M.Sc. ZOOLOGY

Courses of study, Schemes of Examinations & Syllabi

(Choice Based Credit System)
For the students admitted in the year 2022 - 2023

Bishop Heber College (Autonomous)
(Nationally Reaccredited at the A+ level by NAAC)
(Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC &
Identified as College of Excellence by the UGC)

TIRUCHIRAPPALLI – 620017 TAMIL NADU, INDIA

PG and Research Department of Zoology Bishop Heber College (Autonomous)

Vision

Envisage quality higher education and research in the field of animal sciences with global perspectives by promoting discovery and learning contemporary fields in Zoology inculcating social values for the holistic development and to conserve nature thus contributing for nation building.

Mission

- Bestow quality education emphasizing the cognitive learning and concern towards the animal kingdom.
- Promulgate biodiversity conservation, field training skills, and entrepreneurship in the applied zoological sciences
- Enhance highest level of academic accomplishment with interdisciplinary approach through research, industrial collaboration and amalgamate with reputed national and international universities
- Foster globally competent individuals with interpersonal skills and environmental consciousness for the betterment of the world.

Programme Outcomes – PG – Zoology

On successful completion of the programme the Post graduant of Zoology will be able to

Knowledge

- **PO1 -** Comprehend and apply accurately and creatively the principles and applications from the core areas in Zoology and its allied field.
- **PO2** Develop a holistic approach on the phylogeny with the rich diversity of organisms and their adaptations in ecology and evolutionary significance
- **PO3-**Exhibit academic excellence in research and intellect in the areas of advanced Biological Research and Biodiversity Conservation

Skills

- **PO4 -** Formulate an appropriate solution for complex research problem and publishing the new findings in innovative research
- **PO5** –Demonstrate diversified professional proficiency gained through various laboratory technical training, field census, internships, industrial and research projects.
- **PO6** –Exhibit transferable and entrepreneurial skills in collaboration with research institutes and undertake interdisciplinary research.

Attitudes

PO7 - Build trust and blend complementary strengths through communicative competence, encourage healthy risk-taking, and promote wider sense of ownership.

Ethical & Social Values

- **PO8-**Exhibit ethical and social values commit to professional ethics, liability and widen the empathy and love towards the animals
- **PO9** Develop methods towards protection of endangered species, pollution control, waste management and pave way for a sustainable environment.

Programme Specific Outcomes

Knowledge and Skills

PSO1-Illustrate the comprehensive knowledge of origin, salient features and functional aspects in system grade of organizations from lower invertebrates to higher chordates

PSO2 -Comprehend the functions of organisms at the level of gene, genome, cell, tissue, organ and development, reproduction and behaviour of different lifeforms and their interrelationships with the environment.

PSO3-Analyze the biochemical, microbiological, Immunological processes and Bioinformatics databases to track evolution and predictions of biomolecules and to test the hypothesis by using statistical tools

PSO4- Identify appropriate resources like animal handling techniques and model organisms required to carry out the projects and apply the technical skills to contribute new scientific discoveries and inventions.

Post – Graduate Programme in Zoology

Structure of the Curriculum

Parts of the	No. of Courses	Credits
Curriculum		
Core Course		
(Theory)	10	50
Core Course	5	15
(Practical)		
Elective	5	18
Project	1	5
VLOC	1	2
-Total	22	90

$\label{eq:M.Sc.} \textbf{M.Sc., Zoology} \\ \textbf{(For the candidates admitted in the academic year 2021 onwards)} \\$

					Hours		Marks				
Sem.	Sem. Course Code		Course Title	Pre requisites	Per Week	Credits	CI A	ESA	Total		
	Core I	P22ZY101	Functional Morphology of Invertebrates and Chordates		5	5	25	75	100		
	Core II Core III	P22ZY102 P22ZY103	Cell Biology Molecular Biology and Bioinformatics	P19ZY102	5	5	25 25	75 75	100		
I	Core Prac. I	P21ZY1P1	Core Practical I		5	3	40	60	100		
	Core Prac. II	P22ZY1P2	Core Practical II		5	3	40	60	100		
	Elective I	P20ZY1:1/ P19ZY1:A	Microbiology/Parasitolo gy	P19ZY101	5	3	25	75	100		
		P22ZY204	Animal Physiology	P19ZY101	5	5	25	75	100		
		P22ZY205	Biochemistry	P19ZY102	5	5	25	75	100		
	Core Prac. III	P19ZY2P3	Core Practical III		5	3	40	60	100		
	Core Prac. IV	P19ZY2P4	Core Practical IV		5	3	40	60	100		
II	Elective II	P22ZY2:2/ P22ZY2:A	Immunology/Endocrinol ogy		4	4	25	75	100		
	Elective III	P19ZY2:3	Biostatistics		4	4	25/ 40	75/60	100		

IV	V	P19ZY4:A	Bioinformatics	P19ZY 101	5	4	25	75	100
IV			Behaviour Applied Entomology/		5	4	25	75 75	100
			Evolution and Animal						
III	Generic Course	P22ZY3G1	Bioethics and Research Publication Ethics		1	1	100		
		P19ZY3:4/ P19ZY3:A	Animal Biotechnology/Genomic s and Proteomics	P19ZY1:1	4	4	25	75	100
	Core Prac. V	P19ZY3P5	Core Practical V		6	4	40	60	100
	Core IX	P19ZY309	Research Methodology and Biotechniques		5	4	25	75	100
	Core VIII	P19ZY308	Genetics		5	4	25	75	100
		P22ZY307	Developmental Biology	P19ZY101	5	5	25	75	100
	Core VI	P22ZY306	Environmental Biology		4	4	25	75	100
	VLOC	P22VLO21 / P22VLO22	RI / MI		2	2	25	75	100

CI A- Continuous Internal Assessment ESA- End Semester Assessment

VLOC- Value added Life Oriented Course

CORE – I : FUNCTIONAL MORPHOLOGY OF INVERTEBRATES AND CHORDATES

Semester: I COURSE CODE: P19ZY101 Credits: 5 Total Hrs. 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES:

On completion of the course, the students will be able to

CO	COURSE OUTCOME	Level	Unit
NO.			
CO1	Identify the basics of systematics and compare the hierarchy of various animals	К3	I
CO2	Analyze the diversity in structure, function and habits of invertebrates	K4	I
CO3	Explain the diagnostic characters of different phyla through detailed studies of the various systems and organizations with examples	K5	II
CO4	Identify the evolutionary significance of the lower order invertebrates by comparing their larval forms	К3	III
CO5	Classify the morphological and functional characters of Chordates	K4	IV
CO6	Explain the structure and functions of integumentary system and compare the anatomy of nervous and urino-genital system	K5	V

2. SYLLABUS

UNIT I: CLASSIFICATION OF ANIMAL KINGDOM

(15hrs)

Broad classification of Animal kingdom - International code of Zoological nomenclature – Symmetry and its significance in animal organization - **Organization of coelom**: Acoelomates - Pseudocoelomates – Coelomate groups (schizocoel, enterocoel, and mesenchyme). **Locomotion**: Amoeboid, flagellar and ciliary movement in Protozoa–**Hydrostatic movement in Coelenterata and Echinodermata.**

UNIT II: DIGESTION, RESPIRATION AND EXCRETION IN THE INVERTEBRATES

(15hrs)

Nutrition and Digestion: Patterns of feeding and digestion in lower metazoan, Mollusca and Echinodermata- Filter feeding in Polychaeta.**Organs of respiration**: Gills, book lungs, and trachea – Mechanism of respiration. **Organs of excretion**: Coelomoducts, Nephridia and Malphigian tubules – Mechanism of excretion.

UNIT III: NERVOUS SYSTEM AND LARVAL FORMS OF INVERTEBRATES

(15hrs)

Nervous system: Primitive nervous system in Coelenterata and Echinodermata- Advanced nervous system in Annelida, Arthropoda (Crustacea and Insecta) and Mollusca (Cephalopoda) — **Larval forms** of Trematoda, Cestoda, Crustacea, Mollusca, Echinodermata and their evolutionary significance.

UNIT IV: FUNCTIONAL MORPHOLOGY OF CHORDATES (15hrs)

Classification of chordates – Origin and evolution of elasmobranchs – Adaptive radiation of elasmobranches and bony fishes – Migration in fishes – Origin and evolution of Amphibia – Adaptive radiation in Amphibia – Terrestrialization

UNIT V: STRUCTURE AND FUNCTIONS OF VARIOUS ORGANS IN MAMMALS (15hrs)

Connecting links between reptiles and birds – **Mammals**: Structural peculiarities of prototheria, metatheria and eutheria. – Structure and functions of integument and its derivatives - Origin and evolution of paired fins and limbs. **Evolution of urinogenital system in vertebrates** – Comparative anatomy of brain in vertebrates.

Topics for Self-Study:

S.No.	TOPICS	WEB LINKS
1.	Conjugation in Paramecium	https://www.allamaiqbalcollege.edu.in/uploads/download 2004051131.pdf
2.	Canal system in sponges	https://www.studyandscore.com/studymaterial-detail/phylum-porifera- canal-system-in-sponges-types-of-canal-systems-in-sponges-functions-of- water-current
3	Water vascular system in Echinodermata	https://www.biologydiscussion.com/invertebrate-zoology/phylum- echinodermata/water-vascular-system-of-echinoderms/33754
4.	Parental care in Amphibians	https://www.amu.ac.in/emp/studym/100007686.pdf
5.	Migration in fishes	https://www.onlinebiologynotes.com/migration-in-fishes/

Text Books:

1. Ruppert E.E., Fox, R.S. and Barnes, R.D. Invertebrate Zoology. 7th Ed., Cenage Learning, Singapore, 2004.

- 2. Jordan E.L. and Verma P.S., Invertebrate Zoology, 12thedn. Schand& Co. 1995.
- 3. Kotpal R.L., Agarwal, R.P.R., Khertarpa, Modern text book of Zoology-I Rastogi Publications. 1989.
 - 4. Jordan E.L, Verma P.S, Chordate Zoology -S.Chand& Company Ltd. 2008
 - 5. KotpalR.L.A, Modern text book of Zoology Vertebrates, Rastogi publications, 2009.

Reference Books:

- 1. Linzey, D., Vertebrate Biology, McGraw-Hill, Singapore, 2001.
- 2. Waterman A.J., Chordate Structure and Function, The Macmillan Publishing Co., 1971.
- 3. Pough H., Heisher J.B. and McFarlandW.N., Vertebrate Life. Macmillan Publishing Co., New York, 1990.
- 4. HymanL.H., The Invertebrates, Vol. 1 to 7, McGraw Hill Book Co., Inc., New York, 1940.
- 5. Barrington E.J.W., Invertebrate Structure and Functions, 2nd Ed., Thomas Nelson & Sons Ltd., Middlesex, United Kingdom, 1979.
 - 6. Colbert H. E., Evolution of the Vertebrates, New Delhi, New Age International, 2000.
 - 7. Jollie M, Chordate Morphology, Reinholt Publishing Corporation, New York, 1962.
- 8. Romer A.S., Hyman's Comparative Vertebrate Anatomy,3rd Ed., The University of Chicago Press, London, 1979.
 - 9. Young J.Z., Life of Vertebrates, Clarendon Press, Oxford, 1950.
- 10. Sinha, Adhikari, Ganguly, BharatiGoswami, Biology of animals Vol.II., New central book agency (p) ltd., 2004.

Web links:

https://courses.lumenlearning.com/wm-biology2/chapter/invertebrate-chordates/

http://www.opentextbooks.org.hk/ditatopic/35145

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit /Section	CONTENTS	SPECIFIC LEARNING OUTCOMES (SLO)	HIGHEST BLOOM'S TAXONOMIC LEVEL OF TRANSACTION
I	CLAS	SIFICATION OF ANIMAL KI	NGDOM
1.1	Broad classification of Animal kingdom	 Classify the various phylum on the basis of their characters List out the rules of zoological 	K4

	International code of Zoological nomenclature	nomenclature	
1.2	Symmetry and its significance in animal organization	Explain the different types of symmetry and its importance	K5
1.3	Organization of coelom: Acoelomates – Pseudocoelomates – Coelomate groups (schizocoel, enterocoel, and mesenchyme).	Compare and classify the animals based on their coelomic organization	K5
1.4	Locomotion: Amoeboid, flagellar and ciliary movement in Protozoa	Illustrate the mechanism of locomotion in lower order invertebrates with examples	K2
1.5	Hydrostatic movement in Coelenterata and Echinodermata.	Elaborate the typeof locomotion in higher order invertebrates	К6
II	DIGESTION, RESPIRA	 TION AND EXCRETION IN THE	INVERTEBRATES
2.1	Nutrition and Digestion: Patterns of feeding and digestion in lower metazoan, Mollusca and Echinodermata	Explain the mechanism and pattern of digestion in various phyla	K5
2.2	Filter feeding in Polychaeta	Interpret the mechanism of feeding in Polychaeta	K5
2.3	Organs of respiration: Gills, book lungs, and trachea	Distinguish the role of respiratory organs in various phylum	K4
2.4	Mechanism of respiration	Elaborate the respiratory mechanism in higher order invertebrates	K6
2.5	Organs of excretion: Coelomoducts,	List out the different excretory organs and its significance	K4

2.6	Mechanism of excretion.	Explain the mechanism of excretion	K5
III	NERVOUS SYSTI	EM AND LARVAL FORMS OF	INVERTEBRATES
3.1	Primitive nervous system in Coelenterata and Echinodermata	К3	
3.2	Advanced nervous system in Annelida, Arthropoda (Crustacea and Insecta) and Mollusca (Cephalopoda)	Justify that Annelids has an advanced type of nervous system	K5
3.3	Larval forms of Trematoda, Cestoda, Crustacea, Mollusca, Echinodermata and their evolutionary significance.	List out the various larval forms and its evolutionary significance	K 4
IV	FUNCTIO	ONAL MORPHOLOGY OF CH	ORDATES
4.1	Origin and evolution of elasmobranchs Adaptive radiation of elasmobranches and bony fishes	Explain the origin and evolution of elasmobranchs and the mechanism of adaptive radiation	K5
4.2	Migration in fishes	Illustrate the process of migration in fishes with examples	K2
4.3	Origin and evolution of Amphibia Adaptive radiation in Amphibia— Terrestrialization	Summarize the origin, evolution and adaptive radiation mechanism in amphibians	K2
V	STRUCTURE AND FU	NCTIONS OF VARIOUS ORGA	ANS IN CHORDATES
5.1	Connecting links between reptiles and birds	Categorize the animals which serves as the connecting link between the birds and reptiles	K4

5.2	Mammals: Structural peculiarities of prototheria, metatheria and eutheria.	Classify the mammals based on their structural similarities	K4
5.3	Structure and functions of integument and its derivatives	Explain the structure and functions of integumentary system with examples	K5
5.4	Origin and evolution of paired fins and limbs	Examine the evolutionary pattern of fins and limbs	K4
5.5	Evolution of urinogenital system in vertebrates	Interpret the evolutionary significance of urinogenital system in mammals	K5
5.6	Comparative anatomy of brain in vertebrates	Compare the anatomy of brain and its functions in mammals	K4

4. Mapping Scheme for the PO, PSOs and COs

P19ZY101	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	М	Н	Н	Н	M	-	-	Н	M	M	Н
CO2	M	-	-	-	-	М	Н	Н	-	M	M	Н	Н
CO3	Н	Н	Н	M	M	-	Н	M	-	Н	Н	-	M
CO4	-	М	M	Н	Н	Н	-	Н	Н	M	Н	Н	-
CO5	-	М	Н	M	-	M	M	-	Н	-	-	M	M
CO6	Н	M	-	Н	Н	М	-	М	-	Н	M	Н	Н

L-Low M-Moderate H- High

Direct

5. COURSE ASSESSMENT METHODS

- 1. Continuous Assessment Test I,II
- 2. Assignment, Group Presentation, Poster preparation
- 3. End Semester Examination

Indirect

1. Course-end survey

Core Course: II CELL BIOLOGY

SEMESTER: 1 COURSE CODE: P22ZY102 CREDITS: 5 TOTAL HOURS: 75

NO OF HOURS PER WEEK: 5

1. Course Outcomes:

On completion of the course, the students will be able to

CO.	COURSE OUTCOMES	Level	Unit
NO			
CO1	Distinguish prokaryotic and eukaryotic cells through basic structural organizations. Analyzing membrane structures and protein transport.	K4	I
CO2	Examine the functional significance of mtiochondria, NPC, Intra cellular traffic and cytoskeleton structure	K4	II
CO3	Analyze cell-cell interaction, receptor based signal transduction, cell cycle and its control systems with check points	K4	III
CO4	Identify the mode of cell growth, death through apoptosis and tissue maintenance.	K4	III
CO5	Explain the significance of stem cells, types and its mechanism of self renewal and potency, stem cell characterization and IPS generation with application.	K5	IV
CO6	Evaluate the molecular pathogenesis of cancer, role of oncogene/ tumor viruses, survival and death pathways and recent treatment strategies.	K5	V

2. SYLLABUS

Unit: I (15 Hrs)

CELL MEMBRANE AND ENDOMEMBRANES

Prokaryotic and eukaryotic cells. **Membrane structure:** lipid composition-protein components-principles of Membrane transport-carrier proteins-Ion channels and membrane potential - Cell junctions-Extra cellular matrix. **Intracellular compartments:** Endoplasmic reticulum, Golgi complex and lysosomes- Transport and sorting of proteins-vesicular transport-secretory pathways.

Unit: II (15 Hrs)

MITOCHONDRIA, NUCLEUS AND CYTOSKELETON

Structure and functional significance of Mitochondria. Structure of Nucleus - Nuclear pore complexes - Transport of molecules between the nucleus and cytosol. **Cytoskeleton**: Centriole - Dynamic structure of microfilaments, intermediate filaments and microtubules - molecular motors-cytoskeleton and cell behaviour.

Unit: III (15 Hrs)

CELL COMMUNICATION & CELL CYCLE

Cell communication: General principles- G-protein linked receptors—enzyme linked receptors-pathways of intracellular signal transduction. **Cell cycle control and cell death**:

overview of cell cycle-control system – apoptosis-extracellular control of cell growth- Tissue maintenance and renewal.

Unit: IV (15 Hrs)

STEM CELLS

Stem cells: Types- Molecular Basis of Pluripotency - Stem Cell Niches - Mechanisms of Stem CellSelf-Renewal - Generation of Induced Pluripotent Stem Cells - Characteristics and Characterization of Pluripotent stem Cells- Application of Embryonic stem Cells.

Unit: V (15 Hrs)

CANCER BIOLOGY

Biology of cancer: Development and causes of cancer-properties of cancer cells- Tumor viruses—Oncogenes - Tumor suppressor genes- Molecular basis of cancer- Cell behavior-Molecular Approaches to Cancer Treatment - Apoptosis

Topics for Self -Study:

S.No	Topics	Weblinks
1.	Senescence	https://www.ncbi.nlm.nih.gov/books/?term=Senescence
2.	SiRNA	https://www.ncbi.nlm.nih.gov/books/?term=SiRNA
3.	Cell adhesion	https://www.ncbi.nlm.nih.gov/books/?term=Cell+adhesion
4.	Molecular chaperons	https://www.ncbi.nlm.nih.gov/books/?term=Molecular+chaperons
5.	Protein folding	https://www.ncbi.nlm.nih.gov/books/?term=Protein+folding

Text Books

- 1. Alberts, B., Johnson, A. and Lewis, J. Molecular Biology of the Cell. 4th Ed., 2002New York: Garland,.
- 2. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology, 8th Ed., 2001Lippincott Williams & Wilkins, A Wolter Kluwer Business, Philadelphia,

Reference Books

- 1.Lodish H., Berr, A. and Paul, M. Molecular Cell Biology, 2003. New York: W.H. Freeman,
- 2.CooperG.M. and Hausman, R.E., The Cell A Molecular Approach. 4th Ed.,, 2007 Sinauer Associates Inc.USA.
- 3. KarpG. Cell and Molecular Biology, 2008 G. John Wiley & Sons,.
- 4.SheelerP. andBianchi, D.E., Cell and Molecular Biology, 3rd Ed., 2009.JohnWiley Indian Edition, New Delhi.
- 5.Becker, W.M., Kleinsmith, L.J., Hardin, J. and Bertoni, G.P., The World of Cell, 6th Ed., 2007Pearson Education

.

Web Links:

file:///C:/Users/welcome/Downloads/Molecular Biology of the Cell 6th Editio.pdf https://nptel.ac.in/courses/102/103/102103012/https://onlinecourses.swayam2.ac.in/cec20_ma13/preview_

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Course Contents	Specific Learning Outcomes (SLO)	Blooms Taxonomy levels of Transaction
I	PROKA	ARYOTIC & EUKARYOTIC CELLS	
1.1	Prokaryotic and eukaryotic cells Organizations	Classify different cell types	K2
1.2	Membrane structure: lipid composition-protein components	Compare membrane structure of different cells	K2
1.3	Principles of Membrane transport-carrier proteins-Ion channels and membrane potential - Cell junctions-Extra cellular matrix.	 Explain the principle of transport molecules between the membranes, Carrier protein, Ion channels, cell junctions and its functions 	K4
1.4	Intracellular compartments: Endoplasmic reticulum, Golgi complex and lysosomes- Transport and sorting of proteins- vesicular transport- secretory pathways.	Explain the structure, function and biochemical properties of each of the cell organelles. Intra cellular movements of molecules and within EMS	K2
II	STRUCTURE &	& FUNCTION OF CELLUAR ORGAN	NELLES
2.1	Structure and functional significance of Mitochondria. Structure of Nucleus - Nuclear pore complexes – Transport of molecules between the nucleus and cytosol.	Explain structural and functional properties of mitochondria, nucleus and transport between cytoplasm and nucleus.	K2

2.2	Cytoskeleton: Centriole - Dynamic structure of microfilaments, intermediate filaments and microtubules - molecular motors- cytoskeleton and cell behavior.	Explain structure and function of CSKs and motor proteins in relation to cell behavior	, K4
III	CELL C	OMMUNICATION & CELL CYCLI	E
3.1	Cell communication: General principles- G- protein linked receptors- enzyme linked receptors- pathways of intracellular signal transduction.	Explain receptors and its role in signal transduction pathways and cell communication.	К3
3.2	Cell cycle control and cell death: overview of cell cycle-control system - apoptosis-extracellular control of cell growth- Tissue maintenance and renewal.	• Explain cell cycle events, control systems, check points and cell cycle regulation. Understanding the significance of apoptosis in tissue maintenance and renewal.	K4
IV		STEM CELLS	
4.1	Stem cells: Types- Molecular Basis of Pluripotency - Stem Cell Niches - Mechanisms of Stem CellSelf-Renewal -	• Classify the types of stem cells and its niches. Illustrate the mechanism of self renewal and potency.	K2
4.2	Generation of Induced Pluripotent Stem Cells - Characteristics and Characterization of Pluripotent stem Cells- Application of Embryonic stem Cells	• Explain the importance of IPS & stem cell therapy	K5
V		CANCER BIOLOGY	
5.1	Biology of cancer: Development and causes of cancer-properties of cancer cells- Tumor viruses-Oncogenes - Tumor suppressor genes- Molecular basis of cancer- Cell behavior-	Analyse the Biology of cancer cells, pathogenesis, properties, genes and factors involved,	K4

Molecular Approaches to • Develop novel	l strategies for
5.2 Cancer Treatment - cancer treatment	t K5
Apoptosis	

4. Mapping Scheme for the PO, PSOs and COs

P19ZY102	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	M	Н	L	M	Н	Н	M	Н	Н	Н	M
CO2	Н	Н	Н	M	L	M	Н	Н	M	Н	Н	Н	L
CO3	Н	Н	Н	Н	L	M	Н	Н	M	Н	Н	Н	L
CO4	Н	Н	Н	L	L	M	Н	Н	M	Н	Н	Н	L
CO5	Н	Н	M	M	L	M	Н	Н	M	Н	Н	Н	M
CO6	Н	Н	Н	Н	L	M	Н	Н	M	Н	Н	Н	M
T T arm	1/1	Madan	_4	TT TT:_	1.								

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

- 1. Continuous Assessment Test I,II
- 2. Assignment; Group Presentation, Poster preparation,
- 3. End Semester Examination

CORE - III: MOLECULAR BIOLOGY AND BIOINFORMATICS

SEMESTER: I COURSE CODE: P22ZY103
CREDITS: 5 HOURS / WEEK: 5

COURSE OUTCOMES:

After completing this course, the students will be able to:

CO. NO	COURSE OUTCOMES	LEVEL	UNIT
CO1.	Explain the structure, synthesis and function of biomolecules.	K2	1
CO2.	Interpret the C-value paradox and its importance.	K2	I
CO3.	Compare the process of DNA replication in both Prokaryotes and in Eukaryotes	K5	II
CO4.	Analyze the process of transcription and gene expression in eukaryotes.	K4	III
CO5.	Distinguish the types of various biological databases and tools used for protein structure visualization.	K5	IV
CO6.	Compare and relate the alignment tools used in evolution and in drug designing.	K5	V

2.A. SYLLABUS

Unit – I : STRUCTURE AND FORMS OF NUCLEIC ACIDS (15 Hrs)

Structure and Types of DNA and RNA. Structure of eukaryotic chromosome- nucleosome model- heterochromatin and euchromatin, Mitochondrial DNA and its applications. Genome size and C value paradox. Unique and Repetitive nucleotide sequences in eukaryotic genome (LINEs, SINEs). Kinetics of renaturation: Cot curve.

Unit – II: DNA REPLICATION AND CENTRAL DOGMA IN PROKARYOTIC CELLS

(15 Hrs)

DNA replication: semi conservative, rolling circle, Q, D, Eye—models- Mechanism of replication –DNA damage and its repair mechanisms. **Transcription in Prokaryotes**: enzymes and proteins involved – mechanism –promoters- enhancers . **Genetic code:** Properties- Wobble hypothesis. **Protein synthesis in Prokaryotes:** Ribosomes - factors involved in protein synthesis - process of translation-post translational modifications and inhibitors.

Unit – III: REGULATION OF GENE EXPRESSION IN EUKARYOTIC CELLS (15 Hrs)

Transcription in Eukaryotes: RNA polymerases - promoters- enhancers and silencers - effects of chromatin structure. Post-transcriptional modifications -**Regulation of gene expression:** Regulation of gene expression in Prokaryotes: lac-operon, trp-operon, ara-operon and gal-operon. Catabolite repression. Regulation of gene expression in eukaryotes.

Unit – IV: BIOINFORMATICS DATABASES (15 Hrs)

Overview of Bioinformatics – Literature, sequence and structure databases – Pattern and motif searches: PROSITE, BLOCKS, PRINTS, PFAM – Structural classification: SCOP, CATH – Metabolic pathway databases: KEGG and Biocyc - Protein structure visualization tools: RasMol, Swiss PDB Viewer Molecular sequence alignment: Pair wise alignment - Local and Global alignment concepts – FASTA and BLAST - Multiple sequence alignment – CLUSTAL X, CLUSTAL Omega and TCOFFEE.

Unit - V: GENOMICS AND PROTEOMICS

(15 Hrs)

Gene and Genome analysis: Genome projects - Genome Mapping, Sequencing, Shot gun sequencing and Next generation sequencing- comparative genomics. **Protein and proteome analysis:** – Protein secondary structure prediction - protein identification tools - Chou- Fasman /GOR method. Transcriptomics: Genome expression analysis using microarray techniques - Applications of Microarray- Modern drug discovery – CADD (Computer Aided Drug Discovery) – Docking – softwaresof docking.

B. Topics for Self -Study

NO	TOPICS FOR SELF-STUDY	WEB-LINKS
1.	DNA Replication: Eukaryotic	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3
	Origins and the Origin	779782/
	Recognition Complex	
2.	Histone Modifications	https://www.nature.com/articles/cr201122
3.	DNA Repair and Cancer	https://www.ncbi.nlm.nih.gov/books/NBK21554/
4.	Metabolite profiling and	https://www.nature.com/articles/s41598-017-
	Biomakers analysis	<u>01735-y</u>
5.	Modeling and simulation in	https://www.pharmafocusasia.com/foreword/mod
	drug development	elling-simulation-drug-development

C. Text Books

- **1.** Malacinski G.M., Freifelder's Essential of Molecular Biology, Narosa Publishing House, New Delhi, 2003.
- 2. Jeyanthi G.P., Molecular Biology, MJP Publishers, Chennai. 2009.
- 3. Ignacimuthu S, Basic Bioinformatics, Narosa Publishing House, Chennai, 2008

D. Reference Books

- 1. Alberts, B., Johnson AandLewisJ, Molecular Biology of the Cell, 4th Ed., New York: Garland, 2002.
- 2. WeaverR, Molecular Biology, 5th Ed., McGraw-Hill, NY, 2012.
- 3. Lodish H, Berr A and Paul M, Molecular Cell Biology, New York, W.H. Freeman, 2003.
- 4. Epstein R.J, Human Molecular biology, An Introduction to the molecular basis of health disease, Cambridge University Press,2003.
- 5. Colladovides J., Magasanik B and Smith, T.F. Integrative approaches to Molecular Biology. Ane Books, New Delhi. 2004.
- 6. Lewin B, Genes IX, Jones and Bartlett Publishers, Boston, 2008.

- 7. Bates A. D. and Maxwell A, DNA Topology, Oxford University Press Inc., New York, Indian Edition, 2005.
- 8. David H.R., Genetics and Molecular Biology, Tata McGraw, New Delhi, 2009.
- 9. Lewin B., Krebs J. E., Kilpatrick S.T. and Goldstein, E.S. Lewin's GENES X. John and Barlett Publishers, Sudbury Massachusetts, 2011.
- 10. Watson J.D., BakerT.A., BellS.P., GannA., LevineM. and Losick R, Molecular Biology of the Gene, 5th Ed., Pearson EducationInc, 2004.
- 11. Teresa K. Attwood, David Parry-Smith.,Introduction to Bioinformatics. Pearson Education. 2001 Highest level of Blooms Taxonomy

E. Web Links:

https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_U_(OpenStax)/3%3A_Genetics/15%3A_Genes_and_Proteins/15.3%3A_Eukaryotic_Transcription_

https://www.sciencedirect.com/science/article/pii/S2352873717300653

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186575/

3. SPECIFIC LEARNING OUTCOME (SLO)

Unit /sect ion	Course Contents	Learning Outcomes	Highes t Blooms Taxono my level of Transa ction
1		STRUCTURE AND FORMS OF DNA	·
1.1	Structure Of DNA	Explain the Watson & Crick model of DNA	K2
		Analyse the backbone of DNA	K4
		Explain the X-ray diffraction studies of DNA	K5
1.2	Structure of t- RNA	Analyse the clover leaf model structure of t-RNA	K4
		Explain the functions of t-RNA	K2
	Structure of micro RNA	Define and analyse the non-coding RNA	K4
		Explain the functions of non-coding RNA	K6
	Forms of DNA	Explain the different forms of DNA	K4

			•
1.3		Compare and Interpret the molecular basis of different forms of DNA	K5
1.4	Mitochondrial DNA	Define and identify the components of Mitochondrial DNA.	K3
		Compare the functions of mitochondrial DNA and highlight its importance	K5
1.5	Structure of Eukaryotic chromosome	Analyse the chromatin organization and nucleosomes.	K4
		Explain the four motifs that play a major role in DNA binding	K5
1.6	Nucleosomes Model	Compare the first order and second order DNA coiling.	K4
		Explain the core structure of nucleosomes and histones	K5
1.7	Heterochromati n & Euchromatin	Infer the structure of heterochromatin and euchromatin.	K4
		Explains the solenoid model of chromosome.	K5
1.8	Genome size	Compare the variation and genome size.	K5
1.0		Explain the types of DNA sequences in Humans	K5

1.9	C Value Paradox		K4
		Discover the variation of C-value paradox among species	
		Interpret the importance of C-value paradox in evolution	K5
1.10	Unique and Repetitive nucleotide	Identify the repetitive nucleotide sequences	K4
	sequences in eukaryotic genome (LINEs, SINEs)	Explain the total repetitive nucleotide sequences in eukaryotic genome	K5
II		ICATION AND CENTRAL DOGMA IN	
2.1	Kinetics of renaturation: Cot curve	Analyse the Cot curve and infer the results	K4
	DNA replication	Explain the process of DNA replication.	K5
2.2		List out the requisites of DNA replication.	K4
		Analyse the models of replication in leading strand	K4
		Compare the models of DNA replication	K5
	Semi conservative replication	Explain and defend the Meselson & Stahl's experiment on semi conservative model Applications	K5
	Models of replication- Semi	Discus s and compare the different models of replication	K6
2.3	conservative, conservative and dispersive	Explai n the three types of models of DNA replication	K5
	Mechanism of replication-	Illustra te the steps in replication in formation of new strands	K6
2.4	Elongation and Termination	Explai n replisome and its molecular components with its functions	K5

	DNA damage	• the causes of DNA damage	Infer	K4
2.5		• out the types of DNA damage	List	K4
	DNA repair mechanism- Types of DNA repair systems-	n the mechanism of DNA repair mechanism	Explai	K5
2.6	Mismatch repair, Base- excision, Nucleotide excision, Direct repair, Post replication & Error -prone	• out the types of DNA repair mechanism	List	K4
	Genetic code	n the Wobble hypothesis with examples	Explai	K5
2.7		• out the features of genetic code	List	K4
2.0	Transcription in prokaryotes	n the structure of RNA polymerase	Explai	K5
2.8		• se the process of transcription in Prokaryotes	Prioriti	K5
	Protein synthesis in Prokaryotes	y the factors involved in protein synthesis	Identif	K4
2.9		e the components of protein machinery of prokaryotes	Analys	K4
		n the steps involved in protein synthesis	Explai	K5
2.10	Post translational modifications	• the post translational modifications.	Infer	K4
		out the types of post translational modifications.	List	K4
2.11	Signal hypothesis	e the process of binding & release of the signal peptide	Analys	K4

		Predict the importance of signal hypothesis in biomolecules	K6
III	RE	GULATION OF GENE EXPRESSION IN PROKARYOTES	1
3.1	Inhibitors	• Identif y the inhibitors of protein synthesis in prokaryotes.	K4
		List out the inhibitors of protein synthesis	K4
	Transcription in Eukaryotes:	Explain the structure & function of RNA polymerase.	K5
3.2	Polymerases	Explains the types and functions of RNA polymerase	K5
3.3	Effects of chromatin structure	Identify and explain the effects of chromatin structure	K5
	Structure	Distinguish the types of chromatin and its role in cell division	K4
	Post transcriptional modifications	Interpret the post transcriptional modifications.	K5
3.4		List out the types of post translational modifications	K4
	Regulation of gene	Analyze the process of regulation of gene expression.	K4
3.5	expression- concepts of enzyme induction and repression- positive and negative control	Distinguish the types of repression- positive and negative control	K4
2 /	Regulation of gene expression in prokaryotes-	Interpret the positive and negative control of gene expression.	K5
3.6	Lac operon, Trp Operon, Ara operon, Gal	List out the types of operons in prokarytes	K4

	operon		
3.7	Regulation of gene expression in eukaryotes	Justify the gene expression in Eukaryotes and its feedback control	K5
IV		BIOINFORMATICS DATABASES	
	Overview of Bioinformatics	Explain the scope of bioinformatics	K5
		Elaborate the importance of bioinformatics in various fields	K6
4.1	Literature, sequence and structure	Identify the different sequence & structure database.	K3
	databases	List out the types of sequence and structural databases	K4
	Pattern and motif Searches	Apply the secondary database for assessing pattern & motifs in proteins.	К3
4.2		List out the types of pattern and motifs databases in secondary structure	K4
4.2	Structural classification	Classify & compare the structure of proteins	K5
4.3		Identify the databases applied in predicting the protein structure	К3
	Metabolic pathway	Analyze the metabolic pathways.	K4
4.4	databases	List out the types of metabolic databases	K4
	Protein	Interpret the 3D structure of proteins by using visualization tools	K5
4.5	structure visualization tools	List out the types of 3D structure of proteins visualization tools	K4
	Molecular sequence	Apply the alignment tools for finding homology	К3
4.6	alignment	List out the tools applied for molecular sequence alignment	К3
V	GEN	OME AND PROTEOME ANALYSIS	
5.1	Gene and Genome analysis	 Infer the importance of human genome sequencing & mapping Apply the methods used for genome analysis 	K3 K3

5.2	Comparitive genomics	Discuss the importance of comparative genomics in tracking evolution	K6
5.3	Protein and proteome analysis	apply the concepts of proteomics in various fields	К3
5.4	Protein structure prediction	Analyse the structure of proteins by prediction method	K4
5.4	methods	Infer the secondary structure of proteins by structure prediction methods	K4
5.5	Transcriptomic s	Apply the micro array techniques for studying gene expressions	К3
3.3		Analyse the tools used for gene and mRNA expression	K4
	Modern drug discovery	Apply the CADD methods in drug designing.	К3
5.6		Explain the methods and tools used for modern drug discovery	K5

4. Mapping Scheme for the PO, PSOs and COs

P19ZY103	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	M	Н	Н	M	Н	M	M	M	H	H	M	H
CO2	Н	M	Н	Н	M	H	M	M	M	Н	H	M	H
CO3	Н	M	Н	H	M	Н	M	M	M	H	H	M	H
CO4	H	M	H	H	M	H	M	M	M	Н	H	M	Н
CO5	Н	Н	Н	Н	M	Н	M	M	M	M	M	Н	M
CO6	Н	Н	Н	Н	M	Н	M	M	M	M	M	Н	M

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment, Presentation, Project report, Poster preparation.
- 3. End Semester Examination

Indirect

1. Course-end survey

CORE PRACTICAL-I: LAB IN CELL BIOLOGY AND MOLECULAR BIOLOGY

Semester: I COURSE CODEE: P21ZY1P1

Credits: 3 TOTAL HRS.: 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES

After completing this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	Experiments
NO			
CO1	Examine the stages of mitotic cell division	K4	I
CO2	Analyze various events in cell division and cell cycle.	K4	I
CO3	Develop permanent slides and perform various staining	K6	I
	procedures.		
CO4	Estimate protein/DNA using gel electrophoresis and	K6	II
	analyze their molecular mass		
CO5	Test gene amplification using PCR	K5	II
CO6	Explain the significance of concentrating biomolecules	K5	II

2. SYLLABUS

I CELL BIOLOGY (45 Hrs)

- 1. Effect of Colchicine on Mitosis using onion root tip.
- 2. Study of giant chromosomes in chironomous larva and micrometric measurements of Puffs.
- 3. Methyl Green Pyronin staining of DNA and RNA in buccal smear
- 4. Histology: Fixation, dehydration, embedding, sectioning, staining and permanent mounting of tissues Submission of 5 best slides for Exam evaluation
- 5. Histochemistry: Feulgen Reaction for DNA, Periodic Acid Schiff (PAS) reaction for carbohydrates, Mercuric Bromophenol Blue staining for Proteins.

Spotters: Giant chromosome, Mitotic stages of onion root tip, T.S of Heart, T.S of Kidney, T.S of Pancreas, T.S of Liver

II MOLECULAR BIOLOGY

(35 Hrs)

- 1. Isolation of genomic DNA from PBMC.
- 2. PAGE separation and molecular weight determination of proteins.
- 3. Agarose gel electrophoresis of DNA and calculation of molecular weight.
- 4. Amplification of gene by PCR.
- 5. Gene expression through RT PCR(QPCR) Demonstration
- 6. Western blotting technique Demonstration

Spotters: PCR, PAGE and Agarose gel electrophoresis, Western blot

Topics for self study:

S.No	Topics	Web links
1.	FACS	https://www.labome.com/method/Flow-Cytometry-and- Cell-Sorting-A-Practical-Guide.html
2.	Cryopreservation	https://assets.thermofisher.com/TFS- Assets/LSG/manuals/D21111.pdf
3.	Immunohistoche mistry	https://link.springer.com/book/10.1007/978-1-4939-1578-1
4.	Western Blotting	<u>https://vlab.amrita.edu/?sub=3&brch=187∼=1331&cnt</u> <u>=1</u>
5.	Cell Culture	https://atecentral.net/downloads/1163/Basics_of_Cell_Cult ure_students_manualv7.pdf

Text Books

- 1. Cell Biology: Practical Manual. Dr. Renu Gupta (Author), Dr. Seema Makhija (Author), Dr. Ravi. Prestige Publishers (2018)
- 2. Freshney, R. I. (2005). Culture of specific cell types. John Wiley & Sons, Inc.
- 3. Razdan, M. K. (2003). Introduction to plant tissue culture. Science Publishers.Reference book

Reference Books

- 1. Essential Cell Biology: A Practical Approach Volume 1: Cell Structure (Practical Approach Series) 1st Edition. John Davey and J. Michael Lord. Oxford University Press; 1 edition (August 7, 2003) 2003
- 2. Sambrook, J., Russell, D. W., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3-volume set).
- 3. Cell and Molecular Biology: A Lab Manual. Chaitanya K.V. January 2013. Prentice Hall India Learning Private Limited

Weblinks:

https://b-ok.asia/book/5925611/120ff0

https://www.amrita.edu/school/biotechnology/academics/pg/cell-molecular-biology-lab-bio588

3. Specific Learning Outcomes (SLO):

Sl No	Course contents	Specific Learning Outcomes (SLO)	Blooms Taxonomy levels of Transaction
I		Cell biology	01 21 0110 00 00 011
1	Effect of Colchicine on Mitosis using onion root tip.	Explain the stages of mitosis	K5
2.	Study of giant chromosomes in chironomous larva and micrometric measurements of Puffs.	• Examine Giant chromosomes in chironomous larva	K5
3	Methyl Green Pyronin staining of DNA and RNA in buccal smear	Distinguish DNA and RNA using Methyl Green Pyronin staining	K5
4	Histology: Fixation, dehydration, embedding, sectioning, staining and permanent mounting of tissues - Submission of 5 best slides for Exam evaluation.	Explain the importance of histology	K5
5	Histochemistry: Feulgen Reaction for DNA, Periodic Acid Schiff(PAS) reaction for carbohydrates, Mercuric Bromophenol Blue staining for Proteins.	Estimate the presence of various biomolecules in the tissue using dyes.	K5
6	Spotters: Giant chromosome, Mitotic stages of onion root tip, T.S of Heart, T.S of Kidney, T.S of Pancreas, T.S of Liver	Classify the various stages of cell division, DNA forms and histo-architecture of tissues	K2
II	Molecular Biology		
1	Isolation of genomic DNA from PBMC	Examine isolation of DNA from White Blood cells	K5
2	PAGE - separation and molecular weight determination of proteins.	Interpret tissue proteins through gel electrophoresis	,K5
3	Agarose gel electrophoresis of DNA and calculation of molecular weight.	Interpret DNA using agarose gel electrophoresis	K5
4	Amplification of gene by PCR.	• Test gene amplification in the given sample	K5
5	Demonstration of Protein precipitation and purification.	• Explain concentrating protein in a given sample.	K5
6	Spotters: PCR, PAGE and	• Summarize the principle	K2

Agarose gel electrophoresis	and applications instrument used	of in	
	molecular biology.		

4. Mapping Scheme for the PO, PSOs and COs

P19ZY1P	PO	PSO	PSO	PSO	PSO								
1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	Н	Н	Н	Н	Н	Н	Н	M	Н	Н	Н	L
CO2	Н	Н	Н	Н	Н	M	L	Н	M	Н	Н	Н	L
CO3	Н	Н	Н	Н	Н	M	M	Н	L	Н	Н	Н	L
CO4	Н	Н	Н	Н	Н	L	Н	Н	L	Н	Н	Н	L
CO5	Н	Н	Н	Н	Н	M	L	Н	M	Н	Н	Н	M
CO6	Н	Н	Н	Н	Н	L	L	Н	L	Н	Н	Н	M

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

CORE PRACTICAL -II LAB IN MICROBIOLOGY AND BIOINFORMATICS

SEMESTER: I COURSE CODE: P22ZY1P1

CREDITS: 3 HOURS / WEEK: 5

1. Course Outcomes

After completing this course, the students will be able to:

CO.No	COURSE OUTCOMES	LEVEL	UNIT
CO1	Categorise and determine the bacteria based on colony morphology	K4	I
CO2	Assess the different bacterial culture techniques applied for isolating pure culture.	K5	I
CO3	Determine the growth of bacteria in four stages by Spectrophotometry method.	К5	I
CO4	Evaluate the antibiotic sensitivity of bacteria by Disc Diffusion method.	К5	I
CO5	Justify the similarities between multiple sequences & to track the evolution.	К5	II
CO6	Determine the 3D structure of protein and to assess the phylogenetic relationship between the organisms.	K5	II

2. A.SYLLABUS

I Microbiology (45hrs)

- 1. Sterilization procedures and Safety Measures in Microbiology.
- 2. Identification of bacteria based on colony morphology and colony counting.
- 3. Serial dilution and pour plate method and determination of colony number/gram.
- 4. Culture techniques: Broth culture, Spread plate, Streak plate, Slant culture &Swab culture
- 5. Staining methods: Gram staining, Spore staining- Endospore
- 6. Measurement of bacterial growth and growth curve by spectrophotometry.
- 7. Antibiotic sensitivity test Disc diffusion method
- 8. MPN technique for the identification of coliforms in water samples.
- 9. Bio- Chemical tests for bacterial identification. (IMVIC)

Spotters: Fungi and culture plates

Instruments: Laminar air flow and Colony counter, Autoclave, Hot air oven, types of media

II-Bioinformatics (35hrs)

- 1. Basic local Alignment methods BLAST, FASTA
- 2. Multiple Alignment methods–Clustal X
- 3. Structural Data Base -3D structure of proteins-PDB, Swiss Prot
- 4. Phylogenetic tree relationship- Distance tree results and neighbor joining tree method
- 5. Building a molecule using Simulations.

B.Topic for Self-study:

No	TOPICS FOR SELF-STUDY	WEB-LIINKS
1.	Introduction to the	https://www.pdfdrive.com/practical-
	use of practical laboratory	microbiology-e12040951.html
	microscopes	
2.	Basic bacterial cultivation techniques	https://www.pdfdrive.com/practical-
		microbiology-e12040951.html
3.	Transfer, maintenance and storage of	https://www.pdfdrive.com/practical-
	pure cultures	microbiology-e12040951.html
4.	Schaeffer-fulton spore staining	https://www.pdfdrive.com/practical-
		microbiology-e12040951.html

C. Text Book:

1. Laboratory Manual in Microbiology. P.Gunasekaran . New Age International, 2007 .

D. Reference Books:

- 1. Laboratory Manual: Microbiology Principles and Applications. Stephen A. Norrell Prentice Hall, 1990 Medical microbiology.
- 2. Microbiology: A Laboratory Manual- James G. Cappuccino, Natalie Sherman Pearson Education, 20-Feb-2013
- 3. Bioinformatics Practical Manual . Mohammed Iftekhar \cdot Createspace Independent Publishing Platform 2015.
- 4. Introduction to Bioinformatics Using Action Labs- Jean-Louis Lassez, Ryan Rossi, Stephen Sheel · Published by Lulu.com2016

E. Web links:

https://bio.libretexts.org/Bookshelves/Ancillary Materials/Laboratory Experiments/Microbiology Labs/Microbiology Labs I/03%3A Dilution Techniques and Pipetting

https://microbiologyonline.org/file/7926d7789d8a2f7b2075109f68c3175e.pdf

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211962

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Course Contents	Specific Learning Outcomes (SLO)	Highest level of Blooms Taxonomy						
	MIC	ICROBIOLOGY							
1	Sterilization procedures and maintenance of laboratory	 Apply the sterilization procedures and lab maintenance 	K3						
2	Media preparation and bacterial culture inoculation	Assess the types of media prepare for bacterial culture	K5						
3	Identification of bacteria based on colony morphology.	Identify the bacteria based on colony morphology	K3						
4	Serial dilution and pour plate method and determination of colony number/gram.	Analyse the process of serial dilution to isolate pure culture	K4						
		Determine the process of pour culture method	K5						
		Predict the total number of bacterial colony count/gram.	K6						
5	Culture techniques :Broth culture, Spread plate, Streak plate, Slant culture &Swab culture	Evaluate and analyse the strains of bacteria using different culture techniques.	K6						
6	Identification of bacteria by gram staining method	• Identify the bacteria based on gram staining.	K3						
		 Assess the bacterial strain type based on grams staining. 	K5						

7	Determination of bacterial growth by spectrophotometry -	 Determine the growth of bacteria by Spectrophotometr y method. Evaluate the K5
		stages of bacterial growth
8	Antibiotic sensitivity test	Evaluate the antibiotic sensitivity of bacteria by Disc Diffusion method. K5 K5
		Determine the antibiotic sensitivity in bacteria using different concentration of antibiotics. K5 K5
9	MPN technique for the identification of coliforms in water samples	• Analyse the Coliform bacteria in the drinking water by MPN method.
		Analyse the water portability test. K4
10	Biochemical test for bacterial identification- IMViC	Identify the gram negative bacteria by biochemical test. K3
		Analyse the bacterial strains for identification at genus level by IMViC tests K4 K4
	SPOTTERS	•
11	Spotters- Fungi and culture plates	• Analyse & K4 compare the bacteria based on its morphology.

12	Instruments-Laminar air flow, Colony counter	 Analyse & compare the fungi based on its morphology Explain the principle & applications of the instruments. 	K4 K5
	•]	BIOINFORMATICS	
1	Basic Local Alignment methods-BLAST & FASTA	• Compare & determine the similarities between the two local sequences using BLAST.	K5
		• Compare & determine the similarities between the two local sequences using FASTA.	K5
2	Multiple alignment methods-Clustal X	Identify similarities between multiple sequences & to track the evolution	K5
		Predict and apply the multiple alignment between the sequences using CLUSTAL X	K6
3.	Structural database-3D structure of proteins-PDB,SwissProt	• Determine the 3D structure of proteins	K5
		Apply the 3D structure of protein to predict the annotations of the protein	K3

4.	Phylogenetic relationship- Distance tree results and neighbor joining tree method		K5
		Apply the phylogenetic relationship between the organisms to track evolution	K3

4. Mapping Scheme for the PO, PSOs and COs

P19ZY1P2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	M	Н	Н	Н	Н	M	Н	M	M	M	Н	Н
CO2	Н	Н	Н	Н	Н	Н	M	Н	M	M	Н	Н	Н
CO3	Н	M	Н	Н	Н	Н	L	Н	M	M	Н	Н	Н
CO4	Н	M	Н	Н	Н	Н	L	Н	M	M	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	L	Н	Н	M	M	Н	Н
CO6	Н	Н	Н	Н	Н	Н	L	Н	Н	M	M	Н	Н

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

5. GG G162 / 1652551112111 1112111 1555	
Direct	
1. Continuous Assessment Test I,II	
2. Cooperative learning report, Assignment; Journal paper review, Gro Presentation, Posterpreparation,	up
3. End SemesterExamination	
Indirect	
1. Course-end survey	

ELECTIVE - I: MICROBIOLOGY/PARASITOLOGY

SEMESTER: I COURSE CODE: P20ZY1:1/P20ZY1:A

CREDITS: 4 TOTAL HRS: 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES:

After completing this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	UNIT
NO			
CO1	Explain the structure, function, diversity, metabolism, and the genetics of metabolic regulation microorganisms.	K5	I
CO2	Explain the nutrient types essential for the microbial growth	K5	II
CO3	Discuss about the multiplication and the physical factors influencing the growth of microbes.	K6	III
CO4	Identify and assess the various accessory pigments and their functions for major metabolic processes	K2	IV
CO5	Explain the functional role of microbes in large scale industries	K5	V
CO6	Categorize the diverse threat of microorganisms causing deadliest diseases	K2	VI

2. SYLLABUS

Unit – I MICROBES: CLASSIFICATION AND STRUCTURE 15hrs

Microbial diversity: Whittakers system of classification. **Bacteria**: Structure of *E.coli*-Cytoplasmic membrane – cell wall – gram positive and gram negative bacterial cell surface structures- cell inclusions– gas vesicles- endospores - locomotion – nutrition types in bacteria. **Virus**: Structure and life cycle of Bacteriophage.

Salient features of Chlamydia, Actinomycetes, Mycoplasma

Fungi: Structure and life cycle of *Penicillium*.

Unit – II MICROBIAL CULTURE AND GROWTH

15hrs

Microbial culture and growth: Types of culture–culture media. Cell division - peptidoglycon synthesis-measurement of microbial growth - exponential growth- growth curves –growth kinetics –**Factors affecting growth**: temperature, pH and oxygen.

Unit – III AEROBIC AND ANAEROBIC RESPIRATION

15hrs

Phototrophy: Structure of photosynthetic pigments – chlorophylls, bacteriochlorophyll, carotenoids and phycobilins **Chemolithotrophy:** inorganic electron donors - hydrogenoxidation- sulfur oxidation- iron oxidation- nitrification. **Anaerobic respiration:** nitrate reduction- sulfur reduction- acetogenesis - methanogenesis - organic electron acceptor.

Unit – IV MICROBIAL PRODUCTS

15hrs

Industrial Microbiology: Microbial products -primary and secondary metabolites-characteristics of large-scale fermentations- Antibiotics isolation and characterization-Industrial production of vitamins-steroids - enzymes - alcohol-vinegar-citric acid.

Unit – V MICROBIAL DISEASES

15hrs

Medical microbiology: Causative agents, Symptoms, prevention and control of **Air borne infections:** Tetanus - tuberculosis- respiratory viral infections: COVID-19, Zoonotic diseases – Polio - influenza. **Water borne infections**: - hepatitis. Helicobacter pylori and Gastric ulcer – Leprosy - Sexually Transmitted Diseases: Gonorrhea-Syphilis - AIDS.

Topics for Self-Study:

S.No.	Topics	Web Links
1	Virtualization Proteins as Indicators of Phylogeny	https://academic.oup.com/peds/article/14/9/609/155146 6
2	Quorum Sensing and Microbial Populations	https://elifesciences.org/articles/25773
3	Specialty Compounds for Use in Medicine and Health	ftp://ftp.hpl.hp.com/wilkes/AutoRAID.TOCS.ps.Z
4	Microbial Mechanisms for Escaping Host Défense	https://www.immunology.org/public- information/bitesized-immunology/pathogens-and- disease/host-%E2%88%92-pathogen-interactions-and

Text Books

- 1. Pelczar M.J and Reid, Microbiology, 1996. Tata Mc Graw Hill,
- 2. Prescott L.M., HarleyJ. P. and KleinD.A., Microbiology, 6th Ed., 2005. McGraw-Hill, New Delhi,

References

- 1. Pomervill P.C., Alacamo's Fundamentals of Microbiology, 7th Ed., 2004.Boston: Jones and Bartlett,
- 2. Tartora G.J., Case C.L. and Funke B.R., Microbiology An Introduction, 8th Ed.,2004. Pearson Benjamin Cummings, New York,
- 3. Hogg S,Essential Microbiology, 2005. John Wiley & Sons Ltd., England,
- 4. Madigan M.T. and MartinkoJ.M.,Brock Biology of Microorganisms, 11th Ed., 2006.Prentice Hall, USA,

- 5. Percival S.L., Chalmers RM, Embrey M., Hunter PR, Sellwood J and Wyn-Jones P, Microbiology of Waterborne Diseases, 2004 Elsevier Academic Press, London,.
- 6. Schaechter M, The Desk Encyclopedia of Microbiology,2004 Elsevier Academic Press, London,.

Web Links:

- ${\bf 1.\,\underline{https://www.biology discussion.com/bacteria/structure-of-bacteria-with-diagram-microbiology/54559}$
- 2. https://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/jam.14218

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit	Course Contents	Specific Learning Outcomes (SLO)	Highest Bloom's taxonomy level
I	MICROBES	: CLASSIFICATION AND STRUCTURE	
1.1	Microbial diversity Classify the microorganisms with Whitaker's classification		K2
1.2	Bacteria	Explain the structure and classification of bacteria	K5
1.3	Virus	Explain the structure and life cycle of viruses	K5
1.4	Fungi	Explain the structure and life cycle of Fungi	K5
II	MICR	OBIAL CULTURE AND GROWTH	
		Classify the various types of culture media for the growth of microbial growth	K2
2.1	Microbial cultural growth	Determine the stages of cell division and their functions	K6
		Explain about the growth curve and kinetics	K5
2.2	Factors affecting growth	Assess the importance of physical factors essential for the growth	K5
III	AEROBIO	C & ANAEROBIC RESPIRATION	I
3.1	Phototrophy and Chemolithotrophy	Explain the structure and importance of photosynthetic pigments	K5

		Elaborate the process of metabolism occur in bacteria	K6
3.2	Respiration	Explain the mechanism of anaerobic respiration in microorganisms	K5
IV		MICROBIAL PRODUCTS	
4	Industrial microbiology	Classify the different microbial products and their metabolite characters	K2
		Estimate about the large scale fermentations of essential needs of human beings	K5
V		MICROBIAL DISEASES	
		Interpret the symptoms of major infections	K5
5	Medical microbiology	Explain the prevention and control of deadly microbes	K2
		Classify the various Airborne, water borne and sexually transmitted diseases with their symptoms	K2

4. Mapping Scheme for the PO, PSOs and COs

P19ZY1:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	Н	Н	Н	Н	M	Н	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO6	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	L-Low		M	-Modera	ate		H	I- High	1				<u> </u>

44

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End SemesterExamination

Indirect

1. Course-end survey

CORE - IV: ANIMAL PHYSIOLOGY

SEMESTER: II CODE: P22ZY204

CREDITS: 5 TOTAL HRS.: 75

NO OF HOURS PER WEEK:5

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.NO	COURSE OUTCOME	LEVEL	UNIT
CO1	Analyze the structural and functional aspects of digestive and	K4	I
	respiratory systems in mammals.		
CO2	Evaluate the function of the blood and the process of	K5	II
	circulation in mammals.		
CO3	Interpret the mechanism of excretion, regulation of water	K5	III
	balance, acid-base balance, electrolyte balance,		
	thermoregulation and stress adaptations		
CO4	Examine the transmission of nerve impulses and physiology	K4	IV
	of muscle contraction		
CO5	Asses the role of hormones in the coordination of activities in	K5	V
	the biological systems		
CO6	Explain the reproductive processes and disorders of ovary in	K5	V
	mammals		

2. SYLLABUS

Unit – I: DIGESTIVE & RESPIRATORY SYSTEM

(15hrs)

(15hrs)

Digestion-absorption- energy balance - BMR. **Respiratory system**: Internal and external respiration-Comparison of respiration in mammals -respiratory pigments-transport of gases - exchange of gases - neural and chemical regulation of respiration.

Unit - II: BLOOD AND CIRCULATION

(15hrs)

Blood corpuscles - haemopoiesis and formed elements -plasma function-blood volume -blood volume regulation. **Cardiovascular System**: Anatomy and physiology of heart - myogenic heart - principle and significance of ECG - cardiac cycle - blood pressure and neural and chemical regulation.

Unit – III: EXCRETORY SYSTEM & THERMOREGULATION

Excretory system: kidney-urine formation- urine concentration-waste elimination - micturition-regulation of water balance - electrolyte balance- acid-base balance. **Thermoregulation:** Comfort zone - body temperature - physical, chemical, neural

regulation- acclimatization- stress adaptation.

Unit – IV NERVOUS AND MUSCULAR SYSTEMS AND SENSE ORGANS (15hrs)

Nervous system: Central and Peripheral nervous system – Neurons – action potential–transmission of nerve impulse – neural control of muscle tone and posture.

Application of EEG. Sense organs: Vision, hearing, gustation, olfaction and tactile.

Muscular system: Ultra structure of muscle – Physiology of muscle contraction

Unit – V ENDOCRINE GLANDS

(15hrs)

Male and female reproductive organs. Principles of Hormone action -Pituitary, Thyroid, Pancreas, Parathyroid, Pancreas and Adrenal Hormones -mechanism of action, functions and diseases. – Neuroendocrine regulation. Hormonal control of female reproductive cycle: Estrus cycle - Menstrual cycle -pregnancy- parturition – lactation and menopause. Disorders of Ovary: Polycystic Ovarian Syndrome.

Topics for Self study:

S.No	Topics	Web links
1	Bioluminescence in animals	https://www.youtube.com/watch?reload=9&v=9H XXQBz6Vv0 https://www.nationalgeographic.org/encyclopedia/ bioluminescence/
2.	Physiology of stress	https://www.ncbi.nlm.nih.gov/books/NBK541120/ https://samples.jblearning.com/0763740411/Ch%2 02 Seaward Managing%20Stress_5e.pdf
3.	Adaptations to high altitude	https://www.coursera.org/lecture/mountains- 101/4-3-adaptation-of-high-altitude-peoples- QqTLE
4.	Neuro degenerative disorders	https://www.maxhealthcare.in/our- specialities/neurology/conditions- treatments/neuromuscular-diseases
5.	Hormone receptors	https://www.sciencedirect.com/topics/neuroscience/hormone-receptor

Text Books:

Sherwood, L., Klandorf, H, and Yancey, P.H. Text Book of Animal Physiology 2008. Cengage Learning India Pvt., Ltd.

Hoar, W.S. General and Comparative Physiology, 1968 Prentice Hall

^{*}With reference to mammals

Reference Books:

- 1. Hill R.W., Wyse G.A. and Anderson, M., Animal Physiology., 2nd Ed.,2008. Sinauer Associates, Inc Publisher, Massachusetts.
- Moyes, C.D. and Schulte, P.M. Principles of Animal Physiology. Pearson Education,
 Dorling Kindersley Publication. New Delhi.
- 3.Guyton, A.C. Textbook of Medical Physiology. 2000.W.B. Saunders Company, Philadelphia, London, Toronto and IgakuShoin/Saunders (Tokyo).
- 4.Prosser, C.L. Comparative Animal Physiology. 3rd Ed., 1973W.B. Saunders & Co. Philadelphia

Weblinks

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/animal-physiology

https://handwrittennotes.in/product/science-notes-anatomy-and-physiology/ and-physiology/

https://nptel.ac.in/courses/102/104/102104042/

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction
I	DIG	ESTIVE & RESPIRATORY SYSTEM	
1.1	Digestion of food and absorption	 Describe the process of digestion and absorption Analyze the digestion & absorption of food 	K4
1.2	Energy balance mechanism Intake of energy, Energy expenditure	 Illustrate the mechanism of energy balance Categorize the energy expenditure in animals 	K4
1.3	BMR	Analyze the basal metabolic rate in various animals	K4

1.4	Internal and external respiration, Comparison of respiration in mammals	 Demonstrate internal and external respiration in mammals Compare the mechanism of respiration in mammals 	К3
1.5	Types of respiratory pigments	Classify the respiratory pigments	K4
1.6	Transport and exchange of gaseous molecules Regulation (Neural, chemical)	 Analyse the transport of gaseous molecules Explain the regulation of respiration 	К4
II	BLC	OOD AND CIRCULATION	
2.1	Types of blood corpuscles, haemopoiesis	Classify the blood corpusclesDiscuss the production of RBC	K5
2.2	Function of blood plasma	List out the functions of blood plasma	K5
2.3	Blood volume and its regulation	Examine blood volume and its regulation	K4
2.4	Heart – Anatomy	Describe the structure of heart	K2
2.5	Myogenic heart, ECG	Interpret the heart rate	К5
2.6	Cardiac cycle, blood pressure	 Infer the process of cardiac cycle Measure the blood pressure	K5
2.7	Neural and chemical regulation	Conclude the regulation of circulation	К5
III	EXCRE	TORY SYSTEM & THERMOREGULAT	ION
3.1	Kidney – anatomy	Describe the structure of Kidney	К2
3.2	Formation and concentration of Urine	Explain the process of urine formation in mammals	K4
3.3	Waste elimination, Micturition	Interpret the process of micturition	К5
3.4	Water balance, Electrolyte, acid –base balance	Relate water balance, Electrolyte, acid –base balance	K2

3.5	Thermoregulation: body temperature Regulation (physical, chemical, neural) Acclimatization, stress adaptation	 Analyse the influence of body temperature in physiology of mammals Explain different types of regulation inExcretion Assess acclimatization due to 	K5
137		temperature	ADC ANG
IV	NERVOUS AND	MUSCULAR SYSTEMS AND SENSE O	OKGANS
4.1	CNS, PNS : types of neuron	• List out the type of neurons	K4
4.2	Action potential, impulse transmission	Analyze the transmission of nerve impulse	K4
4.3	Optic, auditory, gestation, Olfactory, tactile	 Explain the structure of sensory Organs Analyse the functions of sensory organs 	K5
4.4	Neural control of muscle tone, posture, muscle structure, Physiology of muscle contraction	 Identify and illustrate muscle tone and posture Explain the physiology of muscle contraction 	K5
V		ENDOCRINE GLANDS	
5.1	Pituitary, Thyroid, Adrenal, Parathyroid Action of hormones, functions and disorders	 Summarize the different types of endocrine glands Justify "pituitary gland is the master gland" Identify and Interpret the hormonal disorders 	K5
5.2	Neuro endocrine regulation of hormones	Explain the Neuro endocrine regulation	K5
5.3	Hormonal control of female reproductive cycle: Menstrual cycle, Ovulation, Pregnancy, Parturition	 Explain the hormonal control of the menstrual cycle Discuss the process of ovulation, Pregnancy and Parturition 	K5
5.4	Disorders of Ovary: PCO	Explain the ovarian disorder, Polycystic Ovarian Syndrome	K5

4. Mapping Scheme for the PO, PSOs and COs Course code: P19ZY204

P19ZY204	P01	P02	P03	P04	P05	P06	P07	P08	P09	PSO1	PSO 2	PSO3	PSO 4
CO1	Н	M	M	Н	Н	-	-	M	-	Н	Н	-	-
CO2	Н	-	М	L	L	-	-	-	-	Н	Н	-	-
CO3	Н	M	M	L	L	-	-	-	-	Н	Н	-	-
CO4	Н	M	M	L	L	-	-	-	-	Н	Н	-	-
CO5	M	M	M	L	L	-	-	-	-	Н	Н	-	-
CO6	Н	M	M	L	L	-	-	-	-	Н	Н	-	-

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

Direct	
1. Continuous Assessment Test I,II	
2. Cooperative learning report, Assignment; Journal paper review, Gropheresentation, Poster preparation3.End Semester Examination	ıp
Indirect	
1. Course-end survey	

CORE - V: BIOCHEMISTRY

SEMESTER: II COURSE CODE: P22ZY205

CREDITS: 5 TOTAL HOURS: 75

NO OF HOURS PER WEEK:5

1. Course Outcomes

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOME	LEVEL	UNIT
CO1	Explain the basic concepts/functions of solutes, chemical bonding and organic compounds.	K2	I
CO2	Predict the structure of proteins and their biological active sites	K6	II
CO3	Assess quantitative and qualitative estimation of biomolecules	K5	III
CO4	Explain the importance of biochemical metabolism of carbohydrate	K5	IV
CO5	Evaluate the importance of biochemical metabolism of protein and lipid	K5	V
CO6	Analyze the importance of essential aminoacids	K4	V

Unit – I CHEMICAL BONDS, BUFFERS

- 15 hrs

Chemical bonds and interaction: Hydrogen bond, ionic bond and covalent bonds –Vander waals and hydrophobic interactions - Water as a solvent - **pH and buffers:** Acid-base reactions- dissociation constants (Ka) for weak acids and weak bases - role of buffers in biological systems. Laws of thermodynamics, Concept of free energy – standard free energy, enthalpy, entropy. Energy rich compounds.

Unit - II CARBOHYDRATES AND THEIR METABOLISM

15hrs

Carbohydrates – Structure, classification and functions -monosaccharides, disaccharides, oligosaccharides and polysaccharides – homo - hetero, Glycoproteins and lipopolysaccharides. Carbohydrate metabolism: Glycolysis— Pentose phosphate pathway – Kreb's cycle - oxidative phosphorylation - Glycogen metabolism: and its regulation - Gluconeogenesis - Cori cycle- Regulation and hormonal control of Carbohydrate metabolism.

Unit – III ENZYMES

- 15hrs

Enzymes: Classification of enzymes - co-enzymes- iso-enzymes. Factors affecting enzyme activity - pH, Temperature, Substrate Concentration. Enzyme inhibition - Reversible, irreversible - competitive, Non-competitive, uncompetitive. Enzyme specificity: Mode of action of enzymes - Formation of enzyme substrate complex. Enzyme kinetics: Michaelis -

Menten equation - significance of Km Value- Enzyme regulation by zymogen activation and covalent modification.

Unit – IV AMINOACIDS AND PROTEINS

- 15 hrs

Structure, classification and function of aminoacids, isoelectric point, peptide bond, N- and C- terminals. Ramachandran plot. Structural levels of Proteins – primary, secondary, tertiary and quaternary, alpha, beta helix - collagen. Fibrous and globular proteins. Metabolism of Proteins: Deamination, transamination and trans-deamination.

Unit - V LIPIDS AND NUCLEIC ACIDS

- 15 hrs

Lipids - Structure, Classification and function – Free fatty acids, essential and polyunsaturated fatty acids, triglycerides, phospholipids, glycolipids, cholesterols – waxes, lipoproteins, bilayers. Metabolism of lipids: β oxidation – alpha oxidation - omega oxidation – synthesis of triacylglycerols – Ketogenesis – Cholesterol synthesis and Vitamine D. Synthesis of purine and pyrimidine nucleotides

TOPICS FOR SELF-STUDY:

S.No.	Contents	Web Link
1.	Entropy	http://guweb2.gonzaga.edu/faculty/cronk/CHEM245pub/entropy.html
2.	Enthalpy	http://guweb2.gonzaga.edu/faculty/cronk/CHEM245pub/enthalpy.html
3.	Electron Transport	https://microbenotes.com/electron-transport-chain-etc-components-
	Chain	and-steps/
4.	Action Potential	https://teachmephysiology.com/nervous-system/synapses/action-
		potential/
5.	Metabolic acidosis	https://litfl.com/metabolic-acidosis/

Text Books

- 1. Cox M.M. and Nelson D.L. Lehninger's Principles of Biochemistry, 4th Ed., 2005 New York: W.H. Freeman
- 2. Ambika Shanmugam, Fundamentals of Biochemistry for Medical Students, Revised Ed., 2001.

Reference Books:

- 1. Voet D. and Voet, J.G., Biochemistry, 4th Ed., 2011 John Wiley & Sons,
- 2. BergJ.M., Tymoczko J.L. and Stryer L. Biochemistry, 6th Ed., 2007 W.H Freeman and Company, New York.
- 3. Zubay G.L., Principles of Biochemistry, 2000Dubuque, Williams C, Brown Publishers.

- 4. Murray R.K., Granner D.K. and Mayer P.A., Harper's Illustrated Biochemistry: A Lange Medical Book, 26th Ed., 2003 New Delhi, McGraw-Hill.
- 5. Bayens J.W. and Marek D, Medical Biochemistry, 2nd Ed., 2005 Elsevier.
- 6. Mathews C.K., Van holde, K.E. and AHERNK.G., Biochemistry, 3rd Ed., 2004 New Delhi, Pearson Education.
- 7. Elliott W. H. and Elliott D. C., Biochemistry and Molecular Biology, 3rd Ed., 2005 Oxford University Press, Indian Edition.
- 8. Devlin T. M., Text book of Biochemistry with Clinical Correlation, 2002 John Wiley & Sons.
- 9. Price N.C. and Stevens L., Fundamentals of Enzymology, 3rd Ed., 2006 Oxford University Press.
- 10. Conn E.E., Stump P.K., Bruening G. and DOI R.H., Outlines of Biochemistry, 5th Ed., 2007 John Wiley & Sons, Indian Edition.

Web Links:

https://nptel.ac.in/content/syllabus_pdf/104105076.pdf

https://www.classcentral.com/course/swayam-experimental-biochemistry-12909

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/ Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomical level of Transaction
I	,	FFERS & CARBOHYDRA	TES
	Chemical bonds and interaction:	 Define interaction 	
	Hydrogen bond, ionic bond and	of atoms, ions and	
1.1	covalent bonds - vanderwaals and	molecules in	K1
	hydrophobic interactions - Water as	biochemical	
	a solvent	process	
	pH and buffers: Acid-base	 Demonstrate 	
	reactions- dissociation constants	different acid base	
1.2	(Ka) for weak acids and weak bases	interaction and	K2
	- role of buffers in biological	role of buffers in	
	systems.	biological system	
	Carbohydrates: monosaccharides:	• Interpret the	
1.3	linear and heterocyclic structure -	structure and	K2
	conformational structure- isomers -	conformational	

	epimers. Disaccharides -	changes of
	oligosaccharides – polysaccharides -	different
	Glycoproteins and glycolipids.	carbohydrates
II	• PRO	ΓEINS & LIPIDS
2.1	Proteins: Primary structure—peptide bond. Secondary structure—α helix -β pleated sheet and bends - Prediction of secondary structure: Ramachandran plot. Tertiary structure - Forces stabilizing tertiary structure - Domains and motifs. Quaternary structures-Molecular chaperones - prions.	Predict the conformational changes of protein structures K6
2.2	Lipids: Structure – Steroids – Cholesterol.	• Explain the structure and K2 properties of lipids
III	• F	ENZYMES
3.1	Enzymes: Classification of enzymes - co-enzymes- iso-enzymes- ribozyme - abzymes. Enzyme specificity: Mode of action of enzymes - Formation of enzyme substrate complex.	Classify enzymes and their properties and Examine the K4 interaction of enzyme substrates complex
3.2	Enzyme kinetics: Equilibrium and steady-state assumptions- Michaelis -Menten equation-significance of Km Value- MM & LB plots - Enzyme regulation.	Determine the chemical reaction catalyzed by enzymes. K5
IV	• CARBOHYDR	ATE METABOLISM
4.1	Carbohydrate metabolism: Glycolysis — Pentose phosphate pathway - citric acid cycle-oxidative phosphorylation. Gluconeogenesis - Cori cycle. Glycogen metabolism:	 Explain the fundamental biochemical K2 process that ensures constant

	Glycogenesis - Glycogenolysis -	supply of energy
	Adenylate cascade system-	to living cells
	Regulation of glycogen synthesis -	
	Intermediate metabolism.	
V	PROTEIN AN	D LIPID METABOLISM
5.1	Metabolism of Proteins: Deamination, transamination and trans-deamination.	Determine the biochemical process responsible for the K5
		synthesis of proteins
5.2	Metabolism of lipids : β oxidation – alpha oxidation - omega oxidation - synthesis of triacylglycerols -	Determine the synthesis and degradation of lipids in cells, involving the breakdown or storage of fats for energy.
5.3	Synthesis of essential amino acids: methionine and valine - synthesis of purine and pyrimidine nucleotides.	Analyze the pathways involved in the synthesis of essential amino acids. K4

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY205	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н		L			M				L			M
CO2		M		M				Н				M	
CO3	L				L				M				Н
CO4			M					L			M		M
CO5	Н				M		Н			L			
CO6		M		Н		L			M			Н	

L - Low M - Medium H - High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

1. Course-end survey

ELECTIVE - II: IMMUNOLOGY/ENDOCRINOLOGY

SEMESTER: II COURSE CODE: P22ZY2:2/P22ZY2:A

CREDITS: 4 HOURS/ WEEK: 4

1. COURSE OUTCOMES:

On completion of this course, the students will be able to:

CO.No.	COURSE OUTCOME	LEVEL	UNIT
CO1	Interpret the structure and functions of lymphoid organs.	K5	1
CO2	Explains the functions of Complements and its mechanism to form Membrane attack complex.	K5	II
CO3	Interpret the types and functions of MHC complex	K5	III
CO4	Explains about tumor antigens and its immune response.	K5	IV
CO5	Appraise the role of vaccines in treating diseases	K5	IV
CO6	Elaborate the importance of immunotechniques	K6	V

2. A. SYLLABUS

Unit – I IMMUNITY AND ITS TYPES

12hrs

Immunity: Innate and Acquired immunity- Ultra structure and functions of primary and secondary lymphoid organs. Cell types - origin and specific functions. Antigens and Immunogens - antigenic determinants. **Immunoglobulins:** 3D structure-classes- - class switching. T Cell receptors, B cell receptor, VDJ recombination.

Unit – II CELL MEDIATED IMMUNITY AND COMPLEMENTS PATHWAY 12hrs

Immune response: antigen recognition- processing and presentation-interaction of T and B cells – cell mediated and humoral immunity - cytokines and immune response – immunological memory – complements - classical and alternative pathway and immunological significance.

Unit – III MAJOR HISTOCOMPATIBILITY COMPLEX AND TRANSPLANTATION IMMUNOLOGY

12hrs

Major Histocompatibility Complex: structure of MHC molecules —types - MHC and antigens presentation. **Transplantation immunology:** HLA typing-immunology of graft rejection- Hypersensitivity reactions -immunotolerance and autoimmune diseases.

Unit – IV CANCER IMMUNOLOGY AND IMMUNODEFICIENCY DISEASES 12hrs

Immunology of cancer: tumor antigens- immune response to tumor antigens - immuno therapy.

Primary immunodeficiency: SCID -**Secondary immunodeficiency**: Immunological abnormalities associated with AIDS – CD4 and CD8 cells. **Vaccines: Types,** Vaccination schedule - Polysaccharide vaccines-toxoids- vaccines from recombinants vectors- DNA vaccines. Immune response to Infectious diseases - Bacteria, Viruses, Fungi and Parasites (One example each)

Unit – V IMMUNOTECHNIQUES

12hrs

Immunotechniques: Precipitin reactions: immunodiffusion and immunoelectrophoresis RIA–ELISA -Western Blotting- Complement fixation -Flow cytometry - Monoclonal antibody production -Principles of immunohistochemistry- Fluorescent immunoassay (FIA).

B. Topics for self-study:

No	TOPICS FOR	WEB-LINKS
	SELF-STUDY	
1.	Lymphocyte	https://www.sciencedirect.com/topics/neuroscience/lymphocyte-
	antigen Receptor	antigen-receptor
2.	. Generation of T	https://www.pnas.org/content/109/45/E3111
	cell receptor	
	ligands.	
3.	The immune	https://www.sciencedirect.com/science/article/abs/pii/S095035520580
	response in health	0033
	and disease.	
4.	Immunity at	https://www.sciencedirect.com/science/article/pii/B978012811924200
	mucosal surfaces.	<u>0067</u>

C. Text Book

Roitt, I.M., and Delves, P.J. Roitt's Essential Immunology. 10th Ed., Oxford: Blackwell Science, 2000

D. Reference Books:

- 1. Goldsby, R.A., Kindt, T. J. and Osborne, B. A. Kuby's Immunology. 5th Ed., WH Freeman & Co., 2003.
- 2. Abbas, A.K. and Lichtman, A.H. Cellular and Molecular Immunology. 6th Ed., Saunders Elsevier, 2007.

- 3. Janeway, C. Immunobiology. 5th Ed., Garland Publications, 2001.
- 4. Benjamin, E., Richard, C., and Sunshine, G. Immunology: A Short Course. 4th Ed., John Wiley, New York, 2000.
- 5. Tizard, I.R. Immunology 4th Ed., Thomson, Singapore, 2004.
- 6. Chakravarty, A.K. Immunology and Immunotechnology. Oxford University Press. New Delhi, 2000.

E. Weblinks

https://www.niaid.nih.gov/research/immune-system-overview

https://www.cell.com/immunity/comments/S1074-7613(00)80641-X

https://www.ncbi.nlm.nih.gov/books/NBK27156/

Unit/Se ction	Course Contents	Specific Learning Outcomes (SLO)	Highest Bloom's taxonomy level of transaction
1	IMMUNIT	TY AND ITS TYPES	
1.1	Immunity –Introduction- History of Immunology Types- Innate immunity- barriers-First line of defense, Second line of defense, Third line of defense	1.Explain immunity and its types	K5
	Acquired immunity – Natural active, Artificial active, Natural passive, Artificial passive	• 2.Distinguish the types of barriers and the types of defenses	K4
1.2	Ultra-structure and functions of primary and secondary lymphoid organs	• Explain the structure of lymphoid organs and its functions.	K 5
	Cell types Lymphoid & Myeloid lineage	• 1.Explain the types of cell lineages	K 5
1.2	Functions of Lymphoid & Myeloid lineage	2.Compare the types of lymphoid and myeloid lineages	K 5
1.3	Antigens and Immunogens Types of	Classify the types of antigens	K 4

	antigens Properties of antigens Difference between antigens & immunogens Epitopes	 Compare the difference between antigens and immunogens. Explain the properties of antigens Distinguish the epitopes and its 	K 4 K 5
1.4	Immunoglobulins- types- Ig G,A,M,D,E Class switching	 Interpret the basic structure of immunoglobulin 	K 5
		• Explain the types of Immunoglobulins structure and its functions	K 6
1.5		 Analyse the process of class switching and its types 	K 4
	Generation of Antibody diversity Heavy chain & light chain rearrangements	Elaborate the mechanism of generation of antibody diversity and Heavy chain & light chain rearrangements	K 6
II	CELL MEDIA	TED IMMUNITY AND COMPLEMENTS	PATHWAY
	Immune response antigen	Analyse the immune response	K 4
2.1	recognition- processing and presentation. Antigen processing and presenting cells –MHC	 Elaborate the process of antigen recognition and processing and presentation. 	K 6
	Class I & MHC Class II	 Explain the antigen processing and presentation 	K 5
2.2	Interaction of T and B cells T Helper cells & T cytotoxic cells in antigen processing	• C Compare the process of interaction of T cells and B cells in antigen processing.	K 5

	Cell mediated and humoral immunity Cell mediated immunity-	Explain the process of cell mediated immunity in antigen degradation.	K 5		
2.3	cytotoxic cells – Dendritic cells, TC CD8 cells,ADCC- perforated channels- antigen degradation. Humoral immunity- Activation of B cells-	• Elaborate the process of humoral immunity and activation of B cells.	K 6		
	Cytokines and immune	Categorise the types of cytokines .	K 4		
2.4	response Types and its functions	Explain the process of immune response induced by cytokines	K 5		
2.5	Immunological memory Clonal expansion	Explain the process of immunological memory	K 5		
	& clonal differentiation of B cells	Elaborate the process of Clonal expansion & clonal differentiation of B cells	K 6		
2.5	Agglutination reaction Antigen antibody	1.Explain the process of agglutination reaction	K 5		
	interactions	2.Examine the process of antigen antibody interaction	K 4		
2.6	Complements - classical and alternative pathway-	Explain the process of activation of complement pathway	K 5		
	Opsonisation - immunological significance.	• Explain the classical pathway and its			
		Describe the alternative pathway and its functions	5		
III		DCOMPATIBILITY COMPLEX LANTATION IMMUNOLOGY			

IV		R IMMUNOLOGY AND DEFICIENCY DISEASES	
3.5	& organ specific	• List out the types of auto immune diseases	
	Autoimmune diseases Types- systemic	 Compile the significance of auto immune diseases. 	K 6
3.4	Immunotolerance Central tolerance Peripheral tolerance	Classify the types of immunological tolerance	K 4
	reactions Types- I.II,III,IV,V	• List out the various pharmacological mediators involved in hypersensitivity reaction.	K4
3.3	Hypersensitivity	• Distinguish the types of hypersensitivity reaction and the diseases associated to it.	K4
	Immunology of graft rejection —Kidney transplantation & Eye transplantation	Explain the process of graft rejection in kidney transplantation and in eye transplantation	K 5
3.2	HLA typing	• Explain the process of HLA typing	
	Transplantation immunology HLA – introduction	 Classify the types of grafts used in transplantation processes 	K 4
	MHC and antigens presentation APCs and Antigens processing & presentation	• Explain the process of antigen processing and presentation to T helper cells through MHC cmplex	K 5
3.1	Complex Structure of MHC molecules Types – Class I, Class II, Class III	Classify and determine the types of MHC involved in antigen processing and presentation	K 5
	Major Histocompatibility	• Explain the structure and functions of Major histocompatibility complex.	K 5

4.1	Immunology of cancer Tumor antigens- Types	• List out the types of tumor antigens	K 4
	 Tumor antigens recognised by T-lymphocytes Tumor antigens identified by xenogeneic antibodies 	• Interpret the significance of umor antigens recognised by xenogeneic antibodies	K 5
4.2	Immune response to tumor antigensImmune response by T & B cells	Explain the mechanism of cell mediated and humoral immune response to tumor cells.	K 5
	Immuno therapy. Active	Interpret the process of immune therapy to tumors.	K 5
4.3	immunization Passive therapy	• Compare the types of immune therapy to tumors.	K 5
4.4	Cytokines	• Explain the role of cytokines in immune response.	K 5
	Cytokines	• List out the types of cytokines.	K 4
4.5		• Define SCID	K 5
	Primary immunodeficiency SCID- symptoms & deficiency of immune	• Explain the types of immunodeficiency	K 5
	cells	Analyse the symptoms of primary immunodeficiency	K 6
4.6	Secondary immunodeficiency Immunological	• Elaborate the process of secondary immunodeficiency with immunological abnormalities	K 6

	abnormalities associated with AIDS – CD4 and CD8 cells Symptoms- Immune cells Vaccines Vaccination schedule	Interpret the role of CD4 and CD8 cells in AIDS	K5
4.5	Polysaccharide vaccines Types – Hib, Meningococcal vaccines Outer membrane protein vaccines Conjugate vaccines Toxoids Tetanus Toxoids	Explain the Types of vaccines	K 5
	Vaccines from recombinants vectors Multivalent subunit vaccine DNA Vaccines DNA as adjuvant - Mucosal adjuvant	 Explain the role of polysaccharide vaccines, Conjugate vaccines, toxoid vaccines and recombinant vaccines. Compare the role of the different vaccines and its significance 	K 5
V		IMMUNOTECHNIQUES	
5.1	Immunotechniques Introduction to immunotechniques Precipitin reactions Agglutination reaction Agglutination Vs. Precipitation reactions	 Compare the process of precipitin reactions and agglutination reactions. Explain the mechanism of antigen antibody interaction 	K 5
5.2	Immunodiffusion techniques Ouchterlony Gel Diffusion	Explain the significance of immunodiffusion techniques.	5 K 5

			K
	Immunoelectrophoresis-	• List out its applications.	4
5.3	Two step double	Describe the importance of	K
	diffusion technique.	immunoelectrophoresis techniques.	3
	RIA Principle &	Elaborate the principle and	K
5.4	Applications	applications of RIA	5
	ELISA Types – Direct,	Define ELISA	K
	Indirect, Sandwich		3
5.5		Describe the types of ELISA and its	
		role in detecting the presence of	K
		antigen and antibody	3
	Western blotting	Explain the principle and	K
5.6	Principle & Applications	applications of Western blotting technique	6
	Complement fixation	Elaborate the process of complement	K
5.7	Antibody detection test — Principle & Applications	fixation in antibody detection	5
		•	**
		 List out the applications of Complement fixation test 	K 4
	Flow cytometry	• Explain the process of flow	K
5.8	Principle, Procedure & Applications	cytometry and list out its applications.	5
	Monoclonal antibody	Elaborate the process of production	K
	production Establishment of Hybridoma	of monoclonal antibody	6
	Production of monoclonal antibodies	• Explain the process of establishment	K
5.9		of HybridomaDefine the media used for Hybrdoma technology	5
		Analyse the role of	
		immunohistochemistry in antibody detection	K 4
	FIA -Fluorescent		K
5.10	immunoassay	 Explain the principle and applications of Fluorescent 	5
	,	immunoassay	

4. Mapping Scheme for the PO, PSOs and COs

P19ZY2:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	L	M	M	Н	Н	M	Н	M	M	H	H	H
CO2	Н	M	M	M	H	Н	M	Н	M	M	Н	Н	Н
CO3	Н	Н	Н	Н	Н	H	H	H	M	M	H	Н	Н
CO4	Н	-	Н	Н	Н	Н	Н	Н	M	M	H	Н	Н
CO5	H	-	Н	Н	H	Н	Н	Н	M	M	H	Н	H
CO6	Н	-	Н	M	Н	Н	Н	Н	M	M	H	Н	Н

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

5. COURSE ASSESSIVIENT INIETHOUS
Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group
Presentation, Poster preparation,
3. End SemesterExamination
Indirect
1. Course-end survey

ELECTIVE – III: BIOSTATISTICS

SEMESTER: II COURSE CODE: P19ZY2:3
CREDITS: 4 TOTAL HRS. : 60
NO OF HOURS PER WEEK: 4

1. Course Outcomes:

On completion of this course, the students will be able to

CO.	COURSE OUTCOME	LEVEL	UNIT
NO			
CO1	Explain the methods of data collection in biological research	K5	I
CO2	Compare and interpret results by chi-square and ANOVA among two or more populations	K4	II
CO3	Compare and interpret the various distribution methods	K4,K3	III
CO4	Examine the hypotheses and compare the data using student 't' test.	K4	IV
CO5	Verify and evaluate the basic concepts of statistics using SPSS.	K6,K4	V
CO6	Analyse the statistical inference by correlation and regression	K4	V

2. SYLLABUS

Unit - I: COLLECTION OF DATA

(12 Hrs)

Introduction to Biostatistics - Concepts of biostatistics - Collection of Data: Primary and Secondary data - Classification and tabulation of Data - Diagrammatic representation: Bar diagram, Pie diagram, Pictogram and Cartogram. Graphical Representation: Line graph, Histogram, Frequency polygon, Frequency curve and O give curve.

Unit - II: MEASURES OF CENTRAL TENDENCY AND DISPERSION (12 Hrs)

Measures of Central tendency (Calculation of Mean, Median and Mode for Individual and continuous series) – Measures of Dispersion (Range, SD, Quartile deviation, Mean deviation, Variance, Coefficient of variance, Standard Error).

Unit- III: PROBABILITY THEORY AND DISTRIBUTIONS (12Hrs)

Probability: Concepts of probability, Types of Probability-Measures of probability-Theorems of probability (Addition and Multiplication)–Probability distributions –Binomial, Poisson, Normal distribution.

Unit - IV : TEST OF SIGNIFICANCE (12 Hrs)

Inference about population – sampling methods – Hypothesis testing –'t' test: One sample t test, Properties and applications. Chi-square test for goodness of fit-Statistical software and handling (SPSS) Analysis of Variance (ANOVA) - One way ANOVA-Two way ANOVA

Unit - V : CORRELATION AND REGRESSION (12 Hrs)

Correlation – Types, Methods -Graphic, mathematical (Karl Pearson's correlation Coefficient)–Regression- Types (Simple, linear and total regression), Regression equation and regression line.

Topics for Self- Study:

S.No.	Topics	Web Links
1.	Sampling methods	https://towardsdatascience.com/sampling-
		techniques-a4e34111d808
2.	Probability	https://www.statisticshowto.com/probability-
		sampling/
		https://research-methodology.net/sampling-in-
		primary-data-collection/probability-sampling/
3.	New statistical packages	https://en.wikipedia.org/wiki/List_of_statistical_
		software
4.	Statistical distributions	http://www.stat.rice.edu/~dobelman/textfiles/Dis
		tributionsHandbook.pdf

Text books:

An Introduction to Biostatistics, Gurumani.N Second Revised Edition,2008 www. MJP publishers, Chennai,

Palanichamy S and M. Manoharan,- Statistical methods for Biologists, , Paramount

Publications, 2009

Pranab Kumar Banerjee Revised Edition, Introduction to Biostatistics, S. Chand Publishers, 2011

Reference Books:

McCleery, R.H. and WATT, T.A., Introduction to Statistics for Biology, 3rd Ed., 2007 Chapman & Hall/CRC,

Gupta S P, Statistical Methods S.Chand & Sons, 2008.

Zar, J.H, Biostatistical analysis – Prentice Hall Inc., New Jersey, USA, 1974.

Web links

https://statisticsbyjim.com/basics/measures-central-tendency-mean-median-mode/ https://www.survevsystem.com/correlation.htm

https://www.statisticshowto.com/probability-and-statistics/regression-analysis/https://www.statisticshowto.com/probability-and-statistics/chi-square/

3. SPECIFIC LEARNING OUTCOMES (SLO):

S.No	Course Content	Learning outcome	Highest Blooms Taxonomic Level of Transaction						
1	Collection of data								
1.1	Collection of data	1.Explain the collection of data	K2						
		• 2. Classify the data.	K3						
1.2	Graphical	Compare and Interpret the data	K4						
	representation	using graphs	K2						
1.3	Frequency	Construct the diagram/graph	K5						
	distribution	using the data							
II	Measures of	Central tendency							
2.1	Measures of	Examine the length or width of	K3						
	Central tendency- Mean	the given molluscan shell and calculate the mean value							
	Wiedii	calculate the mean value							
52.2	Measures of	Justify the length or width of the	K4						
	Central tendency-	given molluscan shell and							
	Median	calculate the mean value							
2.3	Measures of	Justify the length or width of the	K4						
	Central tendency-	given molluscan shell and							
	Mode	calculate the mean value							
2.4	Measures of	Justify the length or width of the	K4						
		given molluscan shell and							

	Dispersion	calculate the mean value							
2.5	Probability & Types	Assess the degree of uncertainity numerically using probability	K6						
2.6	Chi square test	Find out degree of discrepancy between observed and expected frequency using the chi square test.	K1						
III	STASTICAL Distributions								
3.1	Binomial Distribution	Examine the statistical data using binomial distribution	K4						
3.2	Poisson Distribution	 Analyse the statistical quality of the data using Poisson distribution 	K4						
3.3	Normal Distribution	Design the statistical quality control experiment using normal distribution	K5						
IV	SAMPLING	METHODS							
4.1	Sampling methods	 Catogorise the different types of sampling methods 	K4						
4.2	Student's t-Test	Verify the test the significance of a single mean when the population variance is unknown	K6						
V	STATISTIC	AL ANALYSIS							
5.1	ANOVA	 Analyse the significance of differences in means and the variance by using ANOVA method 	К3						
5.2	Correlation	Compare two different types of data using correlation analysis	K4						
5.3	Regression	• Examine the average between two or more variables.	K4						
5.4	Applications of SPSS package	Analyse the data using SPSS K4 software							

4. Mapping of COs and POs

P19ZY2:3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	M	Н	Н	L	M	-	-	L	Н	L	Н	Н
CO2	Н	M	Н	Н	L	M	-	-	L	Н	L	Н	L
CO3	Н	-	M	M	-	M	-	-	-	L	L	Н	L
CO4	Н	M	M	M	-	M	-	-	-	L	L	Н	L
CO5	Н	-	M	M	-	M	-	-	-	L	-	Н	L
CO6	Н	M	M	Н	-	M	-	-	-	L	-	Н	L

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5. 55 5.
Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group
Presentation, Poster preparation,
r resentation, r oster preparation,
3. End Semester Examination
Indirect
1. Course-end survey

CORE PRACTICAL – III : LAB IN ANIMAL PHYSIOLOGY AND IMMUNOLOGY/ ENDOCRINOLOGY

SEMESTER: II COURSE CODE: P19ZY2P3

CREDITS: 3 TOTAL HRS. :75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOME	LEVEL	PRACTICALS
CO1	Apply the physiological concepts in experiments	К3	I
CO2	Interpret the results in physiological experiments.	K5	I
CO3	Identify the tissues of different endocrine organs	К3	I
CO4	Apply the immunological techniques in biology	К3	II
CO5	Analyze the various immunological disorders.	K4	II
CO6	Identify the tissues of lymphoid organs and Lymphocytes	К3	II

2. SYLLABUS

I ANIMAL PHYSIOLOGY

(40 Hrs)

- 1. Survey of digestive enzymes in Cockroach (Invertase, Amylase, Maltase, Protease and Lipase)
- 2. The rate of oxygen consumption in fish with reference to body weight.
- 3. Rate of salt loss and salt gain in crab.
- 4. Estimation of urea in the blood and urine by DAM method.
- 5. Effect of Humulin on blood glucose level (Demonstration)
- 6. ECG (Demonstration).
- 7. **Prepared Slides:** T.S of endocrine organs: Pituitary, thyroid, parathyroid, pancreas, adrenal, ovary and testis.

II IMMUNOLOGY (35 Hrs)

- 1. Differential counting of WBCs.
- 2. Blood grouping and Rh factor analysis.
- 3. ELISA
- 4. Double immuno-diffusion
- 5. WIDAL test

6. **Prepared Slides:** T.S of lymphoid organs: Thymus, Bone marrow, lymph node, spleen, T cells and B cells.

Topics for Self-Study:

S.No	Topics	Web links
1	Osmoionic regulation in Tilapia fish	https://www.slideshare.net/mndp_slide/osmo- regulation-in-fish-by-mndp-poonia
2.	Analysis of heat shock response	https://www.cell.com/molecular-cell/pdf/S1097-2765(16)00136-2.pdf
3.	Immunoelectrophoresis	https://www2.slideshare.net/SaajidaSultaana/im munoelectrophoresis- 169939054?from_action=save
4.	Immuno precipitation	https://www2.slideshare.net/masumaaktersani5/ immunoprecipitation-84426921
5.	Monoclonal antibodies production	https://www2.slideshare.net/SrilaxmiMenon/m onoclonal-antibody-production-and- hybridoma-technology

Text books

- 1. Ghai. C.L, A Textbook of Practical Physiology, 6th Edition,2005, Jaypee Brothers, Medical Publishers, New Delhi.
- 2. Rajan. S and Selvi Christy. R, Experimental procedures in Life Sciences,1st Edition 2010, Anjanaa Book House, Chennai.

Weblinks: https://laney.edu/rebecca https://laney.edu/rebecca <a href="bailey/wp-content/uploads/sites/update-2017/07/Human-Physiology-Lab-Exercises-update-2017/07/Human-Physiology-Lab-Exercises-update-2017/07/Human-Physiology-Lab-Exercises-update-2017/07/Human-Physiology-Lab-Exercises-update-2017/07/Human-Physiology-Lab-Exercises-update-

3. SPECIFIC LEARNING OUTCOMES (SLO)

Experiment	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction
I		ANIMAL PHYSIOLOGY	

1.	Survey of digestive enzymes in Cockroach (Invertase, Amylase, Maltase, Protease and Lipase)	 Examine the digestive system present in the Cockroach Analyse the digestive enzymes present in Cockroach 	K4
2.	Rate of oxygen consumption in fish with reference to body weight.	 Apply the concepts of respiration in fish. Evaluate the rate of oxygen consumption in fish Interpret the results with reference to body weight. 	K5
3.	Rate of salt loss and salt gain in crab.	 Apply the concepts of osmo-ionic regulation in crab Analyse the rate of salt loss and salt gain in different media 	K4
4.	Estimation of urea in the blood and urine(DAM method)	 Compare the quantity of urea present in the blood and urine Evaluate the normal level of urea in the samples. Analyze the results and predict the diseases. 	K5
5.	Effect of Humulin on blood glucose level (Demo)	Estimate the blood glucose level with the effect of Humulin	K5
6.	ECG (Demo)	 Interpret and read the ECG graph of a human heart. Assess the heart rate of a human being. 	K5
7.	Slides: T.S of endocrine organs: Pituitary, thyroid, parathyroid, pancreas, adrenal, ovary and testis.	 Identify the tissues of different endocrine organs Distinguish the cells of various endocrine organs 	K4
П		IMMUNOLOGY	
1.	Differential counting of WBCs.	 Identify the different types of WBCs in the blood smear. Distinguish the types of WBCs by the structure of nucleus. 	K4
2.	Blood grouping and Rh factor analysis.	 Apply the concepts of multiple allele to find out the blood group. Identify the blood group and Rh factor. 	К3
3.	Quantitative estimation of Thyroid hormone by ELISA(Demo)	Estimate Thyroid hormones by immunological techniques.	K5

4.	Double immune- diffusion	Demonstrate the immunological technique Double immune diffusion	K2
5.	WIDAL test	Detect typhoid by Widal test	K5
6.	Slides: T.S of lymphoid organs: Thymus, Bone marrow, lymph node, spleen, T cells and B cells	 Identify the tissues of lymphoid organs Distinguish the cells of lymphoid organs. 	К3

4. Mapping Scheme for the PO, PSOs and COs

P19ZY2P3	P01	P02	P03	P04	P05	P06	P07	P08	P09	PSO 1	PSO 2	PSO 3	PSO 4
C01	Н	M	Н	Н	Н	Н	М	Н	-	Н	Н	M	М
CO2	Н	M	Н	Н	Н	Н	М	Н	-	Н	Н	М	М
CO3	Н	М	Н	Н	Н	Н	М	Н	-	Н	Н	М	М
CO4	Н	М	Н	Н	Н	Н	М	Н	-	Н	Н	М	М
CO5	Н	M	Н	Н	Н	Н	М	Н	-	Н	Н	М	М
CO6	Н	М	Н	Н	Н	М	М	Н	-	Н	Н	М	М

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS
Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.
3. End Semester Examination
Indirect
1. Course-end survey

CORE PRACTICAL - IV: LAB IN BIOCHEMISTRY

SEMESTER: II CODE: P19ZY2P4
CREDITS: 3 TOTAL HRS.: 75
NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO. No	COURSE OUTCOMES	LEVEL	EXPER
			IMENT
			S
CO1	Evaluate the experiments based on biochemical calculations.	K5	1
CO2	Design & prepare the Acetate & Phosphate buffers.	K6	3
CO3	Evaluate the acid-base titration for pKa determination.	K5	3
CO4	Develop knowledge in structure, reactions and energy metabolism of the cellular biomolecules.	K6	4,5
CO5	Categorize & classify the micro molecules by TLC method	K5	8
CO6	Classify & separate the amino acids by Paper Chromatography method.	K5	9

2. SYLLABUS BIOCHEMISTRY

(75 Hrs)

- 1. Preparation of solutions: i) Molarity ii) Normality iii) Percentage solution
- 2. Calculation of moles, millimoles and nanomoles
- 3. Basic and Standardization procedures
- i) Preparation and testing of buffers: Acetate and Phosphate buffers.
- ii) Acid-base titration and determination of pKa value.
- iii) Measuring pH of different solutions.
- 4. Quantitative estimation of reducing sugars by Anthrone method.
- 5. Quantitative estimation of amino acids by ninhydrin method.
- 6. Quantitative estimation of protein by Lowry *et al.* method.
- 7. Quantitative estimation of nucleic acids.
- 8. Separation of micromolecules by Thin layer Chromatography: Sugars and drugs
- 9. Separation of micromolecules by Paper chromatography: Amino acids

Topics for self-study:

NO	TOPICS FOR SELF-	WEB-LINKS
	STUDY	
1.	Estimation of Reducing	https://www.researchgate.net/publication/306034920_Lab
	Sugar by Dinitro	oratory_Manual_of_Biochemistry
	Salicylic Method	
2.	Determination of Micro	https://www.researchgate.net/publication/306034920_Lab
	nutrients by colorimetric	oratory_Manual_of_Biochemistry
	method	
3.	Estimation of Total	https://www.researchgate.net/publication/306034920_Lab
	soluble solids	oratory_Manual_of_Biochemistry
4.	Estimation of Total	https://www.researchgate.net/publication/306034920_Lab
	Phenolic compounds	oratory Manual of Biochemistry
5.	Estimation of Flavanols	https://www.researchgate.net/publication/306034920_Lab
		oratory_Manual_of_Biochemistry

Text Book:

1. Laboratory Manual in Biochemistry: J.Jayaraman. Published by Wiley Eastern. 1981. **Reference Book:**

- 1. Fundamentals of Biochemistry: A Practical Approach .Naren Kumar Dutta 2005
- 2. Experimental Approaches in Biochemistry and Molecular Biology Henry M. Zeidan, William V. Dashek 199

Web links:

https://biolympiads.com/wp-content/uploads/2014/08/metodich_1.pdf

https://courses.lumenlearning.com/introchem/chapter/acid-base-titrations/

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit /Sec tion	Course Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction					
		BIOCHEMISTRY						
1	Preparation of solutions: i) Molarityii) Normality iii) Percentage solution	i) Molarityii) Normality iii) experiments based						
2.	Calculation of moles, millimoles and nanomoles	Construct the experiments based on moles, millimoles and nanomoles.	К3					
3	Basic and Standardization procedures	•						
3.1	i) Preparation and testing of buffers: Acetate and Phosphate buffers.	Apply the procedure to prepare the acetate & phosphate buffers.	К3					
3.2	ii) Acid-base titration and determination of pKa value.	• Evaluate the acidbase titration for pka determination.	K5					
3.3	iii) Measuring pH of different solutions.	Evaluate ph of different solutions	K5					
4.	Quantitative estimation of reducing sugars by Anthrone method.	 Appraise the amount of reducing sugars in the biological samples. 	K5					
		 Appraise the amount of reducing sugar in clinical samples 						
5.	Quantitative estimation of amino acids by ninhydrin method.	Evaluate the amount of amino acids in the biological samples.	K5					
		 Appraise the amount of reducing sugar in clinical samples 	KJ					
6.	Quantitative estimation of protein by Lowry et al. method.	Evaluate the amount of protein in the biological samples	K5					
		Appraise the amount of protein in clinical samples	K5					
7.	Quantitative estimation of	Evaluate the amount	K5					

	nucleic acids.	of nucleic acidsin the biological samples. • Appraise the amount of nucleic	K5
		acid in clinical samples	
8.	Separation of micro molecules by Thin layer Chromatography: Sugars and drugs	 Categorize & classify the micro molecules by tlc method. 	K4
9.	Separation of micro molecules by Paper chromatography: Amino acids	Classify & separate the amino acids by paper chromatography method.	K4

4. Mapping Scheme for the PO, PSOs and COs

P19ZY2P4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	L	Н	Н	Н	M	L	M	M	M	L	Н	Н
CO2	Н	L	Н	M	Н	M	M	M	M	L	L	Н	Н
CO3	Н	L	Н	M	Н	Н	M	M	M	L	L	Н	Н
CO4	Н	M	Н	Н	Н	Н	M	M	L	M	M	Н	Н
CO5	Н	L	Н	Н	Н	Н	M	M	L	L	L	Н	Н
CO6	Н	L	Н	Н	Н	Н	M	M	L	L	L	Н	Н

L-Low M-Moderate H- High

Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.
3. End Semester Examination
Indirect
1. Course-end survey

CORE -VI: ENVIRONMENTAL BIOLOGY

SEMESTER: III COURSE CODE: P22ZY306

CREDITS: 4 TOTAL HRS.: 75

NO OF HOURS PER WEEK: 4

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.No	COURSE OUTCOMES	LEVEL	UNIT
CO1	Analyse the interrelation between abiotic and biotic environment and scope of Ecology	K4	I
CO2	Explain the characteristics of ecosystem.	K5	II
CO3	Explain the characteristics of population, Niche, Niche parameter.	K4	III
CO4	Compare ecological succession, equivalents and indicators.	K4	IV
CO5	Classify freshwater and marine habitats. List the characters of terrestrial habitat.	K2	V
CO6	Discuss the importance of biodiversity and its conservation.	K6	V

2. SYLLABUS

UNIT-I: ENVIRONMENTAL FACTORS & ECOSYSTEM

(15 Hrs)

Importance and scope of ecology **–Environmental factors:** light – temperature – humidity – edaphic (soil) and biotic factors. Ecosystems: Characteristics of ecosystems - food chain – herbivorous and detritus food chains and food web - bio-magnification - Energy flow in an ecosystem– productivity - trophic levels.

Unit – II: POPULATION ECOLOGY

(15 Hrs)

Population Ecology: Definition, Characteristics of Population: Density - Natality–Mortality–Age distribution – Growth form-Population Equilibrium – Biotic potential – Carrying capacity – Dispersal – Dispersion – Population fluctuations – Population regulation – r and K strategists. Niche concept – Types of niches: Spatial, Trophic and Multidimensional – Niche parameters: Form, Position and Width – Niche Partitioning - Realized and Fundamental Niche.

Unit – III: COMMUNITY ECOLOGY

(15Hrs)

Community Ecology: Characteristics of a Community - Ecological succession—Primary and Secondary succession —Natural and man-influenced succession - Hydrarch and Xerarch - Ecotone and Edge effect - Ecological equivalents - Ecotypes and Ecophenes - Ecological indicators.

Unit – IV: HABITAT ECOLOGY

(15 Hrs)

Habitat Ecology: Characteristics and types of fresh water and estuarine habitat. Marine habitat: Characteristics and types – Ecology of benthic zone, intertidal zone and deep sea. Physico -chemical characteristics of terrestrial habitat – Tundra, Forest, Desert and mountain biomes - Biogeographical zones of India.

Unit-V : BIODIVERSITY AND ITS CONSERVATION

(15 Hrs)

Biodiversity and its conservation-global environmental change — biodiversity-status, monitoring and documentation-Megadiversity and hotspots - biodiversity management approaches. Conservation biology: Principles of conservation, major approaches to management, Indian initiatives for conservation (Project Tiger, Project Elephant Biosphere reserves).IUCN, Red Listed animals, Endangerd animals, WWF and Wildlife Institutes in India.

Topics for Self-Study:

S.NO	Advanced Topics	Web links/Reference Book
1	Biogeochemical cycles, N C P	https://byjus.com/biology/biogeochemical- cycles/#:~:text=Biogeochemical%20cycles%20 are%20basically%20divided,Phosphorus%2C %20Rock%20cycle%2C%20etc.
2	Ecotoxicology	https://library.um.edu.mo/ebooks/b28113652.p
3	Waste Treatment Technology	https://www.pseau.org/outils/ouvrages/wrc_wastewater_treatment_technologies_a_basic_guide_e_2016.pdf
4	Environmental Laws	https://en.wikipedia.org/wiki/Environmental_la w
5	Types of biodiversity	https://www.vedantu.com/biology/biodiversity

Text Book

Odum, E.P. and Barrett, G.W. Fundamental of Ecology. 5th Ed.,2005 Cengage Learning India. New Delhi,

Reference Books:

- 1. PeterJ.R., Stephan, L.W., PauleH., Ceche S. and Bevlerly, M. Ecology, 2008 Cengage learning India, New Delhi,
- 2. Wright, R.T., Environmental Science, 10th Ed., 2008 Pearson Education, New Delhi,
- 3. Smith T.M. and SmithR.L., Elements of Ecology, 6th Ed., 2008 Pearson Education, New Delhi,
- 4. Kormondy E.J, Concepts of Ecology, 4th Ed.,1996 PHI Cengage Learning India, New Delhi,
- 5. Turk A. and Turk J., Environmental Science., 4th Ed., 1993 Saunders, Primark R.B., A Primer of Conservation Biology, 2nd Ed., 2000 Sinauer Associates

Weblinks

https://nptel.ac.in/courses/127/106/127106004/

3.SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Course Contents	Course Contents Specific Learning Outcomes (SLO)		
I	ENVIRONMEN'	TAL FACTORS AND I	ECOSYSTEM	
1.1	Abiotic factors: Light, temperature, soil, water	List out the abiotic factors	K4	
		Identify the role of light,soil,water ect	К3	
1.2	Biotic factors: symbiosis, commensalism, mutualism, predation,	Explain the animal interaction	K4	
	parasitism and competition	Justify the animal behaviours	K5	
1.3	Biogeochemical cycles: Nitrogen, phosphorous.	• Examine the Biogeochemica 1 cycles	K4	
		 Analyse the importance of chemical cycles 	K5	
1.4	Trophic levels: Food chain, Food web	Assess the food habits	K5	
1.5	Ecological Pyramids: Pyramid of biomass, number, and energy.	Measure the classification of energy	K4	
		Measure the energy level	K5	

		Analyz level of consum	f K	5
II	POPULATION ECOI	LOGY	1	
2.1	Population: Definition - natality- mortality- age pyramids- population equilibrium- fluctuation-regulation	 Measure classify popular character 	the	5
2.2	Carrying capacity	• Explai concep CC		5
2.3	Niche concept	Classif Niche concep	K	4
3	COMMUNITY ECOI	OGY		
3.1	Community Ecology: Types of community - characteristics of community - stratification - Carrying capacity	Assess types o commu charact	f	5
3.2	Ecotone edge effect - ecological Niche - ecological succession.	Compa contras each as	t the	5
3.3	Ecosystem: Structure of Pond ecosystem.	Analyze pond ecosys	K	5
3.4	Ecological indicators.	 explain differe indicate survey flora a fauna common 	ont level cors the Kind	5
IV	HABITAT ECOLOG	Y	I	

4.1	Fresh water characteristics	Estimate the distribution level	K5
4.2	Estuary	Survey the flora and fauna communities	K4
4.3	Marine	Survey the flora and fauna communities	K4
4.4	Concepts and levels of biodiversity	Elaborate the concept and levels of biodiversity	K5
V	BIODIVERSITY ANI	D CONSERVATION	
5.1	Biodiversity	Elaborate the concept and levels of biodiversity	К3
5.2	biodiversity-status,monitoring anddocumentation	Elaborate and to develop the documentation skill	К3
5.3	Conservation biology	Plan to conserve the endangered species	K6
5.4	Project Tiger, Project Elephant Biosphere reserves	Plan to conserve the key stone species	К3
5.5	IUCN, Red Listed animals, Endangerd animals, WWF and Wildlife Institutes in India	Take part in conservatory aspects	K4

4. Mapping Scheme for the PO, PSOs and COs

P15ZY306	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	Н	Н	Н	Н	Н	Н	-	Н	-	Н	Н
CO2	Н	Н	Н	Н	Н	М	Н	Н	-	Н	-	Н	М
CO3	Н	Н	Н	Н	Н	-	Н	Н	-	Н	-	Н	-

CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	-	Н	Н
CO5	Н	Н	M	Н	Н	Н	М	Н	Н	Н	-	-	Н
CO6	Н	Н	Н	Н	Н	М	Н	Н	-	Н	-	Н	Н

L-Low M-Moderate H- High

Direct	
1. Continuous Assessment Test I,II	
2. Cooperative learning report, Assignment; Journal paper review, Presentation, Poster preparation,	Group
3. End Semester Examination	
Indirect	
1. Course-end survey	

CORE-VII: DEVELOPMENTAL BIOLOGY

SEMESTER: III COURSE CODE: P22ZY307

CREDITS: 5 TOTAL HRS.: 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES

On completion of this course, the students will be able to

CO.No	COURSE OUTCOMES	LEVEL	UNIT
CO1	Illustrate the basic principles of growth and development in animals.	K2	I
CO2	Interpret the axis and pattern formation in Drosophila.	K5	II
CO3	Explain the environmental regulation of animal development	K5	III
CO4	Examine the metamorphosis in amphibia and regeneration in salamander.	K4	IV
CO5	Justify the concepts of organiser in determining the fate of developing embryos	K5	IV
CO6	Identify the role of genes in the embryonic development.	К3	V

2. SYLLABUS

Unit – I : FERTILIZATION IN MAMMALS

(15 Hrs)

Introduction to Developmental Biology- spermatogenesis and oogenesis in mammals - **Fertilization in mammals:** translocation and capacitation of sperm - cell surface interactions between egg and sperm -gamete fusion- cleavage and formation of blastula- gastrulation and formation of germ layers.

Unit – II: CELL DIFFERENTIATION

(15 Hrs)

Concepts of induction, competence, totipotency, cell specification, commitment, determination and morphogenetic gradients – cell fate and cell lineages – cell differentiation and cell aggregation in *Dictyostelium* -axis and pattern formation in drosophila – morphogenetic gradients

Unit – III : ORGANOGENESIS

(15 Hrs)

Organogenesis: Development and vulva formation in *Caenorhabditis elegans*—development of vertebrate eye — development of tetrapod limb - mutants and transgenics in analysis of development **Environmental regulation of animal development:** developmental symbiosis - nutritional and seasonal polyphenism. **Abnormal development:** Teratoma and teratogens -

Unit – IV : ORGANISER AND METAMORPHOSIS AND REGENERATION (15 Hrs)

Organiser: Spemann's experiment- functions of organiser—mechanism of noggin, chordin, Follistatin,BMP4, Wnt, FGF and retinoic acid for the action of organiser. **Metamorphosisin amphibia:** morphological changes associated with metamorphosis. **Regeneration:** Mechanism of regeneration in salamander. **Ageing:** The biology of senescence.

Unit – V:GENES IN DEVELOPMENT

(15 Hrs)

Genes in Gonad development: Function of SF1, WNT4, SRY, SOX genes. Genes in embryonic development: Role of Homeobox genes in Drosophila and Hox genes in Mouse. Concepts of GeneKnock out, Genomic imprinting and Genomic equivalence.

Topics for Self-Study:

S.No	Topics	Web links
1.	Zebrafish early and Late development	https://embryology.med.unsw.edu.au/embryology/inde
		x.php/Zebrafish_Development
2.	Development of central nervous	https://www.britannica.com/science/nervous-
	system in vertebrates	system/The-vertebrate-system
3.	Germ cell specification and migration	https://link.springer.com/article/10.1007/s12522-014-
		0184-2
4.	Model organism in developmental	https://blog.addgene.org/plasmids-101-five-popular-
	Biology	<u>model-organisms</u>
5.	Medical implications of	https://www2.slideshare.net/AYSHA007/medical-
	Developmental Biology.	implication-of-developmental-
		biology?from_action=save

Text Books

- 1. Gilbert B.F., Developmental Biology, 8th Ed.,2006 Sinaur Associates Inc. Publishers, Sunderland, Massachusetts, USA,
- 2. Veer Bala Rastogi, Chordate Embryology, 2016, Kedar Nath Ram Nath

Reference Books:

- 1. Wolpert L, Principles of Development, 2nd Ed., 2002 Oxford University Press,
- 2. Twyman R.M. Developmental Biology, 2008 Viva, New Delhi,
- 3. BalinskyB.I., An Introduction to Embryology, 5th Ed., 2004 Thomas Asia Pvt. Ltd.,
- 4. Russo V.E.A, BrodyS., Cove D and Ottolenghi S, Development: The Molecular Genetic Approach, 1992 Springer Verlag, Berlin,
- 5. Rao.V, Developmental Biology: A Modern Synthesis, 1994 Oxford IBH New Delh

Web Links:

https://nptel.ac.in/courses/102/106/102106084/

http://mcb.berkeley.edu/courses/mcb141/lecturetopics/Levine/engrailed.pdf

https://plato.stanford.edu/entries/biology-developmental/notes.html

3 SPECIFIC LEARNING OUTCOMES (SLO):

Unit/	Contents	Learning Outcomes	Highest Blooms Taxonomic levels of
Section			Transaction
I			
1.1	Introduction: Spermatogenesis and Oogenesis	 Recall the formation of gametes Relate the structure and functions of egg and ova 	K1
1.2	Fertilization in mammals Translocation and Capacitation of sperm, cell surface interactions between egg and sperm, gamete fusion	 Explain the process of fertilization in mammals. Examine cell surface interactions 	K4
1.3	Cleavage formation of blastula, gastrulation, formation of germ layers	 Explain the process of cleavage Evaluate the formation of blastula and gastrula 	К5
II		CELL DIFFERENTIATION	,
2.1	Concepts of induction, competence, totipotency, cell specification, commitment	 Relate induction, competence and totipotency Illustrate cell specification and commitment 	К2
2.2	Cell lineages, cell differentiation and cell aggregation in Dictyostelium	 Determine cell lineages Summarize the cell differentiation and aggregation in <i>Dictyostelium</i> 	К5
2.3	Axis and pattern formation in Drosophila, Gradient and polarity	 Examine Axis and pattern formation in Drosophila Illustrate Gradient and Polarity 	K4

III		ORGANOGENESIS	
3.1	Organogenesis Development and differentiation in Caenorhabditis elegans Development of vertebrate eye, Development of tetrapod limb	 Explain the development and differentiation of <i>Caenorhabditis elegans</i> Influence of organizer in the development of vertebrate eye Examine the Development of tetrapod limb 	K 5
3.2	Environmental regulation of animal development Developmental symbiosis -nutritional and seasonal polyphenism	 Explain the Environmental regulation of animal development Illustrate Developmental Symbiosis Relate the importance of nutritional and seasonal polyphenism 	K5
3.3	Abnormal development: Teratoma and teratogens.	Analyse the causes of TeratomaClassify the types of teratogens	K 4
IV		ORGANISER	
4.1	Organiser Spemann's experiment, mechanism of noggin, chordin, Follistatin	Organiser Spemann's experiment, mechanism of noggin, mechanism of noggin, Spemann's experiment of organiser Examine the mechanism of noggin, chordin Follistetin through	
4.2	BMP4, Wnt, FGF and retinoic acid for the action of organizer	Distinguish BMP4, Wnt, FGF and retinoic acid for the action of organizer	K 4
4.3	Metamorphosis in amphibian Morphological changes associated with metamorphosis	Asses the morphological changes during metamorphosis in Amphibia.	К3
4.4	Regeneration: Mechanism of regeneration in salamander.	Explain the Mechanism of regeneration in salamander	K5
4.5	Ageing: The biology of senescence	 Categorize the agents of senescence Explain in detail the biology of aging 	K5
L			

V	GENES IN DEVELOPMENT						
5.1	Genes in Gonad development Function of SF1, WNT4, SRY, SOX genes	 Justify the function of Genes in Gonad development Evaluate the function of SF1, WNT4, SRY, SOX genes in development 	K5				
5.2	Genes in embryonic development Role of Homeobox genes in Drosophila and Hox genes in Mouse	Compare the role of Homebox genes in Drosophila and Hox genes in mouse	K4				
5.3	Concepts of Gene Knock out, Genomic imprinting and Genomic equivalence.	 Summarise the Concepts of Gene Knock out, Genomic imprinting and Genomic equivalence Illustrate the concepts of Gene Knockout Explain the importance of Genomic imprinting and Genomic equivalence 	К2				

4. Mapping Scheme for the PO, PSOs and COs Course code: P19ZY307

P19ZY307	P01	P02	P03	P04	P05	P06	P07	P08	P09	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	Н	M	M	-	Н	Н	Н	Н	Н	Н	-
CO2	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO3	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO4	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO5	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-
CO6	Н	Н	Н	М	М	-	Н	Н	Н	Н	Н	Н	-

L-Low M-Moderate H- High

Direct					
1.Continuous Assessment Test I,II					
2.Cooperative learning report, Presentation, Poster preparation,	Assignment;	Journal	paper	review,	Group
3. End Semester Examination					
Indirect					
1. Course-end survey					

CORE-VIII: GENETICS

SEMESTER: III COURSE CODE: P19ZY308

CREDITS: 4 TOTAL HRS.: 75
NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO.	COURSE OUTCOMES	LEVEL	UNIT
No			
CO1	Interpret the Mendelian law of inheritance.	K4	I
CO2	Compare the nuclear and maternal inheritance of genes	K4	II
CO3	Elaborate the environmental effects and gene expression	K6	III
CO4	Analyze the concepts of Microbial genetics	K4	IV
CO5	Discuss the perception of Evolutionary and population genetics	K6	V
CO6	Assess the importance of human genetics and its related disorders	K5	V

2.SYLLABUS

Unit I : MENDELIAN GENETICS

(15 Hrs)

Mendelian Genetics: Mendelian laws of inheritance—**Classical Genetics:** Linkage—crossing over—types and mechanics — chromosome mapping —Heterogamatic and Homogametic — Haplodiploidy-Mosaics and Gynandromorphs. Human Y chromosome - evolution, structure, molecular organization and its role in sex determination- Dosage compensation.

Unit-II: MATERNAL INHERITANCE AND GENE EXPRESSION (15 Hrs)

Extranuclear inheritance and maternal effects: Organelle heredity (mitochondria) - Infectious heredity (Cytoplasmic inheritance) in symbionts (Paramecium and Drosophila). **Maternal inheritance:** Ephestia pigmentation and snail coiling. **Environmental effects and gene expression**— Phenocopies- Twin studies and IQ- Concordance — Discordance- Penetrance and expressivity.

Unit-III :MICROBIAL GENETICS:

(15 Hrs)

Microbial Genetics: Evidence of genetic materials in Bacteria. **Bacterial transformation:** molecular mechanism- mapping by transformation. **Bacterial conjugation:** insertion of F into the bacterial chromosome- Hfr transfer- recombination in recipient cells. Transduction: DNA transfer by means of transduction- cotransduction and linkage. **Specialized transducing particles:** Phagemids, Cosmids -characteristics- role as cloning vectors.

Unit-IV: EVOLUTIONARY POPULATION GENETICS:

(15 Hrs)

Evolutionary Genetics: Genetics of races and species formation—genetic load—genetic polymorphism -X inactivation — genomic imprinting.

Population Genetics: Gene pool and gene frequencies—equilibrium of gene frequencies—Hardy-weinberg equilibrium – changes in gene frequencies- factors affecting Hardy-weinberg equilibrium.

Unit-V: HUMAN GENETICS

(15 Hrs)

Human Genetics: Pedigree construction, inheritance patterns (autosomal, sex -linked,sex - limited and sex-influenced)- Gene Mutation and Chromosomal aberrations - Inborn errors of metabolism in man -Haemoglobin disorders- Chromosomal syndromes— sickle cell anemia and thalassemia - Genetic counselling. Eugenics and euthenics.

.

Topics for Self-Study:

S.No.	Topics	Web Links
1	Genetic Analysis of Inbreeding	https://www.ucl.ac.uk/~ucbhdjm/courses/b242/Inb rDrift/InbrDrift.html
2	Parental Imprinting	http://atlasgeneticsoncology.org/Educ/GenomImpr intID30027ES.html
3	Mutant Genes in Bacteria	https://eujournal.org/index.php/esj/article/view/25 18
4	Amniocentesis and Chorionic Biopsy	https://www.cdc.gov/mmwr/preview/mmwrhtml/0 0038393.htm#:~:text=CVS%20utilizes%20either %20a%20catheter,surrounds%20the%20fetus%20i s%20removed

Text Book:

1. Gardner E.J, Simmons, M.J. and Snustad D.P, Principles of Genetics, 7th Ed., 2007 John Wiley India,

Reference Books:

- 1. WilliamK.S. and CummingsM. Concepts of Genetics, 7th Ed.,2011 Pearson Education Inc, Dorling Kindersley Publication,
- 2. SnustadD.P. and SimmonsM.J. Genetics, VI Ed., 2012 John Wiley & Sons, Singapore,
- 3. SudberyP, Human Molecular Genetics, 2nd Ed.,2009 Dorling Kindersley (India) Pvt. Ltd.,
- 4. Nancy T and TrempyJ, Fundamental Bacterial Genetics, 2nd Ed.,2006 Malden MA; Blackwell Science,
- 5. Stent G.S. and Calendar R. Molecular Genetics: An Introductory Narrative, 2nd Ed., 2004 CBS Publishers and Distributers, New Delhi,
- 6. Klug W.S. and CummingsM.R. Concepts of Genetics. 7th Ed., 2003 Pearson Education,
- 7. RusselP.J. Genetics: A Molecular Approach, 2nd Ed., 2006 Pearson Education,

- 8. MaloyS.R.,Cronan, J.E. and Freifelder, D. Microbial Genetics 2nd Ed., 2008 Narosa Publishing House, New Delhi,
- 9. Pasternak, J.J. An Introduction to Molecular Human Genetics.2000 Fritzgerald Science Press, Bethesda
- 10. Hancock, J.T. Molecular Genetics. 2008 New Delhi.

Web Links:

https://nptel.ac.in/courses/102/104/102104052/

https://onlinecourses.swayam2.ac.in/cec20_bt03/preview

Specific Learning Outcomes (SLO)

Unit	Course Contents	Specific Learning Outcomes (SLO)	ghest Blooms Taxonomic level of Transaction						
I	MENDELIAN GENETICS								
1.1	Mendelian genetics	 Define the laws of inheritance 	K1						
1.2	Classical genetics	 Elaborate the concepts of linkage and crossing over 	К6						
1.3	Chromosome mapping	 Explain the types and significance of chromosome mapping 	К6						
		Assess the evolutionary concepts of chromosome	K5						
1.4	Human chromosomes	 Determine the molecular level of organization 	K5						
		 Identify the concept behind sex determination and dose compensation 	К3						
II	MATERNA	AL INHERITANCE AND GENE EXPRESSION							
	Extranuclear	Explain the heredity of mitochondria	K5						
2.1	inheritance and	 Classify the various Cytoplasmic 	К2						
	maternal effects	inheritance in Symbionts	K2						
		• Elaborate about the Ephesian pigmentation	K6						
2.2	Maternal inheritance	 explain about the coiling process occur in snail 							
2.3	Environmental effects & gene expression	 Interpret the role of gene expression in phenotypes. 	K5						
III		MICROBIAL GENETICS							
3.1	Microbial Genetics	Analyse the importance of genetic materials in bacteria	K5						
3.2	Bacterial transformation	Explain about molecular mechanismby transformation technique	K2						
2.2	Posterial Conjugation	Explain about the Hfr transfer and recombination technique in bacterial cells	K5						
3.3	Bacterial Conjugation	 Elaborate the process of DNA transduction and linkages 	К6						
3.4	Transducting particles	Categorize and explain the specialized transducting vectors	K4						
		 Explain the role of cloning vectors 	K5						

IV	EV	OLUTIONARY POPULATION GENETICS	
		 Assess the genetics of races and species formation 	K5
4.1	Evolutionary Genetics	Explain the genetic polymorphism	K5
		Elaborate the process of genomic imprinting	K5
		 Summarise the concepts of gene pool and gene frequencies 	K2
		Evaluate Hardy Weinberg equilibrium	K5
4.2	Population Genetics	Estimate changes occur due to gene frequencies	K5
		Analyze the factors affecting Hardy- Weinberg equilibrium.	K2
V		HUMAN GENETICS	
		Evaluate the inheritance pattern through pedigree chart	K5
_		 Explain the concept of gene mutations with examples 	K5
5	Human Genetics	Explain the concept of Human karyotype preparation	K2
		Find out the various chromosomal syndromes in mam	K1

${\bf 4}$ Mapping Scheme for the PO, PSOs and COs

P19ZY308	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	Н	M	M	M	M	M	Н	M	Н	M	Н
CO2	Н	M	Н	H	Н	Н	M	Н	M	Н	Н	Н	H
CO3	Н	Н	Н	H	Н	-	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	-	Н	Н	M	Н	Н	Н	Н
CO5	Н	Н	Н	Н	M	Н	1	Н	Н	Н	Н	Н	H
CO6	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H

L-Low M-Moderate H- High

Direct
1. Continuous Assessment Test I, II
2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation
3. End Semester Examination
Indirect
1. Course-end survey

CORE IX: RESEARCH METHODOLOGY AND BIOTECHNIQUES

SEMESTER : III COURSE CODE : P19ZY309

CREDIT: 4 TOTAL HOUR: 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO.No	COURSEOUTCOMES	LEVEL	UNIT
CO1	Apply the Statistical principles and skills in biological research	К3	I
CO2	Analyse, review and assess critically scientific hypotheses and theories using scientific evidence and information	K6, K4	II
CO3	Design to the learning process of how to write thesis and how to publish papers in various journals	K5	II
CO4	Investigate the various chemical compounds using chromatographic technique	K4	III
CO5	Explain the principles and applications of spectrophotometry and electrophoresis	K4	IV
CO6	Select and use the animal cell culture technique	К3	V

2. SYLLABUS

Unit – I: COMPONENTS OF RESEARCH

(15 hrs)

Research: Objectives—types—significance-Components of research Research process - **Research Design:** need-features of a good design—concepts-principles of Experimental design. Selection and Defining of a research problem- **Sources and retrieval of information:** journals, monographs, books—computer aided searches - Formulating a research Hypothesis

Unit – II: THESIS WRITING

(15 hrs)

Thesis writing: format of thesis- preparation of manuscript and editing - forms of presentation of results-components of Discussion- citing the references - Research papers for publication-writing a research proposal-Impact factor-citation index- manuscript preparation-IPR and patenting.

Unit – III: CHROMATOGRAPHY & CENTRIFUGATION (15 hrs)

Chromatography: Principle and methodology of column, ion exchange and affinity chromatography -GLC and HPLC-**Centrifugation:** Differential and gradient centrifugation-Ultra centrifuge-Principles and applications of Autoradiography and X-ray crystallography.

Unit –IV: SPECTROPHOTOMETRY & ELELCTROPHORESIS (15 hrs)

Spectrophotometry: Principle, methodology and applications of Atomic absorbance spectrophotometer, Flame Photometer, UV-VIS spectrophotometer, Nuclear magnetic resonance spectrometry (NMR).**Electrophoresis:** Principle, types, procedure and applications. Cell lines-culture.

Unit – V: ANIMAL CELL CULTURE TECHNIQUES (15 hrs)

Animal Cell culture Techniques: Design and functioning of tissue culture laboratory- Cell proliferation measurements- Cell viability testing. Types of culture: -Flask, Test tube, Organ and Embryo culture. Protoplast culture. Stem cell culture. Cryopreservation of cells, Tissues and organisms. Germplasm storage: Cryobank - Pollen bank and sperm bank.

Topics for self study:

S.No.	Topics	Web links
1.	Patenting	https://www.government.nl/topics/intellectual-property/question-and-answer/what-are-the-criteria-for-patenting-my-invention
2.	Crystallography	https://en.wikipedia.org/wiki/Crystallography
3.	cell line culture	file:///C:/Users/Dell/Downloads/2015 Bookmatter TheImpactOf FoodBioactivesOnHea.pdf
4	Stem cell culture	https://www.creative-bioarray.com/support/stem-cell-culture-guide.htm https://microbenotes.com/stem-cells/

Text Book:

Kothari, C.R. Research Methodology: Methods and Techniques. 2nd Ed.,2004 New Age International Publishers, New Delhi,

Reference Books:

- 1. Pingoud, A. Biochemical Methods. 2003 Wiley-VCH,
- 2. Venn, R.F. Principles and Practice of Bioanalysis. 2003 Taylor & Francis,
- 3. Holme, D.J. and Peck, H. Analytical Biochemistry. 3rd Ed.,1998 Pearson Education,
- 4. Wilson, K. and Walker, J. Practical Biochemistry: Principles and Techniques. 5th Ed.,2000 Cambridge University Press,

- 5. Wilson, K. and Walker, J. Principles and Techniques of Biochemistry and Molecular Biology. 7th Ed.,2010 Cambridge University Press,
- 6. Holmes, D., Moody, P., Dine, D., Moody, P. andHolmes, D.S. Research Methods for the Biosciences. 2006 Oxford University Press, New Delhi,
- 7. Ramadass, P. and Wilson Aruni, A. Research and Writing-across the Disciplines.2009 MJP Publishers, Chennai.

Web Links:

https://www.mayoclinic.org/tests-procedures/in-vitro-fertilization/about/pac-

https://microbenotes.com/polyacrylamide-gel-electrophoresis-page/

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/D21111.pdf

https://atecentral.net/downloads/1163/Basics_of_Cell_Culture_students_manualv7.pdf

3. SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ section	Course content	Learning outcome	Highest Blooms Taxonomic Level of Transaction					
I	COMPONENTS OF RESEARCH							
1.1	Introduction	Define research	K6					
1.2	Types of research	Classify and explain the types of research	K4					
1.3	Sources & retrieval of information	Compare the various methods in reteriving of information for research	K4					
1.4	Research design	Discuss in detail the important concepts related to research design	K6					
		Explain briefly the parts of research design	K2					
II		THESIS WRITING						
2.1	Thesis writing	Explain the structure of thesis	K4					
2.2	Impact factor & citation index	Compare and interpret the research publications	K4					
2.3	IPR& Patent	Create the IPR & patent for your indegeneous research findings	K5					

III	CHROMATOGR	RAPHY & CENTRIFUGATION	
3.1	Chromatography – Column, Ion exchange, Affinity	Classify the types of chromatography	К3
3.2	Centrifugation – GLC,HPLC,Differential &gradient, Ultra centrifuge	 Explain the principle of various centrifugation methods. Justify centrifugation is a best separation method 	K4
3.3	Autoradiography	 Classify and compare the components present in the biological material using autoradiography 	K4
3.4	X-ray crystallography	Predict the molecular structure using X - ray crystallography	K5
IV	SPECTROPHOT	OMETRY & ELELCTROPHORESIS	I
4.1	Spectrophotometry Atomic absorbance Flame photometer UV-VIS NMR	 Analyse and categorise the various molecules present in the biological sample using Spectrophotometry, Atomicabsorbance, Fl ame photometer UV-VIS, NMR 	K4
4.2	Electrophoresis	Use the electrophoresis technique to separate the molecules based on MW	K3
4.3	Cell Line-culture	How will you formulate a animal cell line culture for your research	K5
V	ANIMAL CELL	CULTURE TECHNIQUES	
5.1	Design and functioning of tissue culture laboratory	Plan and Construct a tissue culture laboratory based on your need	K5
5.2	Cell viability testing	 Verify the cell viability using cell viability testing method 	K6
5.3	Culture media preparation	Compose various culture medias according to your need	K5

5.4	Types of culture: Protoplast culture Stem cell culture Cryo preservation for cells	Construct a protoplast culture laboratory and the use of stem cell culture method	K5
5.5	Germplasm storage Cryobank, Pollenbank	 Formulate and explain the germ plasm storage technique. Construct a cryobank or pollen bank in your area 	K5

$4. \ \textbf{Mapping of COS and POs} \\$

P19ZY309	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO 1	PSO 2	PSO3	PSO4
CO1	Н	Н	Н	Н	Н	Н	-	-	-	Н	M	Н	M
CO2	Н	Н	Н	Н	Н	Н	-	-	-	Н	M	Н	M
CO3	M	M	M	Н	Н	H	-	-		M	•	Н	M
CO4	M	M	L	Н	H	H	-	-	•	-	M	Н	Н
CO5	M	M	L	Н	Н	H	-	-	-	-	M	Н	Н
CO6	M	M	L	M	Н	H	-	-	-	-	M	Н	Н

L-Low M-Moderate H- High

Direct	
1. Continuous Assessment Test I,II	
 Cooperative learning report, Assignment; Journal paper review, Greentation, Poster preparation, End Semester Examination 	oup
Indirect	
1. Course-end survey	

CORE PRACTICAL - V: LAB IN ENVIRONMENTAL

BIOLOGY, DEVELOPMENTAL BIOLOGY AND GENETICS

SEMESTER III CODE: P19ZY3P5

CREDITS: 4 TOTAL HOURS: 75

NO OF HOURS PER WEEK: 6

1. COURSE OUTCOMES:

On completion of this course, the students will be able to

CO.No.	COURSEOUTCOMES	LEVEL	PRACTICALS
CO1	Qualitatively and qualitatively estimate different ecological parameters.	К3	I
CO2	Interpret the results of qualitative and quantitative estimations	K5	I
CO3	Identify theembryonic development of chick and frog	К3	I
CO4	Apply the immunological techniques in biology	К3	II
CO5	Examine different genetic traits and chromosomal aberrations in Human being	K4	III
CO6	Prepare a pedigree chart for chromosomal traits	К3	III

2. SYLLABUS

I ENVIRONMENTAL BIOLOGY

(35 hrs)

Different ecological parameters.

Spatial variations of dissolved oxygen concentration in water and percentagesaturation

Estimation of Dissolved free carbon dioxide

Estimation of Nitrates

Estimation of Total Hardness

Estimation of Total Alkalinity

Estimation of Total Phosphates

II DEVELOPMENTAL BIOLOGY

(20 hrs)

Observation of sperms in Bull's semen

Observation of blastoderm in chick embryo

Slides: Whole mount of early hours of chick embryo development (24 hrs, 48 hrs, 72 and 96

hours). Yolk Plug stage, neural plate, neural fold and neural tube of frog

III GENETICS (20 hrs)

Pedigree analysis

Study of various genetic traits in Human being

Preparation of Human karyotype

Identification of syndromes

Study of sex chromatin in human buccal smear.

Topics for Self study

S.No	Topics	Web links
1	BOD, COD	Biochemical Oxygen Demand - an overview ScienceDirect Topics , What is Chemical Oxygen Demand (COD)? - Definition from Corrosionpedia
2.	Histology techniques	<u>Histological Techniques</u>
3.	Embryonic stem cells	Embryonic Stem Cells stemcells.nih.gov
4.	Gene manipulation	Genetic Manipulation: Definition, Pros & Cons - Video & Lesson Transcript Study.com
5.	NGS technology	Next-Generation Sequencing (NGS) Explore the technology (illumina.com)

Web Links:

http://tumkuruniversity.ac.in/wp-content/uploads/2014/11/ENV-SCIENCE.pdf

file:///C:/Users/dell/Downloads/BIO 150L new course.pdf

https://bangaloreuniversity.ac.in/wp-content/uploads/2018/08/Syllabus-B.Sc .-Genetics-2018.pdf

3. SPECIFIC LEARNING OUTCOME

Unit/Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomic level of Transaction			
I	ENV	IRONMENTAL BIOLOGY				
1.1	Spatial variations of dissolved oxygen concentration in water and percentage saturation	Evaluate the oxygen saturation according to space	К3			
	Estimation of Dissolved free carbon dioxide Estimation of Nitrates Estimation of Total		K4			
1.2	Hardness Estimation of Total Alkalinity Estimation of Total	Qualitatively estimate different water quality parameters.				
II	Phosphates DEV	ELOPMENTAL BIOLOGY				
2.1	Observation of sperms in Bull's semen	Examine the motility and fertility of bull semen	K5			
2.2	Observation of blastoderm in chick embryo Slides: Whole mount of early hours of chick embryo development (24 hrs, 48 hrs, 72 and 96 hours).	Observe and identify different embryonic stages of chick	K4			
2.3	Yolk Plug stage, neural plate, neural fold and neural tube of frog	A ()hearve and identity different	К3			
III		GENETICS				
3.1	Pedigree analysis	Classify the traits	K4			
3.2	Study of various genetic traits in Human being	Categorize the allosomal and autosomal characters	K4			

3.3	Preparation of Human karyotype	Infer the chromosomal aberrations	K4
3.4	Identification of syndromes	Discussthe cause of the human syndromes	K6
3.5	Study of sex chromatin in human buccal smear	classify the gender using the methodology	K4

4. Mapping Scheme for the PO, PSOs and COs

P15ZY3P5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	Н	Н	M	M	M	L	M	M	Н	Н	Н
CO2	Н	M	M	Н	M	M	M	M	Н	M	-	L	Н
CO3	Н	Н	M	M	L	M	M	L	M	-	Н	M	Н
CO4	Н	M	Н	M	Н	Н	L	M	Н	M	Н	-	Н
CO5	Н	Н	M	Н	Н	M	-	L	M	-	-	-	Н
CO6	Н	Н	M	Н	Н	M	M	L	M	L	Н	M	Н

L-Low M-Moderate H- High

5. COURSE ASSESSIVIEIVI IVIE I HODS
Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group Presentation,
Poster preparation, Sample analysis, Record
3. End Semester Examination
Indirect
1. Course-end survey

ELECTIVE - IV: ANIMAL BIOTECHNOLOGY/GENOMICS AND PROTEOMICS

SEMESTER: III COURSE CODE: P19ZY3:4/P19ZY3:A

CREDIT: 4 HOURS: 75

NO OF HOURS PER WEEK: 4

1. Course Outcomes

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOMES	LEVEL	UNIT
CO1	Discuss fundamental concepts and tools used in recombinant DNA technology	K6	I
CO2	Develop methodology to establish animal cell culture	K6	II
CO3	Create transgenic animal breeds.	K6	III
CO4	Create the importance of genetic engineering in transgenic animal production	K6	IV
CO5	Build techniques in medical biotechnology for the production of therapeutic proteins, vaccines and targeted gene therapies	K6	V
CO6	Design public policy, bio safety, and intellectual property rights issues related to animal biotechnology.	K6	V

Syllabus

Unit – I: RECOMBINANT DNA TECHNOLOGY

(15 Hrs)

Animal cell culture-primary and established cell lines, media composition and its functions, cell synchronization, cell viability - cytotoxicity, stem cell culture, organ and tissue culture. Application of cell culture. **Recombinant DNA technology:** History, Steps in rDNA technology. Molecular tools: Construction of vectors: Natural - artificial vectors, - shuttle vectors, prokaryotic and eukaryotic expression vectors.

Unit – II GENOMIC LIBRARIES

(15 Hrs)

Construction of cDNA - genomic DNA libraries, screening of libraries and their applications. Preparation of radioactive and nonradioactive probes. Nucleic acid amplification and its application in medicine – DNA sequencing – Sanger, Maxam and Gilbert method - site directed mutagenesis.

Unit – III GENETIC ENGINEERING IN ANIMALS

Genetic engineering in animals: methods of transferring genes in to animal's oocytes, eggs embryos and specific tissues (physical, chemical and biological methods) - transgenic animals

(mice, cow, goat, pigs and sheep)-safety aspects of genetic manipulations, transgenic animals as bioreactor.

Unit – IV MEDICAL BIOTECHNOLGY

(15 Hrs)

Medical biotechnology: Micromanipulation, artificial insemination; germ cell manipulation; intracytoplasmic sperm injection; in vitro fertilization and embryo transfer; gene therapy. **Human Genome project:** objectives, strategies and applications.

Unit - V BIOTECHNOLOGICAL APPLICATIONS

(15 Hrs)

Animal Genomics: Satellite DNA, DNA markers – RAPD, STR, SSCP, RFLP, DNA finger printing, SNP, EST, QTL, importance of gene mapping in livestocks, methods and techniques of gene mapping. *In-situ* hybridization. Applications of Bionanotechnology.

Topics for self study:

S.No.	Contents	Web Link		
1.	CRISPR	https://www.livescience.com/58790-crispr-explained.html		
2.	Lentivirus	https://old.abmgood.com/marketing/knowledge_base/The_Lentivirus_System.php		
3.	Personalised	https://healthitanalytics.com/features/what-are-precision-medicine-and-personalized-		
	medicines	<u>medicine</u>		
4.	Bioreactors	https://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol2/abstracts/korossis_0102.pdf		
	in Tissue			
	Engineering			
5.	Biosimilar	https://www.dovepress.com/biosimilars-an-overview-peer-reviewed-article-BS		

Text Book:-

- 1. Glick, B.R. and Pasternak, J.J. Molecular Biotechnology: Principles and Applications of Recombinant DNA. 3rd Ed., 2007 ASM Press, Washington. Indian Reprint, 2007.
- 2. Ranga M.M. Animal Biotechnology. Agrobios India Limited, 2002
- 3. Sensen CW. 2005. Handbook of Genome Research. Vols. I, II. Wiley-CVH
- 4. Portner R. 2007. Animal Cell Biotechnology. Humana Press.
- 5. Gibson, G. and Muse S. V. 2004. A primer of Genome Science, Sinauer Associates

Reference Books:-

- 1. Primrose, S.B. and Twyman, R.M. Principles of Gene Manipulation and Ge nomics. 2006, Blackwell Scientific Publications.
- 2. Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. Introduction to Genetic Analysis. 8th Ed., 2005 W. H. Freeman and Company, New York.
- 3. Brown, T.A. Gene Cloning and DNA Analysis: An Introduction. 5th Ed., 2006 Blackwell Publishing.
- 4. Watson, J.D., Gilman, M., Witkowski, J. and Zoller, M. Recombinant DNA. 2nd Ed., 1992 W. H. Freeman, Scientific American Books, New York.
- 5. Winnacker, E.L. From Genes to Clones: Introduction to Gene Technology. 2003 Panima Publishing Corporation, New Delhi.
- 6. Tamarin, R.H. Principles of Genetics. 7th Ed., 2006 Tata-McGraw Hill Publishing Company Ltd., New Delhi.
- 7. Kreuzer, H. and Massey, A. Recombinant DNA and Biotechnology. 2nd Ed., 2001 ASM Press, Washington.

Web Links:

http://ecoursesonline.iasri.res.in/course/view.php?id=350

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit / Sect ion	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomical level of Transaction	
I	RECOMBINANT DNA TECHNOLOGY			
1.1	Brief introduction to Animal	• Define the basics of animal	al K2	
	Biotechnology and History	biotechnology	K2	
1.2	Recombinant DNA technology: Steps in	• Illustrate basic steps in	V.C	
	rDNA technology	rDNA technology	K6	
1.3	Restriction enzymes and DNA manipulative enzymes	Define the role of restriction enzymes in DNA manipulation	K1	
1.4	Plasmids, phagemids, cosmids, bacteriophages, artificial chromosomes (BACs, PACs, YACs, MACs, and HACs) - shuttle vectors, prokaryotic and eukaryotic expression vectors	Construct novel vectors for efficient gene transfer	K6	
1.5	Specialized vectors for expression of foreign gene		K6	

II	GENOMIC LIBRARIES					
2.1	Genomic DNA libraries					
2.2	Preparation of radioactive and	• Explain expression of				
	nonradioactive probes	genomic libraries in host	K5			
2.3	Screening of libraries using oligo probes	cells				
	and antibodies					
2.4	Nucleic acid amplification and its	Develop new PCR amplification techniques & —	K6			
	application in medicine		KO			
2.5	DNA sequencing	their role in disease	K4			
2.6	Site directed mutagenesis and protein	identification	K6			
2.0	engineering.		110			
III	GENETIC ENGINEERING IN ANIMALS					
	Genetic engineering in animals:		K 6			
	Methods of transferring genes in to animal	Develop novel method of gene transfer techniques in to animals & cell lines				
3.1	oocytes, eggs embryos and specific tissues					
	(physical chemical and biological					
	methods)					
	Cell lines and their applications-		K6			
3.2	transgenic animals (mice, cow, goat, pigs,					
	sheep and insects)					
IV	MEDICAL BIOTECHNOLOGY					
	Medical biotechnology: Animal					
	biotechnology for production of	Improve the production of	K 6			
4.1	regulatory proteins, blood products,	food supplements through animal biotechnology				
	vaccines, hormones and other therapeutic					
	proteins					
4.2	Gene therapy- cloning	Develop new gene therapy .	K6			
		strategies				
4.2	Human Genome Project: Objectives,	Define the basics of human	17.1			
4.3	strategies and progress	genome project & its application.	K 1			
	DIOTECHNIOLOGICAL ADDILICAT					
V	BIOTECHNOLOGICAL APPLICATIONS					
5.1	Bioremediation Types: In situ – Ex situ –	Develop strategies for production & application of	K6			
<i>5</i> 2	Strategy		W.C			
5.2	Bioremediation: Biosensors, bioleaching,		K6			

	biochips and biofuels.	novel bioremediation	
5.3	Applications of Probiotics	methods	K6
5.4	Applications: Healthcare; Agriculture & Industry		K6
5.5	DNA finger printing	Improve the quality of DNA finger printing	K6
5.6	Environmental applications of biotechnology	Propose new policies to protect & restore the quality of environment	K6
5.7	Biosafety and Bioethics	Define legal & socio, economic issues related to biotechnology and their ethical issues	K2

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY3	PO	PSO	PSO	PSO	PSO								
:1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	M		L		L					M		L	
CO2		Н						Н					M
CO3	L			Н		M			L		L		
CO4		L			L		Н		M				M
CO5	L					Н				L			
CO6			M					M			M	L	

L - Low M - Medium H - High

5. COURSE ASSESSMENT METHODS

Direct
1. Continuous Assessment Test I,II
2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.
3. End Semester Examination
Indirect
1. Course-end survey

CORE-X: EVOLUTION AND ANIMAL BEHAVIOUR

SEMESTER- IV COURSE CODE: P19ZY410

CREDITS: 4 TOTAL HOURS: 75

NO OF HOURS PER WEEK: 5

1. COURSE OUTCOMES

After completing this course, the students will be able to

NO	COURSE OUTCOMES	LEVEL	UNIT
CO1	Explain the origin of life on earth and theories with evidences	K5	I
CO2	Define the various factors which affected the evolution of sex	K3	II
	and reproductive strategies		
CO3	Illustrate the concept of speciation and evolutionary time scale	K3	III
CO4	Explain the evolutionary history of man	K5	IV
CO5	Relate the different aspects of environmental perception and	K3	IV
	communication in animals.		
CO6	Explain the various aspects of behavior and social organization	K5	V
	in animals		

2. SYLLABUS

Evolution

Unit – I: EVOLUTION OVERVIEW

(15 Hrs)

Origin of life – Abiogenesis —Lamarckism – Mutation theory of De Vries –Darwinism: Theory of Natural selection – Facts that influence Darwin's thoughts - Current challenges to Darwinism: DNA and protein phylogenies – protein evolution and neutrality theory – Molecular evolutionary clock, Micro and macroevolution.

Unit – II: ISOLATION, SPECIATION AND FOSSILS

(15 Hrs)

Speciation - Isolation and Speciation: Isolating mechanism - Pre and post zygotic - origin of isolation -Koopman's experiment - modes - Sympatric -allopatric and quantum speciation. Evolutionary time scale- Fossil history and phylogeny of man - Cultural evolution and evolutionary future of mankind - Concepts of Exobiology.

Animal Behaviour

Unit – III : ETHOLOGY (15 Hrs)

Introduction to Ethology - Animal psychology, classification of behavioural patterns, analysisofbehaviour (ethogram) - Reflexes and complex behavior - Perception of the environment: mechanical, electrical, chemical, olfactory, auditory and visual - Neural and hormonal control of behavior - Genetic and environmental components in the development of behavior - Communication: Chemical, visual, light and audio, evolution oflanguage (primates).

Unit – IV: ANIMAL BEHAVIOUR AND BIOLOGICAL RHYTHMS (15 Hrs)

Ecological aspects of behaviour: Habitat selection, food selection, optimal foraging theory, anti -predator defenses, aggression, homing, territoriality, dispersal, host parasite relations. Biological rhythms: Circadian and circannual rhythms, orientationandnavigation, migration of fishes and birds. Learning and memory: Conditioning, habituation, insight learning, association learning and reasoning.

Unit – V: REPRODUCTIVE BEHAVIOUR AND PARENTAL CARE (15 Hrs)

Reproductive behavior: Mating systems, courtship, sexualselection, parental care. Social Organisation in Honey bees and Primates - aggregations, schooling in fishes, flocking in birds, herding in mammals, group selection, kin selection, altruism, reciprocal altruism, inclusive fitness, social organization in insects and primates.

Topics for self study:

S.No	Topics	web links
1.	Phylogenetic trees	https://courses.lumenlearning.com/suny-wmopen- biology1/chapter/phylogenetic-trees/
2.	Molecular divergence	https://www.ncbi.nlm.nih.gov/books/?term=Molecular+divergence
3.	Molecular clocks	http://www.as.wvu.edu/~kgarbutt/QuantGen/Gen535Papers2/ Molecular_Clocks.htm
4.	Chronopharma cology	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885389/ https://link.springer.com/chapter/10.1007/978-981-32-9779- 1_16
5.	Animal Domestication	https://www.nationalgeographic.com/animals/reference/dome sticated-animals/ https://www.intechopen.com/books/animal- domestication/animal-domestication-a-brief-overview

Text Books

- 1. Brian, K. H. and BenediktHall,G.Strickberger's Evolution. 4th Ed., 2008 Jones and Bartlett Publishers, Inc,
- 2. Goodenough, J., Betty, M. and Wallace, R.A. Perspectives on Animal Behaviour.1993 John Wiley,

Reference Books:

1. Futuyma, D.J.Evolutionary Biology. 3rd Ed.,1998 Sinauer Associates, Sunderland, Massachusetts,

- 2. Alcock, J. Animal Behaviour: An Evolutionary Approach. 7th Ed.,2001 Sinaur Associates, Inc.
- 3. Krebs, J.R and Davis, N.B. Behavioural Ecology. 3rd Ed., 1993 Blackwell,
- 4. Ridley, M. Evolution. 2nd Ed.,2004 Indian Edition. Blackwell Scientific Publishers, Oxford, UK,
- 5. Rastogi, V.B. Organic Evolution. 12th Ed., KedarNath Ram Nath, Meerut.

Web Links:

https://b-ok.asia/book/2325474/f08119 https://b-ok.asia/book/3504212/b99824 https://b-ok.asia/book/1250880/8dcac2

SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Course Contents	Specific Learning Outcomes (SLO)	Blooms Taxonomy levels of Transaction					
Ι	DARWINISM AND LAMARKISM							
1.1	Origin of life – Abiogenesis – Cosmozoic and naturalistic theories – chemical evolution and origin of life – evidences and objections	Explain how life might have originated on this planet	K2					
1.2	Lamarckism – Mutation theory of De Vries –Darwinism: Theory of Natural selection – Facts that influence Darwins thoughts - Current challenges to Darwinism: DNA and protein phylogenies – protein evolution and neutrality theory	 Compare Lamarckism and mutation theory for evolution Explain Darwin's theories on natural selection and challenges 	K2					
1.3	Molecular evolutionary clock, Micro and macroevolution. Evolution of sex and reproductive strategies.	Compare micro and macro evolution	K2					
II	ISOLATION, SPECIATIO	ON AND PALAENTOLOGY						
2.1	Isolation and Speciation: Isolating mechanism – Pre and post zygotic – origin of isolation – Koopman's experiment - Speciation – definition – modes – Sympatric –allopatric and quantum speciation.	 Explain the concept of speciation and gene regulation. List out the examples and adaptation of both allopatric and sympatric speciation 	K4					

2.2	The evolutionary time scale: eras-periods and epoch-major events in the evolutionary time scale.	•	Relate broad patterns in the fossil record to major geological events in time scale	K1
2.3	Fossil history and phylogeny of man – Cultural evolution and evolutionary future of mankind. Concepts of Exobiology.	•	Explain hominid evolution by discussing landmark phylogenetic transition and also cultural evolution in relation to society.	K5
III	ETHOLOGY			
3.1	Introduction to Ethology - Animal psychology, classification of behavioural patterns, analysis of behaviour (ethogram) - Reflexes and complex behavior -	•	Classify behavioral patterns and reflexes	K4
3.2	Perception of the environment: mechanical, electrical, chemical, olfactory, auditory and visual - Neural and hormonal control of behavior - Genetic and environmental components in the development of behavior -	•	Analyse the significance of animal perception and develop methods to regulate animal behavior	K 6
3.3	Communication: Chemical, visual, light and audio, evolution of language (primates).	•	Illustrate the forms of communication in animals and its role in language development.	К3
IV	ANIMAL BEHAVIOUR A	ND	BIOLOGICAL RHYTHMS	
4.1	Ecological aspects of behaviour: Habitat selection, food selection, optimal foraging theory, anti-predator defenses, aggression, homing, territoriality, dispersal, host parasite relations	•	Define habitat selection, foraging pattern and defense mechansims	K2
4.2	Circadian and circannual rhythms, orientation and navigation, migration of fishes and birds.	•	Explain the regulation of circadian rhythms	K4
4.3	Learning and memory: Conditioning, habituation,	•	Explain the role of biology in learning and memory and	K5

	insight learning, association learning and reasoning.	its form.	
V	REPRODUCTIVE BEHAV	VIOUR AND PARENTAL CARI	E
	Reproductive behavior: Mating systems, courtship, sexual selection, parental care.	Analyse the importance of reproductive behavior and parental care in species perpetuation.	K4
5	Social Organisation in Honey bees and Primates - aggregations, schooling in fishes, flocking in birds, herding in mammals, group selection, kin selection, altruism, reciprocal altruism, inclusive fitness, social organization in insects and primates.	 Analyze the social organization in survival of animals 	K4

Text Books

- 1.Brian, K. H. and BenediktHall,G.Strickberger's Evolution. 4th Ed., 2008 Jones and Bartlett Publishers, Inc,
- 2.Goodenough, J., Betty, M. and Wallace, R.A. Perspectives on Animal Behaviour.1993 John Wiley.

Reference Books:

- 1. Futuyma, D.J.Evolutionary Biology. 3rd Ed.,1998 Sinauer Associates, Sunderland, Massachusetts,
- 2. Alcock, J. Animal Behaviour: An Evolutionary Approach. 7th Ed.,2001 Sinaur Associates, Inc.
- 3. Krebs, J.R and Davis, N.B. Behavioural Ecology. 3rd Ed., 1993 Blackwell,
- 4. Ridley, M. Evolution. 2nd Ed.,2004 Indian Edition. Blackwell Scientific Publishers, Oxford, UK,
- 5. Rastogi, V.B. Organic Evolution. 12th Ed., KedarNath Ram Nath, Meerut.

4. Mapping Scheme for the PO, PSOs and COs

P19ZY41	PO	PSO	PSO	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	Н	M	Н	L	M	Н	Н	M	Н	Н	Н	L
CO2	Н	Н	M	M	L	L	Н	M	L	Н	Н	Н	L
CO3	Н	Н	L	L	L	L	Н	M	L	Н	Н	Н	L
CO4	Н	Н	L	L	L	M	Н	Н	L	Н	Н	Н	L
CO5	Н	Н	L	L	L	L	Н	M	M	Н	Н	Н	L
CO6	Н	Н	L	M	L	L	Н	L	M	Н	Н	Н	L

L-Low M-Moderate H- High

5. COURSE ASSESSMENT METHODS

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation.
- 3. End Semester Examination

ELECTIVE - V: APPLIED ENTOMOLOGY/BIOINFORMATICS

SEMESTER: IV COURSE CODE: P19ZY4:5/P19ZY4:A

CREDIT: 4 TOTAL HOURS: 75

NO OF HOURS PER WEEK: 5

1. Course Outcome

On completion of this course, the students will be able to

CO.No.	COURSE OUTCOMES	LEVEL	UNIT
CO1	Classify the different orders of insect organisms	K4	I
CO2	Categorize the biological life cycle of agricultural and industrial important pests.	K4	II
CO3	Examine the structure and mode of action of important insecticides belonging to different groups	K4	III
CO4	Apply Integrated Pest Management	K4	IV
CO5	Recommend methods of insect control and the damages and benefits regarding practical applications.	K5	V
CO6	Improve employability skills of students to become an entomologist in government and private sectors.	K6	V

2. SYLLABUS

Unit – I: INSECT CLASSIFICATION

15hrs

Introduction to Entomology - General characters of Class Insecta —Outline Classification of insects up to orders Classification of following insect orders Orthoptera, Hemiptera, Diptera, Hymenoptera, Lepidoptera, Coleoptera, Insect Pest and their Classification

Unit - II: PEST OF AGRICULTURE

15hrs

Life history, nature of damage and control measures of major pests of Pest of rice: Rice stem borer (Scirpophaga incertulas) - Pest of Sugarcane: The shoot borer (Chiloinfuscatellus) - Pest of coconut: The rhinoceros beetle (Oryctes rhinoceros) - Pest of cotton: The spotted bollworm (Earias insulana) - Pests of Stored Products.

Unit-III: PEST OF MEDICAL AND VETERINARY IMPORTANCE 15hrs

Insect vectors of human diseases: Mosquitoes - Bedbug - Identification, nature of attack, and control measures. Veterinary pests: Identification, nature of attack, and control measures of insect pest of domestic animals — Cow and Fowl. Insects of forensic importance — crime detection using entomological science.

Unit - IV : PEST CONTROL MEASURES

15hrs

Pest control measures: Cultural–mechanical–physical and Biological methods - **Chemical control-** Insecticides - classification of insecticides based on mode of entry – mode of action and chemical nature –Insecticidal formulations– insecticidal toxicity (LD 50 / LC 50).

Unit - V: BIOLOGICAL CONTROL

15hrs

Biological control: Ecological basis and agents of biological control—Parasites, Parasitoids, Predators. Autocidal control. Methods of sterilisation – Male Sterilization technique, Chemo sterilants. Pheromonal control, Insect repellents, Insect anti feedants, Insect attractants – definition, applications, advantages and disadvantages. Microbial control of crop pests by employing bacteria, virus and fungi - Integrated pest management (IPM).

ASSIGNMENT: SUBMISSION OF INSECT BOX

Topics for Self-Study:

S.No.	Contents	Web Link
1.	Tritrophic	https://en.wikipedia.org/wiki/Tritrophic interactions in plant defense
	Interactions	
2.	Sterile insect release	https://ipmworld.umn.edu/bartlett
	method	
3.	Biology and Control	https://www.ag.ndsu.edu/publications/crops/pulse-crop-insect-
	of Pulse Crop Pests	diagnostic-series-field-pea-lentil-and-chickpea
4.	Corcyra	https://www.plantwise.org/KnowledgeBank/datasheet/15444
	cephalonica	
5.	Forensic	https://ifflab.org/forensic-entomology-using-insects-for-forensic-
	Entomology	<u>investigations/</u>

Text Books:

- 1. David, B.V. and Ananthakrishnan, T.N., General and Applied Entomology. 2nd Ed., 2004, Tata McGraw Hill, New Delhi.
- 2. Ignacimuthu, S. S and Jayaraj S, Biological Control of Insect Pests2003 Phoenix Publ, New Delhi.

Reference Books:

- 1. David, B.V. Elements of Economic Zoology. 2003, Popular Book Depot, Chennai.
- 2. Nalinasundari, M.S. and Santhi, R. Entomology. 2006, MJP Publishers, Chennai.
- 3. Awasthi, V.B. Introduction to General and Applied Entomology. 2002, Scientific Publishers, Jodhpur.

- 4. Norris, R.F., Caswell-chen, E.P. and Kogan, M. Concepts in Integrated Pest management 2002, Prentice Hall, New Delhi.
- 5. Racheigl and Racheigl, Biological and Biotechnological Control of Insect Pests.1998, CRC Press.
- 6. Srivastava, K. P., A, Textbook of Applied Entomology Vol. I. 2nd ed. 1988 Kalyani Publishers, New Delhi.

Web Links:

https://nptel.ac.in/courses/126/104/126104003/

3. SPECIFIC LEARNING OUTCOMES (SLO)

Unit/Section	Contents	Specific Learning Outcomes (SLO)	Highest Blooms Taxonomical level of Transaction
I	Insect Classification: - Introduction to Entomology – General characters of Class Insecta – Outline Classification	• Classify insects	
1.1	of insects up to orders Classification of following insect orders Orthoptera, Hemiptera, Diptera, Hymenoptera, Lepidoptera, Coleoptera, Insect Pest and their Classification.	according to their orders	K4
II		ULTURAL AND INDUST PORTANCE	ΓRIAL
2.1	Pest of Agricultural and industrial importance: - Life history, nature of damage and control measures of major pests of Pest of rice: Rice stem borer (Scirpophaga incertulas) – Pest of Sugarcane: The shoot borer (Chiloinfuscatellus) – Pest of coconut: The rhinoceros beetle (Oryctes rhinoceros) – Pest of	 Apply various control measures to eliminate the damage causing pests. 	K3

2.2 III	cotton: The spotted bollworm (Earias insulana) – Pests of Stored Products. Insects of Industrial importance – Biology and rearing of Honey bees, Silk worm, Lac insect – Useful Products and their Economic Values. • PEST OF MEDICAL A	Categorize the importance of insects in industrial purpose AND VETERINARY IMP	K4 ORTANCE
3.1	Pest of medical and veterinary importance: - Insect vectors of human diseases; Mosquitoes, Housefly, Bedbug, Sand fly, TseTse fly – Identification, nature of attack, and control measures.	Analyze the nature of human diseases caused by insect vectors.	K4
3.2	Veterinary pests: Identification, nature of attack, and control measures of insect pest of domestic animals – Fowl, cattle, sheep and goat.	Classify the nature of diseases caused by insect vectors in domestic animals and apply various control measures to eliminate veterinary pests.	K4
3.3	Insects of forensic importance – crime detection using entomological science.	• Identify insects in criminal investigation	K4
IV	• PEST CON	NTROL MEASURES	
4.1	Pest control measures: - Cultural-mechanical - physical and Biological methods - Chemical control - Insecticides	• Apply various pest control measures	K4
4.2	classification of insecticides	 Classify 	K4

	based on mode of entry - mode		insecticides	
	of action and chemical nature -		based on mode	
	Insecticidal formulations –		of entry, action	
	insecticidal toxicity (LD50/LC		and chemical	
	50).		nature	
V	• IPM - BIO			
	Insect pest – Management:	•	Evaluate insect	
	Biological control; Ecological		pest	
5.1	basis and agents of biological		management	K5
	control-Parasites, Parasitoids,		using biological	
	Predators. Autocidal control.		approach	
	Methods of sterilisation – Male			
	Sterilization technique, Chemo	•	Utilize available	
	sterilant. Pheromonal control,		sterilisation	
5.2	Insect repellents, Insect		methods to	К3
	antifeedants, Insect attractants -		control insect	
	definition, applications,		pests	
	advantages and disadvantages.			
		•	Improve	
	Microbial control of crop pests		integrated pest	
5.3	by employing bacteria, virus and		management	K6
3.3	fungi – Integrated pest		system for	KU
	management (IPM).		microbial pest	
			control.	

4. Mapping Scheme for the PO, PSOs and Cos

P19ZY4	PO	PSO	PSO	PSO	PSO								
:1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	L			L			M			M		L	
CO2	M		L			L			M		M		
CO3		M			L			M					Н
CO4				M	M	Н					M		
CO5			M						M			L	
CO6	M			M			Н			L			M

L - Low M - Medium H - High

5. COURSE ASSESSMENT METHODS

Direct

- 1. Continuous Assessment Test I,II
- 2. Cooperative learning report, Assignment; Journal paper review, Group Presentation, Poster preparation,
- 3. End Semester Examination

Indirect

1. Course-end survey

PG - PROGRAMME ARTICULATION MATRIX

S.No	COURSE	COURSE	Correlation with Programme Outcomes and Programme									
	NAME	CODE	PO1	PO	PO9	P						
				2	3	4	5	6	7	8		1
1	Functional Morphology		Н	Н	Н	L	L	-	Н	Н	-	Н
	of Invertebrates and Chordates	P19ZY101										_
2	Cell Biology	P19ZY102	Н	-	M	Н	Н	Н	Н	L	-	-
3	Molecular Biology and		Н	-	M	Н	Н	Н	Н	-	-	-
	Bioinformatics	P19ZY103										
4	Core Practical I	P19ZY1P1	Н	-	Н	Н	Н	Н	Н	Н	-	-
5	Core Practical II	P19ZY1P2	Н	-	Н	Н	Н	Н	Н	Н	-	-
6		P19ZY1:1	Н	-	Н	Н	Н	Н	Н	L	-	-
	Microbiology											
7	Animal Physiology	P19ZY204	Н	-	Н	Н	Н	Н	Н	Н	-	Н
8	Biochemistry	P19ZY205	Н	-	M	Н	Н	Н	Н	-	-	-
9	Immunology	P19ZY2:1	Н	-	Н	Н	Н	Н	Н	M	-	-
10	Biostatistics	P19ZY2:3	Н	-	Н	Н	Н	Н	Н	-	-	-
11	Core Practical III	P19ZY2P3	Н	-	Н	Н	Н	Н	Н	-	-	M
12	Core Practical IV	P19ZY2P4	Н	-	-	Н	Н	Н	Н		_	-
13	Environmental Biology	P19ZY306	Н	Н	Н	Н	Н	Н	Н	Н	Н	-
14	Developmental Biology	P19ZY307	Н	-	-	Н	Н	Н	Н	M	-	M
15	Genetics	P19ZY308	Н	-	-	Н	Н	Н	Н	-	-	M
16	Research Methodology and		Н	-	-	Н	Н	Н	Н	-	-	L
	Biotechniques	P19ZY309										
17	Core Practical V	P19ZY3P5	Н	Н	Н	Н	Н	Н	Н	-	Н	-
18	Animal Biotechnology	P19ZY3:1	Н	-	-	Н	Н	Н	Н	Н	-	L
19	Evolution and Animal	P15ZY410	Н	Н	Н	Н	Н	Н	Н	Н		Γ.
	Behaviour	P13Z1410	П	п	П	п	П	п	П	П	-	
20	Applied Entomology	P15ZY4:1	Н	-	M	Н	Н	Н	Н	M	Н]

PROJECT

Semester-IV Code: P19ZY4PJ

Credits: 5 Total Hrs.: 300