibreOffice Impress
- 8. Merits and Demerits of LibreOffice Impress
- 9. Introduction to Powtoon
- 10. Animations using Powtoon
- 11. Basics of renderforest
- 12. Basic Features of Canva
- 13. Animations using Canva
- 14. Exploring features of Canva
- 15. Overview of Google Slides and Addons

Reference links:

- 1. https://www.youtube.com/watch?v=ag8pSTF-Lao
- 2. https://www.youtube.com/watch?v=lxcHLxjkcXQ
- 3. https://www.customguide.com/cheat-sheet/powerpoint-quickreference.pdf
- 4. http://index-of.co.uk/OFIMATICA/Wiley%20PowerPoint%202013 %20for%20Dummies.pdf

SELF-STUDY 1 SELECTED TOPICS FOR COMPETITIVE EXAM-1

Course Code :

Total Hours: 30

Course Objectives:

- To learn about biomolecules and its metabolism
- To learn about cell cycle and its regulation
- To understand the concepts of replication, transcription and translation
- To know about the immune system and cancer
- To understand the development of fertilization and embryo

Unit-I : Molecules and their Interaction Relavent to Biology

Composition, structure and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins). Stablizing interactions (Van der Waals, electrostatic, hydrogen bonding, hydrophobic interaction, etc.). Bioenergetics, glycolysis, oxidative phosphorylation Conformation of nucleic acids (helix (A, B, Z), t-RNA, micro-RNA). Metabolism of carbohydrates, lipids, amino acids nucleotides and vitamins. Enzyme Kinetics

Methods in biology :In vitro mutagenesis and deletion techniques, gene knocks out in bacterial and eukaryotic organisms. Protein sequencing methods, detection of post translation modification of proteins.DNA sequencing methods, strategies for genome sequencing. Methods for analysis of gene expression at RNA and protein level, large scale expression, such as micro array based techniques. Isolation, separation and analysis of carbohydrate and lipid molecules. Molecular cloning of DNA or RNA fragments in bacterial and eukaryotic systems. Expression of recombinant proteins using bacterial, animal and plant vectors.

Unit-II : Cellular Organization and Communication

Membrane structure and function : Structure of model membrane, lipid bilayer and membrane protein diffusion, osmosis, ion channels, active transport, membrane pumps, mechanism of sorting and regulation of intracellular transport, electrical properties of membranes.

Structural organization and function of intracellular organelles : Cell wall, nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles, chloroplast, structure & function of cytoskeleton and its role in motility.

Organization of genes and chromosomes: Operon, unique and repetitive DNA, interrupted genes, gene families, structure of chromatin and

chromosomes, heterochromatin, euchromatin, transposons. **Cell division and cell cycle:** Mitosis and meiosis, their regulation, steps in cell cycle, regulation and control of cell cycle.

Cellular Communication: Regulation of hematopoiesis, general principles of cell communication, cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrins, neurotransmission and its regulation.

Cancer: Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes, cancer and the cell cycle, virus-induced cancer, metastasis, interaction of cancer cells with normal cells, apoptosis, therapeutic interventions of uncontrolled cell growth.

Programmed cell death, aging and senescence-Apoptosis, DNA repair enzymes, Insulin signaling pathway, Chromatin deacytylase mTOCR1 gene

Unit-III: Fundamental Processes

DNA replication, repair and recombination: Unit of replication, enzymes involved, replication origin and replication fork, fidelity of replication, extrachromosomal replicons, DNA damage and repair mechanisms, homologous and site-specific recombination.

RNA synthesis and processing: Transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA processing, RNA editing, splicing, and polyadenylation, structure and function of different types of RNA, RNA transport).

Protein synthesis and processing : Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, genetic code, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthetase, and translational proof-reading, translational inhibitors, Post- translational modification of proteins.

Control of gene expression at transcription and translation level: Regulating the expression of phages, viruses, prokaryotic and eukaryotic genes, role of chromatin in gene expression and gene silencing

Unit-IV : Immunology

Innate and adaptive immune system : Cells and molecules involved in innate and adaptive immunity, antigens, antigenicity and immunogenicity. B and T cell epitopes, structure and function of antibody molecules. generation of antibody diversity, monoclonal antibodies, antibody engineering, antigen-antibody interactions, MHC molecules, antigen processing and presentation, activation and differentiation of B and T cells, B and T cell receptors, humoral and cell-mediated immune responses,

primary and secondary immune modulation, the complement system, Tolllike receptors, cell-mediated effector functions, inflammation, hypersensitivity and autoimmunity, immune response during bacterial (tuberculosis), parasitic (malaria) and viral (HIV) infections, congenital and acquired immunodeficiencies, vaccines. Signal Transduction.

Unit- V: Developmental Biology

Gametogenesis, fertilization and early development: Production of gametes, cell surface molecules in sperm-egg recognition in animals; embryo sac development and double fertilization in plants; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals; embryogenesis, establishment of symmetry in plants; seed formation and germination.

Morphogenesis and organogenesis in animals : Cell aggregation and differentiation in amphibia and chick; organogenesis – vulva formation in *Caenorhabditis elegans*, eye lens induction, limb development and regeneration in vertebrates; differentiation of neurons, post embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex determination.

Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root development; leaf development and phyllotaxy; transition to flowering, floral meristems and floral development in *Arabidopsis* and *Antirrhinum*

References

- 1. Geoffrey M Cooper., and Robert E Hausman., The Cell-A Molecular Approach, Sixth Edition, ASM Press, Washington, 2013
- 2. Harvey Lodish., Arnold Berk., Paul Matsudaira., Chris A. Kaiser., Monty Krieger., Matthew
- 3. P. Scott., Lawrence Zipursky., James Darnell., Molecular Cell Biology, Sixth Edition, 2008
- 4. Gerald K., Cell and Molecular Biology, Third edition, John Wiley & Sons, New York, 2001
- 5. Alberts et al. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell, Second Edition, Garland Science Taylor & Francis Group, New York, 2003
- 6. Benjamin A. Pierce., Genetics-A Conceptual Approach, W.H.Freeman & Company, New York, Second Edition, 2006.
- 7. Deb A.C., Fundamental of Biochemistry, New Central Book Agency, Calcutta, Seventh Edition, 2001
- 8. David Rawn J., Biochemistry, Neil Patterson Publications, 2005

- 9. Nelson L. D., and Cox M. M., Lehninger's Principle of Biochemistry, Macmillan, Worth Publication Inc., Sixth Edition, 2013
- 10. Berg J.M., and Stryer L., Biochemistry, W.H. Freeman & Co. New York, Seventh Edition, 2007
- 11. Thomas M. Devlin., Biochemistry with Clinical Correlation, Wiley-Liss Publication, Fifth Edition, 2002
- 12. Satyanarayana U., Biochemistry, Books and Allied Pvt. Ltd. Calcutta, 1999.
- 13. Janis Kuby J., Immunology, Fourth Edition, W. H. Freeman & Co., 2000
- 14. Abul K. Abbas., Andrew K. Lichtman., and Jordan S. Pober., Cellular and Molecular Immunology, Third Edition, W.B. Saunders Company, 1997
- 15. Weir D.M. Ann., and Stewart J., Immunology, Eight Edition, Churchill Livingston, New York, Tizzard, 1997
- 16. Ivon Roitt., Essential Immunology, Eight Edition, Blackwell Scientific Publication, 1994.

Evaluation Method

Multiple Choice Questions

SELF-STUDY 2 COURSE TITLE: SELECTED TOPICS FOR COMPETITIVE EXAM-2

Course Code :

Total Hours : 30

Course Objective:

- To learn about the photosynthesis and plant hormones
- To understand the respiratory, digestive and excretory system
- To know about the mendalian inheritance principles
- To understand the ideology in ecology
- To study about evolutionary concepts

Unit-1 : System Physiology - PLANT [6Hrs]

Photosynthesis - Light harvesting complexes; mechanisms of electron transport; photoprotective mechanisms; CO2 fixation-C3, C4 and CAM pathways.

Respiration and photorespiration – Citric acid cycle; plant mitochondrial electron transport and ATP synthesis; alternate oxidase; photorespiratory pathway.

Nitrogen metabolism - Nitrate and ammonium assimilation; amino acid biosynthesis.

Plant hormones – Biosynthesis, storage, breakdown and transport; physiological effects and mechanisms of action.

Sensory photobiology - Structure, function and mechanisms of action of phytochromes, cryptochromes and phototropins; stomatal movement; photoperiodism and biological clocks

Solute transport and photoassimilate translocation – uptake, transport and translocation of water, ions, solutes and macromolecules from soil, through cells, across membranes, through xylem and phloem; transpiration; mechanisms of loading and unloading of photoassimilates.

Unit-2 : System Physiology - Animal [6Hrs]

Blood and circulation - Blood corpuscles, haemopoiesis and formed elements, plasma function, blood volume, blood volume regulation, blood groups, haemoglobin, immunity, haemostasis.

Cardiovascular System: Comparative anatomy of heart structure, myogenic heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart as a pump, blood pressure, neural and chemical regulation of all above

Respiratory system - Comparison of respiration in different species, anatomical considerations, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration.

Nervous system - Neurons, action potential, gross neuroanatomy of the brain and spinal cord, central and peripheral nervous system, neural control of muscle tone and posture.

Sense organs - Vision, hearing and tactile response.

Excretory system - Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance.

Digestive system - Digestion, absorption, energy balance, BMR.

Endocrinology and reproduction - Endocrine glands, basic mechanism of hormone action, hormones and diseases; reproductive processes, gametogenesis, ovulation, neuroendocrine regulation

Unit-3 : Inheritance Biology [6Hrs]

Mendelian principles: Dominance, segregation, independent assortment.

Concept of gene: Allele, multiple alleles, pseudoallele, complementation tests

Extensions of Mendelian principles: Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced characters.

Gene mapping methods: Linkage maps, tetrad analysis, mapping with molecular markers, mapping by using somatic cell hybrids, development of mapping population in plants.

Extra chromosomal inheritance: Inheritance of Mitochondrial and chloroplast genes, maternal inheritance.

Microbial genetics: Methods of genetic transfers – transformation, conjugation, transduction and sex-duction, mapping genes by interrupted mating, fine structure analysis of genes.

Human genetics: Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders. **Quantitative genetics:** Polygenic inheritance, heritability and its measurements, QTL mapping. **Mutation:** Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal verses somatic mutants, insertional mutagenesis.

Structural and numerical alterations of chromosomes: Deletion, duplication, inversion, translocation, ploidy and their genetic implications.

Recombination: Homologous and non-homologous recombination including transposition.

Unit-4 : Ecological Principles [6Hrs]

The Environment: Physical environment; biotic environment; biotic and abiotic interactions. **Habitat and Niche**: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement.

Population Ecology: Characteristics of a population; population growth curves; population regulation; life history strategies (r and K selection); concept of metapopulation – demes and dispersal, interdemic extinctions, age structured populations.

Species Interactions: Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis.

Community Ecology: Nature of communities; community structure and attributes; levels of species diversity and its measurement; edges and ecotones.

Ecological Succession: Types; mechanisms; changes involved in succession; concept of climax. **Ecosystem Ecology:** Ecosystem structure; ecosystem function; energy flow and mineral cycling (C,N,P); primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water,marine, eustarine).

Biogeography: Major terrestrial biomes; theory of island biogeography; biogeographical zones of India.

Unit-5 : Evolution and Behaviour [6Hrs]

Emergence of evolutionary thoughts: Lamarck; Darwin–concepts of variation, adaptation, struggle, fitness and natural selection; Mendelism; Spontaneity of mutations; The evolutionary synthesis.

Origin of cells and unicellular evolution: Origin of basic biological molecules; Abiotic synthesis of organic monomers and polymers; Concept of Oparin and Haldane; Experiement of Miller (1953); The first cell; Evolution of prokaryotes; Origin of eukaryotic cells; Evolution of unicellular eukaryotes; Anaerobic metabolism, photosynthesis and aerobic metabolism.

Paleontology and Evolutionary History: The evolutionary time scale; Eras, periods and epoch; Major events in the evolutionary time scale; Origins of unicellular and multi cellular organisms; Major groups of plants and animals; Stages in primate evolution including Homo.

Molecular Evolution: Concepts of neutral evolution, molecular divergence and molecular clocks; Molecular tools in phylogeny, classification and identification; Protein and nucleotide sequence analysis; origin of new genes and proteins; Gene duplication and divergence.

The Mechanisms: Population genetics – Populations, Gene pool, Gene frequency; Hardy-Weinberg Law; concepts and rate of change in gene frequency through natural selection, migration and random genetic drift; Adaptive radiation; Isolating mechanisms; Speciation; Allopatricity and Sympatricity; Convergent evolution; Sexual selection; Co-evolution.

Brain, Behavior and Evolution: Approaches and methods in study of behavior; Proximate and ultimate causation; Altruism and evolution-Group selection, Kin selection, Reciprocal altruism; Neural basis of learning, memory, cognition, sleep and arousal; Biological clocks; Development of behavior; Social communication; Social dominance; Use of space and territoriality; Mating systems, Parental investment and Reproductive success; Parental care;Aggressive behavior; Habitat selection and optimality in foraging; Migration, orientation and navigation; Domestication and behavioral changes.

References

- 1. Lincoln Taiz and Eduardo Zeiger Plant Physiology, 3rd edition, Publisher: Sinauer Associates (2002).
- 2. Guyton and Hall Textbook of Medical Physiology 12th edition, Elseiver (2011).
- 3. Misra S.P., and Pandey S.N., Essential Environmental Studies, Anne Books Pvt.,Ltd., New Delhi, 2008
- 4. Chapman J.L., and Reiss, M.J., Ecology, Principle and Applications, Cambridge University Press,1995
- 5. Kormondy E.J., Concept of Ecology, Prentice-Hall of India Pvt. Ltd., 1989.
- 6. Agarwal V.K., and Verma P.S., Basis of Evolution, S. Chand Publishing, New Delhi, 1995.
- 7. Benjamin A. Pierce., Genetics-A Conceptual Approach, W.H.Freeman & Company, New York, Second Edition, 2006.

Evaluation Method:

Multiple Choice Questions

ADD-ON COURSE SCIENTIFIC WRITING

Credit 2 Course Code :

Total Hours: 30

Course Objectives

- To introduce scientific writing to young minds and to train them to write well-styled, properly referenced, plagiarism-free manuscripts/scientific papers
- To combine practical journal club classes (once/twice a week) with the course modules and thereby, to train students how to read and understand scientific papers of the highest quality
- To inculcate the unique practice of augmenting students' writing skills through practical training and innovative assignments

Unit 1

Fundamentals of scientific writing – Introduction to different kinds of publications/ scientific documents; Types of papers – Full-length research articles, review articles, short communications, monographs, systematic reviews & meta-analyses and books/book chapters, dissertations/theses: Structure and layout of each document. Authorship – criteria and hierarchy. Specific journals for Biotechnology and Bioinformatics.

Unit 2

Overcoming the difficulties and constraints in scientific writingtackling barriers like language, time, Lack of knowledge/reading, Document preparation and formatting. How to write the contents- Abstract, Introduction/background, materials and methods, results and discussion, conclusion and conflicts of interest statement. Usage of MS Word. Other practical writing skills needed for Biotechnology and Life Science based papers.

Unit 3

Collecting information for review of literature - various online search tools/resources – Google Scholar, PubMed, Cochrane database, ScienceDirect, ProQuest, Embase, Web of Science, ERIC, DOAJ, JSTOR, Biological Abstracts, BioOne, CINAHL, Index Copernicus, SCOPUS, etc.; **Abstract writing**, preparation of index cards, **Systematic review article search tools**, PRISMA and SPIDER approaches, inclusion and exclusion criteria, clinical trials design and methodology – PRISMA, research design, Cochrane database CASP tools, **data extraction and synthesis**.

Unit 4

Article structuring to meet the specific requirements of the journal-Summarising and Paraphrasing; Reference styles – quotations, referencing styles – APA, Harvard, IEEE, Vancouver, Chicago, MLA styles; Introduction to use of Endnote and Mendeley (reference managers); Use of Review Manager (RevMan); Use of journal finder & journal scoping; following journal-specific author guidelines, article image-making/processing tool, Poster making tools, making journal- specific article templates, use of statistical software for data presentation -graphing-MS Excel and GraphPad Prism.

Unit 5

Ethics in scientific writing and communication- Journal author agreements, conflicts of interest and ethics violations-legal issues; unintentional plagiarism, fabrication, multiple submissions, and salami slicing. Cover letter writing; rebuttal writing to specific comments from the journal editors and reviewers; confidentiality agreements, collaboration. Creating account in journals and article submission process for various journals (practical demonstration).

References

- Abbey, Edward. 1968. Desert Solitaire. McGraw-Hill. Baldwin, Bruce G. 2014. Origins of Plant Diversity in the California Floristic Province. Annual Review of Ecology, Evolution and Systematics 45: 347-369.
- Coley, P.D., J.P. Bryant, F.S. Chapin, III. 1985. Resource availability and plant anti-herbivore defense. Science. 230:895-899. Greene, Anne E. 2013. Writing Science in Plain English. University of Chicago Press.
- 3. Janzen, D.H. 1979. How to be a fig. Annual Review of Ecology and Systematics. 13-51. Leopold, Aldo. 1949. A Sand County Almanac. Oxford. McKibben, Bill (Editor). 2008.
- 4. American Earth: Environmental Writing Since Thoreau. Library of America. Wallace, David Rains 2015. Mountains and Marshes: exploring the Bay Area's Natural History. Counterpoint.
- 5. Wiens, J.J., and M.D. Donoghue. 2004. Historical biogeography, ecology, and species richness. Trends in Ecology and Evolution 19: 639-644.

Evaluation

MAJOR TASK: Student must write his/her article on their own (review and/or paper)

They should transform their MSc/BSc project dissertation research into a peer review jounal paper format.

Minor Task : ASSIGNMENTS – Topic relevant to each unit

- 1. Collecting different kinds of scientific documents and categorizing them with justification
- 2. Sample full article on their field of interest to judge their language, grammar, vocabulary, style and formatting
- 3. Sample article on a assigned topic to evaluate their structuring and worth of the entire manuscript
- 4. Presenting effectively the given sample scientific data using various computer tools
- 5. A sample paper with flaws will be given- the students will reconstruct, correct and do all necessary changes and submit an appealing research article